

LHWMP_0185 November 2013

Final Report

Evaluation of Solvon K4[™] in an Acute Fish Toxicity Test

Stephen G. Whittaker, PhD

Local Hazardous Waste Management Program in King County Research Services Team

This report was prepared by the Local Hazardous Waste Management Program in King County, Washington, a coalition of local governments. Our customers are residents, businesses and institutions with small quantities of hazardous wastes. The Program's mission is: to protect and enhance public health and environmental quality in King County by reducing the threat posed by the **production**, **use**, **storage** and **disposal** of hazardous materials.

For more information or to order additional copies of this report contact:

Publication Number LHWMP_0185

Whittaker, Stephen G. *Evaluation of Solvon K4TM in an Acute Fish Toxicity Test.* Seattle, WA: Local Hazardous Waste Management Program in King County, 2013.

Alternate Formats Available

Voice: 206-263-8899 or TTY Relay: 711

SolvonK4_LC50_Final_rev1.docx

Printed on Recycled Paper

CONTENTS

Executive Summary	1
Introduction	3
Dry cleaning solvents Solvon K4 TM toxicity testing	3
Methods	5
Sample collection and storage	5
Test procedures	5
Results	7
Conclusions	9
Acknowledgments	11
References	13
Appendix A: Report on LC50 Toxicity Testing Conducted on Solvon K4 Dry Cleaning Solvent	15

Tables

ACRONYMS AND ABBREVIATIONS

°C	Degrees Centigrade
CAS	Chemical Abstract Service
CETIS	Complex Effluents Toxicity Information System
DW	Dangerous Waste
EHW	Extremely Hazardous Waste
EPA	United States Environmental Protection Agency
Ecology	Washington State Department of Ecology
°F	Degrees Fahrenheit
KCEL	King County Environmental Laboratory
LC ₅₀	The median lethal test concentration that kills 50 percent of test organisms
LHWMP	Local Hazardous Waste Management Program in King County
mg/L	Milligrams per liter
NFPA	National Fire Protection Association
PERC	Perchloroethylene

EXECUTIVE SUMMARY

Dry cleaners are transitioning from using perchloroethylene (PERC) as their cleaning solvent to several non-chlorinated alternatives. A new dry cleaning solvent, called Solvon K4TM, is gaining market share in King County and elsewhere in the United States. This solvent, which is also known as butylal, is part of a dry cleaning system developed in Europe, known as System K4TM.

Relatively little toxicological information is available for Solvon $K4^{TM}$. Consequently, the objective of this study was to derive an LC_{50} for this solvent using an acute fish toxicity test. In this case, the LC_{50} is defined as the median lethal concentration of solvent that kills 50 percent of the test fish within 96 hours.

This study identified the first LC_{50} for Solvon K4TM product in rainbow trout: 45.7 mg/L. Consequently, this solvent is less toxic to fish than PERC ($LC_{50} = 5.0 \text{ mg/L}$), but more toxic than DF-2000TM, which is a high flash point hydrocarbon product also used in dry cleaning operations ($LC_{50} > 100 \text{ mg/L}$).

Based on this LC₅₀, unused or off-specification Solvon K4TM product that requires disposal would designate as Dangerous Waste (DW) with the waste code WT02 in Washington state. This LC₅₀ may also be used to designate waste streams originating from System K4TM dry cleaning and other processes that generate butylal-containing wastes.

INTRODUCTION

Dry cleaning solvents

Kerosene and other solvents have been used to dry clean fabrics since the mid-19th century. Stoddard solvent was introduced in 1925, but this petroleum distillate's flammability (flash point: 104 °F) prompted the industry to switch to perchloroethylene (PERC) in the 1960s. PERC (also known as tetrachloroethylene or "PCE") is essentially non-flammable and this chlorinated hydrocarbon is still regarded as one of the most efficient dry cleaning solvents.⁽¹⁾

In 2010, the Local Hazardous Waste Management Program in King County (LHWMP) conducted a survey of the dry cleaning industry, which revealed that PERC is still the most commonly-used solvent in King County.⁽²⁾ However, subsequent to the survey, a new dry cleaning technology appeared in King County, called "System K4TM". As of October 2013, five System K4TM dry cleaners are operating in King County.

System K4TM was developed in Germany by Kreussler GmbH. The dry cleaning solvent, Solvon K4TM, is composed primarily of butylal, which is a diether acetal. Synonyms for butylal include dibutoxymethane, 1-(butoxymethoxy)butane, and formaldehyde dibutyl acetal. The Chemical Abstract Service (CAS) number is 2568-90-3.⁽³⁾

According to Kreussler GmbH, n-butyl alcohol (1-butanol) and formaldehyde are present in Solvon K4TM at <0.5% and <0.05%, respectively.⁽³⁾ With a flash point of 143.6 °F,⁽³⁾ Solvon K4TM is regarded as a National Fire Protection Association (NFPA) Class IIIA solvent.

The extent of worker exposure to butylal and the long-term health effects associated with using this solvent have not been well-characterized. While the solvent is reportedly slightly biodegradable, there is little published information concerning its aquatic toxicity.⁽³⁾⁽⁴⁾

Solvon K4[™] toxicity testing

In September 2011, LHWMP conducted a fish toxicity test on a sample of unused Solvon K4TM product according to the Washington State Department of Ecology's (Ecology's) *Biological Testing Methods for the Designation of Dangerous Waste*.⁽⁵⁾ This test involved exposing juvenile rainbow trout to Solvon K4TM for 96 hours at two concentrations (100 mg/L and 10 mg/L) in a "non-renewal" static acute fish toxicity bioassay (i.e., Part A: Method 80-12). Solvon K4TM killed fish at 100 mg/L, but not at 10 mg/L (unpublished data). Consequently, unused or off-specification Solvon K4TM product that requires disposal would designate as a Dangerous Waste (DW) with the waste code WT02 in Washington state.

Although this previous study was adequate for waste characterization, it was not of sufficient quality to describe this solvent's aquatic toxicity. The principal shortcomings of this previous study are: 1) only two concentrations of Solvon K4TM were tested and 2)

the reported test concentrations reflected the nominal solvent concentrations (i.e., it was assumed that 100 percent of the Solvon K4TM added to the test system went into solution and that none was lost during the test).

Consequently, LHWMP collaborated with the King County Environmental Laboratory (KCEL, Seattle, WA) to derive an LC_{50} from multiple test concentrations, based on measured concentrations of Solvon K4TM in the test vessels.

METHODS

Sample collection and storage

A sample of unused Solvon K4TM product was collected from a previously unopened 30pound product container on July 20th, 2012. This solvent had been delivered to a local dry cleaner just prior to installation of a new System K4TM machine. The lot number on the product container was *6F20023001* and the LHWMP-assigned sample number was *SW072012-P01*.

Solvon K4TM was decanted from the product container into three pre-cleaned 500 milliliter amber glass bottles via a glass filter funnel. The filled containers were delivered to KCEL at room temperature. A copy of the chain-of custody form is included in Appendix A. Sample containers were then refrigerated in the dark at 4 ± 2.0 °C until test initiation.

Test procedures

Testing was conducted using juvenile rainbow trout (*Oncorhynchus mykiss*) in a 96-hour static renewal acute toxicity test between December 13th and December 17th, 2012. The experimental protocol (KCEL Standard Operating Procedure 406v2) was derived from the United States Environmental Protection Agency's (EPA's) *Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms*.⁽⁶⁾ This protocol differed from the standard Ecology waste characterization method in that six concentrations of Solvon K4TM product (five test solutions and one control) were measured analytically and the test solutions were renewed after 48 hours.

Complete methodological details are provided in KCEL's *Report on LC50 Toxicity Testing Conducted on Solvon K4 Dry Cleaning Solvent*, which is provided in Appendix A.

Briefly, the test was conducted using a serial dilution of Solvon K4TM with nominal concentrations of 0 (control), 12.5, 25, 50, 100, and 200 mg/L. Ten rainbow trout were placed randomly into each test jar; duplicates were prepared at each test concentration. After 48 hours, 80 percent of the test solution from each jar was renewed with fresh Solvon K4TM solution at the appropriate concentration.

Samples of test solution were collected for chemical analysis for Solvon K4TM at 0, 48 (before renewal), 48 (after renewal) and 96 hours.

Survival was monitored during the test and recorded at 0, 24, 48, 72, and 96 hours. Dissolved oxygen, temperature and pH were recorded for the samples and controls at 0, 24, 48, 72 and 96 hours.

RESULTS

As shown in Table 1, 100 percent of fish survived for 96 hours at nominal Solvon K4TM test concentrations between 0 (control) and 50 mg/L. However, all fish exposed to nominal concentrations of 100 and 200 mg/L were killed within 2 hours of test initiation.

Nominal Concentration	Measured Concentration		Percent Fish Survival						
(mg/L)	(mg/L) ^a								
0		100	100	100	100	100			
12.5	7.11	100	100	100	100	100			
25	15.2	100	100						
50	30.9	100	100	100	100	100			
100	67.5	0 ^b				0			
200	135.0 0 [°] 0								

Chemical analysis of the test solutions at test initiation (i.e., 0 h) revealed that the measured concentrations were 57 to 68 percent of the nominal concentrations, which may reflect the performance limit of the analytical method for this chemical. (Spike blank recoveries of 62% and 73% were noted when duplicate blanks of laboratory water were spiked with Solvon K4TM). As described in Appendix A, the measured Solvon K4TM concentrations gradually declined over the first 48 hours, likely due to volatilization and/or formation of an immiscible solvent layer at the surface. However, after the solutions were renewed at 48 hours, the measured concentrations were again in the range found at 48 hours, before the test solutions were renewed.

An LC₅₀ was calculated using Complex Effluents Toxicity Information System (CETISTM) software, version 1.8.6.6 (Endpoint: 96 h survival rate; Analysis: binomial method). Based on the measured concentrations at test initiation, the LC₅₀ for Solvon K4TM was 45.7 mg/L. The lower- and upper- 95 percent confidence limits on the LC₅₀ were 38.4 and 54.4 mg/L, respectively.

