

LHWMP_0376 March 2023

Final Report

Estimating the Burden of Occupational Exposures in King County Among All Workers and by Race/Ethnicity: A Job-Exposure Matrix-Based Approach

Trevor Peckham, PhD, MS, MPA

Hazardous Waste Management Program in King County Research Services Team

Shelley Stephan-Recaido, MS

Hazardous Waste Management Program in King County Research Services Team and Department of Environmental and Occupational Health Sciences University of Washington This report was prepared by the Hazardous Waste Management Program in King County, Washington, a coalition of local governments. Our customers are residents, businesses and institutions with small quantities of hazardous wastes. Our mission is: to protect and enhance public health and environmental quality in King County by reducing the threat posed by the **production**, **use**, **storage**, and **disposal** of hazardous materials.

For more information, contact:

Hazardous Waste Management Program in King County 201 S. Jackson Street, Suite 5600 Seattle, WA 98104 Voice 206-296-4692 TTY Relay: 711 Fax 206-296-0192 <u>kingcountyhazwastewa</u>.gov

Publication Number LHWMP_0376

Peckham, Trevor and Stephan-Recaido, Shelley. *Estimating the Burden of* Occupational Exposures in King County Among All Workers and by Race/Ethnicity: A Job-Exposure Matrix-Based Approach. Seattle, WA: Hazardous Waste Management Program in King County, 2023.

Alternate Formats Available

Voice: 206-263-8899 or TTY Relay: 711

Table of Contents

Executive Summary 1
Study Rationale and Overview
Background 6
Occupational Health Surveillance
Methods of Estimating Occupational Exposure Burden
The Job-exposure Matrix Approach
Surveillance of Occupational Health Disparities
King County Labor Market
Workforce Demographics
Labor Market Impacts of the COVID-19 Pandemic 13
Methods15
Overview 15 Data Sources 15 Canadian Job-exposure Matrix (CANJEM) 15 Quarterly Workforce Indicators (QWI) 17
Data merging process
Coverage Analysis. 18 Primary Analyses 18 Analysis 1: Estimates of Occupational Exposure Burden in King County 18
Analysis 2: Estimates of Disproportionate Exposure by Race/Ethnicity
Analysis 3: Time Trend Analysis

Additional Analyses	20
Estimates of High Exposures	20
Sensitivity Analysis	21
Results	22
Coverage Analysis	22
Analysis 1: Estimates of Occupational Exposure Burden in King County	23
Exposure Estimates for All and BIPOC Workers	23
Exposure Estimates by Disaggregated Race/Ethnicity	25
Online Interactive Tool Allows for Further Examination of Hazardous Exposure of Industries by Agent or Agents by Industry	27
Analysis 2: Estimates of Disproportionate Exposure by Race/Ethnicity	28
Analysis 3: Time Trend Analysis	32
Analysis 4: Development of Exposure Prevention Index to Prioritize Industries	37
Additional Analyses and Tables	41
High Exposures	41
Sensitivity Analysis	41
Discussion	42
Main Findings	42
Many King County workers are exposed to hazardous materials on the job	42
BIPOC workers are disproportionately exposed to many hazardous materials at work	42
Patterns of occupational exposure varied by race/ethnicity	43
The King County workforce is growing, becoming more diverse, and inequities in occupational exposures have been persistent	44
Our novel Exposure Prevention Index identifies industries that may particularly benefit from pollution prevention interventions	om 45
Comparison to Other Studies	45
Limitations and Future Directions	47
Recommendations	49
References	50

Acknowledgements	64
Appendix A: Full Tables	66
Appendix B: Estimates of High Exposure	90
Appendix C: Sensitivity Analysis	101

TABLES

Table 1. Average King County employment estimates by industry sector, 2019
Table 2. Average King County employment estimates by race/ethnicity, 2019. 13
Table 3. Summary of King County industries and employees with exposure information
Table 4. Summary of top 10 King County industries with no exposure information
Table 5. Top 25 most common occupational exposures among all employees in King County,2019
Table 6. Top 25 most common occupational exposures among all employees in King County by disaggregated race and ethnicity groups, 2019. 26
Table 7. Top five industries with the highest number of estimated workers exposed to cleaningagents in King County, 2019.27
Table 8. Top five most common exposures among workers in NAICS 5617 – Services toBuildings and Dwellings in King County, 2019.27
Table 9. Top 25 agents with the highest estimated number of excess BIPOC employees exposedin King County by disaggregated race and ethnicity groups, 2019.29
Table 10. Top 15 agents with the greatest number of excess workers exposed by disaggregated race/ethnicity groups. 30
Table 11. Summary of changes in average King County employment estimates by race/ethnicityfrom 2009 to 2019
Table 12. Changes to average King County employment estimates by industry sector from 2009to 2019.33
Table 13. Top 20 industries with highest burdens of occupational exposure to cleaning agents inKing County, based on the Exposure Prevention Index (EPI)
Table 14. Top 20 industries with highest burdens of occupational exposure to biocides in KingCounty, based on the Exposure Prevention Index (EPI)
Table 15. Top 20 industries with highest burdens of occupational exposure to organic solvents inKing County, based on the Exposure Prevention Index (EPI)
Table 16: Comparison of selected occupational exposure prevalence estimates from two recentJEM-based studies46
Table A-1. King County industries with no exposure information. 67

Table A-2. Estimated prevalence of exposure to all CANJEM agents in King County by race and ethnicity, 2019
Table A-3. Estimated number and percent of excess workers exposed to all CANJEM agents inKing County by race and ethnicity, 2019.80
Table B-1. Estimated prevalence of high exposures to all CANJEM agents in King County by race and ethnicity, 2019. 91
Table C-1. Summary of CANJEM coverage for stringent analysis. Table contains the number and percent of King County industries and employees within these industries with exposure information. 104
Table C-2. Summary of sensitivity analysis results for exposures to all workers in King County, 2019
Table C-3. Summary of sensitivity analysis results for exposures to BIPOC workers in King County, 2019.
Table C-4. Summary of sensitivity analysis results showing changes in the number of disproportionate exposures. The results compare changes in the number of disproportionate exposures in the primary analysis to that of the analysis using a more stringent exposure assignment reliability rating

FIGURES

Figure 1. Overview of data sources and output	j
Figure 2. Number of agents for which each race/ethnicity group is disproportionately exposed. 31	
Figure 3. Number of all King County workers exposed to cleaning agents, organic solvents, piocides, aliphatic aldehydes, and engine emissions between 2009 and 2019	ŀ
Figure 4. Prevalence of King County workers exposed to cleaning agents, organic solvents, biocides, aliphatic aldehydes, and engine emissions by race/ethnicity over time, 2009 to 2019. 35	;

Figure 5. Percent excess workers exposed in King County to cleaning agents, organic solvents, biocides, aliphatic aldehydes, and engine emissions by race/ethnicity over time, 2009 to 2019. 36

Acronyms and Abbreviations

AIAN	American Indian and Alaska Native
BIPOC	Black, Indigenous, and People of Color
CANJEM	Canadian job-exposure matrix
EPI	Exposure Prevention Index
FINJEM	Finnish job-exposure matrix
Haz Waste Program	Hazardous Waste Management Program in King County
JEM	Job-exposure matrix
NAICS	North American Industry Classification System
NHPI	Native Hawaiian and Other Pacific Islander
ОН	Occupational Health
P2	Pollution prevention
QWI	Quarterly Workforce Indicators
SQGs	Small quantity generators
U.S.	United States

This page intentionally left blank

Executive Summary

What is the problem we are addressing?

Workplace settings are an important venue for exposure to hazardous materials, as employees working with or near hazardous agents often experience more frequent and higher intensity exposures than in community or household settings. Yet characterizing the burden of occupational exposures is challenging at the population level, as is evident by the current lack of exposure surveillance systems in the U.S. Additionally, existing evidence suggests that workers of color are overrepresented in some high hazard industries (e.g., agriculture or construction) and may suffer higher levels of occupational health (OH) outcomes (e.g., work-related injuries or lung cancer). However, to develop policies, practices, and tools that address racial/ethnic inequities in exposures to hazardous materials, *more research is needed to understand the extent and distribution of exposures occurring in occupational settings* that may in turn contribute to poor worker health and health inequities across race/ethnicity.

What we did

We conducted a study to characterize the burden of occupational exposures in King County, among all workers and by race/ethnicity. We combined worker demographic information from the U.S. Census Bureau's Quarterly Workforce Indicators (QWI) database with data from the Canadian job-exposure matrix (CANJEM), which provides information on the probability of exposure to over 245 hazardous agents within 136 King County industries. CANJEM represents the most comprehensive job-exposure matrix (JEM) in North America and is based on nearly 9,000 detailed interviews and expert evaluations of over 30,000 jobs held between 1930 to 2005 in the greater Montreal, Canada area.

What we found

CANJEM data provide good coverage of King County wage earners. CANJEM exposure information is available for industries covering 74% (1,040,900/1,413,400) of all King County workers and 73% (372,100/511,200) of Black, Indigenous, and People of Color (BIPOC) workers. Industries with no exposure information tended to be white collar industries in which chemical exposures are less likely.

Many King County workers are exposed to hazardous chemicals at work. We estimated that hundreds of thousands of workers in King County are exposed to hazardous materials on the job, with the most common chemical exposures including cleaning agents, organic solvents, and biocides.

Rank	Agent	All workers exposed	BIPOC workers exposed	% Hispanic	% AIAN	% Asian	% Black	% Multiracial	% NHPI	% White
1	Cleaning agents	208500 (14.8%)	87,900 (17.2%)	19.7	16.8	15.6	18.9	16.6	14.9	13.4
2	Organic solvents	156900 (11.1%)	55,900 (10.9%)	13.5	11.6	10	10.1	10.9	10.6	11.2
3	Biocides	144200 (10.2%)	59,300 (11.6%)	12.2	10.3	11	13.1	10.8	10	9.4
4	Aliphatic aldehydes	123800 (8.8%)	52,100 (10.2%)	13.3	11.2	9.1	8.8	11.1	8.7	7.9
5	Engine emissions	123500 (8.7%)	41,200 (8.1%)	9.4	9.2	6.7	9	8.8	10.7	9.1

Most common occupational exposures in King County by workers' race/ethnicity, 2019.

BIPOC = Black, Indigenous, and People of Color; AIAN = American Indian/Alaska Native; NHPI = Native Hawaiian/Pacific Islander * Estimates rounded to nearest 100. Values highlighted in red indicate agent categories in which BIPOC employees are disproportionately exposed.

Occupational segregation within the King County labor market contributes to BIPOC workers being disproportionately exposed to many hazardous materials at work. We estimated that BIPOC workers are more likely to be exposed to many of the most common occupational exposures compared to non-Hispanic white workers. Patterns of occupational exposure varied by race/ethnicity groups, with Hispanic and American Indian/Alaska Natives generally experiencing a higher burden of exposure.

Disparities in occupational exposures have persisted over the last decade. Examining trends between 2009 and 2019, we estimate that the likelihood of exposure to many occupational hazards among BIPOC workers was consistently higher compared to non-Hispanic white workers during this period.

Prevalence of King County workers exposed to cleaning agents, organic solvents, biocides by race/ethnicity between 2009 to 2019.

Our novel Exposure Prevention Index (EPI) identifies industries that may particularly benefit from pollution prevention interventions. Our EPI measure identified certain industries that have both many exposed workers and a high probability of exposure to common occupational hazards, including Personal Care Services (e.g., nail and beauty salons) and Services to Buildings and Dwellings (e.g., janitorial, pest control, and landscaping services) industries. These industries may particularly benefit from public health and pollution prevention intervention efforts focused on reducing chemical exposures among workers.

What the Hazardous Waste Management Program can do

When conducting technical assistance to small businesses:

- Seek opportunities to reduce worker exposures. Our results suggest that workplaces are an important aspect of exposure to hazardous materials in King County. The Haz Waste Program should promote pollution prevention and technical assistance efforts that reduce or eliminate workers exposures, especially transitioning businesses to safer alternatives.
- Account for racial equity in our work with small businesses. Our results identify the existence of racial disparities in occupational exposures due to segregation of BIPOC workers into industries with higher probabilities of exposure. Characterizing the distribution of occupational exposure by demographic groups can identify where OH interventions have the greatest impact to reduce and eliminate exposure disparities.

When applying research and data analysis to support work planning and performance evaluation:

- *Continue to research and advocate for quality OH surveillance data.* JEM-based research approaches can help address the pressing need for OH surveillance to move "upstream" to characterize exposures rather than only health outcomes. However, JEMs have inherent limitations, including potential exposure misclassification (e.g., unaccounted for exposure variability within industries or across demographic groups) and the static nature of the data. Additional work is needed to improve OH surveillance in King County and elsewhere.
- **Disaggregate data by race/ethnicity.** Our findings of distinct patterns in exposures within specific race/ethnicity categories highlight the importance of disaggregating demographic data when possible.

This page intentionally left blank

Study Rationale and Overview

The mission of the Hazardous Waste Management Program in King County (Haz Waste Program) is to protect and enhance public health and environmental quality in King County by reducing the threat posed by the production, use, storage, and disposal of hazardous materials. From a human health perspective, one of the most important venues of exposure to hazardous materials is the workplace setting: employees working with or near hazardous agents often experience more frequent and higher intensity exposures than in community or household settings. The Haz Waste Program provides pollution prevention (P2) technical assistance to small businesses that qualify as small quantity generators (SQGs)^a of hazardous waste, including helping businesses implement proper storage and disposal of hazardous waste or transition to using safer chemical alternatives. These services not only prevent environmental contamination, but also often reduce hazardous exposures to workers in King County. To improve planning, prioritization, and evaluation of P2 activities, it is useful to characterize the types and extent of hazardous exposures occurring in King County workplaces; however, population surveillance of occupational exposures is challenging due to a variety of technical and logistical constraints, including a lack of accurate estimates of exposures.

The Haz Waste Program is committed to centering racial equity in all its operations and has adopted a racial equity strategic plan to ensure that race is not a determinant of hazardous exposure (Local Hazardous Waste Management Program in King County, Washington, 2018). While it is well established that Black, Indigenous, and People of Color (BIPOC) populations experience disproportionate exposure to harmful environmental pollution at the community level, less is known about whether BIPOC workers experience disparities in exposure to hazardous agents within occupational settings. There is existing evidence suggesting that BIPOC workers are overrepresented in some high hazard industries (e.g., agriculture or construction) and may suffer higher levels of occupational health outcomes (e.g., work-related injuries or lung cancer). However, to develop policies, practices, and tools that address racial/ethnic inequities in exposures to hazardous materials, more research is needed to understand the extent and distribution of exposures occurring in occupational settings that may contribute to health differences across race/ethnicity.

To address these gaps in our understanding, we conducted an analysis to characterize the burden of occupational exposures in King County, among all workers and by race/ethnicity. To accomplish this, we combined worker demographic information from the U.S. Census Bureau's Quarterly Workforce Indicators (QWI) database with data from the Canadian job-exposure matrix (CANJEM), which provides information on the probability of exposure to more than 245 hazardous agents within over 130 industries. The objectives of this analysis were fourfold:

^a Small quantity generators are businesses in Washington that generate less than 220 pounds of dangerous waste, or less than 2.2 pounds of certain kinds of highly toxic waste, in any month. Regulations for this category of dangerous waste generators are less complex than they are for medium or large quantity generators.