CONCLUSIONS

The LC₅₀ derived for Solvon K4TM product in this study (45.7 mg/L) is consistent with LHWMP's previous evaluation, in which this solvent killed 100 percent of fish at a nominal concentration of 100 mg/L, but not at 10 mg/L. This latest finding confirmed that unused or off-specification Solvon K4TM product that requires disposal would designate as Dangerous Waste (DW) with the waste code WT02 in Washington state.

LHWMP has also preliminarily evaluated another solvent alternative to PERC, called DF-2000TM. This product is manufactured by ExxonMobil, and is a non-chlorinated hydrotreated aliphatic hydrocarbon with carbon numbers predominantly in the range of C₆-C₁₃. The CAS number for DF-2000TM is 64742-48-9 and the flash point is 147 °F.⁽⁷⁾⁽⁸⁾ This class of dry cleaning solvents has gained considerable market share over the last decade. As of 2010, 21 percent of shops in King County were using a high flashpoint aliphatic hydrocarbon solvent.⁽²⁾ When DF-2000TM product was tested according to Ecology's *Biological Testing Methods for the Designation of Dangerous Waste*,⁽⁵⁾ all fish exposed to 100 mg/L survived (i.e., the LC₅₀ is >100 mg/L, based on the nominal concentration). Consequently, unused or off-specification DF-2000TM product that requires disposal would not designate as Dangerous Waste in Washington state (unpublished data).

The LC₅₀ value for PERC in fish presented in Ecology's *Washington Dangerous Waste Designation Tool*,⁽⁹⁾ is 5.0 mg/L. This value is consistent with data presented in an EPA document, which states that the 96-hour LC₅₀ values for rainbow trout are 5.0-5.8 mg/L.⁽¹⁰⁾

Consequently, the potency of unused dry cleaning solvent products towards rainbow trout is: PERC > Solvon $K4^{TM} > DF-2000^{TM}$. It is noteworthy that LC_{50} values for Solvon $K4^{TM}$ and $DF-2000^{TM}$ are not currently available in Ecology's *Washington Dangerous Waste Designation Tool*.⁽⁹⁾

In conclusion, the LC₅₀ value derived for Solvon K4TM demonstrates that this solvent is intermediate in toxicity between PERC and the aliphatic hydrocarbon, DF-2000TM. Using Washington state's *Dangerous Waste Regulations*,⁽¹¹⁾ this LC₅₀ may also be used to designate waste streams derived from System K4TM dry cleaning and other processes that generate butylal-containing wastes.

ACKNOWLEDGMENTS

The author gratefully acknowledges the contributions of the following individuals.

Brook Madrone (EPA, Region 10) facilitated introductions to EPA scientists with expertise in aquatic toxicity testing.

Diane McElhany, Mike Doubrava, Gary Yoshida, and Fran Sweeney (King County Environmental Laboratory) were instrumental in developing the testing method and conducted the fish bioassays.

Jeffrey Gutschmidt (Ecology) provided a technical review of the report.

Alice Chapman (Engineer, LHWMP) provided a detailed technical review of this document.

Mary Rabourn, Paul Shallow, Margaret Shield, and Liz Tennant of LHWMP's Communication Advisory Committee provided a valuable final review of this document.

REFERENCES

- "Design for the Environment: Garment and Textile Care Publications Frequently Asked Questions About Drycleaning." [Online] Available at: <u>http://www.epa.gov/dfe/pubs/garment/ctsa/factsheet/ctsafaq.htm</u> (Accessed November 26, 2012).
- 2. Whittaker S.G. and C.A. Johanson: A Profile of the Dry Cleaning Industry in King County, Washington. Report number LHWMP 0048. Seattle, Washington: Local Hazardous Waste Management Program in King County, 2011.
- 3. **Kreussler:** *What Landlords Need to Know about SystemK4.* Tampa, FL: Kreussler USA, 2010.
- 4. **NYSDEC, Division of Air Resources:** Draft Memorandum: Toxic Contaminant Review of the Butylal Dry-cleaning Solvent (currently marketed under the trade name SolvonK4 by Kruessler, Inc.). (2011).
- "Biological Testing Methods for the Designation of Dangerous Waste." [Online] Available at: <u>https://fortress.wa.gov/ecy/publications/publications/8012.pdf</u> (Accessed November 27, 2012).
- 6. United States Environmental Protection Agency [US EPA]: Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms. Fifth Edition. Report number EPA-821-R-02-012. Washington, DC: U.S. Environmental Protection Agency, 2002.
- "Chemicals Used In Drycleaning Operations." [Online] Available at: <u>http://www.drycleancoalition.org/chemicals/ChemicalsUsedInDrycleaningOperations</u> <u>.pdf</u> (Accessed November 26, 2012).
- 8. **ExxonMobil:** *Material Data Safety Sheet for DF-2000 Fluid.* Report number 92842583. Houston, Texas: ExxonMobil Chemical Company, 2001.
- "Washington Dangerous Waste Designation Tool." [Online] Available at: <u>http://www.ecy.wa.gov/programs/hwtr/manage_waste/des_intro.html</u> (Accessed November 26, 2012).
- 10. United States Environmental Protection Agency [US EPA]: *Chemical Summary for Perchloroethylene*. Report number EPA 749-F-94-020a. , 1994.
- 11. "Chapter 173-303 WAC: Dangerous Waste Regulations." [Online] Available at: <u>http://www.ecy.wa.gov/pubs/wac173303.pdf</u> (Accessed November 26, 2012).

APPENDIX A:

REPORT ON LC50 TOXICITY TESTING CONDUCTED ON SOLVON K4 DRY CLEANING SOLVENT

REPORT ON LC50 TOXICITY TESTING CONDUCTED ON SOLVON K4 DRY CLEANING SOLVENT

KING COUNTY DEPARTMENT OF NATURAL RESOURCES AND PARKS WATER AND LAND RESOURCES DIVISION ENVIRONMENTAL LABORATORY SECTION 322 WEST EWING STREET SEATTLE, WASHINGTON 98119

Test Date:December13, 2012KCEL Test Numbers:#6535 (Oncorhynchus mykiss: 96-Hour Acute Toxicity Test)

Report Date: October 7, 2013

INTRODUCTION

SolvonK4 is a recently developed organic solvent used in dry cleaning machines. SolvonK4 was developed as an alternative to the wide spread use of perchloroethylene, which has been subjected to increased regulatory scrutiny. At present there appears to be little information on the toxicity of SolvonK4, hence, this test was conducted to estimate the LC50 of the solvent.

Sample

A sample of SolvonK4 Dry Cleaning Solvent, SW072012-19-P01 collected on 7/20/12 was received by the King County Environmental Laboratory (KCEL), Aquatic Toxicology Section on 7/20/12. The sample was delivered in 500 mL amber glass bottles and was refrigerated in the dark at 4 ± 2.0 °C until test initiation. A copy of the chain-of custody is included as an Appendix to this report.

CONTROL WATER

The control water for the test with rainbow trout is freshwater obtained from a 95 ft. deep well located at the KCEL. Stock cultures of rainbow trout are held and acclimated in a flow-through system of well water (WW) for at least 7 days prior to use in tests.

The WW is analyzed for metals monthly (last analyzed 12-12) and organics are measured annually (last analyzed on 2-12). Hardness, alkalinity, conductivity and pH are measured monthly.

Parameter	Value	Units
Temperature	13.3	°C, adjusted as necessary
Conductivity	252	μmhos/cm
pH	7.99	
Total Hardness (calc.)	95	mg/L as CaCO ₃
Total Alkalinity	80	mg/L as CaCO ₃
Total Cd	< 2	μg/L
Total Cr	< 3	μg/L
Total Cu	< 4	μg/L
Total Ni	< 5	μg/L
Total Pb	< 20	μg/L
Total Zn	< 5	μg/L
Total Mercury	< 0.05	μ g/L (measured 2-10)
Volatile Organics	45 cmpds not detectable	
Organic Analysis (BNA'S):	68 cmpds not detectable	
Bis(2-Ethylhexyl)Phthalate	15.7	μg/L
Pesticides & PCB's:	28 cmpds not detected	

Physical-chemical characteristics of the WW are listed in the following table:

To conduct the test the well water was diluted 10% with Milli-Q deionized water to keep the hardness between 80 - 100 mg/L as CaCO₃.

METHODS

The acute toxicity test #6535 was conducted using the general guidelines in US EPA -821-02-012 (October 2002, 5th edition) "Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms". The test was conducted using a serial dilution with nominal concentrations of: 0 (well water control), 12.5, 25, 50, 100, and 200 mg/L SolvonK4.

Test Organisms

Swim-up (swim-up on 11-21-12) rainbow trout (*Oncorhynchus mykiss*) were purchased from Trout Lodge located in Sumner, Washington on 11-29-12. The trout were acclimated for a period of 14 days in well water with a mean temperature of 13.3 °C, a minimum of 13.3 °C and a maximum of 13.3 °C in a flow-through system at KCEL. During acclimation the fish were fed Zieglers Salmon Starter twice daily. Feed was withheld 48 hours prior to the start of the test.

Physical data (based on a randomly chosen control jar at the end of the test) on trout used in the tests is shown in the table below.

Test #	Age (days-post swim-up	Mean Standard	Mean Weight	Loading
	at start of test)	Length (cm)	(grams)	Wt./Vol. (g/L)
6535	22	2.8	0.28	0.47

As indicated in the table the mean weight of the trout used in the test was 0.28 g with a mean standard length of 2.8 cm. The loading in each jar was 0.47 g/L.