- 1. Characterize hazardous exposures occurring in King County workplaces This objective aims to improve our understanding of which types of exposures are most important in King County, including estimating the number and proportion of workers exposed to approximately 250 chemical agents.
- 2. Examine patterns of occupational exposure by workers' race/ethnicity in King County – This objective aims to improve our understanding of potential racial/ethnic inequities in occupational exposures, including estimating the number and proportion of BIPOC workers exposed and assessing whether certain hazardous exposures disproportionately burden BIPOC workers.
- 3. Examine the extent and racial/ethnic distribution of occupational exposures over time This objective aims to characterize trends in the number and proportion of King County workers exposed between 2009 and 2019 and examine whether disproportionality in exposures across race/ethnicity has changed during this period.
- 4. **Develop an Exposure Burden Index to prioritize industries for intervention** This objective aims to develop a novel index of occupational exposures to understand in which King County industries workers experience the greatest burden of occupational exposures.

Ultimately, the results of this analysis are meant to inform Haz Waste Program planning, resource allocation, service delivery, and performance evaluation, especially with respect to the Program's work to assist small businesses.

Background

Occupational Health Surveillance

Occupational health surveillance is the ongoing systematic collection, analysis, interpretation, and dissemination of data on work-related health outcomes and hazards in the workplace for the purpose of understanding and preventing illnesses and injuries (Greife et al., 1995; National Academies of Sciences, Engineering, and Medicine, 2018; National Institute for Occupational Safety and Health, 2016; Thacker & Birkhead, 2008). Occupational health surveillance informs priorities for research, policy development, and intervention efforts to improve worker health and safety (National Academies of Sciences, Engineering, and Medicine, 2018). However, current occupational health surveillance systems in the U.S. primarily focus on tracking health outcomes (LaMontagne et al., 2000; National Academies of Sciences, Engineering, and Medicine, 2018; Todorov & Reeb-Whitaker, 2021) and are known to underestimate the true burden of work-related injuries and illnesses (Azaroff et al., 2002; Boden & Ozonoff, 2008; Hilaski, 1981; Rosenman, Kenneth et al., 2006; Spieler & Wagner, 2014), especially for chronic diseases (Hilaski, 1981; Souza et al., 2010; Spieler & Wagner, 2014; Wegman, D. H. & Froines, 1985).

Some issues contributing to underestimates include a delay between initial exposure and the onset of work-related illness, lack of occupational health awareness within the medical community, and underreporting by employees due to factors such as lack of awareness of how work affects their health, fear of reprisal by their employer, and inability to afford lost work time (Azaroff et al., 2002; Hilaski, 1981; National Academies of Sciences, Engineering, and Medicine, 2018). These factors likely also produce differential undercounting of injuries and illnesses for certain working populations, such as low-wage workers and workers of color (Azaroff et al., 2002; Sabbath et al., 2017). Importantly, focusing surveillance primarily on health outcomes leaves unclear what specific exposures in the work environment contribute to adverse health outcomes among workers, and, more generally, difficulty in attributing work as the cause or contributor of a disease or injury that has many potential risk factors—making prevention of work-related illnesses difficult (Azaroff et al., 2002; Hilaski, 1981; National Academies of Sciences, Engineering, and Medicine, 2018).

Surveillance of Occupational Exposures

Exposure surveillance, which focuses on understanding the burden of *occupational exposures* rather than *health outcomes*, can supplement and address important gaps in current occupational health surveillance efforts. The main advantage of exposure surveillance is being able to identify specific opportunities for intervention to reduce exposures and improve working conditions before occupational injuries and illnesses occur, i.e., going "upstream" to emphasize prevention (Froines et al., 1989; Greife et al., 1995; National Academies of Sciences, Engineering, and Medicine, 2018; Sundin & Frazier, 1989). Additionally, in comparison to occupational illnesses, exposures can be easier to recognize, occur at greater frequency, and serve as better indicators of effective control measures as they are the targets of control themselves (Wegman, 1992). Improving surveillance of occupational hazards and exposures was identified as a key priority by the National Academies of Sciences, Engineering, and Medicine "A Smarter National Surveillance System for Occupational

Safety and Health in the 21st Century"(National Academies of Sciences, Engineering, and Medicine, 2018); however, there is currently no comprehensive exposure surveillance system in the U.S. In conjunction with current occupational health surveillance systems, exposure surveillance could allow for greater opportunity for early detection of hazardous exposures and implementation of more effective preventive measures to reduce exposures in King County and elsewhere.

Methods of Estimating Occupational Exposure Burden

Characterizing the burden of occupational exposures is challenging at the population level, as is evident by the current lack of exposure surveillance systems in the U.S. Some approaches that have been used to characterize occupational exposure burden include workplace observational surveys (National Institute for Occupational Safety and Health, 1976; Sieber, 1990), questionnaires (Carey et al., 2021; National Center for Health Statistics, 2011; National Center for Health Statistics, 2016; Steege et al., 2014b), exposure sampling data (Middendorf, 2004), workers' compensation data (Todorov & Reeb-Whitaker, 2021) job exposure matrices (Beckman et al., 2022; Gustavsson et al., 2022), or some combination of these (Kauppinen et al., 1998). However, each approach has its own limitations or advantages with respect to validity and feasibility.

For example, questionnaires can be costly to develop and maintain, rely solely on workers' assessment, and can be difficult to disseminate to certain populations. It can also be challenging to obtain specific exposure information. For example, the National Health Interview Survey includes an Occupational Health Supplement in 2010 and 2015 to collect data on occupational exposures and health outcomes (The National Institute for Occupational Safety and Health, 2020); however, the exposures measured were relatively non-specific (e.g., skin hazard; vapors, gas, dust, fumes; outdoor work) (National Center for Health Statistics, 2011; National Center for Health Statistics, 2016), limiting the utility of the data for informing targeted intervention measures.

Workplace observational surveys, in which occupational health and safety experts observe work environments and record exposure information, are also costly and time intensive, and further require access to worksites in which employers are often disincentivized to volunteer for fear of liability. The National Occupational Exposure Survey, a large-scale workplace-based direct observational survey conducted by the National Institute for Occupational Safety and Health (NIOSH) in the early 1980s, was the last nationwide effort to characterize exposures for a wide variety of hazards and occupations across workplaces in the US (Seta et al., 1988). This survey required an extensive amount of time and resources, and the data is now considered outdated and of limited use (National Academies of Sciences, Engineering, and Medicine, 2018; The National Institute for Occupational Safety and Health, 2017). Due to resource constraints, there are no plans to conduct such a large-scale survey in the future (National Academies of Sciences, Engineering, and Medicine, 2018; The National Institute for Occupational Safety and Health, 2017).

Exposure sampling measurements are also costly, require access to worksites, are only available for hazards with known sampling methods, and require specialized equipment and technical expertise. In addition, publicly available sampling data, such as in the Occupational

Safety and Health Administration (OSHA) Integrated Management Information System (IMIS), is typically collected for compliance purposes, so the number of agents for which data is available is limited and the samples are likely biased due to being mainly to support compliance, rather than characterization of workers' health risks. There are also well-described limitations associated with using workers' compensation data for surveillance, namely that these data underestimate the extent of occupational injuries and illness (Azaroff et al., 2002) and would therefore similarly underestimate exposures.

Another approach described in a recent report on the state of occupational disease in New York State was to estimate the number of workers employed in industries that reported using one or more chemicals that pose a risk to workers (Lax & Zoeckler, 2021). However, such an approach would likely underestimate the extent of actual exposures because substantial exposure could be occurring in many businesses that use chemicals at quantities below regulatory reporting thresholds.

The Job-exposure Matrix Approach

In this analysis, we characterize occupational exposures using a job-exposure matrix (JEM). A JEM is a source of data used in population-based studies to provide workplace exposure information for individual occupations or industries (Siemiatycki, 2000). That is, a JEM links a job title or industry classification to indices of exposure to various occupational hazards. JEMs therefore represent powerful research tools that can infer complex information on exposure to industries and occupations when data at the individual worker level is not available. A JEM can be developed by expert assessment, self-reported exposure information, worksite monitoring data, or some combination thereof, which is then pooled at the level of industry or occupation to create estimates of "average" levels of exposure.

JEMs have been used for many decades and are an accepted method to estimate workplace exposures to chemicals and other hazards. However, a major limitation of JEMs is that they cannot account for variability in exposures within the same job or industry, nor do they account for changes in exposure that may occur over time (e.g., due to changes in regulations or industrial practices). Nevertheless, JEMs have many advantages, being relatively inexpensive and highly efficient at estimating exposures for a wide variety of occupational hazards in population studies—without relying on individual-level self-reports, observations, or measurements of exposure (Siemiatycki, 2000; Siemiatycki & Lavoué, 2018).

Three recent studies applied JEM data to characterize population-level exposure burdens. Beckman et al. (2022) combined American Community Survey employment and demographic data with an internally developed qualitative JEM (i.e., based solely on expert assessment) to estimate the number and prevalence of California working women exposed to a large set of exposures linked to breast cancer. In another study similar to the present analysis, Doubleday et al. (2018) combined state employment data with CANJEM (Lavoué, 2018) to estimate the number and prevalence of workers in Federal Region 10 (i.e., Washington, Idaho, Oregon, and Alaska) exposed to approximately 20 chemical hazards on the job. Finally, in a study from Sweden, Gustavsson and colleagues (2022) merged data from national population registers with the Finnish job-exposure matrix (FINJEM) to examine occupational exposure prevalence of six chemicals over time and across some workforce characteristics (i.e., workers' sex, age, country of birth, size of company).

While the methods, underlying data, and working populations included in these studies varies, these analyses had a similar goal to the present study of providing population-level estimates of occupational exposure burden. More detail about these studies is included below (see discussion section entitled "Comparison to Other Studies").

Surveillance of Occupational Health Disparities

In addition to understanding the overall *burden* of occupational exposures affecting the health of workers, it is also important to consider the *distribution* of these exposures to understand how occupational hazards may disproportionately impact certain segments of the working population. This is critical because the U.S. workforce is heavily segregated by sociodemographic characteristics (Alonso-Villar et al., 2012; Washington Center for Equitable Growth, 2017). Put simply, who is employed, in what type of work, and with what kind of accompanying exposures and resources, is not evenly distributed in modern societies, with a general trend of works working and employment conditions experienced by marginalized populations (Krieger et al., 2008; Krieger, 2010).

There are many mechanisms underlying occupational segregation (defined as a sociodemographic group being overrepresented or underrepresented in a certain job or field of work), but the selection of certain groups of people into particular types of jobs is generally rooted in the systematic denial of access to equitable economic opportunities for those with less power, status, and resources (Frumkin et al., 1999; Juon et al., 2021; Lipscomb et al., 2006; Murray, 2003; Roelofs et al., 2017; Rosenman, Kenneth D., 2016). This segregation occurs across many axes of inequality, including race, ethnicity, gender, education, age, geographical area, socioeconomic position, and more.

Importantly, occupational segregation results in the uneven distribution of hazardous exposures, and other harms and benefits of work, and may therefore contribute to health disparities (Birdsey et al., 2007; Briggs et al., 2003; Frumkin et al., 1999; Krieger, 2010; National Academies of Sciences, Engineering, and Medicine, 2018). Accordingly, researchers and policymakers are increasingly recognizing that work is an important social determinant of health and health inequities, as it is a source of both health-harming exposures—such as chemical and physical hazards and psychosocial stressors—and health-enhancing resources—including income and other benefits such as health insurance (Ahonen et al., 2018; Fujishiro et al., 2017; Lipscomb et al., 2006). There are many studies documenting occupational health disparities in the U.S., in which workers from marginalized groups are overrepresented in high-risk occupations and industries and experience worse occupational health outcomes (Baron et al., 2013; Marsh et al., 2013; Richardson et al., 2004; Seabury et al., 2017; Stanbury & Rosenman, 2014; Steege et al., 2014a). While these findings infer that some workers experience disproportionate levels of exposures, a lack of empirical information on the social distribution of hazardous exposures remains—especially for chemical exposures.

Occupational Segregation by Race/Ethnicity and the Role of Racism in Producing Racial Inequities in Occupational Exposures

In this study, we emphasize a particular need to understand racial and ethnic disparities in occupational exposures, which directly relates to the Haz Waste Program's racial equity goals. The concepts of institutional and systemic racism have increasingly gained understanding among policymakers, researchers, and the public at large. For example, racism was declared a public health crisis by the King County government and Public Health – Seattle & King County in June 2020 (Constantine & Hayes, 2020). Yet, there has been relatively little attention to racism and its potential role in contributing to unequal work-related exposures and health outcomes within occupational health and safety research.

At the same time, in order to avoid reinforcing nefarious stereotypes, scholars have called for appropriate application of race and ethnicity as a research variable. While an enormous literature exists describing racial and ethnic differences in a wide variety of risk factors and health outcomes, researchers rarely link these disparities to precise mechanisms that actually produce such disparities—namely manifestations of racism such as poverty (Fullilove, 1998; Kaplan & Bennett, 2003; Kaufman & Cooper, 2001; Williams, J. I., 1966). As a result, alternative explanations are often evoked to explain these disparities, including those involving genetic susceptibility or cultural inferiority, which can cause further harm among those experiencing worse outcomes (Lett et al., 2022; Payne-Sturges et al., 2021).

To avoid this pitfall, it is useful to clarify our conceptual and analytic frameworks in this analysis: we intend to examine occupational exposures in King County by race and ethnicity to characterize the potential role of racism in contributing to unequal exposures, and thus assess the potential value of applying a racial equity perspective to the Haz Waste Program's work on reducing exposures within workplaces. More technically, since our worker demographic data is at the industry level, we conceptualize our use of worker race and ethnicity by industry as a proxy for racial/ethnic segregation across industry (i.e., occupational segregation), which we posit is at least partially shaped by racism, based on decades of social science and economic research (Chung-Bridges et al., 2008; Krieger et al., 1993; Williams, D. R., 1999). For example, discrimination in public resources, including education, high unemployment, and a historical lack of land, business ownership, and other economic opportunities, all contribute to some racial/ethnic groups being disproportionately employed in hazardous jobs. Further, institutional racism has and continues to contribute to geographical segregation and other policies that result in the placement of hazardous, low-wage industries within disadvantaged communities, further contributing to racial/ethnic segregation in the labor market (Lipscomb et al., 2006). It is important to note that our data do not allow for examining potential racial/ethnic disparities in exposure within industries, which could occur, for example, if BIPOC workers in King County were systematically given more hazardous jobs or tasks across all industries.

Disparities in occupational health outcomes by race and ethnicity are consistently identified in the U.S., especially for outcomes such as work-related injury and diseases with well-characterized occupational origins (e.g., silicosis). An analysis of national 2010 nonfatal work-related injury and illness data by Baron et al. (2013) showed that workers of color (except those identifying as Asian or multiracial), males, foreign-born workers, and low-wage workers

were overrepresented in high-risk occupations, defined as occupations with rates of nonfatal injury and illness greater than twice the 2008 national average rate of 113.3 cases per 10,000 full-time equivalent employees. Similarly, Seabury et al. (2017) found that non-Hispanic Black and foreign-born Hispanic workers in the U.S. were disproportionately employed in jobs with high risk of injury and suffered higher levels of work-related disability compared to non-Hispanic white workers. Using data from a large National Cancer Institute study, Juon and colleagues (2021) found evidence that occupational exposures may contribute to racial disparities in lung cancer: Black workers reported higher levels of exposure to occupational carcinogens (asbestos and silica) and higher rates of lung cancer, compared to white workers. In a study using Michigan data, Stanbury and Rosenman (2014) found that Black and Hispanic employees were overrepresented in lower wage and more hazardous occupations and suffered higher levels of several occupational injuries and diseases. Black workers were at greater risk of silicosis, work-related asthma, and work-related burns than white workers; and Hispanic workers had higher rates of work-related acute fatal injuries and pesticide injuries than non-Hispanic workers (Stanbury & Rosenman, 2014). Workers from racialized groups also are killed at work at higher rates than white workers. Marsh et al. (2013) found that Hispanic and foreign-born workers had the highest rates of fatal occupational injuries from 2005 to 2009. Overall, these studies—representing only a sample of more recent publications—suggest that workers of color are selected into jobs with higher risk of injury and illness which may contribute to health inequities.

To reduce such health inequities, it is helpful to understand the burden and distribution of occupational exposures by demographic groups to identify specific working populations disproportionately burdened by work-related exposures and at excess risk of injuries and illnesses. With this information, intervention efforts aimed at reducing disparities in occupational injuries and illnesses can be focused more effectively.

King County Labor Market

King County is home to a dynamic labor market, including a wide variety of industries and a demographically diverse workforce. King County is the largest county in Washington state, averaging over 1.4 million jobs in 2019. According to the Washington State Employment Security Department, more than 42 % of all nonfarm jobs in Washington state are located in King County, based on 2019 employment data (Vance-Sherman, 2022).

Employment by Industry

Employment estimates in King County by industry sector are presented in **Table 1**. Approximately 87% of King County jobs are in service-providing sectors, with the largest industries including healthcare and social services; professional, scientific, and technical services; retail trade; accommodation and food services; information; and educational services. Around 13% of King County jobs are in goods-producing sectors, especially manufacturing industries.

NAICS ^a Sector Code	Industry Sector	Employee Count ^b	Percent of Workforce
11	Agriculture, Forestry, Fishing and Hunting	2,900	0.2%
21	Mining, Quarrying, and Oil and Gas Extraction	450	<0.1%
22	Utilities	5,600	0.4%
23	Construction	75,000	5.3%
31-33	Manufacturing	103,300	7.3%
42	Wholesale Trade	66,400	4.7%
44-45	Retail Trade	151,500	10.7%
48-49	Transportation and Warehousing	65,100	4.6%
51	Information	125,700	8.9%
52	Finance and Insurance	44,100	3.1%
53	Real Estate and Rental and Leasing	30,600	2.2%
54	Professional, Scientific, and Technical Services	133,400	9.4%
55	Management of Companies and Enterprises	35,500	2.5%
56	Administrative and Support and Waste Management and Remediation Services	79,000	5.6%
61	Educational Services	97,800	6.9%
62	Health Care and Social Assistance	170,100	12.0%
71	Arts, Entertainment, and Recreation	31,500	2.2%
72	Accommodation and Food Services	114,600	8.1%
81	Other Services (except Public Administration)	49,000	3.5%
92	Public Administration	32,000	2.3%
0000	All Sectors	1,413,500	100.0%

 Table 1. Average King County employment estimates by industry sector, 2019.

Source: U.S. Census Bureau Quarterly Workforce Indicators, annual average over four quarters in 2019.

^aNAICS: North American Industrial Classification System

^bEmployee counts are rounded to the nearest ten if <1000, and to the nearest hundred if >1000.

Workforce Demographics

Employment estimates in King County by race and ethnicity are presented in **Table 2**. Of the estimated 1.4 million workers in King County, approximately 36.2% of the workforce identify as BIPOC.

Category	Race/Ethnicity ^a	Employee Count ^b	Percent of Workforce
Race	American Indian and Alaska Native	14,200	1.0%
	Asian	230,700	16.3%
	Black or African American	92,200	6.5%
	Multiracial	58,100	4.1%
	Native Hawaiian or Other Pacific Islander	11,500	0.8%
	White	1,007,000	71.2%
	Non-Hispanic White	902,300	63.8%
	Hispanic White	104,700	7.4%
Ethnicity	Hispanic or Latino	129,400	9.2%
	Not Hispanic or Latino	1,284,100	90.8%
BIPOC ^c		511,300	36.2%
Total		1,413,500	100%

Table 2. Average King County employment estimates by race/ethnicity, 2019.

Source: U.S. Census Bureau Quarterly Workforce Indicators, annual average over four quarters in 2019. ^a Except for the non-Hispanic white race/ethnicity group, persons of any race are of any ethnicity. Persons of Hispanic or Latino ethnicity are of any race and are also counted in their preferred race category.

^b Employee counts are rounded to the nearest hundred.

^c Black, Indigenous, and People of Color (BIPOC) category includes all workers except those identifying as non-Hispanic white.

Labor Market Impacts of the COVID-19 Pandemic

It is important to note that the COVID-19 pandemic induced an economic recession in 2020, which dramatically impacted labor markets in King County and globally. Between February and April 2020, total nonfarm employment in King County dropped by more than 11 %—with more than 166,000 jobs lost (Vance-Sherman, 2022). County total employment has mostly recovered since then, with preliminary estimates from the Washington State Employment Security Department for March 2022 being just 10,000 fewer jobs than pre-pandemic levels (Vance-Sherman, 2022). However, the pandemic has impacted individual industries differently. The most affected industries were those within the leisure and hospitality sector, which as of March 2022 remain down 17,500 jobs, or approximately 13 % below prepandemic levels. The local manufacturing sector was also substantially affected in 2020, especially the aerospace industry due to decreased demand in aircraft during the pandemic. As of March 2022, King County manufacturing jobs remained down 9,600 jobs compared to two years earlier, roughly nine percent below pre-pandemic levels. Other industries that have not yet recovered to pre-pandemic employment totals include government, other services, wholesale trade, transportation, education, health services, warehousing, and utilities (Vance-Sherman, 2022).

Given the COVID-19 pandemic's large and ongoing impact on King County's labor market, as well as the fact that complete employment statistics for 2021 are not yet available, this analysis

uses employment data from 2019. Thus, although we believe our analyses using 2019 data provide important insights, one must be cautious in interpreting our results as they pertain to a pre-pandemic labor market that may differ from King County's current and future labor market in important ways.

Methods

Overview

To estimate the burden of occupational exposures in King County, we combined exposure data on 245 occupational agents from the CANJEM database with worker demographic data from the QWI. The merged data were used to estimate the number and proportion of King County workers exposed by agent, industry, and race/ethnicity. An overview of the data sources and outputs is presented in **Figure 1**. All analyses were performed using R Statistical Software (v4.1.0).

Figure 1. Overview of data sources and output.

Data Sources

Canadian Job-exposure Matrix (CANJEM)

The CANJEM occupational exposure information system is a JEM, which, as described above, enables estimates of workplace exposures by occupation and industry. For a given industry or occupation and time period, CANJEM provides information on the probability, frequency, and intensity of exposure to more than 250 hazardous agents (Siemiatycki & Lavoué, 2018). CANJEM was built from detailed worker interviews followed by expert evaluations of occupational exposures, completed during several research studies conducted between 1980 and 2010 in the greater Montreal area (Siemiatycki & Lavoué, 2018). During these studies, over 30,000 jobs from 1930 to 2005 held by over 9,000 subjects were evaluated; experts assigned exposures based on descriptions of tasks, processes, work environment, and exposure control measures (Siemiatycki & Lavoué, 2018). While easily available information on occupational exposures is generally difficult to obtain, CANJEM represents a uniquely large

and extensive database of exposure information on a wide range of agents and industries/occupations that occurred in a mostly urban North American population in the late 20th/early 21st century (Siemiatycki & Lavoué, 2018). Thus, we believe CANJEM is an appropriate data source to characterize a wide variety of hazardous exposures in King County workplaces.

Exposure Metrics: We used two exposure metrics available in the CANJEM database.

- <u>Probability of exposure</u> This measure provides a likelihood of exposure within a given industry and is calculated as the number of exposed jobs in an industry divided by total number of jobs in that industry (Sauvé et al., 2018). Exposed jobs were defined as having a frequency of exposure of at least 30 minutes per week, a reliability level of "possible" or greater, and a frequency-weighted intensity (FWI) score of at least 0.05. The FWI combines measures of intensity (low, medium, high) and frequency (<2 h, 2–12 h, 12 to <40 h, and ≥40 h per week), and an FWI of 0.05 is equivalent to two hours per week of exposure at low intensity (Sauvé et al., 2018).
- <u>Probability of high exposure</u> This measure provides a likelihood of being highly exposed within a given industry and is calculated as the number of highly exposed jobs in an industry divided by the total number of jobs in that industry. We considered jobs highly exposed when the FWI was ≥5, which corresponds to jobs with medium levels of exposure for 40 or more hours per week or high levels of exposure for eight or more hours per week.

Matrix Restrictions: Matrix restrictions are selection criteria that affect how CANJEM summarizes exposure information. We used the following restrictions during CANJEM data extraction, which were informed by previous research (Doubleday et al., 2018; Sauvé et al., 2018).

- <u>Time period</u> Exposure data included jobs between 1985 to 2005, balancing inclusion of jobs from the most recent time period with having a sufficient sample size.
- <u>Minimum sample size</u> Exposure data was limited to industries with at least 10 jobs and five subjects to exclude those with very low sample sizes. This approach is similar to recent studies using CANJEM data (Doubleday et al., 2018).
- <u>Agents</u> Exposure data included 245 categories of hazardous agents, including both individual chemicals and groups of agents.
- <u>Industry classification</u> Industry is categorized by 2012 North American Industry Classification System (NAICS) codes available at the 4-digit level (industry groups). Due to differences in NAICS coding between the US and Canada, some exposure estimates were not transferable to US employment data, including all industry groups in the wholesale trade and public administration sectors and some industry groups in manufacturing sectors. Thus, data from these industry groups are not included in the present study.

Quarterly Workforce Indicators (QWI)

The U.S. Census Bureau QWI database provides local labor market statistics by industry and employee demographics (United States Census Bureau, 2019). A wide variety of record sources contribute to the construction of the QWI, including administrative records on employment collected by the states (e.g., unemployment insurance), social security data, federal tax records, and other census and survey data (United States Census Bureau, 2019). In this analysis, we used employment estimates, worker race/ethnicity information, and average monthly earnings provided for industries across four quarters in 2019. The data was extracted on July 15, 2022, using the Local Employment Dynamics (LED) data extraction tool (https://ledextract.ces.census.gov/static/data.html).

Time Period: QWI data are available on a quarterly basis (United States Census Bureau, 2019). In our primary analysis, we used average annual employment estimates across four quarters in 2019. We additionally used average annual employment estimates from 2009 to 2019 to analyze exposure trends over time.

Industry Classification: Industry information is categorized by 2017 NAICS codes available at the 4-digit level (industry groups) (United States Census Bureau, 2019). Industry groups with zero employees in King County were not included in this analysis.

Employment Estimates: Beginning of quarter employment counts were used to estimate employee counts by industry, as is recommended by the U.S. Census Bureau (United States Census Bureau, 2019). All employment estimates over 1,000 were rounded to the nearest 100. Estimates that were under 100 were rounded to the nearest 10. Estimates were rounded to convey to the reader that all results presented herein should be interpreted cautiously due to limits of precision inherent in administrative datasets.

Race/Ethnicity: Employment estimates were provided for the following eight race/ethnicity groups:

- 1. Non-Hispanic White
- 2. Black or African American
- 3. American Indian and Alaska Native (AIAN)
- 4. Asian
- 5. Native Hawaiian and Other Pacific Islander (NHPI)
- 6. Hispanic or Latino
- 7. Multiracial
- 8. Black, Indigenous, and People of Color (BIPOC)

Employee estimates for race and ethnicity groups are not mutually exclusive. All race groups except for the non-Hispanic white group include employees of any ethnicity. Additionally, the Hispanic or Latino group includes employees of any race and are also counted in their preferred race category. A group including all workers identifying as BIPOC was calculated by finding the difference between total and non-Hispanic white worker counts.

Earnings: Average monthly earnings of employees with stable employment were used to obtain wage levels by industry groups. Industries were considered *low wage* if average

monthly earnings were below \$3,814 per month, or ~\$45,800 annually, which is two thirds of the median earnings in King County. This is a commonly used approach for classifying low wage industries and occupations (OECD, 2022).

Data merging process

Two steps were required to merge worker demographic data from the QWI (industry available by US-based 2017 NAICS codes) with exposure data from CANJEM (industry available by Canada-based 2012 NAICS codes). First, we used the 2017 NAICS to 2012 NAICS concordance file provided by the U.S. Census Bureau (<u>https://www.census.gov/naics/</u>) to crosswalk the CANJEM industry data to 2017 NAICS. Second, we manually created a crosswalk from Canadian to US NAICS codes to address some differences in the coding scheme between the two countries. The crosswalk was created by matching NAICS labels and International Standard Industrial Classification of All Economic Activities (ISIC) codes for each country-specific NAICS classification.

Coverage Analysis

Given that the CANJEM database does not contain exposure information for all industries, we first assessed the extent of industries and employees in King County that are covered by the CANJEM data. We determined the number of King County industries that CANJEM provided exposure information for by totaling the number of 4-digit NAICS codes that matched between CANJEM and the QWI data. We then determined coverage of the King County workforce by summing the total number of workers in each of the matched industries.

Primary Analyses

Analysis 1: Estimates of Occupational Exposure Burden in King County

In Analysis 1, we estimated the number and proportion of workers exposed to 245 occupational agents across all industries in King County. Estimates are provided for all employees, BIPOC employees, and employees by disaggregated race/ethnicity group.

Number of workers exposed: The estimated number of employees in each race/ethnicity group exposed to each agent was calculated by multiplying the industry-specific probability of exposure (from CANJEM) by the number of employees in that industry (from QWI) and summing the number of exposed employees across all industries, as demonstrated in Equation 1.

$$\mathbf{n}_{\text{exposed,d}} = \sum (\mathbf{p}_i \mathbf{x} \, \mathbf{n}_{i,d}) \,, \tag{1}$$

where $n_{exposed,d}$ = total number of exposed employees of specified demographic group, p_i = industry-specific probability of exposure, and $n_{i,d}$ = number of employees of specified demographic group in a given industry.

Percent of workers exposed: The proportion of employees in each race/ethnicity group exposed to each agent was calculated by dividing the estimated number of employees exposed to each

agent category by the total number of employees in the race/ethnicity group, as demonstrated in Equation 2.

$$p_{\text{exposed,d}} = \frac{n_{\text{exposed,d}}}{n_{\text{total,d}}},$$
(2)

where $p_{exposed,d} = proportion$ of exposed employees of specified demographic group, $n_{exposed,d} = number$ of exposed employees of specified demographic group, $n_{total,d} = total number$ of employees of specified demographic group in the workforce.