Rainbow Trout - 96-Hour Static Renewal Acute Toxicity Test

For test #6535, test chambers were 2-gallon glass wide-mouth jars (Anchor Hocking-Heritage Hill) with inside measurements of 25 cm (height) and 23.8 cm (dia.). The liquid level at a volume of 6 L was 15 cm. The dilution water was well water diluted 10% with Milli-Q deionized water to keep the hardness between 80 - 100 mg/L as CaCO₃ The test solutions were maintained at $12 \pm 1.0^{\circ}$ C for 96-hours in an environmental chamber (Hotpack Model 08082, s/n 79719).

Ten rainbow trout were placed randomly into each test jar. Assignment of fish to the test jars was random, as was placement of the test jars in the environmental chamber. Test solutions were renewed (80% renewal) at 48-hours.

Survival was monitored during the test and recorded at 0, 24, 48, 72, and 96 hours. Dissolved oxygen, temperature and pH were recorded for the samples and controls at 0, 24, 48, 72 and 96 hours. These values can be found on the attached photocopied pages from the laboratory notebook in the "Bench Sheets" section of this report. Temperature of the environmental chamber was monitored at 15-minute intervals using an Onset Tidbit data logger. The photoperiod was 16h L:8 h D. The test was initiated at 1030 h on 12-13-12 and ended at 1000 h on 12-17-12.

Test Solution Prep

Test solution preparation followed the general guidelines of US EPA 712-C-96-118 (April 1996). SolvonK4 has very low solubility in water and forms an immiscible layer on the surface of water. In order to obtain large volumes, sufficient for fish loading rates with maximum saturation a stirred stock solution approach was employed in sealed test vessels. Test solutions were prepared at 0 and 48 hours of the 96 hour static-renewal exposure period.

One day prior to test initiation (12/12/12), 6-7 L of well water (temp approx. 13.3°C) diluted 10% with Milli-Q deionized water was measured into a 2 gal Anchor Hocking-Heritage Hill glass jar containing a 3 x 0.5 in. teflon coated stir bar. The appropriate amount of SolvonK4 was added to each jar as indicated below (2 reps per test concentration). Seven liters of test solution was prepared for 0 and 200 mg/L test concentrations to allow for alkalinity and hardness samples at 0 hours (1 liter was removed for these samples). A rubber gasket was placed around the lip of the jar, the jar was covered with its lid and a lead weight was placed on top of the lid. To further enhance the seal, plastic packaging wrap was stretched around the lip of the jar. The jar was placed on a magnetic mixer in a 12°C environmental chamber for approximately 22 hours. The speed of the magnetic mixer was increased until a funnel-shaped vortex was seen in the water column (too high of a rate would cause the stir bar to spin out).

Nominal Sample Conc (mg/L)	WW (L/ jar) on Day 0-1	grams SolvonK4/ jar)	Number of Reps
0	7 L**	0 *	2
12.5	6 L 0.075		2
25	\downarrow	1.5	2
50	\downarrow	0.3	2
100	\downarrow	0.6	2
200	7 L	1.4*	2

*Day 0-1: Add 7 L WW for control. For 200 mg/L add 1.4 g SolvonK4/7 L WW. Extra 1 liter needed for WQ samples.

**6 L for 48-hour renewal

48 Hour Renewal

Test solutions were renewed (80% renewal) at 48-hours. One day prior to solution renewal (12/14/12), test renewal solutions were prepared similarly to Day 0-1. Only the 0, 12.5, 25 and 50 mg/L nominal sample concentrations were prepared since there were no survivors in the 100 and 200 mg/L concentrations. The solutions were mixed overnight for approximately 20.5-hours.

Solutions were renewed by siphoning 4.8 L from the test jar and replacing with newly prepped solution. As the renewal solution was needed the mag mixer was stopped and after 1 minute new solution was replaced in the test jar. A beaker was used to transfer the renewal solution at the surface of the solution in the test jar with minimal agitation.

Sampling of Test Solutions for SolvonK4

Samples for organic analysis were taken at 0, 48 (before renewal), 48 (after renewal) and 96 hours. Samples for 0-hour were sampled after 1 minute from stopping the mag mix to allow the solution to cease spinning. The 48-hour (after renewal) sample was sampled immediately following solution replacement. Samples were taken with a pipette at mid depth in the test jar and transferred to a 40 mL glass amber VOA vial with septa cap and no headspace. Samples were taken from both A and B replicates, but only the A reps were turned in for analysis to limit the amount of samples for analysis. The samples were stored in the dark at 4 ± 2.0 °C until analyzed.

Organic Analysis

The extraction batch (WG122953) consisted of a method blank (MB), spike blank (SB), spike blank duplicate (SBD), matrix spike (MS), and six samples. All samples were spiked with surrogates and the SB, SBD and MS were spiked with dibutoxymethane to determine precision and accuracy of the extraction and method. The one liter samples were prepped by continuous liquid-liquid extraction using methylene chloride (EPA METHOD 3520C). The samples were concentrated to a 1 ml final volume for analyses.

The extracts were analyzed using gas chromatography mass spectroscopy electron impact (GC/MS/EI). The instrument was calibrated using dibutoxymethane standards with concentrations from 100 ppm to 1 ppm. All samples were analyzed for dibutoxymethane (SW846-8720D). Positive results had the correct retention time and spectra as compared to the standards. Results where dibutoxymethane exceeded the calibration range, the extracts diluted and re-analyzed.

Quality Assurance

The reference toxicant testing for the lot of fish used in this test was conducted on 12-17-12 (Test #6539). Cadmium nitrate was used as a reference toxicant for rainbow trout. The precision table located at the end of this report is maintained to monitor the sensitivity of these organisms to the reference toxicant and thereby provide an indication of their overall sensitivity to other compounds. The LC50 for the reference toxicant test (#6539) was 1.91 μ g Cd/L. The LC50 was within the control limits of 0.99 to 2.87 μ g Cd/L).

Temperature, pH and dissolved oxygen measurements remained within acceptable limits (USEPA, 2002) throughout the reference toxicant test for rainbow trout (#6539) and sample test (#6535). The test met acceptability criteria regarding control mortality.

Parameter	Method
Water Quality Tests	APHA (1992); US EPA (1991).
Temperature	Standard Mercury Thermometer (calibrated with a certified thermometer traceable to NBS records) and Onset, Tidbit (v2) UTBI-001 Temperature Logger (KCEL #436v1).
Dissolved Oxygen	YSI membrane electrode method (Method #4500-0 G; KCEL #434).
рН	Beckman 690 meter with automatic temperature compensation and Ross combination electrode (Method #4500-H; APHA 1992; KCEL #433).
Total Alkalinity	Potentiometric Method (Method #2320 B; KCEL #319v4).
Total Hardness	By calculation (Method #2340 B; KCEL #612v4).
Conductivity	Orion Model #122 Meter with 012210 conductivity cell (Method 2510B; KCEL #435).
Total Ammonia	Phenate Method (Standard Methods SM 4500 - NH ₃ -G; KCEL #330v4).
Unionized Ammonia	Calculated from total ammonia, pH and ionization constants (APHA Method #417 G).
Pesticides and PCB's	Continuous liquid extraction method (EPA Method #608; KCEL #733).
Organic Analysis	Continuous liquid extraction method for BNA's (EPA Method #625; KCEL #731).
Volatile Organics	Purge and trap method (EPA Method #624; KCEL #732).
Total Metals	ICP for Cd, Cr, Cu, Ni, Pb and Zn (EPA Method #200.7; KCEL #612v4); for Hg analysis (KCEL #604v5, 601v4, 605v0).

Physical-chemical methods are outlined in the table below:

RESULTS

Organic Analysis

Results of the organic analysis of test solutions for SolvonK4 is shown in the table below.

Organic analysis of test solutions (SolvonK4)

Nominal	0	h	48 h Befor	e Renewal	48 h After Renewal		96	h	
Concentration	Sample #	Measured	Sample #	Measured	Sample #	Measured	Sample #	Measured	
(mg/L)		(mg/L)		(mg/L)		(mg/L)		(mg/L)	
0	L57134-1		L57134-9		L57134-13	0.320	L57134-17		
12.5	-2	7.110	-10	1.750	-14	6.830	-18	1.470	
25	-3	15.200	-11	4.360	-15	13.300	-19	3.820	
50	-4	30.900	-12	7.270	-16	23.500	-20	7.050	
100	-5	67.500	-7*	38.200					
200	-6	135.000	-8*	41.700			1. A		

*Taken at 24 h (mortalities were removed on Day 0 after death)

The 0-hour measured concentration of SolvonK4 was in the range of 57 - 68% of the nominal concentration. Possibly a reflection of the low solubility and volatile nature of SolvonK4 in water. Through the first 48 hours the gradual decline over time of the measured concentration is apparent.

Solution renewal at 48 hours restored measured concentrations in the test jars to nearly the levels found at 0 hours. By 96 hours the measured concentrations in the test jars were again in the range found at 48-hours before test solution renewal.

It appears that a slight contamination of SolvonK4 occurred in the control (0.320 mg/L) at the 48-hour renewal. This did not affect the outcome of the test as there was 100% survival in the control at the end of the test.

Rainbow Trout Survival

The following table contains 24-hour survival percentages for rainbow trout exposed to various concentrations of SolvonK4 during the 96-hour test.

Nominal Concentration	Measured Concentration	(% Su 2 reps/conc	% Survival at Test End		
(mg/L)	(mg/L)*	0 h				
0		100	100	100	100	100
12.5	7.11	100	100	100	100	100
25	15.2	100	100	100	100	100
50	30.9	100	100	100	100	100
100	67.5	0 ^a				0
200	135.0	0 ⁶				0

*Taken at 0 hours

^a all dead by 1230 h on 12/13/12

^b all dead by 1120 h on 12/13/12

SolvonK4 LC50 December 2012

As the table above shows for the SolvonK4 sample SW072012-19-P01 there was 100% survival in the control, 12.5, 25, and 50 mg/L nominal test concentrations at the end of the 96 hour test. At a nominal concentration of 100 mg/L all fish were dead within 2 hours of the start of the test. At a nominal concentration of 200 mg/L all fish were dead within 50 minutes of test initiation.

The LC50 (binomial-graphical method) for SolvonK4 based on the measured concentrations taken at 0 hours at each test concentration was 45.7 mg/L. The measured concentration of SolvonK4 at each test concentration was used to calculate the LC50 because of the difference in comparison to the nominal concentration.

Water Quality

The following table contains measurements of Temperature, pH and Dissolved Oxygen taken throughout the 96 h test (or up to the time of 100% mortality). Measurement of Total Hardness, Total Alkalinity and Conductivity are taken from samples collected at the beginning (0-h) and end (96-h) of the test (unless otherwise noted).

Parameter		0 mg/L	12.5 mg/L	25 mg/L	50 mg/L	100 mg/L ^α	200 mg/L ^{α}
Temperature	Mean	11.9	1.9 11.8 11.8 12		12.0	11.8	11.7
(°C)	Min.	11.3	11.3	11.1	11.7	11.6	11.1
	Max.	12.1	12.2	12.1	12.3	12.1	12.0
рН	Mean	7.80	7.94	7.98	8.02	8.17	8.21
	Min.	7.72	7.85	7.89	7.93	8.14	8.19
	Max.	8.06	8.15	8.14	8.18	8.19	8.22
D.O.	Mean	9.3	9.6	9.9	9.9	10.0	9.9
(mg/L)	Min.	8.6	9.3	9.6	9.5	9.6	9.5
	Max.	10.1	9.9	10.1	10.3	10.4	10.4
Tot. Hard	0h	91					87
(mg/L as CaCO ₃)	96h	92	10 - 10 March 10 Marc			93	
Tot. Alk	0h	72					72
(mg/L as CaCO ₃)	96h	74				74	
Cond	0h	231				230	228
(µmhos/cm)	96h	234				230 [°]	232 ^β

 $^{\alpha}$ Taken at 0 and 24 hours

 $^\beta$ Taken on Day 0, 1733 h

Additional water quality and QC data are listed on the attached photocopied pages from the laboratory notebook.

TESTED BY:

King County Environmental Laboratory 322 West Ewing Street Seattle WA 98119

REFERENCES

APHA. 1992. Standard Methods for the Examination of Water and Wastewater, 18th Edition. American Public Health Association, American Waterworks Association, Water Pollution Control Association. Washington D.C.

U.S. E.P.A. 1991. Code of Federal Regulations, 40CFR, Appendix A, July 1991 U.S. Environmental Protection Agency, Office of Federal Registry, Washington, D.C.

Washington State Department of Ecology. Biological Testing Methods for the designation of Dangerous Waste. DOE 80-12, revised June 2009.

US EPA. 2002. Methods for measuring the acute toxicity of effluents and receiving waters to freshwater and marine organisms. 5th edition. EPA-821-02-012, October 2002. US Environmental Protection Agency, Office of Water (4303T), Washington, DC.

US EPA. 1996 (April). Ecological Effects Test Guidelines: OPPTS 850.1000 Special Considerations for Conducting Aquatic Laboratory Studies.

Bench Sheets

Chain-of-Custody

Supporting Chemistry

~	Page #of	SAMPLE DISPOSAL Dispose after 30 days Return samples Will call with instructions		Notes	Fish	7					7/20/22.25pm	7/20/12 1425			
	#Od	Ress	ANALYSES REQUESTED	SHH							- PH-SKC	KCEL			
OF CUSTODY	pature) C.V. E/NO.	400	'AN	TPH-Diesel BTEX by 8021B VOCs by 8021B							EUC Whith of Cr	e Cor			
SAMPLE CHAIN OF CUSTODY	SAMPLERS (signature) PROJECT NAME/NO.	REMARKS		Sample Type containers	Selvent 3						st Sten	LYARE			-
SA	53			Date Time Sampled Sa	2/2 2.	1					SIGNATURE	N			
00	THU I	PH Fax #		Lab De ID Sam	-PO1 7/2	4		 			. Relinquished by		Relinquished by:	Received by:	
	Send Report To UC Company CH - C Address	City, State, ZIP Phone # २०७.२७९.९५१९ Fax #		Sample ID	SW072012-19.					, , , ,	Friedman & Bruya, Inc. 3012 16th Avenue West	Seattle, WA 98119-2029	Ph. (206) 285-8282	Fax (206) 283-5044	FORMS\COC\COC.DOC

SolvonK4 96-Hour Acute Static Renewal Test 72-42(193 **Rainbow Trout**

Test #: ____6535 Test Date: ___12-13-12

ORGANISMS

650 fish received from Traut Lodge Lot # (Swim-up date): $\frac{1}{-2}$ Shipped via <u>Pick-up</u> Arrived at KCEL at <u>1340</u> h on <u>11,29-12</u> in <u>1804</u> <u>double</u> <u>plastic</u> <u>O</u> dead removed. <u>At Arrival: pH</u>, <u>D.O. 720</u> mg/L, Temp <u>11,0</u> Bag °C. Into Hold in tank with new well water and aeration for _____ days. Feed 2X/day with Ziegleis #1 . Refer to culture log for feeding & holding information.

DILUTION WATER/TOXICANT

- 1. New Well Water (NWW) 12-12-12, filtered through nylon netting. Hardness should be between 80-100 mg/L. At start TH ≈ 100 mg/L. Dilute 10% w/ MilliQ DI. 2. Solvon K4: Sample # 500072012-19-10 Collected on 7-20-12 By Steve whith for
- Rec'd by KCEL _7-20-12 Stored in the dark at $4 \pm 2^{\circ}C$

	SOLUTIONS										
Code	Sample Conc (mg/L)	NWW (L/ jar)	g SolvonK4/ jar)								
Blue	0	6 L (NWW only)	0 * (NWW only)								
Green	12.5		0.075								
Yellow	25	\downarrow	0,15								
Orange	50	\downarrow	0.3								
Red	100	\downarrow	0.6								
White	200	\downarrow	1.2*								

Day 0-1: Add 7 L NWW for control. White add 1.4 g SolvonK4/7 L NWW. Extra needed for WQ. On Day 0 siphon test chamber down to 6 L.

PROCEDURE

- 1. On day 0-1: Add 6 L NWW (dilute with DW if necessary) to each of 2 jars/trtmt. Add Solvon K4 as indicated.
- Place jars randomly on mag mix in 12°C EC # 8555, East & Utest shelf. Seal jars with lid and gasket. Let mix overnight. Start mixing at <u>1015</u> h on <u>121242</u>. Ec. Set pt 1.4C.
 On Day 0: Remove lid and gasket. Stop mixer and let stand 1 minute. Take 0 h organics sample. Take 0 h organics sample. Take 0 h
 Additional Control of the stand 1 minute. Take 0 h organics sample. Take 0 h
- 4. Add 10 fish/jar, one at a time to randomize, using dip net. Start count verified by $\frac{\sqrt{2}}{\sqrt{2}}$
- 5. Start test at $\frac{1030}{h \text{ on } 12-13-12}$. Place Tidbit temp recorder (SN $\frac{9716077}{2}$ shelf; SN <u>9716078</u>, West shelf) in beaker w/WW into EC. 8556
- 6. Remove dead fish daily; record #/ weight/ length/ time dead. Record survival daily. Measure Temp, pH & DO daily in all trtmts.
- 7. At 24 hours prep renewal solutions as in step 1 above. Place jars on mag mix in 12°C EC 8535. Seal jars with lid and gasket. Let mix overnight. Setup at _____h on ____. Seed IIP with pluster Renew solutions ($\approx 80\%$) at 48h: _______ start Mixing 1015/12/14/12 Puck equiling Wraps
- 8. Renew solutions ($\approx 80\%$) at 48h:
 - a) Siphon <u>4.8</u> L from each jar.

a) Siphon _____4 × __ L from each jar. b) Replace $\subseteq _6$ __ L with renewal solution by pouring through funnel and tubing into jar. \Leftrightarrow

- 9. End test at 1000 h on 12 17 12. Measure Temp, pH and DO in all trtmts. Sample for Tot. Alk, Tot. Hard, Cond.
 - * scaled In with plestic pacting WilkAp.

SolvonK4 96-Hour Acute Static Renewal Test **Rainbow Trout**

SolvonK4 Sampling

1. Sample Solvon K4 solution from each test jar at 0, 24, 48, 72 and 96 h. Place sample in 40 mL glass vial with septa cap.