Whether an agent category contributes to disproportionate occupational exposure for a specific race/ethnicity group was determined when the proportion of exposed workers within that group was greater than the proportion of all workers exposed.

Analysis 2: Estimates of Disproportionate Exposure by Race/Ethnicity

In Analysis 2, we estimated the extent to which employees of each race/ethnicity group were disproportionately exposed to each of the 245 occupational agents in CANJEM. This was achieved by comparing the estimated number of exposed employees in each race/ethnicity group from Analysis 1 with the *expected* number of exposed employees, based on each group's proportional representation in the workforce (that is, if there was no racial/ethnic segregation in the labor market). Specifically, the number of employees expected to be exposed to each agent was calculated by multiplying the industry- and agent-specific probability of exposure by the number of total employees in the industry and the overall percent of employees in a given race/ethnicity group in the total workforce, and then summing all industries (Equation 3).

$$n_{\text{expected,d}} = \sum (p_i \times n_{i,\text{all}} \times p_{\text{total,d}}), \qquad (3)$$

where $n_{expected,d}$ = number of employees of specified demographic group expected to be exposed, p_i = industry-specific probability of exposure, $n_{i,all}$ = number of total employees in specified industry, and $p_{total,d}$ = percent of employees of specified demographic group in the total workforce.

Number of excess workers exposed: An estimate for the number of employees disproportionately exposed was calculated by the difference between the number of estimated (from Equation 1) and expected (from Equation 3) employees exposed, as demonstrated in Equation 4.

$$e_{\text{exposed,d}} = n_{\text{exposed,d}} - n_{\text{expected,d}}, \qquad (4)$$

....

where $e_{exposed,d} = excess$ number of employees of specified demographic group exposed, $n_{exposed,d} =$ number of employees of specified demographic group exposed, $n_{expected,d} =$ number of total employees of specified demographic group exposed.

Percent excess workers exposed: The percent of employees disproportionately exposed was calculated by finding the percent difference between the number of estimated and expected exposed employees for each race/ethnicity group, as demonstrated in Equation 5.

$$pe_{exposed,d} = \frac{n_{exposed,d} - n_{expected,d}}{n_{expected,d}},$$
(5)

where $pe_{exposed,d} = percent$ of excess employees of specified demographic group exposed, $n_{exposed,d} = number$ of employees of specified demographic group exposed, $n_{expected,d} = number$ of total employees of specified demographic group exposed.

Note that a negative value for the excess workers exposed measures, whether number or percent, indicates that a demographic group experiences less exposure than is expected based on their representation in the overall King County workforce.

Analysis 3: Time Trend Analysis

To understand trends in the extent and racial/ethnic distribution of occupational exposures over time, we examined the estimated number and proportion of King County workers exposed each year from 2009 to 2019 across race/ethnicity, as well as the estimated number and proportion of excess workers exposed across race/ethnicity during this time period.

Analysis 4: Development of an Exposure Prevention Index to Prioritize Industries

In Analysis 4, we developed an Exposure Prevention Index (EPI) to identify industries with high burdens of hazardous exposures. The EPI can be used to prioritize prevention and intervention efforts to reduce exposures.

The EPI was informed by previous research used to identify industries with high risk of workplace injury (Anderson et al., 2014). Specifically, researchers from Washington State's Department of Labor & Industries (L&I) created a "prevention index", calculated as an industry's average rank order of 1) injury claim count and 2) claim incidence rate based on the state's workers compensation system. The L&I prevention index thus identified industries with high burden of occupational injury as those with both a high number of injuries and high risk of injury, indicating a need to prioritize prevention efforts in these workplaces.

Here, we took a similar approach focused on exposure to hazardous agents in the workplace. The EPI for each industry was calculated as the average rank orders of 1) probability of exposure (i.e., the likelihood of exposure) and 2) estimated number of employees exposed (i.e., the extent of exposure) for a particular agent category. Industries were ranked by the EPI, with industries ranking higher being those in which hazardous exposures are both likely and affect many workers in King County. To provide further context by which to prioritize industries for intervention efforts, we present the EPI results along with information about which industries were overrepresented by BIPOC employees and were considered low-wage industries.

Additional Analyses

Estimates of High Exposures

To characterize high occupational exposures in King County, we reran Analysis 1 with a measure of high exposure. A job was defined as highly exposed if it was assigned a FWI score of 5, which is equivalent to a medium level of exposure for 40 or more hours per week or a high level of exposure for eight or more hours per week. The probability of high exposure was

calculated by dividing the number of jobs with an FWI \geq 5 by the total number of jobs for each industry-agent combination, as demonstrated in Equation 6.

$$p_{i,h} = \frac{j_{i,FWI\geq 5}}{j_i},\tag{6}$$

where $p_{i,h}$ = industry-specific probability of high exposure, $j_{i,FWI>5}$ = number of jobs in the industry with FWI \geq 5, and j_i = total number of jobs in the industry.

Estimates of high exposures by agent category are included in **Appendix B: Estimates of High Exposure**.

Sensitivity Analysis

We conducted a sensitivity analysis to determine how exposure estimates were affected when using more stringent parameters in the CANJEM data related to minimum sample sizes and confidence ratings of expert assessors.

As noted above, the probability of exposure in our primary analysis was calculated for industry-agent combinations when the sample size was based on at least five subjects and 10 jobs. Those with less than five subjects and 10 jobs were excluded in the primary analysis due to potential unreliability of small sample sizes. Additionally, exposed jobs with any confidence rating—including possible, probably, or definite—were included in the primary analysis. For comparison, we performed a more stringent analysis in which a) the probability of exposure was based on a sample size with at least 10 subjects and 10 jobs for each industry-agent combination, and b) only exposed jobs that were rated as "definite" were included in exposure probability calculations (jobs with "possible" and "probable" ratings were considered unexposed).

To understand how the sample size and confidence rating parameters affected the interpretation of our findings, we examined the extent to which exposure estimates for all and BIPOC workers decreased when using more stringent parameters. We further compared the relative ranking of each agent in terms of the number of exposed employees. Lastly, we examined whether the more stringent criteria of exposure affected the number of agents that disproportionately burdened each of the racial/ethnic groups.

Full results for the sensitivity analyses are included in Appendix C: Sensitivity Analysis.

Results

Coverage Analysis

The industries and employees in King County covered by the CANJEM data are shown in Table 3. Although exposure information is available in CANJEM for less than half of the 279 King County industry groups examined in the analysis, these industries account for over 73% of all employees (1,040,900) and over 72% of BIPOC employees (372,100) in King County. This represents good coverage of the King County working population and is similar to prior studies (Sauvé et al., 2018).

Indicator	Number of Industry Groups (%)	Number of Employees ^a (%)	Number of BIPOC Employees ^a (%)
Total workforce	285 (100%)	1,413,400 (100%)	511,200 (100%)
Have exposure information	136 (47.7%)	1,040,900 (73.6%)	372,100 (72.8%)
No exposure information	149 (52.3%)	372,500 (26.4%)	139,100 (27.2%)

Table 3. Summary of King County industries and employees with exposure information.

^a Employee counts are rounded to the nearest hundred.

To better understand the impact of imperfect coverage of the CANJEM data across King County industries, we examined the largest industries with no exposure information, shown in Table 4. The largest industry groups excluded from our analysis tended to be white collar industries in which hazardous exposures are less likely (e.g., Software Publishers and Management of Companies and Enterprises). However, workers in some of the excluded industry groups likely do experience relevant hazardous exposures (e.g., Support Activities for Air Transportation). It is therefore important to consider that some industries not included in our analysis may both contribute to occupational exposure burden in King County and be amenable to toxics reduction interventions to prevent worker exposures and environmental contamination.

See Appendix A, Table A-1 for the full list of industries without exposure information.

NAICS		Number of	Number of
	Industry	Total	BIPOC
		Employees ^a	Employees ^a
5112	Software Publishers	73,200	33,400
5511	Management of Companies and Enterprises	35,500	11,100
4541	Electronic Shopping and Mail-Order Houses	34,100	17,800
9211	Executive, Legislative, and Other General Government		
	Support	15,900	4,900
5417	Scientific Research and Development Services	12,600	3,900
4251	Wholesale Electronic Markets and Agents and Brokers	10,900	2,800
5182	Data Processing, Hosting, and Related Services	10,400	3,100
5311	Lessors of Real Estate	9,700	3,400
9221	Justice, Public Order, and Safety Activities	8,700	2,900
4881	Support Activities for Air Transportation	6,200	3,400
		10 1000	

Table 4. Summary of top 10 King County industries with no exposure information.

^a Employee counts are rounded to the nearest 10s if <1000, and to the nearest 100s if >1000

Analysis 1: Estimates of Occupational Exposure Burden in King County

Exposure Estimates for All and BIPOC Workers

The 25 most prevalent occupational exposures in King County workplaces are shown in Table 5. Hazardous agents with the highest estimated prevalence of occupational exposure among all employees were cleaning agents (208,500 total workers; 14.8% of total workforce), organic solvents (156,900; 11.1%), biocides (144,200; 10.2%), aliphatic aldehydes (123,800; 8.8%), and engine emissions (123,500; 8.7%). Agents with the highest estimated prevalence of exposure among BIPOC employees were cleaning agents (87,900 BIPOC workers; 17.2% of total BIPOC workforce), biocides (59,300; 11.6%), organic solvents (55,900; 10.9%), aliphatic aldehydes (52,100; 10.2%), and cooking fumes (51,500; 10.1%). We estimated that BIPOC workers were disproportionately exposed to 10 of the 25 most prevalent occupational exposures (i.e., the estimated prevalence of exposure among BIPOC workers was larger than the prevalence of exposure among the total workforce), including for cleaning agents, biocides, aliphatic aldehydes, and cooking fumes.

	Number of Employees Exposed ^{a,b} (%)				
CANJEM Chemical Agent Category	All	BIPOC			
Cleaning agents	208,500 (14.8%)	87,900 (17.2%)			
Organic solvents ^e	156,900 (11.1%)	55,900 (10.9%)			
Biocides	144,200 (10.2%)	59,300 (11.6%)			
Aliphatic aldehydes ^e	123,800 (8.8%)	52,100 (10.2%)			
Engine emissions	123,500 (8.7%)	41,200 (8.1%)			
Cooking fumes	114,100 (8.1%)	51,500 (10.1%)			
Formaldehyde ^e	103,300 (7.3%)	44,200 (8.6%)			
PAHs from any source	99,600 (7%)	33,800 (6.6%)			
Aliphatic alcohols ^{c,d}	97,100 (6.9%)	38,900 (7.6%)			
Ozone	84,700 (6%)	28,700 (5.6%)			
Alkanes (C5-C17)	75,200 (5.3%)	25,700 (5%)			
Isopropanol ^{e,d}	75,000 (5.3%)	31,800 (6.2%)			
Calcium carbonate	63,100 (4.5%)	18,200 (3.6%)			
Mononuclear aromatic hydrocarbons ^c	59,400 (4.2%)	19,700 (3.8%)			
Abrasives dust	59,100 (4.2%)	20,700 (4%)			
Ammonia	58,500 (4.1%)	24,000 (4.7%)			
Alkanes (C18+)	56,800 (4%)	18,100 (3.5%)			
Diesel engine emissions	56,400 (4%)	17,900 (3.5%)			
Carbon monoxide	54,500 (3.9%)	17,500 (3.4%)			
Metallic dust	51,700 (3.7%)	15,500 (3%)			
Iron	49,600 (3.5%)	14,800 (2.9%)			
Natural gas combustion products	49,400 (3.5%)	22,400 (4.4%)			
Wood dust	48,500 (3.4%)	14,300 (2.8%)			
Mineral spirits post 1970 ^c	47,400 (3.4%)	16,300 (3.2%)			
Cellulose	44,500 (3.1%)	16,300 (3.2%)			

Table 5. Top 25 most common occupational exposures among all employees in King County, 2019.

^a Employee counts are rounded to the nearest 10s if <1000, and to the nearest 100s if >1000 ^b Values highlighted in red indicate agent categories in which BIPOC employees are disproportionately exposed. ^c Aliphatic alcohols, isopropanol, mononuclear aromatic hydrocarbons, and mineral spirits post 1970 are also coded under organic solvents ^d Isopropanol is also coded under aliphatic alcohols

^e Formaldehyde is also coded under aliphatic aldehydes

Exposure Estimates by Disaggregated Race/Ethnicity

Table 6 presents the top 25 most prevalent occupational exposures among all employees in King County by disaggregated race and ethnicity groups. Exposures varied by race/ethnicity, with specific hazardous agents affecting certain groups more than others. Thus, prevalence of exposure among BIPOC workers as an aggregated group does not necessarily correspond to prevalence of exposure among the individual race and ethnicity groups, demonstrating the value of disaggregated demographic data to identify heterogeneity of exposure experience across groups. While BIPOC workers were estimated to be disproportionately exposed to 10 of the top 25 most common occupational agents, Table 6 shows that at least one race/ethnicity group within the larger BIPOC category was disproportionately exposed to all 25 of these agents. For example, although only 10.9% of BIPOC workers were estimated to experience workplace exposure to organic solvents (compared to 11.1% of all workers), we estimated that 13.5% of Hispanic workers were exposed. These results also indicate that some racial/ethnic groups were more burdened by the most common occupational exposures than others; notably, Hispanic workers were disproportionately exposed to 20 of 25.

Results for all 245 agents are provided in **Appendix A**, **Table A-2** and can be viewed, sorted, and downloaded via an interactive webtool at:

https://king-county-haz-waste.shinyapps.io/KingCountyExposureReportSupplement/.