0650 - 0635 (9578- Revenced)

- 0 hour sampled at _ 0845
- 24 hour sampled at ______
- (Before Revenuel) 48 hour sampled at 0600
- 72 hour sampled at 0820
- 96 hour sampled at <u>9945</u>

MEASUREMENTS

			Cumulative	Survival (#Aliv	ve/Rep)		Tot #
Code	Sample Conc (mg/L)	Rep	24 h	48 h	72 h	96 h	Alive
Blue	0	Α	10	10	10	i©	
		В	10	10	10	10	
Green	12.5	Α	10	10	10	10	
		В	10	10	10	10	
Yellow	25	Α	10	10	10	10	
		В	IP	. 10	10	10	
Orange	50	Α	10	10.	10	10	
-	ĺ	В	10	10	10	10	
Red	100	Α	0	0	0	0	0
		В	0	0	0 .	0	Ø
White	200	Α	Ø	0	0	0	Ø
		В	0	0	0	0	, 0
		Analyst:	64	Ey	GY	611	
= stressed		•••••••	1		(. y	

				Daily #Dead/Rep									
Code	Rep		1	2	3	4	5	6	7	8	9	10	Mean
		Date	12-13									· }	
,		Time	1120									`	
white	A	cm	3,1	3,2	3.0	2.9	3.0	3,3	2.9	2.9	3.0	3.0	
		g	0.341	0,387	0.279	0.234	0,277	0.398	0.223	0.207	0.241	0.258	
white	D	Date	12-13 .	[1							>	
white	B	Time	1/20	/								>	
Red	A, +	Date	12-13	<								$\rightarrow \rightarrow$	
Jaco .	A t tead 123	9 Time	1733h	*								>	
Red	B ₍₊	Date	12-13	<u> </u>								<u> </u>	
	Dead at	Time	17336	B		•						\rightarrow	
	107	Date									;		
		Time											
		Date											
		Time											
Pa	40 12	2-13-12	. 103	5 Nea	arly all	Dead	white	- A/B					

SolvonK4 96-Hour Acute Static Renewal Test Rainbow Trout

Test #: <u>6535</u> Test Date: <u>12-13-12</u>

				Gy Daily #Dead/Rep 96h Control Wts.									
Code	Rep		1	2	3	4	5	6	7	8	9	10	Mean
Blue	A GM	-DateG	13.2	3.2	3,1	3,1	3.2	3,0	311	2.9	3,0	2.9	2.8
	9	Time d	10,366	0.325	0,248	0.297	0.336	0,249	0,327	0.226	0.272	0,191	0.284
		Date										1	
		Time						1					
		Date										1	
		Time										+	

Where: Wt = Mean Wt in g; Vol = Total Test Vol in L; # Fish = #Fish/Rep

<u>Chemistry</u>

		_	And the second secon		A230	> 2_		рН						D.O. (mg/L)				
Code	Rep	Oh	24h	48h	72h	96h	0h	24h	48h	72h	96h	0h	24h	48h	72h	96h		
Blue	A	11.3	12:1	11.9	12,0	1211	7.994	7.716	7.763	7.730	7.726	9.9	9.2	9.1	9.2	8.8		
	B	11.3	12,0	12,0	12.0	12,1	8.058	7,760	7.8/8	7,711	7.748	1011	9.2	9.3	9,1	8.4		
Grn	A	11.3	11,9	11.6	11.7	11.9	81135	7,882	7.907	7.885	7.854	9.7	9.7	9.5	9.8	9,4		
	B	11.8	12.1	12,2	11.9	11,9	8.151	7.870	7.914	7.906	7.861	9.7	9.7	9.5	9,9	9.3		
Yell	A	<i>i1</i> .1	12.1	11.9	12.0	11.5	8.141	7.944	7,979	7.936	7.894	9.8	9.9	10.1	9.9	9.6		
	В	1).4	12.0	11,8	12.9	11.9	8,142	7.919	8,002	7.963	7.919	9,7	9.9	10.1	9.9	9.6		
Orng	A	12.3	12,0	11.8	12.1	12,0	8.164	7.967	8,046	7.993	7.926	9.7	10.0	10,3	10,1	9.6		
	В	11.7	12,0	11,8	12,0	12.0	81178	7.961	8.066	7,985	7.939	9.6	9,9	10.2	9.9	9.5		
Red	A	/1.1	12.1	••••	Ymae	~	8.191	81138				9.6	10,3		~.			
	В	11.4	11.9	-	-	-	8:193	8,570	~~~~	-	-	9.6	10.4		_			
Wht	A	11.0	11.6		~		8.212	81214			~	9.5	10,4	-	~	~		
	В	11.9	12,0	-	-		8,194	8,220				9,5	10.3					
Ana	alyst:	Gy	64	Gy	64	<i>Gy</i>	Gy	Gy	Gy	44	67	Gy	Gy .	Gy	64	6y		
		7	7	1	1	7	/	(1	-/	<u></u>		1	<u>~/</u>				

99

SolvonK4 96-Hour Acute Static Renewal Test **Rainbow Trout**

Test #: _____6535 Test Date: 12-13-12

	Sample Sample # Conc			T. Alk (mg/L as	•		rdness s CaCO ₃)	Conductivity (µmhos/cm)	
Code	(mg/L)	0 h	96 h	0 h	96 h	0 h	96 h	0 h	96 h
Blue	0	57125-1	-3	71,5	74.4	91	92.1	231	234
Green	12.5								
Yellow	25								
Orange	50								*
Red	100		P		7		1 gat	230	*×230
White	200	-2	1-4	71.9	173.8	8618	93.3	228	¥232
	6	_4 taken a	t 24h on	Red			Analyst:	JA	JA

* Day 0,1733h **24h

Random # Beaker Position									
Code	Rep	Random Jar #	Code	Rep	Random Jar #				
Blue	A	10	Orange	A	6				
	В	2		В	11				
Green	A	1	Red	A	8				
	В	4		В	3				
Yellow	A	5	White	A	9				
	В	12		В	7				

NOTES with hold feed 48h prior to test start

west	East Blue A
Green A, B	Yellow B
Blue B	Orange B
Red B	Red A White A/B
YellowA	Warte My
orange A	

Day O @1733h, "Orange" tritint fish at surface, durbur wlor. "Red" tritint fish all dead Derd at 1230

SOLVON	KY sampling	, oh	Hoh Before Reve	V After-Reale	\$ 96h	Jumpled Rep A Turned Into progenics
	Simple #	, , , , , , , , , , , , , , , , , , ,				Turned into preances
madet	Bue	57134-1	-9	-13	-17	
product organise	Green	' -2	-10	-14	-18	-19,-20 Sampled for
	Verlow	- 3	-11	-15	-19	Preaking Dup, however, talon at 1120h
a na shu	Orange	-4	-12	~14	-20	housever talon at 112ch about 15h after 1st sample talen.
	Red	-5	'-7		L	-7, -8 taken at 24h
	white	-6	- 8	*******	<u> </u>	· · · · · · · · · · · · · · · · · · ·
	**************************************		1			
		1000		the second second		

CETIS Ana	alytical Repo	ort						ort Date: Code:			4:39 (p 1 of 2 18-1716-663
Fish 96-h Acu	ite Survival Tes	t						King	County Me	tro Servi	ces, WQ Lab
Analysis ID: Analyzed:	15-3613-2587 09 Jan-13 14:3		dpoint: alysis:	96h Survival R Binomial Metho				IS Version: ial Results:	CETISv1 Yes	.8.6	
Batch ID:	03-0533-3864	Tes	t Type:	Survival (96h)			Anal	vst: GY			
Start Date:	13 Dec-12 10:3		tocol:	EPA/821/R-02-	012 (2002	2)	Dilu		Water		
Ending Date:	17 Dec-12 10:0)0 Sp e	cies:	Oncorhynchus		,	Brin	e: Not	Applicable		
Duration:	95h	So	irce:	Trout Lodge Fi	sh Farm		Age:	22			
Sample ID:	04-8442-1450	Co	de:	1CDFAF4A			Clier	nt: Inter	nal Lab		
Sample Date:	20 Jul-12	Mat	erial:	Other sample t	уре		Proj	ect: Spe	cial Studies		
-	: 20 Jul-12 14:25	5 So i	irce:				-				
Sample Age:	146d 10h	Sta	tion:								
Batch Note:	NWW diluted 1	0% with Mi	lli-Q DI								
Binomial/Gra	phical Estimates	S									
Threshold Op		hreshold	Trim	Mu	Sigma		EC50	95% LCL			
Control Thresh	nold 0		0.00%	6 1.66	0		45.67	38.35	54.39		
Test Acceptat	oility Criteria										
Attribute	Test Stat	TAC Lim	ts	Overlap	Decisio	n					
Control Resp	1	0.9 - NL		Yes	Passes	Acceptability	Criteria				
96h Survival F	Rate Summary				Cal	culated Varia	ate(A/B)				
C-mg/L C	Control Type	Count	Mean	Min	Мах	Std Err	Std Dev	CV%	%Effect	Α	В
-	Dilution Water	2	1	1	1	0	0	0.0%	0.0%	20	20
7.11		2	1	1	1	0	0	0.0%	0.0%	20	20
15.2		2	1	1	1	0	0	0.0%	0.0%	20	20
30.9		2	1	1	1	0	0	0.0%	0.0%	20	20
67.5		2	0	0	0	0	0		100.0%	0	20
135	AL	2	0	0	0	0	0		100.0%	0	20
96h Survival F											
	Control Type	Rep 1	Rep 2	2							
-	ilution Water	1	1								
7.11		1	1								
15.2		1	1								
30.9		1	1								
67.5		0	0								
135		0	0								
	Rate Binomials										
	Control Type	Rep 1	Rep 2								
כ	Dilution Water	10/10	10/10								
7.11		10/10	10/10								
15.2		10/10	10/10								

30.9

67.5

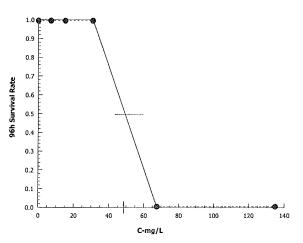
135

10/10

0/10

0/10

10/10


0/10

0/10

•

CETIS Analytical Report	Report Date: Test Code:	09 Jan-13 14:39 (p 2 of 2) 6535RTASK4 18-1716-6639
Fish 96-h Acute Survival Test	King	County Metro Services, WQ Lab
Analysis ID: 15-3613-2587 Endpoint: 96	Sh Survival Rate CETIS Version:	CETISv1.8.6

Analysis ID:	15-3613-2587	Endpoint:	96h Survival Rate	CETIS Version:	CETISv1.8.6
Analyzed:	09 Jan-13 14:35	Analysis:	Binomial Method	Official Results:	Yes
Graphics					

•

ng/L	2380	1200		15200	ng/L	476	240		7110	ll/gu	476	240	≤MDL		ymethane
Units	RDL	MDL	Qual	Value	Units	RDL	MDL	Qual	Value	Units	RDL	MDL	Qual	Value	Parameters OR EPA 625/SW846 3520C 8270D
			Basis	WET Weight Basis				Basis	WET Weight Basis				lasis	WET Weight Basis	
				SampDepth:					SampDepth:					SampDepth:	
				ClientLoc:					ClientLoc:					ClientLoc:	
				TotalSolid:					TotalSolid:					TotalSolid:	
				TimeSpan:					TimeSpan:					TimeSpan:	
			12/14/12 0:00	ColDate:				12/14/12 0:00					12/14/12 0:00		
			LK FRESH WTR	Matrix:				LK FRESH WTR				~	LK FRESH WTR	Matrix:	
			L57134-3	Sample:				L57134-2					-57134-1		
			LAB LOCATOR	Descrip:				LAB LOCATOR	Descrip:				AB LOCATOR		
			LAB	Locator:				LAB					AB		
			421193	Project:				421193					421193		

Parameters OR EPA 625/SW846 3520C 8270D	Project: 42115 Locator: LAB Descrip: LAB Matrix: LK FF Matrix: LK FF Colbate: 12/14. TimeSpan: TotalSolid: ClientLoc: SampDepth: WET Weight Basis Value	421193 LAB LOCATOR LAB LOCATOR L571344 LK FRESH WTR 12/14/12 0:00 12/14/12 0:00 Basis	MDL	RDL	Units	Project: 42119 Locator: 42119 Descrip: LAB Dastriple: L5713 Bample: L5714 Frespan: TimeSpan: TimeSpan: TotalSolid: CilentLoc: SampDepth: WET Weight Basis Value	421193 LAB LAB LOCATOR L57134-5 LK FRESH WTR 12/14/12 0:00 12/14/12 0:00 12/14/12 0:00	MDL	RDL	Units	Project: 42119 Locator: LAB Descrip: LAB L Sample: L5713 Matrix: LK FR ColDate: 12/14/ TimeSpan: TotalSolid: ClientLoc: SampDepth: WET Weight Basis Value	421193 LAB LABLOCATOR L57134-6 L57134-6 L57134-6 L2/14/12 0:00 12/14/12 0:00 12/14/12 0:00	MDL	RDL	Units
	30900		1200	2380	ng/L	67500	0	2400	4760	ua/L	135000		2400	4760	וומ/ן

·

ng/L	476	240	<mdl< th=""><th></th><th>ng/L</th><th>4760</th><th>2400 4</th><th></th><th>41700</th><th>ng/L</th><th>4760</th><th>2400</th><th></th><th>38200</th></mdl<>		ng/L	4760	2400 4		41700	ng/L	4760	2400		38200
Units	RDL	MDL	Qual	Value	Units	RDL	MDL	Qual	Value	Units	RDL	MDL	Qual	Value
			Basis	WET Weight Basis				Basis	WET Weight Basis				Basis	WET Weight Basis
				SampDepth:					SampDepth:					SampDepth:
				ClientLoc:					ClientLoc:					ClientLoc:
				TotalSolid:					TotalSolid:					TotalSolid:
				TimeSpan:					TimeSpan:					TimeSpan:
			12/14/12 0:00	ColDate:				12/14/12 0:00	ColDate:				12/14/12 0:00	
			LK FRESH WTR	Matrix:			_	LK FRESH WTR					LK FRESH WTR	Matrix:
			L57134-9	Sample:				L57134-8					L57134-7	
			LAB LOCATOR	Descrip:				LAB LOCATOR					LAB LOCATOR	
			LAB	Locator:				LAB	Locator:				LAB	
			421193	Project:				421193	Project:				421193	

RDL Units	MDL F	Qual M	Value	Units	RDL 476	MDL 240	Qual	Value 4360	Units	RDL 476	MDL	Qual	Value 1750	Parameters OR EPA 625/SW846 3520C 8270D Dibutoxymethane
		<u>s</u>	sampuepun. WET Weight Basis				3asis	VET Weight Basis				asis	WET Weight B	
			ClientLoc: SamnDenth:					ClientLoc: SampDenth:					CilentLoc: SampDepth:	
			TimeSpan: TotalSolid:					TotalSolid:					TotalSolid:	
		14/12 0:00					12/14/12 0:00					12/14/12 0:00	ColDate:	
		L57134-12 LK FRESH WTR	Sample: L57 Matrix: LK				L5/134-11 LK FRESH WTR	sample: I Matrix: I				LS/ 134-10 LK FRESH WTR	Matrix: LK FRE	
		3 LOCATOR					LAB LOCATOR					AB LOCATOR	Descrip: I	
		2	Locator I AF				LAB					AB	Locator: I	
		193					421133					001171		

•

•

2380 ug/L	1200 23	12(13300		ng/L	476	240		6830	ng/L	476	240	<rdl< th=""><th>320</th></rdl<>	320
RDL Units	MDL R	Quał MC	Value C	F	Units	RDL	MDL	Qual	Value	Units	RDL	MDL	Qual	Value
			VET Weight Basis	WET Wei				3asis	NET Weight Basis				lasis	WET Weight Basis
			oth:	SampDep					SampDepth:					SampDepth:
				ClientLoc					ClientLoc:					ClientLoc:
			Ŧ	TotalSolic					FotalSolid:					TotalSolid:
				TimeSpar					TimeSpan:					limeSpan:
		2 0:00	12/14/1	ColDate:				12/14/12 0:00		Ĩ			12/14/12 0:00	
		LK FRESH WTR	LK FRI	Matrix:				LK FRESH WTR	Matrix:				LK FRESH WTR	Matrix: I
		-15	L57134	Sample:				L57134-14					-57134-13	
		DCATOR	LAB LO	Descrip:				LAB LOCATOR					AB LOCATOR	
			LAB	Locator				LAB					AB	
_		~	421193	Project:				421193					t21193	

.

	Units	ng/L
	RDL	476
	MDL	240
421193 LAB LAB LOCATOR L57134-18 LK FRESH WTR 12/14/12 0:00 12/14/12 0:00 Basis	Qual	a and a second a second and a second a second a second and a second second a second a second a second as
Project: 42115 Locator: LAB Descrip: LAB L Sample: L5713 Matrix: LK FF ColDate: 12/14, TimeSpan: TotalSolid: ClientLoc: SampDepth: WET Weight Basis	Value	1470
	Units	ng/L
	RDL	476
	MDL	240
421193 LAB LAB LOCATOR L51134-17 LK FRESH WTR 12/14/12 0:00 12/14/12 0:00 3asis	Qual	<mdl< td=""></mdl<>
Project: 42115 Locator: LAB Descrip: LAB L Sample: L5713 Matrix: L5714 Matrix: 12714, FimeSpan: TotalSolid: ClientLoc: SampDepth: WET Weight Basis	Value	
	Units	ng/L
	RDL	2380
~	MDL	1200
421193 LAB LOCATOR L57134-16 LK FRESH WTR 12/14/12 0:00 12/14/12 0:00	Qual	
Project: 421193 Locator: LAB Descrip: LAB LO Sample: L57134. Matrix: LK FRE Matrix: LK FRE Matrix: LK FRE ColDate: 12/14/12 TimeSpan: TotalSolid: TotalSolid: ClientLoc: SampDepth: WET Weight Basis	Value	23500
	Parameters OR EPA 625/SW846 3520C 8270D	Dibutoxymethane

ng/L	476	240		7050	h/gu	476	240		3820	libutoxymethane
										OR EPA 625/SW846 3520C 8270D
Units	RDL	MDL	Qual	Value	Units	RDL	MDL	Qual	Value	arameters
			3asis	WET Weight Basis				Basis	WET Weight Basis	
				SampDepth:					SampDepth:	
				ClientLoc:					ClientLoc:	
				TotalSolid:					TotalSolid:	
				TimeSpan:					TimeSpan:	
			12/14/12 0:00	ColDate:					ColDate:	
		~	LK FRESH WTR					LK FRESH WTR	Matrix:	
			L57134-20						Sample:	
			LAB LOCATOR	Descrip:					Descrip:	
			LAB						Locator:	
			421193						Project:	

King County Environmental Laboratory	LIMSView QC Report - 10/04/13 12:13
ounty Enviro	iew QC Repo
king Co	IMSVI