	Number of Employees Exposed ^{a,b} (% of Demographic Group)							
CANJEM Chemical Agent Category	Hispanic	AIAN	Asian	Black	Multi- racial	NHPI	White	
Cleaning agents	25,500	2,400	36,000	17,400	9,700	1,700	120,600	
	(19.7%)	(16.8%)	(15.6%)	(18.9%)	(16.6%)	(14.9%)	(13.4%)	
Organic solvents ^c	17,400	1,600	23,000	9,300	6,400	1,200	101,100	
	(13.5%)	(11.6%)	(10%)	(10.1%)	(10.9%)	(10.6%)	(11.2%)	
Biocides	15,800	1,500	25,500	12,100	6,300	1,200	85,000	
	(12.2%)	(10.3%)	(11%)	(13.1%)	(10.8%)	(10%)	(9.4%)	
Aliphatic aldehydes ^e	17,200	1,600	21,000	8,100	6,400	1,000	71,700	
	(13.3%)	(11.2%)	(9.1%)	(8.8%)	(11.1%)	(8.7%)	(7.9%)	
Engine emissions	12,100	1,300	15,400	8,300	5,100	1,200	82,300	
	(9.4%)	(9.2%)	(6.7%)	(9%)	(8.8%)	(10.7%)	(9.1%)	
Cooking fumes	17,000	1,500	19,800	9,300	6,100	1,000	62,600	
	(13.1%)	(10.8%)	(8.6%)	(10.1%)	(10.4%)	(8.6%)	(6.9%)	
Formaldehyde ^e	14,700	1,300	18,000	6,600	5,400	850	59,100	
	(11.3%)	(9.5%)	(7.8%)	(7.2%)	(9.3%)	(7.4%)	(6.5%)	
PAHs from any source	10,400	1,100	12,800	6,300	4,200	910	65,800	
	(8%)	(7.9%)	(5.5%)	(6.8%)	(7.2%)	(7.9%)	(7.3%)	
Aliphatic alcohols ^{c,d}	10,300	970	17,100	7,500	4,200	710	58,200	
	(8%)	(6.8%)	(7.4%)	(8.2%)	(7.2%)	(6.2%)	(6.4%)	
Ozone	6,900	810	12,500	5,700	3,400	720	56,000	
	(5.3%)	(5.7%)	(5.4%)	(6.2%)	(5.8%)	(6.3%)	(6.2%)	
Alkanes (C5-C17)	8,800	860	9,400	4,500	2,900	700	49,500	
	(6.8%)	(6%)	(4.1%)	(4.9%)	(5%)	(6.1%)	(5.5%)	
Isopropanol ^{c,d}	8,500	780	14,000	6,300	3,300	590	43,200	
	(6.6%)	(5.5%)	(6.1%)	(6.8%)	(5.7%)	(5.1%)	(4.8%)	
Calcium carbonate	6,100	630	6,300	3,500	2,400	360	44,900	
	(4.7%)	(4.4%)	(2.7%)	(3.8%)	(4.1%)	(3.1%)	(5%)	
Mononuclear aromatic hydrocarbons ^c	6,900	670	7,000	3,400	2,300	530	39,700	
	(5.3%)	(4.7%)	(3.1%)	(3.7%)	(3.9%)	(4.6%)	(4.4%)	
Abrasives dust	7,000	650	7,700	3,800	2,300	480	38,400	
	(5.4%)	(4.6%)	(3.3%)	(4.1%)	(3.9%)	(4.1%)	(4.3%)	
Ammonia	7,300	660	10,200	4,100	2,600	440	34,600	
	(5.7%)	(4.7%)	(4.4%)	(4.5%)	(4.5%)	(3.8%)	(3.8%)	
Alkanes (C18+)	5,600	620	7,000	3,100	2,200	500	38,700	
	(4.3%)	(4.4%)	(3.1%)	(3.4%)	(3.7%)	(4.4%)	(4.3%)	
Diesel engine emissions	6,100	720	5,200	4,000	2,300	690	38,400	
	(4.7%)	(5.1%)	(2.3%)	(4.4%)	(4%)	(6%)	(4.3%)	
Carbon monoxide	5,900	640	6,000	3,300	2,200	510	36,900	
	(4.6%)	(4.5%)	(2.6%)	(3.6%)	(3.8%)	(4.4%)	(4.1%)	
Metallic dust	4,500	500	6,400	2,500	2,000	410	36,200	
	(3.5%)	(3.6%)	(2.8%)	(2.8%)	(3.4%)	(3.6%)	(4%)	
Iron	4,700	520	5,700	2,500	1,800	380	34,800	
	(3.6%)	(3.7%)	(2.5%)	(2.7%)	(3.2%)	(3.3%)	(3.9%)	
Natural gas combustion products	7,700	670	8,900	3,500	2,700	420	27,000	
	(5.9%)	(4.7%)	(3.8%)	(3.8%)	(4.6%)	(3.6%)	(3%)	
Wood dust	6,300 (4.9%)	650 (4.6%)	3,700 (1.6%)	2,400 (2.6%)	1,900 (3.3%)	430 (3.7%)	34,200 (3.8%)	
Mineral spirits post 1970°	5,500 (4.2%)	510 (3.6%)	6,300 (2.7%)	2,800 (3%)	1,800 (3.1%)	420 (3.6%)	31,000 (3.4%)	
Cellulose	3,500	360	8,600	2,400	1,800	350	28,200	
	(2.7%)	(2.6%)	(3.7%)	(2.6%)	(3.1%)	(3.1%)	(3.1%)	

Table 6. Top 25 most common occupational exposures among all employees in King County by disaggregated race and ethnicity groups, 2019.

^a Employee counts are rounded to the nearest 10s if <1000, and to the nearest 100s if >1000

^b Values highlighted in red indicate agents in which employees of the demographic group are disproportionately exposed. ^c Aliphatic alcohols, isopropanol, mononuclear aromatic hydrocarbons, and mineral spirits post 1970 are also coded under organic solvents

^d Isopropanol is also coded under aliphatic alcohols

^eFormaldehyde is also coded under aliphatic aldehydes
Online Interactive Tool Allows for Further Examination of Hazardous Exposure of Industries by Agent or Agents by Industry

Merging occupational exposure and worker demographic data by industry provides a rich matrix of information that can be explored in many ways to inform and prioritize pollution prevention or occupational health actions. To facilitate access to this information, we developed an interactive report to compliment this technical report, which allows for additional exploration of these exposure estimates:

https://king-county-haz-waste.shinyapps.io/KingCountyExposureReportSupplement/

Within the interactive report, one can examine, for example, which hazardous exposures were most prevalent within a specific industry, which industries contribute the most occupational exposure to a specific agent, or either scenario while focusing on a specific race/ethnicity group. Table 7 and 8 demonstrate two examples of ways to use the interactive report. In Table 7, we present the top five industries with the greatest exposures to cleaning agents. In Table 8, we present the top five most common exposures in the industry group Services to Buildings and Dwellings (NAICS: 5617).

0_0	0	•								-
	Number	of workers	s exposed ^a							
Industry	All	BIPOC	Hispanic	AIAN	Asian	Black	NHPI	Multi- racial	White	
7225 - Restaurants	53,000	24,100	8,900	770	9,300	3,300	400	3,100	28,800	
Places										
6221 - General	24,000	9,200	1,500	150	4,900	1,900	170	880	14,900	
Medical and Surgical										
Hospitals										
5617 - Services to	11,300	5,600	2,800	200	1,200	1,200	100	420	5,700	
Buildings and										
Dwellings										
6233 - Continuing	8,900	5,300	1,000	90	2,100	1,800	120	320	3,700	
Care Retirement										
Communities and										
Assisted Living										
Facilities for the										
Elderly										
8121 - Personal Care	8,300	4,100	730	100	2,600	300	30	440	4,300	Ī
Services										

Table 1. Top five industries with	the highest number of estimated	workers exposed to
cleaning agents in King County, 2	2019.	

^aEmployee counts are rounded to the nearest 10s if <1000, and to the nearest 100s if >1000

Table 2. Top five most common exposures among workers in NAICS 5617 – Services to Buildings and Dwellings in King County, 2019. Number of workers exposed^a

CANJEM Chemical	All	BIPOC	Hispanic	AIAN	Asian	Black	NHPI	Multi-	White
Agent Category			-					racial	
Cleaning agents	11,300	5,600	2,800	200	1,200	1,200	100	420	5,700
Organic solvents	8,700	4,300	2,200	150	930	940	80	330	4,400
Ammonia	8,200	4,000	2,100	140	880	890	80	310	4,100
Aliphatic alcohols	7,900	3,900	2,000	140	850	860	70	300	4,000
Isopropanol	7,700	3,800	1,900	140	830	840	70	290	3,900

^aEmployee counts are rounded to the nearest 10s if <1000, and to the nearest 100s if >1000

Analysis 2: Estimates of Disproportionate Exposure by Race/Ethnicity

In Analysis 2, we attempted to quantify the extent of disproportionate exposure burden experienced by workers of color in King County. Table 9 shows the 25 occupational agents that we estimated most disproportionately burdened BIPOC employees in King County; that is, the agents with the highest number of excess BIPOC workers exposed above what we would expect if race and ethnicity were evenly distributed across all industries in King County. The estimates are provided as both number and percent excess exposed employees, and by disaggregated race and ethnicity groups.

The top five agents in terms of excess BIPOC workers exposed were cleaning agents (12,400 more BIPOC workers exposed than expected), cooking fumes (10,200), aliphatic aldehydes (7,300), biocides (7,100), and formaldehyde (6,800) (Table 9). From a proportional overrepresentation perspective, the top five agents with the greatest percent excess exposure for BIPOC employees were nitrates (73.1%), phosgene (44.9%), animal/vegetable glues (37.0%), leather dust (33.8%), and hair dust (32.7%).

As noted above, patterns of exposure tended to vary across individual race and ethnicity groups. Table 10 shows the agents that most disproportionately impacted each race/ethnicity group. It is particularly notable how different the exposure patterns of non-Hispanic white workers were from workers in BIPOC race/ethnicity categories, which is consistent with King County industries being highly segregated by race and ethnicity. The BIPOC categories shared significant overlap in the agents contributing the most disproportionate exposure, especially cleaning agents, cooking fumes, aliphatic aldehydes, and biocides. However, none of these agents were in the top 15 most disproportionate exposure of non-Hispanic white workers, and many of the agents contributing the most excess exposure among white workers were not present in the top 15 for BIPOC groups (e.g., calcium carbonate, metallic dust, iron).

Figure 2 shows the number of agents for which each of the race/ethnicity groups was disproportionately exposed; that is, we determined how many of the 245 evaluated chemicals for which each race/ethnicity group experienced at least one excess exposure. We found that non-Hispanic white workers had the most instances of excess exposure (160 agents), followed by Hispanic (149 agents) and American Indian/Alaskan Native (118 agents) workers.

Estimates of excess exposure for all 245 agents are provided in **Appendix A**, **Table A-3** by disaggregated race/ethnicity and can be viewed, sorted, and downloaded via an interactive webtool at:

https://king-county-haz-waste.shinyapps.io/KingCountyExposureReportSupplement/.

4 France Frankright Characteristic Characteristic France Dath								
	# Excess El	npioyees Exp	osed (% 01	Demograf	onic Group	Dispropor	tionately E	xposed)","
CANJEM Chemical	BIPOC	Hispanic	AIAN	Asian	Black	Multi-	NHPI	White
Agent Category						racial		
	12,400	6,400	280	1,900	3,800	1,100	20	-12,400
Cleaning agents	(16.5%)	(33.8%)	(13.6%)	(5.7%)	(27.9%)	(12.8%)	(1.2%)	(-9.3%)
	10,200	6,600	390	1,200	1,900	1,400	70	-10,200
Cooking fumes	(24.8%)	(62.9%)	(33.8%)	(6.5%)	(24.9%)	(29.4%)	(7.1%)	(-14.1%)
	7,300	5,900	350	800	60	1,300	-10	-7,300
Aliphatic aldehydes*	(16.4%)	(51.6%)	(28.3%)	(4%)	(0.8%)	(26.5%)	(-0.5%)	(-9.3%)
	7,100	2,600	10	1,900	2,700	360	-20	-7,100
Biocides	(13.6%)	(19.7%)	(1%)	(8.3%)	(28.2%)	(6.1%)	(-1.6%)	(-7.7%)
	6,800	5,200	310	1,200	-120	1200	10	-6,800
Formaldehyde*	(18.3%)	(55.3%)	(30%)	(7.1%)	(-1.7%)	(27.3%)	(1.4%)	(-10.3%)
	4,700	1,600	30	1,700	1,400	210	-20	-4,700
Isopropanol**	(17.3%)	(23.9%)	(3.8%)	(14.1%)	(28.7%)	(6.8%)	(-3.8%)	(-9.8%)
Natural gas combustion	4,500	3,100	170	820	320	650	20	-4,500
products	(25.4%)	(69.3%)	(34.7%)	(10.1%)	(10.1%)	(32.3%)	(4%)	(-14.4%)
	3,900	3,100	170	80	540	510	0	-3,900
Ashes	(24.4%)	(77.5%)	(37.9%)	(1.2%)	(18.7%)	(28.1%)	(0.9%)	(-13.8%)
	3,800	1,400	0	1,300	1,200	180	-80	-3,800
Aliphatic alcohols**	(10.8%)	(15.9%)	(-0.3%)	(8.2%)	(19.1%)	(4.5%)	(-10%)	(-6.1%)
· · · · ·	2,800	2,000	80	620	290	210	-40	-2,800
Ammonia	(13.2%)	(36.5%)	(12.8%)	(6.5%)	(7.6%)	(8.6%)	(-8.6%)	(-7.5%)
	2,700	1,300	50	360	1,100	180	10	-2,700
Hypochlorites	(20.6%)	(37.9%)	(12.4%)	(6%)	(44.9%)	(11.7%)	(4.7%)	(-11.6%)
	1,700	1,200	80	130	250	240	30	-1,700
Flour dust	(21.6%)	(59.6%)	(38%)	(3.7%)	(17.3%)	(26.2%)	(18.3%)	(-12.2%)
	1,600	950	50	390	210	170	30	-1,600
Starch dust	(26.1%)	(60.3%)	(29.9%)	(13.8%)	(18.4%)	(24.2%)	(19.8%)	(-14.8%)
	1,600	970	60	260	240	190	30	-1,600
Sugar dust	(24.4%)	(59.2%)	(35.5%)	(9%)	(20.4%)	(26.4%)	(19.9%)	(-13.8%)
	1.600	300	-10	760	590	20	30	-1.600
Cotton dust	(20.5%)	(15.1%)	(-4.2%)	(21.1%)	(41.2%)	(2.2%)	(16.4%)	(-11.6%)
	1.600	-220	-40	910	920	10	-20	-1.600
Cosmetic talc	(16.9%)	(-9.5%)	(-14.9%)	(21.6%)	(55.1%)	(0.9%)	(-11.5%)	(-9.6%)
	1.600	590	10	390	600	80	40	-1.600
Fabric dust	(13.5%)	(19.7%)	(2.5%)	(7.2%)	(28.2%)	(6%)	(16.8%)	(-7.6%)
	1,500	420	20	980	50	110	-30	-1.500
Propellant gases	(19.6%)	(22.1%)	(11.4%)	(29.1%)	(3.4%)	(13.5%)	(-19.5%)	(-11.1%)
	910	-30	10	1,100	-210	90	-30	-910
Hair dust	(32.7%)	(-4.1%)	(13.8%)	(88.1%)	(-42.4%)	(27.4%)	(-52.4%)	(-18.5%)
	870	120	10	550	180	50	-10	-870
Bleaches	(22.1%)	(11.6%)	(6.9%)	(31.3%)	(25.1%)	(11.2%)	(-9.9%)	(-12.5%)
	860	10	0	980	-170	90	-30	-860
Ethanol**	(17.7%)	(0.6%)	(0.1%)	(44.5%)	(-19.4%)	(17%)	(-28.7%)	(-10%)
	600	-30	0	780	-160	50	-30	-600
Hydrogen peroxide	(17.2%)	(-3.9%)	(-4.3%)	(49.9%)	(-26.1%)	(13.9%)	(-40%)	(-9.8%)
	540	-70	0	780	-200	50	-20	-540
Fluorocarbons	(17.7%)	(-9.1%)	(1.9%)	(56.6%)	(-36.8%)	(15.1%)	(-26.2%)	(-10%)
	530	10	10	620	-120	40	-10	-530
Vinyl chloride	(25.6%)	(2.5%)	(9.2%)	(66.1%)	(-33.3%)	(15.7%)	(-18.1%)	(-14.5%)
	530	870	40	-30	-250	0	10	-530
Organic dyes and pigments	(9.4%)	(61.4%)	(25.8%)	(-1.4%)	(-24.7%)	(0.1%)	(7.9%)	(-5.3%)
					. /	. /		

Table 9. Top 25 agents with the highest estimated number of excess BIPOC employees exposed in King County by disaggregated race and ethnicity groups, 2019.

^a Employee counts are rounded to the nearest 10s if <1000, and to the nearest 100s if >1000

^b Values highlighted in red indicate agents in which employees of the demographic group are disproportionately exposed. * Formaldehyde is also coded under aliphatic aldehydes

**Isopropanol and ethanol are also coded under aliphatic alcohols

Table 10. Top 15 agents with the greatest number of excess workers exposed by disaggregated race/ethnicity groups.

	# Excess Work	ers Exposed (%	of Group Dispro	portionately Exp	osed) ^a			
Agent	DIDOC	11:	ATAN	A	D11-	Maritim 1	NUDI	XX/1. : 4 -
Rank	Cleaning	Cooking	Cooking	Asian	Cleaning	Cooking	NHPI Diesel engine	Calcium
	agents	fumes	fumes	Biocides	agents	fumes	emissions	carbonate
Agent 1	12400 (16.5%)	6600 (62.9%)	390 (33.8%)	1900 (8.3%)	3800 (27.9%)	1400 (29.4%)	240 (50.9%)	4600 (11.5%)
	Cooking	Cleaning	Aliphatic	Cleaning		Aliphatic	Engine	Engine
A cont 2	fumes	agents 6400 (33 8%)	aldehydes	agents	Biocides	aldehydes	emissions 230 (22 5%)	$\frac{1}{2}$ emissions
Agent 2	10200 (24.870)	0400 (33.870)	330 (28.370)	1900 (3.770)	2700 (28.270)	1300 (20.370)	Propane	3400 (4.470)
	Aliphatic	Aliphatic			Cooking		engine	
	aldehydes	aldehydes	Formaldehyde	Isopropanol	fumes	Formaldehyde	emissions	Wood dust
Agent 3	7300 (16.4%)	5900 (51.6%)	<u>310 (30.0%)</u>	1700 (14.1%)	1900 (24.9%)	<u>1200 (27.3%)</u>	<u>110 (80.8%)</u>	3200 (10.4%)
	Biocides	Formaldehvde	agents	Cellulose	Isopropanol	agents	PAHS from	Metallic dust
Agent 4	7100 (13.6%)	5200 (55.3%)	280 (13.6%)	1300 (17.7%)	1400 (28.7%)	1100 (12.8%)	100 (11.7%)	3200 (9.6%)
	× /	· · · · ·	· · · ·	× /	× /	Natural gas	× /	
	F 111 1	4 1	. 1	Aliphatic	Aliphatic	combustion	Alkanes (C5-	T
Agent 5	Formaldehyde	Ashes 3100 (77 5%)	Ashes 170 (37 9%)	alcohols $1300(8,2\%)$	alcohols	products $660(32.3\%)$	C17) 90 (14 5%)	1ron 3100 (9.8%)
Agent 5	0000 (10.570)	Natural gas	Natural gas	1500 (0.270)	1200 (1).170)	000 (52.570)	90 (14.570)	5100 (5.670)
		combustion	combustion				Cooking	
	Isopropanol	products	products	Formaldehyde	Hypochlorites	Ashes	fumes	Concrete dust
Agent 6	4/00 (1/.3%)	3100 (69.3%)	1/0 (34.7%)	1200 (7.1%)	1100 (44.9%)	510 (28.1%)	70 (7.1%)	3000 (17.5%)
	combustion	Organic		Cooking			Carbon	Inorganic
	products	solvents	Wood dust	fumes	Cosmetic talc	Biocides	monoxide	insulation dust
Agent 7	4500 (25.4%)	3100 (21.3%)	160 (33.1%)	1200 (6.5%)	920 (55.1%)	360 (6.1%)	60 (14.5%)	2900 (16.1%)
	Ashaa	Dissidas	Diesel engine	Hain duat	Eshnia duat	Eloue duot	Dissal ail	Calcium
Agent 8	Asnes 3900 (24 4%)	2600 (19 7%)	160 (28 2%)	1100 (88 1%)	600 (28 2%)	240(26.2%)	50 (97 1%)	2900 (13.1%)
<u>ngent o</u>	5700 (21.170)	2000 (1).(70)	100 (20.270)	1100 (00.170)	000 (20.270)	210 (20.270)	Lubricating	2900 (15.170)
	Aliphatic		Crystalline				oils and	Diesel engine
	alcohols	Ammonia	silica	Ethanol	Cotton dust	Ammonia	greases	emissions
Agent 9	3800 (10.8%)	2000 (36.5%)	120 (32.1%)	980 (44.5%) Propellant	590 (41.2%)	210 (8.6%)	50 (29.9%)	2500 (6.8%)
	Ammonia	Wood dust	any source	gases	Ashes	Isopropanol	Lead	(C18+)
Agent 10	2800 (13.2%)	1900 (42.4%)	120 (12.1%)	980 (29.1%)	540 (18.7%)	210 (6.8%)	50 (16.4%)	2500 (6.8%)
							Mononuclear	
	Urmoshlamitas	Alkanes (C5-	Comonata duat	Competio tolo	Diesel engine	Sugar dust	aromatic	Mineral wool
Agent 11	2700 (20.6%)	1900 (27.4%)	100(36.5%)	910 (21.6%)	350 (9.6%)	190 (26.4%)	50 (10.3%)	2300(17.3%)
<u>ngom n</u>	2700 (20.070)	1900 (27.170)	100 (50.570)	Natural gas	Natural gas	190 (20.170)	50 (10.570)	2500 (17.570)
		Crystalline	Calcium	combustion	combustion		Hydraulic	
	Flour dust	silica	sulphate	products	products	Hypochlorites	fluid	Mild steel dust
Agent 12	1700 (21.6%)	1800 (52.0%)	100 (29.4%)	820 (10.1%)	320 (10.1%)	180 (11.7%)	40 (67.6%)	2200 (11.8%)
			Alkanes (C5-	Aliphatic	Sodium	Aliphatic	pyrolysis	Carbon
	Starch dust	Abrasives dust	C17)	aldehydes	carbonate	alcohols	fumes	monoxide
Agent 13	1600 (26.1%)	1600 (29.9%)	100 (13.6%)	800 (4.0%)	300 (51.6%)	180 (4.5%)	40 (42.7%)	2200 (6.2%)
	G 1 .	т I	Carbon			G(1.1.)	Inorganic	PAHs from
Agent 1/	Sugar dust $1600(24.4\%)$	Isopropanol	monoxide $90(16.7\%)$	Fluorocarbons	Ammonia 290 (7.6%)	Starch dust $170(24.2\%)$	pigments $40(17.8\%)$	any source $2200(3.5\%)$
Agent 14	1000 (24.470)	Inorganic	70 (10.770)	Hydrogen	Engine	Propellant	U(1/.0/0)	2200 (3.370)
	Cotton dust	pigments	Flour dust	peroxide	emissions	gases	Fabric dust	Aluminum
Agent 15	1600 (20.5%)	1500 (64.2%)	80 (38.0%)	780 (49.9%)	270 (3.4%)	110 (13.5%)	40 (16.8%)	2000 (7.5%)

^a Employee counts are rounded to the nearest ten if <1000, and to the nearest hundred if >1000.

Figure 2. Number of agents for which each race/ethnicity group is disproportionately exposed.

Analysis 3: Time Trend Analysis

Table 11 shows how King County employment by race/ethnicity changed from 2009 to 2019. The overall workforce grew from 1.1 million to 1.4 million workers, an increase of about 25%. The growth varied, however, across race/ethnicity groups with a general trend toward an increasingly diverse King County workforce. For example, while the non-Hispanic white workforce only grew by 11%, the BIPOC workforce grew by 59%.

Table 12 shows how King County employment by industry sector changed from 2009 to 2019. All sectors demonstrated growth, except for the Finance and Insurance (NAICS: 22) sector, which decreased by 8%. Many of the industry sectors that experienced the most growth were white collar industries in which we generally expect less exposure to hazardous materials, including the Professional, Scientific, and Technical Services (NAICS: 54; grew by 43%) and Information (NAICS: 51; 43%) sectors. However, several industry sectors in which occupational exposures are common also increased over this period, including the Accommodation and Food Services (NAICS: 72; 35%), Construction (NAICS: 23; 33%), Health Care and Social Assistance (NAICS: 62; 32%), and Administrative and Support and Waste Management and Remediation Services (NAICS: 56; 24%) sectors.

Category	Race/Ethnicity ^a	2009 Employee Count ^b (%)	2019 Employee Count ^b (%)	Percent change (%)
	American Indian and Alaska			
Race	Native	10,400 (0.9)	14,200 (1.0)	36.3
	Asian	147,400 (13.0)	230,700 (16.3)	56.4
	Black or African American	61,200 (5.4)	92,200 (6.5)	50.7
	Multiracial	36,100 (3.2)	58,100 (4.1)	60.9
	Native Hawaiian or Other Pacific			
	Islander	7,800 (0.7)	11,500 (0.8)	47.3
	Non-Hispanic White	810,700 (71.6)	902,300 (63.8)	11.3
	Hispanic White	59,100 (5.2)	104,700 (7.4)	77.2
Ethnicity	Hispanic or Latino	74,100 (6.5)	129,400 (9.2)	74.7
	Not Hispanic or Latino	1,058,600 (93.5)	1,284,100 (90.8)	21.3
BIPOC ^c		322,000 (28.4)	511,300 (36.2)	58.8
Total		1,132,700 (100.0)	1,413,500 (100.0)	24.8

Table 11. Summary of changes in average King County employment estimates by race/ethnicity from 2009 to 2019.

Source: U.S. Census Bureau Quarterly Workforce Indicators, annual average over four quarters in 2009 and 2019.

^a Except for the Hispanic white and non-Hispanic white race/ethnicity groups, race categories include persons of any ethnicity. Persons of Hispanic or Latino ethnicity are of any race and are also counted in their preferred race category.

^b Employee counts are rounded to the nearest hundred

^c Black, Indigenous, and People of Color (BIPOC) category includes all workers except those identifying as non-Hispanic white.

NAICS Sector Code ^a	Industry Sector	2009 Employee Count ^b	2019 Employee Count ^b	Percent change (%)
11	Agriculture, Forestry, Fishing and Hunting	2,800	2,900	2.2
21	Mining, Quarrying, and Oil and Gas Extraction	420	450	5.4
22	Utilities	5,000	5,600	12.2
23	Construction	56,500	75,000	32.7
31-33	Manufacturing	99,700	103,300	3.7
42	Wholesale Trade	61,600	66,400	7.7
44-45	Retail Trade	111,400	151,500	35.9
48-49	Transportation and Warehousing	51,500	65,100	26.3
51	Information	88,200	125,700	42.5
52	Finance and Insurance	47,600	44,100	-7.5
53	Real Estate and Rental and Leasing	25,600	30,600	19.5
54	Professional, Scientific, and Technical Services	93,500	133,400	42.7
55	Management of Companies and Enterprises	27,500	35,500	28.8
56	Administrative and Support and Waste Management and Remediation Services	63,600	79,000	24.3
61	Educational Services	82,400	97,800	18.6
62	Health Care and Social Assistance	128,800	170,100	32.1
71	Arts, Entertainment, and Recreation	24,600	31,500	28.1
72	Accommodation and Food Services	84,900	114,600	35.0
81	Other Services (except Public Administration)	45,500	49,000	7.7
92	Public Administration	31,300	32,000	2.1
0000	All Sectors	1,132,700	1,413,500	24.8

Table 12. Changes to average King County employment estimates by industry sector from 2009 to 2019.

Source: U.S. Census Bureau Quarterly Workforce Indicators, annual average over four quarters in 2009 and 2019. ^aNAICS: North American Industrial Classification System ^bEmployee counts are rounded to the nearest ten if <1000, and to the nearest hundred if >1000.

The next series of figures present how the number, prevalence, and distribution of King County workers exposed to the five most common hazardous exposures—cleaning agents, organic solvents, biocides, aliphatic aldehydes, and engine emissions—have changed between 2009 to 2019. Figure 3 presents the number of all workers exposed over the 10-year period. This shows that the absolute number of workers exposed to these agents has steadily increased, which is expected given the overall growth of the King County workforce.

Figure 4 shows trends in the prevalence of exposure by all, BIPOC, and non-Hispanic white workers to the five most common exposures, which appear to have been very stable over this period. For all five agents, the demographic group with the highest prevalence of exposure remained so throughout the years examined: BIPOC workers had the highest likelihood of exposure to cleaning agents, biocides, and aliphatic aldehydes, while non-Hispanic white had a higher exposure prevalence for engine emissions and organic solvents.

Figure 5 shows trends in the percent of excess exposure by BIPOC and non-Hispanic white workers from 2009 to 2019. These results indicate that the proportional overrepresentation of exposure among BIPOC workers has decreased in this period for some of the most common exposures, including cleaning agents, aliphatic aldehydes, and biocides.

Figure 3. Number of all King County workers exposed to cleaning agents, organic solvents, biocides, aliphatic aldehydes, and engine emissions between 2009 and 2019.

Figure 4. Prevalence of King County workers exposed to cleaning agents, organic solvents, biocides, aliphatic aldehydes, and engine emissions by race/ethnicity over time, 2009 to 2019.

Figure 5. Percent excess workers exposed in King County to cleaning agents, organic solvents, biocides, aliphatic aldehydes, and engine emissions by race/ethnicity over time, 2009 to 2019.

Analysis 4: Development of Exposure Prevention Index to Prioritize Industries

In Analysis 4, we developed an EPI to identify industries to prioritize for efforts to reduce workplace exposures to hazardous materials. As explained above, the EPI ranks industries for each agent based on a combination of likelihood of exposure (i.e., probability of exposure) and the extent of exposure (i.e., estimated number of exposed workers).

Tables 13–15 present King County industries with the highest exposure burdens to the three most common exposures: cleaning agents, biocides, and organic solvents, respectively. These tables also include information on whether industries are overrepresented by BIPOC employees or are considered low wage, which can provide further context by which to consider when prioritizing industries for pollution prevention efforts from an equity perspective. It is notable that two industry groups are among the top five industries in terms of highest EPI rank for all three agents, suggesting these workforces might be particularly worthy of attention: Personal Care Services (NAICS: 8121), which includes nail and beauty salons; and Services to Buildings and Dwellings (NAICS: 5617), which includes janitorial, pest control, and landscaping services.