Workgroup: WG124688 (BL#85 orgmisc) Run ID: R185616

RDL Units MB Value ug/L MD Value <mdl< th=""> FRESH WTR Listtype::ORORGMISC Method:EPA 525/SW846 3520C 827 FRESH WTR Listtype::ORORGMISC Method:EPA 555/SW846 3520C 827 FRESH WTR Listtype::ORORGMISC Method:EPA 555/SW846 3520C 827 FRESH UR Units SAMP Value 3820 Ophenol 27-120 27-126 56-150 103 1011 87 100 104 107 102 101</mdl<>	MB:WG124688-1 Matrix: BLANK WT		ORORGMISC Method	1-FPA 625/SW846 3	SEADC 8270D Prois	art: Dkav-CTD	
MDL 57134-19 Matrix: 240 240 240 240 24,6-Tribror 200 108 103 103 110 110 111 110 111 111 110 111 111	ank) iviai			5 a480VVC/C20 A73.1	1072 UNZ SZUUZ Proje		
10 57134-19 Matrix: 57134-20 Matrix: 240 240 240 240 240 240 240 240 240 240		MDL	RDL	Units	MB Value	Qual	
	iethane	10	20	ng/L	<mdl< td=""><td></td><td></td></mdl<>		
	688-4 L571 cate)		R Listtype:ORORGMI9	C Method:EPA 62	5/SW846 3520C 82	270D Project:421193 F	key:STD
		MDL	RDL	Units	SAMP Value	LD Value	RPD
	lethane	240	476	ug/L	3820	3500	σ
MDL RDL Units SAMP Value 240 476 ug/L 7050 240 476 ug/L 7050 2,4,6-Tribromophenol 2-Fluorobiphenyl 2-Fluorophenol d14-Terphenyl 35150 30120 27126 56150 106 108 84 103 108 111 87 109 108 111 87 109 108 111 87 103 101 107 83 103 111 106 83 103 111 106 85 104 110 107 85 106 111 107 85 106 112 107 85 106 112 107 85 106 112 110 86 107 112 111 88 112 111 111 88 112	1688-5 L571 cate)		R Listtype:ORORGMIS	C Method:EPA 62	5/SW846 3520C 82	270D Project:421193 F	key:STD
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		MDL	RDL	Units	SAMP Value	LD Value	RPD
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	nethane	240	476	ng/L	7050	6880	m
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2,4,6-Tribromophenol	2-Fluorobiphenyl	2-Fluorophenol	d14-Terphenyl	d4-2-Chlorophenol	d5-Nitrobenzene
	s)	35150	30120	27126	56150	36117	33129
108 111 87 109 104 108 83 103 105 104 81 103 111 106 85 104 111 106 85 104 111 107 89 112 112 107 83 104 113 107 83 107 114 107 85 106 115 106 86 107 108 106 86 107 108 105 85 106 118 110 87 110 118 110 87 110 118 110 88 115 110 107 88 115 111 111 88 115 110 107 86 107 110 107 88 115 110 107 86 107 110 107 86 107 110 107 86<		106	108	84	103	94	95
104 108 83 103 105 104 81 100 111 106 85 104 110 107 89 112 112 108 107 89 112 110 107 85 104 111 107 85 107 112 108 107 85 106 112 104 85 107 112 106 86 107 113 110 87 107 114 110 87 110 113 111 88 115 114 111 88 115 1107 107 86 107 1107 107 86 107 1107 107 86 115 1107 107 86 107 1107 107 86 107		108	111	87	109	96	102
105 104 81 100 111 106 85 104 110 107 89 112 112 108 84 107 110 107 85 106 110 107 85 106 105 104 85 107 106 106 86 107 112 106 85 107 113 110 87 107 114 110 87 110 118 110 90 115 110 107 88 112 111 111 88 112 110 107 86 107 110 107 86 107 110 107 86 107 110 107 86 107 110 107 86 107 111 107 86 107 111 107 86 107 111 107 86 107 111 107 86 107		104	108	83	103	94	66
111 106 85 104 110 107 89 112 112 108 84 107 110 107 85 106 110 107 85 106 106 106 86 107 108 106 86 107 112 110 87 107 112 110 87 110 113 110 87 110 114 111 88 111 110 107 88 112 110 107 88 112 110 107 88 113 110 107 86 107 107 107 86 107 107 107 86 107		105	104	81	100	90	98
110 107 89 112 112 108 84 107 110 107 85 106 110 107 85 107 105 104 85 107 106 106 86 107 112 110 87 107 113 110 87 110 114 110 88 112 111 111 88 112 111 111 88 112 110 107 88 112 110 107 88 113 110 107 86 107 107 107 86 107 107 107 86 107		111	106	85	104	95	101
112 108 84 107 110 107 85 106 105 104 85 107 106 106 86 107 108 106 86 107 112 110 85 107 113 110 87 110 118 110 87 111 119 110 88 112 111 111 88 112 110 107 88 115 110 107 88 115 110 107 88 115 110 107 86 107 107 86 107 107 86 107		110	107	89	112	96	102
110 107 85 106 105 104 85 104 106 106 86 107 108 105 85 107 112 110 87 110 113 110 87 110 114 110 87 110 118 110 87 111 111 111 88 112 111 111 88 112 110 107 86 107 107 107 86 107		112	108	84	107	93	100
105 104 85 104 106 106 86 107 108 105 85 107 112 110 87 110 113 110 87 110 114 110 90 115 111 111 88 112 111 111 88 115 110 105 84 107 107 107 86 108		110	107	85	106	95	100
106 106 86 107 108 105 85 105 112 110 87 110 118 110 90 115 107 107 88 112 110 107 88 115 111 111 88 115 110 105 84 107 107 107 86 107		105	104	85	104	92	86
108 105 85 105 112 110 87 110 118 110 90 115 107 107 88 112 111 111 88 115 110 107 88 115 111 111 88 115 110 105 84 107 107 107 86 107	0	106	106	86	107	95	101
112 110 87 110 118 110 90 115 107 107 107 88 112 111 111 88 115 110 105 84 107 107 105 86 107	Ţ	108	105	85	105	93	102
118 110 90 115 107 107 88 112 111 111 88 115 110 105 84 107 107 107 86 108	2	112	110	87	110	97	98
107 107 107 88 112 111 111 88 115 110 105 84 107 107 107 86 108	m	118	110	06	115	66	103
111 111 88 115 110 105 84 107 107 107 86 108	st	107	107	88	112	97	100
110 105 84 107 107 107 86 108	10	111	111	88	115	66	103
107 107 86 108	10	110	105	84	107	96	66
		107	107	86	108	97	103

Qual LabLimit 0--40

Qual LabLimit 0--40

104 109 95 99	
101 102 100 91 94	
116 111 101 100 99	
91 91 88 88	
113 115 112 105 105	
117 115 118 96 117	
L57134-18 L57134-19 L57134-20 WG124688-1 WG124688-5 WG124688-5	

•

٠

Reference Toxicant Test:

Bench Sheets

Precision Table

Reference Toxicant, Cd, 96-Hour Acute Static Renewal Test **Rainbow Trout**

Test #: 6937 Test Date:

ORGANISMS

ORGANISMS	(1 - 1) (1 - 1)
650 fish received from Troat Lodge	Lot # (Swim-up date): $\frac{1}{2} \frac{1}{2} \frac{1}{2}$ Shipped via
Pick yp Arrived at KCEL at 1340 h on	11-29-12 in 1 Box double plastic Bay.
O dead removed. At Arrival: pH	$_, \text{D.O.} \ge 20$ mg/L, Temp' $_{//.0}$ $^{\circ}$ C. Into
Tank # Hold in tank with new well water and	l aeration for <u>18</u> days. Feed 2X/day with
Elegters Salmon Startez Refer to culture log:	for feeding & holding information. Age of festing :
	2-6d post swim-up
1.	-regulation and a second

DILUTION WATER/TOXICANT(21 milliQ + (81, WW))/2(21 milliQ + (81, WW))/21. New Well Water (NWW) 12 - 16 - 12, filtered through nylon netting.(d1 luted 102 with milliQ2. Cd Stock Soln: Nominal 20 mg Cd/L, Measured 21 mg/L on 3 - 13 - 05Prep 08022#_____ by add _____ g Cd(NO_3)_2 • 4H_2O (mfr______ #____, rec'd , lot #_____) \subseteq 1L DW. , opened

LIMS RTA Sample #	WG-124702-1	Wkgp #:702
-------------------	-------------	------------

	SOLUTIONS											
Cd Trtmt (µg/L)	1		Cd StockNWWCode(mL/ jar)		Cd (µg/L) (Measured)							
0	Blue	0 (NWW only)	6 L (NWW only)									
0.75	Green	0.214	⊆ 6L		· · · · · · · · · · · · · · · · · · ·							
1.5	Yellow	0,428	\downarrow									
3.0	Orange	0.856	\downarrow	¥ L57271-1	2.96							
6.0	Red	11712	\downarrow									
12.0	White	3,424	\downarrow		,							

PROCEDURE

- & West East 1. Add <u> ζ_{0} L NWW to each of 2 jars/trtmt; place in 12°C EC # 8555</u> shelf. Bring to 12°C. Setup at _____h. Set up on 12 - 16-12
- 2. Measure DO; if DO << saturation, aerate until DO \ge 9 mg/L. Stop aeration.
- 3. Measure Temp, pH & DO. in all trtmts.
- 4. Add Cd stock soln to jars: ____ Mix: ____ Sample for Cd: ___ Acidify: _/_ Analyst: <u>Gy</u>
- 5. Add 10 fish/jar, one at a time to randomize, using dip net. Start count verified by _____
- h on 12-17-12. Place Tidbit temp recorder (SN 97/60.78West 6. Start test at 1320shelf; SN <u>9716077</u>, ____, E_{α} shelf) in beaker w/WW into EC.
- 7. Remove dead fish daily; record #/ weight/ length/ time dead. Record survival daily. Measure Temp, pH & DO daily in all trtmts.
- 8. Renew solns ($\approx 80\%$) at 48h: X 'JA
 - a) Siphon $\underline{4.8}$ L from each jar.
 - b) Filter NWW into 4L graduated cylinder.
 - c) Add Cd stock soln \subseteq 4L aliquot during filling as below:

Cd (µg/L):	0	0.75	1.5	3	6	12
mL Cd Stock:	0	0.143	0.285	0.571	1.141	2.283

d) Replace $\subseteq 6$ L/jar with fresh soln by pouring through funnel and tubing into jar.

9. End test at <u>1420</u> h on <u>12122</u>. Measure Temp, pH and DO in all trtmts.

Reference Toxicant, Cd, 96-Hour Acute Static Renewal Test Rainbow Trout

Test #: <u>6539</u> Test Date: <u>12-17-12</u>

MEASUREMENTS

	1	· · · · · · · · · · · · · · · · · · ·	Cumulative S	urvival (#Alive	e/Rep)		`Tot #
Code	Cd (µg/L)	Rep	24 h	48 h	72 h	96 h	Alive
Blue	0	A	10	10	10	ID	10
	0	B	10	10	10	10	10
Green	0.75	A	1D	10	10	10	10.
	0.75	В	(D	10	10	10	10
Yellow	1.5	A	10	10	7	7	7-
	1.5	B	10	10	9	9	9
Orange	3	A	9	3	0	0	0
8-	3	В	10	5	2	<u> </u>	
Red	6	A	7	1	0	0	0
	6	В	5	0	0	0	0
White	12	Α	8		C	0	0
	12	В	6	0	0	6	0
		Analyst:	JA	JA	JA	274	

s = stressed

		Daily #Dead/Rep											
Code	Rep		1	2	3	4	5	6	7	8	9	10	Mean
White	B	Date	1-18-12	12-18-12	12-18-12	12-18-12						\rightarrow	
00		Time	1045.	1045	1045	1045	1030					<u> </u>	
		cm	3.5	3.5+	3.0	3,2	2.5	2.7	2.7	3.1	2.8	2.9	2.95
		g	0.546	0:463	0.375	0.426	0.268	0.296	0.290	0.393	0,297	0.332	0.367
white	A	Date	D=18	12-18	13-19	4					?	12-20	
		Time	1045	1045	1030						\rightarrow	1015	
Red	B	Date	12-18	12:18	13<18	12-18	12-18	12-19				<u> </u>	
		Time	1045	1045	1045	1045	1045	1030					<u> </u>
Red	A	Date	12-18	1218	12-18	12-19	-				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	12-20	
, and the second s		Time	1045	1045	1045	1030						1015	
Orange	A	Date	A18	10-19					\rightarrow	12-20		12-20	ļ
Charge		Time	1045	1030	·				<u> </u>	1015	1015	1015	
Orange	ß	Date	12-19					12-20	12-20	12-20	10-21		
un gr		Time	1030				<u>></u>	1015	1015	1015	1420		<u> </u>
fellar	A	Date	12-20	12-20	12-20								
permi	A	Time	1015	1015	1015				<u></u>		Ļ		<u></u>
Kellan	B	Date	12-20										
perico		Time	1015									<u></u>	<u> </u>
		Date							<u> </u>	ļ		1	<u> </u>
		Time						<u></u>	<u></u>			<u> </u>	<u> </u>
		Date		T							ļ. <u>.</u>		
	,	Time							<u> </u>			<u> </u>	<u> </u>

Load Rate = [(Wt)(# Fish)]/Vol = (0.367 g)(i0)/G L = 0.61 g/L

đ

Where: Wt = Mean Wt in g;

Vol = Total Test Vol in L;

Fish = #Fish/Rep

Reference Toxicant, Cd, 96-Hour Acute Static Renewal Test **Rainbow Trout**

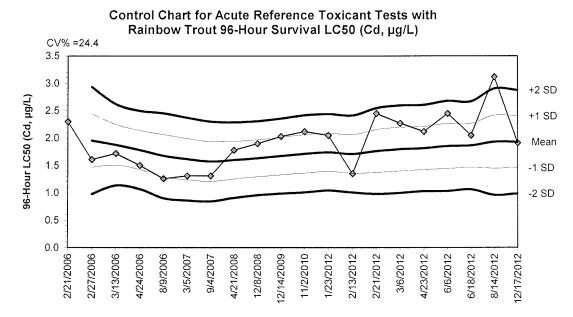
• Test #: <u>6539</u> Test Date: 12-17-12

Chemistry

		Tem	р (°С)	SN:	4230	2		pH					D.O. (mg/L)				
Code	Rep	0h	24h	48h	72h	96h	Oh	24h	48h	72h	96h	0h	24h	48h	72h	96h	
Blue	A	11.5	11.5	11,7	11.7	11.7	8,060	7,727	7.799	7.687	7.605	2.7	8.8	89	8,5	8:6	
	B	12.1	12.0	12.0	12.0	12.0	81136	7.846	7.907	7.793	7, 687	9.9	8.8	9.0	8.6	8,7	
Grn	A	121	12.1	12,2	12,2	12.1	8,171	7.859	7.911	7.806	7.743	10,0	8.9	9.0	8.7	8.8	
	B	11.1	11.7	11.4	11.5	11.6	81183	7.800	7.927	7.745	7.692	10,0	8.7	9.D	8.5	9.0	
Yell	A	11.7	12.0	11.9	11,9	11,9	8.201	7.885	7.994	7.853	7.757	10.1	8.9	9.1	8.9	9.2	
	B	11.7	11.8	11.6	11.7	11.7	8,203	7.804	7.923	7,796	7.713	10.0	8.7	9.0	8.6	8,9	
Orng	A	11.9	12.1	11.8	11.6-11.7		8.191	7.805	7.915	8,021		10.1	8,7	9.0	9.4	4.4.0.0.0.0.0	
	В	12.1	11.9	(1.7	11.7	11.6	8.187	7.893	7.941	7.997	7.964	10.1	8.9	9.1	9.4	9.8	
Red	A	12.1	12.1	11.9	12.0	·	8.200	7.822	7.976	8.114	*******	9.9	8.7	9.1	9.6		
	В	12,2	12.1	12.1	s		8,193	7.869	8.085			9.9	8.8	9.3			
Wht	A	11.6	11.6	11.6	11.4	-	8,193	7.795	8,046	8.127	Langer and the second sec	9.9	8.7	9.2	9.7		
	В	12.0	12.1	12.1			8189	7.797	8.075			9.9	8.7	9,2			
Ana	alyst:	6y	JA	JA	JA	TA	64	JA	JA	JA	JA	Gy	JA	JA	JA	JA	
		I					1				Ji	l			<u></u>		

	Random # Beaker Position											
Code	Rep	Random Jar #	Code	Rep	Random Jar #							
Blue	A	5	Orange	A	10							
	В	9		В	8							
Green	Α	12	Red	A	4							
	В	4		В	1							
Yellow	A	7 *	White	A	3							
	В	2		В	11							

NOTES


This test neets all ac acceptance criteria. Ja 12-27-12

Rainbow Trout (*Onchorhyncus mykiss*), Acute Test Precision 96-Hour Exposure to Reference Toxicant, Cd, µg/L Table 3 of 3

cov Cov 36.6 35.5 38.8 37.3 36.8 34.3 21.8 24.4 37.2 39.7 36.1 35.4 34.3 26.2 21.7 25.7 33 0.53 - 3.450.61 - 3.290.72 - 4.230.51 - 4.020.46 - 3.990.88 - 2.821.02 - 2.600.92 - 2.880.61 - 4.120.54 - 3.710.55 - 3.610.57 - 3.510.60 - 3.510.61 - 3.271.04 - 2.630.99 - 2.87Control Limits 0.9 - 4.2Stats PA PA SK PA ΡA SK SK SK SK SK \mathbf{PA} PA PA SK PA ΡA SK Survival LC50 3.12* 1.26 1.78 1.90 2.03 2.12 2.05 1.35 2.45 2.27 2.12 2.45 2.05 1.5 1.31 1.31 1.91 Pass/ Fail Д, പ് Д, ط Д ۵. ٩ Д, പ Д ۵. ۵. പ Д, Д, Д, Д, Mortality, Control % 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 WWN MMN MMN MMN NWW MMN MWN WWN WWN MMN WWN WWN Water WWN NWW WWN WWN WWN Ref. Tox. Lot # 991020#6 991020#6 991020#6 991020#6 991020#6 080228#1 080228#1 080228#1 080228#1 080228#1 080228#1 080228#1 080228#1 080228#1 080228#1 080228#1 080228#1 .75 1.5 3 6 12 .75 1.5 3 6 12 75 1.5 3 6 12 75 1.5 3 6 12 75 1.5 3 6 12 6 12 75 1.5 3 6 12 75 1.5 3 6 12 .75 1.5 3 6 12 .75 1.5 3 6 12 .75 1.5 3 6 12 .75 1.5 3 6 12 75 1.5 3 6 12 75 1.5 3 6 12 .75 1.5 3 6 12 75 1.5 3 6 12 .75 1.5 3 6 12 Dilution Series, Cd, µg/L 75 1.5 3 120511 (38d old) 120608 (67d old) 121121 (26d old) 120125 (41d old) 120321 (33d old) 120420 (47d old) 111226 (49d old) Rainbow Trout 070813 Lot # 060317 060714 070209 080320 081110 101018 111226 111226 091117 Test # 4049 4635 5550 6116 6118 6124 6159 6226 6338 6239 3826 3932 4222 4357 5077 6104 6211 120423 081208 120213 120212 120306 120814 060809 120123 120618 121217 060424 070305 070904 091214 101102 120606 080421 Date

RW = Reconstituted Water WW = Well Water * = Value Outside Control Limits

PA = Probit Analysis MA = Moving Average (T)SK = (Trimmed) Spearman Karber GI = Graphical Interpolation

Dates	Values	Mean	-1 SD	-2 SD	+1 SD	+2 SD
2/21/2006	2.30					
2/27/2006	1.61	1.9550	1.4671	0.9792	2.4429	2.9308
3/13/2006	1.72	1.8767	1.5059	1.1352	2.2474	2.6181
4/24/2006	1.50	1.7825	1.4260	1.0695	2.1390	2.4955
8/9/2006	1.26	1.6780	1.2908	0.9036	2.0652	2.4524
3/5/2007	1.31	1.6167	1.2392	0.8617	1.9942	2.3717
9/4/2007	1.31	1.5729	1.2093	0.8457	1.9364	2.3000
4/21/2008	1.78	1.5988	1.2543	0.9098	1.9432	2.2877
12/8/2008	1.90	1.6322	1.2947	0.9572	1.9697	2.3073
12/14/2009	2.03	1.6720	1.3298	0.9876	2.0142	2.3564
11/2/2010	2.12	1.7127	1.3611	1.0095	2.0643	2.4159
1/23/2012	2.05	1.7408	1.3917	1.0427	2.0899	2.4390
2/13/2012	1.35	1.7108	1.3594	1.0080	2.0621	2.4135
2/21/2012	2.45	1.7636	1.3724	0.9813	2.1547	2.5459
3/6/2012	2.27	1.7973	1.3984	0.9994	2.1963	2.5952
4/23/2012	2.12	1.8175	1.4237	1.0299	2.2113	2.6051
6/6/2012	2.45	1.8547	1.4437	1.0328	2.2657	2.6767
6/18/2012	2.05	1.8656	1.4642	1.0628	2.2669	2.6683
8/14/2012	3.12	1.9316	1.4469	0.9621	2.4163	2.9010
12/17/2012	1.91	1.9305	1.4587	0.9869	2.4023	2.8741