Results for all 245 agents can be viewed, sorted, and downloaded via an interactive report at: <u>https://king-county-haz-waste.shinyapps.io/KingCountyExposureReportSupplement/</u>

Industry group	EPI rank	EPI score	Exposure likelihood rank	Extent of exposure rank	Overrepresented by BIPOC employees	Low- wage industry
5617 - Services to Buildings	_		_		* *	t
and Dwellings	1	2.5	2	3	yes	yes
8121 - Personal Care Services6233 - Continuing CareRetirement Communities andAssisted Living Facilities for	2	3	1	5	yes	yes
the Elderly 7225 - Restaurants and Other	3	3.5	3	4	yes	yes
Eating Places 6221 - General Medical and	4	4	7	1	yes	yes
Surgical Hospitals	5	7.5	13	2	yes	no
6244 - Child Day Care Services 6216 - Home Health Care	6	9.5	9	10	yes	yes
Services	7	11	4	18	yes	no
8141 - Private Households	7	11	6	16	no	no
7211 - Traveler Accommodation 5313 - Activities Related to	9	13	18	8	yes	yes
Real Estate 6232 - Residential Intellectual and Developmental Disability, Mental Health, and Substance	10	13.5	16	11	no	no
Abuse Facilities	10	13.5	5	22	yes	yes
4451 - Grocery Stores 6241 - Individual and Family	12	14	22	6	yes	yes
Services 7224 - Drinking Places	13	15.5	24	7	yes	yes
(Alcoholic Beverages)	14	16	8	24	no	yes
6214 - Outpatient Care Centers	15	17	21	13	yes	no
7223 - Special Food Services 4461 - Health and Personal	15	17	19	15	yes	yes
Care Stores 5191 - Other Information	17	18	17	19	yes	no
Services	18	21.5	31	12	yes	no
6211 - Offices of Physicians	19	22	30	14	no	no
6212 - Offices of Dentists	20	22.5	25	20	no	no

Table 13. Top 20 industries with highest burdens of occupational exposure to <u>cleaning</u> <u>agents</u> in King County, based on the Exposure Prevention Index (EPI).

Industry group	EPI rank	EPI	Exposure likelihood rank	Extent of exposure rank	Overrepresented by BIPOC employees	Low- wage industry
8121 - Personal Care Services 6221 - General Medical and	1	2.5	1	4	yes	yes
Surgical Hospitals 6233 - Continuing Care Retirement Communities and Assisted Living Facilities for	2	3.5	6	1	yes	no
the Elderly 5617 - Services to Buildings	3	5.5	5	6	yes	yes
and Dwellings	4	7	9	5	yes	yes
6212 - Offices of Dentists	5	7.5	7	8	no	no
6211 - Offices of Physicians	6	8	13	3	no	no
6214 - Outpatient Care Centers	7	8.5	10	7	yes	no
6216 - Home Health Care	7	8 5	2	15	Ves	no
	, ,	11	11	15	yes	по
6232 - Residential Intellectual and Developmental Disability, Mental Health, and Substance	9	11	11	11	yes	yes
Abuse Facilities 7225 - Restaurants and Other	10	11.5	4	19	yes	yes
Eating Places 7211 - Traveler	11	12.5	23	2	yes	yes
Accommodation	12	14	18	10	yes	yes
8141 - Private Households	13	15.5	14	17	no	no
4451 - Grocery Stores 5313 - Activities Related to	14	16.5	24	9	yes	yes
Real Estate 6213 - Offices of Other Health	15	17	20	14	no	no
Practitioners 3231 - Printing and Related	16	19	22	16	no	yes
Support Activities	17	20	16	24	yes	no
4452 - Specialty Food Stores 3116 - Animal Slaughtering	18	21.5	15	28	yes	yes
and Processing 3364 - Aerospace Product and	19	23	12	34	yes	no
Parts Manufacturing	20	24	36	12	no	no

Table 14. Top 20 industries with highest burdens of occupational exposure to <u>biocides</u> in King County, based on the Exposure Prevention Index (EPI).

Industry mount	EDI nonle	EDI	Exposure	Extent of	Overrepresented	Low-
Industry group	EPI rank	EPI	likelihood rank	exposure rank	by BIPOC employees	wage industry
2383 - Building Finishing			Tunk	Tunk	employees	muustiy
Contractors	1	2	2	2	yes	no
3364 - Aerospace Product and					•	
Parts Manufacturing	2	7.5	14	1	no	no
5617 - Services to Buildings						
and Dwellings	3	8	12	4	yes	yes
8111 - Automotive Repair and						
Maintenance	4	8.5	6	11	no	no
8121 - Personal Care Services	4	8.5	9	8	yes	yes
2361 - Residential Building					·	-
Construction	6	11	13	9	no	no
3231 - Printing and Related						
Support Activities	7	11.5	5	18	yes	no
5191 - Other Information						
Services	8	14	23	5	yes	no
2382 - Building Equipment						
Contractors	9	17	27	7	no	no
8123 - Drycleaning and	10	21	7	25		
Laundry Services	10	21	/	33	yes	yes
4411 - Automobile Dealers	11	22	25	19	no	no
7211 - Traveler						
Accommodation	11	22	32	12	yes	yes
4461 - Health and Personal						
Care Stores	13	22.5	23	22	yes	no
3345 - Navigational,						
Measuring, Electromedical, and						
Control Instruments Monufacturing	14	24.5	22	27	Noc	20
2381 Foundation Structure	14	24.3	22	21	yes	110
and Building Exterior						
Contractors	15	25	30	20	Ves	no
2362 - Nonresidential Building	15	25	50	20	yes	по
Construction	16	25.5	37	14	no	no
6213 - Offices of Other Health	10	2010	0,1			
Practitioners	16	25.5	35	16	no	ves
4483 - Jewelry, Luggage, and						5
Leather Goods Stores	18	26.5	8	45	yes	no
6111 - Elementary and					·	
Secondary Schools	19	28	53	3	no	no
6233 - Continuing Care						
Retirement Communities and						
Assisted Living Facilities for						
the Elderly	20	28.5	42	15	yes	yes

Table 15. Top 20 industries with highest burdens of occupational exposure to <u>organic</u> <u>solvents</u> in King County, based on the Exposure Prevention Index (EPI).

Additional Analyses and Tables

High Exposures

Estimates of high exposures are presented in **Appendix B: Estimates of High Exposure** and estimates for all 245 agents can be viewed, sorted, and downloaded via an interactive report at: <u>https://king-county-haz-waste.shinyapps.io/KingCountyExposureReportSupplement/</u>

Sensitivity Analysis

Results of the sensitivity analysis are presented in **Appendix C: Sensitivity Analysis**. Overall, applying more stringent criteria lowered the overall exposure estimates, as expected, but had only a minor effect on rankings of the agent categories in terms of most prevalent exposures in King County, especially among the most common occupational hazards.

Sensitivity analysis results for all 245 agents can be viewed, sorted, and downloaded via an interactive report at:

https://king-county-haz-waste.shinyapps.io/KingCountyExposureReportSupplement/

Discussion

Main Findings

Many King County workers are exposed to hazardous materials on the job

The main objective of this study was to characterize the extent of exposure occurring in King County workplace settings, an important venue for hazardous exposures that may be amenable to intervention from the Haz Waste Program's technical assistance to small businesses. We estimated that hundreds of thousands of workers in King County are exposed to hazardous materials on the job, and that the most common exposures were to cleaning agents (208,500 total workers exposed; 14.8% of the total workforce exposed), organic solvents (156,900; 11.1%), biocides (144,200; 10.2%), aliphatic aldehydes (123,810; 8.8%), and engine emissions (123,500; 8.7%).

Not surprisingly, the most common exposures identified in our analysis are groups, or categories, of agents (rather than individual chemicals) and are commonly used in wide range of work settings and tasks (rather than specific industries or industrial processes), which likely contributes to higher overall estimates of workers exposed. For 20 of the CANJEM agent categories, we estimated that at least 50,000 workers are exposed across King County, and we estimated that at least 20,000 workers are exposed to 58 individual agent categories. However, many of the agent categories included in the CANJEM database are relatively rare exposures in King County; for example, we estimated that less than 14,500 of King County workers (approximately 1% of the total workforce) are exposed to 156 of the 245 agents examined.

Overall, our analysis suggests that a substantial proportion of workers in King County experience at least some exposures to hazardous agents, underscoring the importance of considering the workplace setting in efforts to reduce exposures and protect public health from hazardous materials. These results provide useful information about what hazardous exposures are most widely experienced in King County, which the Haz Waste Program can use to guide their work planning and issue development. It is important to note that the Haz Waste Program has a rich tradition of programing and technical assistance related to some of the exposures that we estimate are the most common in King County, including cleaning agents and organic solvents; our analysis suggests continued efforts focused on these hazardous materials are warranted.

BIPOC workers are disproportionately exposed to many hazardous materials at work

Our second objective was to examine patterns of occupational exposure by race/ethnicity. Consistent with the Haz Waste Program's Racial Equity Strategy, this analysis can improve our understanding of potential racial/ethnic inequities and help shape policies, practices, and tools for the Program to address such inequities. We found that the most common exposures among BIPOC workers were to cleaning agents (87,900 total BIPOC workers exposed; 17.2% of the BIPOC workforce exposed), biocides (59,300; 11.6%), organic solvents (55,900; 10.9%), aliphatic aldehydes (52,100; 10.2%), and cooking fumes (51,500; 10.1%). We also attempted to characterize the extent that occupational exposures disproportionately burdened workers of color in King County due to racial/ethnic segregation of the workforce. We estimated that BIPOC workers are disproportionately exposed to many of the most common

occupational exposures occurring in King County, including three of the four most common exposures.

In terms of quantifying the extent of disproportionate exposures, we estimated that thousands more BIPOC workers are exposed to hazardous agents beyond what we would expect based on their proportional representation in the King County workforce. The top five agents that most disproportionately burdened BIPOC workers included cleaning agents (12,400 more BIPOC workers exposed than expected), cooking fumes (10,200), aliphatic aldehydes (7,300), biocides (7,100), and formaldehyde (6,800). From a proportional overrepresentation perspective, the top five agents with the greatest percent excess exposure for BIPOC workers were nitrates (73.1% more BIPOC workers exposed than expected), phosgene (44.9%), animal/vegetable glues (37.0%), leather dust (33.8%), and hair dust (32.7%). It should be noted that agents with the greatest percentage of excess exposure tended to be rare exposures, affecting a relatively small number of BIPOC workers and which were found in a limited set of small industries.

Overall, we found that many BIPOC workers are exposed to hazardous materials in occupational settings, and, in many cases, BIPOC workers experience a greater burden of these exposures compared to non-Hispanic white workers. Consequently, these results suggest the existence of racial inequities in occupational exposures to hazardous materials due to occupational segregation of BIPOC workers into industries with a higher likelihood of exposure to hazardous materials. This study therefore provides support for applying a racial equity-based approach to pollution prevention and technical assistance to small businesses from a worker health perspective. More directly, this information offers an opportunity for the Haz Waste Program to incorporate racial equity into this work by focusing on specific industries, exposures, or working populations where inequities are greatest, including when setting priorities for resource allocation or evaluating service delivery.

Patterns of occupational exposure varied by race/ethnicity

Our results show that exposure patterns varied by specific race and ethnicity groups, suggesting that the segregation of different working populations across the King County labor market contributes to distinct experiences with respect to exposures in the workplace. For example, while we estimated that BIPOC workers as a whole were not disproportionately exposed to organic solvents (10.9% exposure prevalence, compared to 11.1% of all workers), we found that Hispanic (13.5%) and AIAN (11.6%) workers were more likely to be exposed than the overall workforce. In another example, BIPOC workers were estimated to be disproportionately exposed to cleaning agents (17.2% exposure prevalence, compared to 14.8% of all workers), but certain groups were estimated to have particularly high exposure burdens, including Hispanic (19.7%) and Black (18.9%) workers. More generally, our analysis suggests that Hispanic and AIAN workers tended to bear the highest levels of exposure burden; for example, Hispanic workers were disproportionately exposed to 22 out of 25 of the most common agents and AIAN workers experienced excess exposure to 20 out of 25 of these agents.

We also found different patterns when we examined which agents contributed the most excess exposures within each race/ethnicity group. It is particularly notable how different the exposure patterns of non-Hispanic white workers were from workers in BIPOC race/ethnicity categories,

which, again, is consistent with King County industries being highly segregated by race and ethnicity. Although race/ethnicity groups within the larger BIPOC category each had a somewhat unique overall exposure pattern, there was also significant overlap in the agents contributing the most disproportionate exposure—especially cleaning agents, cooking fumes, aliphatic aldehydes, and biocides which each ranked highly in terms of excess exposures for all BIPOC subgroups. However, none of these agents were in the top 15 most disproportionate exposure of non-Hispanic white workers, and many of the agents contributing the most excess exposure service were not present in the top 15 for any other race/ethnicity group (e.g., calcium carbonate, metallic dust, or iron).

When we examined the total number of agents that disproportionately burdened each race/ethnicity group in the entire dataset, we found that non-Hispanic white workers, followed by Hispanic and AIAN workers, had the most instances of excess exposures by agent categories included in the CANJEM data. This finding is contrary to what we would suspect based on prior studies, which generally found workers of color carrying the greatest burden of occupational morbidity and mortality (Baron et al., 2013; Marsh et al., 2013). It is possible that non-Hispanic white workers were found to be disproportionately burdened by the greatest number of occupational agents due to exposure misclassification associated with the use of an industry-based JEM, rather than an occupation-based JEM. That is, it is likely that certain occupations within a given industry classification may simultaneously be more likely to be exposed to a given hazardous material and be overrepresented by BIPOC workers, which would not be captured by our industry-level data and could therefore bias our estimates (see the Limitations section for further discussion).

Overall, our findings of distinct patterns of occupational exposures within the specific race/ethnicity categories highlights the importance of disaggregating demographic data when possible. Quantifying which agents were contributing to excess exposures within each race/ethnicity group could highlight where intervention efforts may have the greatest impact to reduce exposure and health disparities.

The King County workforce is growing, becoming more diverse, and inequities in occupational exposures have been persistent

Our third objective in this study was to examine the extent and racial/ethnic distribution of occupational exposures over time. Employment data show that the King County workforce grew by 25% between 2009 and 2019. Importantly, this workforce has become increasingly racially diverse; while the number of non-Hispanic white workers has grown by 11% over this period, the number of BIPOC workers grew by 59%. Individual race/ethnicity groups have also grown faster than the overall workforce, including those identifying as Hispanic (75%), multiracial (61%), Asian (56%), and Black (51%).

We characterized trends in occupational exposures between 2009 and 2019 and examined whether disproportionality in exposures across race/ethnicity has changed in this period. We found that for many chemical agents the number of all and BIPOC workers in King County that are exposed on the job has increased steadily over this decade, likely due to the overall growth of the workforce. Additionally, disproportionate exposure burdens experienced by BIPOC workers for many chemical agents were persistent across this period; that is, for many

agents, the likelihood of exposure among BIPOC race/ethnicity groups were consistently higher than non-Hispanic white workers during this period.

Overall, our findings related to the time trend analysis suggest that more and more King County workers are being exposed to hazardous materials at their workplaces—which is generally reflective of the growth of the overall workforce during this time—and that the inequitable distribution of these exposures has largely persisted over time.

Our novel Exposure Prevention Index identifies industries that may particularly benefit from pollution prevention interventions

Our fourth objective was to develop an index measure to identify industries that have both a large extent (i.e., many exposed workers) and high likelihood (i.e., high exposure probability) of exposure and may therefore particularly benefit from public health and pollution prevention intervention efforts. Our results suggest that some industries ranked highly by our EPI measure across many of the most common occupational exposures in King County. In particular, we found that two industry groups were among the top five industries in terms of highest EPI rank for cleaning agents, biocides, and organic solvents: Personal Care Services (NAICS: 8121), which includes nail and beauty salons; and Services to Buildings and Dwellings (NAICS: 5617), which includes janitorial, pest control, and landscaping services. These industry groups were also considered low-wage and overrepresented by BIPOC employees. Thus, prioritizing these identified industries may contribute to reducing racial and socioeconomic health inequities, in addition to reducing other negative impacts of hazardous materials.

It is also notable that, because the EPI accounts for both likelihood and extent of exposure, industries that had low ranks across either dimension did not rank as highly in the EPI calculation. For example, the Restaurants and Other Eating Places industry group generally includes low probabilities of exposure to hazardous agents but high estimates of number of exposed workers because it was the largest industry in King County. As a result, the restaurant industry did not score among industries with the highest exposure burdens based on EPI. The EPI approach might therefore make sense for the purposes of identifying workplaces for interventions: although many workers in the restaurant industries are exposed to hazardous agents like cleaning agents or organic solvents, the likelihood of exposure for the average worker in these industries is relatively low.

Overall, the EPI analysis results provide potentially useful information for programmatic decision making—particularly once a specific agent or groups of agents has been decided is a priority—allowing for identifying industries to focus on for technical assistance outreach.

Comparison to Other Studies

Our results are largely consistent with two recent population-based studies that applied JEM data to examine occupational exposures. One study also used the CANJEM data and likewise identified the same set of occupational hazards as the most common facing workers in Federal Region 10 (AK, ID, OR, and WA), although with a slightly different ranking of the top exposures (Doubleday et al., 2018). Another study used different JEM data to examine trends for six occupational exposures among the Swedish workforce (Gustavsson et al., 2022). Table

16 compares occupation exposure prevalence estimates from these studies with those from the present study. Most prevalence estimates from our analysis were within ~33% of the other studies. However, we estimated a significantly smaller fraction of workers were exposed to welding fumes in King County compared to Doubleday's estimates of workers in all of Region 10. On the other hand, we estimated the prevalence of occupational exposure to lead was nearly twice as high in King County as in Sweden. Variation in these estimates across studies could be related to differences in the industrial composition of businesses operating in these geographies as well as differences in business practices or chemical regulatory policies. Additionally, differences may arise from distinct data types/sources (e.g., using exposure information by industry vs. occupation). Overall, however, these comparisons provide some external validity that our estimates are plausible, at least in comparison to studies using a similar JEM-based approach to characterize occupational exposures at the population-level.

	Present study Exposure data: CANJEM, by industry Year: 2019 estimates Population: King County	Doubleday Exposure da by occ Year: 201 Population: U	y et al. 2018 ta: CANJEM, upation 4 estimates ISA Region 10	Gustavsson et al. 2022 Exposure data: FINJEM, by occupation Year: 2013 estimates Population: Sweden	
Chemical agent categories	Exposure prevalence	Exposure prevalence	% Difference from present study	Exposure prevalence	% Difference from present study
aliphatic aldehydes	8.8%	7.8%	11%		
biocides	10.2%	6.9%	32%		
cleaning agents	14.8%	11.3%	24%		
diesel exhaust	4.0%	4.9%	-23%	2.7%	31%
lead	2.5%	2.6%	-4%	0.2%	90%
organic solvents	11.1%	9.0%	19%		
silica	2.7%	1.8%	33%	2.6%	4%
welding fumes	1.9%	4.0%	-111%	1.6%	14%
wood dust	3.4%	3.4%	0%	2.3%	33%

Table 16: Comparison of selected occupational	l exposure prevalence estimates from two
recent JEM-based studies	

Our results are somewhat similar to another recent analysis that used a different JEM-based approach to characterize occupational exposures (Beckman et al., 2022), although this study is not as directly comparable to the present analysis. The analysis by Beckman and colleagues was focused specifically on estimating exposures linked to breast cancer among working women in California; thus, the agents they examined were primarily endocrine disrupters, developmental toxicants, and mammary gland carcinogens, rather than a larger set of occupational exposures more relevant to a general population-based study. The authors also developed their own qualitative JEM based primarily on expert assessments of whether a given occupation had probable, possible, or unlikely exposure to each agent category. While this is a common and acceptable approach, it differs from how the CANJEM databases was constructed, the latter of which is considered semi-quantitative and was based on compiling information from thousands of interviews and worker-specific determinations of exposure. Despite these differences, these researchers similarly found that cleaning products, antimicrobials (a category similar to biocides), combustion byproducts (a category similar to

engine emissions), and solvents were among the most common exposures affecting working women in California. However, exposure to other agents that are not included or were grouped differently in the CANJEM data were also prominent in the Beckman et al. analysis. For example, the two most common exposures identified were fragrance ingredients and phthalates. While fragrance ingredients as a group was not included in the CANJEM database, phthalates are included in CANJEM but with estimates of exposure that are very low. Accordingly, our analysis yielded very low estimates of workers exposed to phthalates on the job. However, given the more recent evidence suggesting exposure to phthalates are extensive and pervasive, it is not unreasonable to expect that estimates of exposure to phthalates might increase if CANJEM was reconstructed with more contemporary data.

Overall, comparing our results to similar studies using JEM data provides some support for the plausibility of our exposure estimates. However, variation across these studies also highlights that such studies will depend largely on underlying JEM data, which have some inherent limitations.

Limitations and Future Directions

This study has several limitations which are important to understand when interpreting the results. First, it is important to acknowledge that CANJEM does not provide coverage of all workers, industries, or exposures in King County. CANJEM does not contain exposure information for many important chemical agents or other potentially important work-related hazards. Additionally, probabilities of exposure in these data are based on jobs held by the Canadian population between 1985 to 2005, which is a different population and geographical and industrial context than King County and does not account for how industry working conditions may have changed since that time. The static nature of CANJEM further limits our ability to measure trends in the magnitude and extent of exposure over time. Any trends seen over time are merely a factor of changes in the composition of the workforce and the distribution of demographics by industry, rather than actual fluctuations in exposure due to, for example, changes in business practices. Despite these limitations, to our knowledge CANJEM is the best available JEM to estimate occupational exposure burdens in King County, covering a wide range of industries and agents for a North American population. Given the potential value of JEM data to characterize occupational exposures at the population-level, future efforts should be aimed at developing more contemporary JEM data in the US context.

As with any JEM, one of the most significant limitations is exposure misclassification. In this analysis, we assumed that exposure information from individuals included in the CANJEM database applied to the entire industry group. Thus, we were unable to account for exposure differences of individuals or occupations within a single industry, potentially leading to exposure misclassification. A critical issue is that exposure estimates based on industry rather than occupation may include many workers that are not actually exposed to a particular agent (i.e., they are misclassified as exposed). For example, national estimates from the Bureau of Labor Statistics (U.S. Bureau of Labor Statistics, 2021) show that approximately 55% of employees in the aerospace industry are in occupations that are unlikely to have substantial exposure to hazardous materials, including those in management, business/financial operations, computer/mathematics, architecture/engineering, legal, sales, and office/administrative support

occupations. While some of these white-collar workers will experience workplace exposures, using JEM data that classifies exposure at the industry-level likely dilutes the exposure probability for blue collar workers in this industry working in production, installation, maintenance, and construction jobs, which account for less than half the total jobs in the aerospace industry. We used exposure data by industry because that is often helpful for pollution prevention activities that target specific agents and industrial processes for intervention and technical assistance; that is, businesses in the same or similar industries have shared characteristics that allow for the development of interventions that apply to many businesses. However, future studies should further compare such results to analyses using occupation-based exposure data, which may allow for more precision when examining demographic differences in workplace exposures.

Additionally, there is ample evidence that workers in different sociodemographic groups experience differential exposure to occupational hazards within the same job or industry due to differences in assigned tasks and other occupational inequities (Frumkin et al., 1999; Messing et al., 1994; Quinn, 2011; Quinn et al., 2007; Roelofs et al., 2017), which is likewise not accounted for when using a general population JEM like CANJEM. An analysis of the CANJEM data by Lacourt et al. (Lacourt et al., 2013) found important sex-mediated differences in exposure for some agents, while a separate analysis by Xu et al. (Xu et al., 2022) found that CANJEM's ability to ascertain exposures among females performed well for some agents, but not for others. While these studies focused on sex, we can suspect that CANJEM's reliability in estimating exposures may also vary by race/ethnicity, and that there may be important within-industry differences in exposure among racial/ethnic groups that are not captured in our study. This form of misclassification could result in underestimation of exposures for some combinations of agents and racial/ethnic groups and the overestimation of exposure for others. In addition, any identified exposure disparities across race/ethnicity in our analysis can only be attributed to the distribution of workers across occupations and industries, i.e., occupational segregation. Some misclassification may have also been introduced into the study from the use of crosswalks needed to merge the data sources by a common industry/occupation classification system (Peters, 2020). Additional research is needed to better understand the impact of using general population JEM data to characterize racial disparities in occupational exposures.

Regarding the QWI employee demographic data, it is important to note that the U.S. Census Bureau suppresses or alters some data to protect the confidentiality of employees and employers, usually when industries have very small numbers of employees/firms and there is either risk that specific persons/businesses can be identified, or the estimate is unreliable. Therefore, employees from smaller demographic populations, such as Native Hawaiian and Pacific Islander and American Indian/Alaska Native populations, are more likely to be undercounted within the QWI data compared to non-Hispanic white employees. Additionally, the racial/ethnic information available in the QWI is limited to a small number of broad categories and may hinder our ability to identify exposure disparities among more specific racial/ethnic groups. The collection of more detailed demographic data may be useful in better identifying and addressing occupational health disparities (Montoya-Barthelemy et al., 2022). The QWI data also do not allow for a thorough examination of exposures across multiple intersectional identities. The application of an intersectional approach has been useful in highlighting important occupational and social inequities and should be considered in future studies (Andrea et al., 2021).

Lastly, this analysis uses employment data from before the COVID-19 pandemic, which dramatically altered the labor market in King County and beyond. Although many sectors have largely recovered in terms of employment levels, it is possible that the current and future King County labor market may differ from pre-pandemic trends in important ways that could affect some of the conclusions of our analysis.

Recommendations

The Haz Waste Program can integrate the results of this analysis into their work related to pollution prevention among small businesses, including when providing technical assistance or planning and evaluating processes.

When conducting technical assistance to small businesses:

- Seek opportunities to reduce worker exposures. Our results suggest that workplaces are an important aspect of exposure to hazardous materials in King County. The Haz Waste Program should promote pollution prevention and technical assistance efforts that reduce or eliminate workers' exposures, especially transitioning businesses to safer alternatives.
- Account for racial equity in our work with small businesses. Our results identify the existence of racial disparities in occupational exposures due to segregation of BIPOC workers into industries with higher probabilities of exposure. Characterizing the distribution of occupational exposure by demographic groups can identify where OH interventions have the greatest impact to reduce and eliminate exposure disparities.

When applying research and data analysis to support work planning and performance evaluation:

- *Continue to research and advocate for quality OH surveillance data.* JEM-based research approaches can help address the pressing need for OH surveillance to move "upstream" to characterize exposures rather than only health outcomes. However, JEMs have inherent limitations, including potential exposure misclassification (e.g., unaccounted for exposure variability within industries or across demographic groups) and the static nature of the data. Additional work is needed to improve OH surveillance in King County and elsewhere.
- *Disaggregate data by race/ethnicity.* Our findings of distinct patterns in exposures within specific race/ethnicity categories highlight the importance of disaggregating demographic data when possible.

References

- Ahonen, E. Q., Fujishiro, K., Cunningham, T., & Flynn, M. (2018). Work as an Inclusive Part of Population Health Inequities Research and Prevention. *American Journal of Public Health* (1971), 108(3), 306-311. 10.2105/ajph.2017.304214
- Alonso-Villar, O., Del Rio, C., & Gradín, C. (2012). The Extent of Occupational Segregation in the United States: Differences by Race, Ethnicity, and Gender. *Industrial Relations: A Journal of Economy and Society*, 51(2), 179-212. 10.1111/j.1468-232X.2012.00674.x
- Anderson, N. J., Bonauto, D. K., & Adams, D. (2014). Prioritizing industries for occupational injury prevention and research in the Services Sector in Washington State, 2002-2010. *Journal of Occupational Medicine and Toxicology (London, England)*, 9(1), 37.
 10.1186/s12995-014-0037-2
- Andrea, S. B., Eisenberg-Guyot, J., Peckham, T., Oddo, V. M., & Hajat, A. (2021).
 Intersectional trends in employment quality in older adults in the United States. SSM Population Health, 15, 100868. 10.1016/j.ssmph.2021.100868
- Azaroff, L. S., Levenstein, C., & Wegman, D. H. (2002). Occupational injury and illness surveillance: conceptual filters explain underreporting. *American Journal of Public Health*, 92(9), 1421-1429.
- Baron, S. L., Steege, A. L., Marsh, S. M., Menéndez, C. C., & Myers, J. R. (2013). Nonfatal work-related injuries and illnesses United States, 2010 *MMWR Suppl.*, 62(3), 35-40.

- Beckman, S., Silver, E., Weinberg, J. L., Hurley, S., Frederick, M., Chan, J., Reynolds, P., & Harrison, R. (2022). Development of a Data Visualization Tool for Occupational
 Exposure to Chemicals of Concern for Breast Cancer Among California Working Women, 2010–2014. *New Solutions, 31*(4), 400-412. 10.1177/10482911211032971
- Birdsey, J., Alterman, T., & Petersen, M. (2007). Race, Occupation, and Lung Cancer:
 Detecting Disparities With Death Certificate Data. *Journal of Occupational and Environmental Medicine, 49*(11), 1257-1263. 10.1097/JOM.0b013e318154c094
- Boden, L. I., & Ozonoff, A. (2008). Capture–Recapture Estimates of Nonfatal Workplace
 Injuries and Illnesses. *Annals of Epidemiology*, 18(6), 500-506.
 10.1016/j.annepidem.2007.11.003
- Briggs, N. C., Levine, R. S., Hall, H. I., Cosby, O., Brann, E. A., & Hennekens, C. H. (2003).
 Occupational Risk Factors for Selected Cancers Among African American and White Men in the United States. *American Journal of Public Health (1971), 93*(10), 1748-1752.
 10.2105/ajph.93.10.1748
- Carey, R. N., El-Zaemey, S., Daly, A., Fritschi, L., Glass, D. C., & Reid, A. (2021). Are There Ethnic Disparities in Exposure to Workplace Hazards Among New Zealand Migrants to Australia? *Asia Pacific Journal of Public Health*,
- Chung-Bridges, K., Muntaner, C., Fleming, L. E., Lee, D. J., Arheart, K. L., LeBlanc, W. G., Christ, S. L., McCollister, K. E., Caban, A. J., & Davila, E. P. (2008). Occupational segregation as a determinant of US worker health. *American Journal of Industrial Medicine*, 51(8), 555-567.

- Constantine, D., & Hayes, P. (2020). *RACISM IS A PUBLIC HEALTH CRISIS: THE TRANSFORMATION STARTS HERE. IT STARTS WITH US.*
- Doubleday, A., Baker, M. G., Lavoué, J., Siemiatycki, J. J., & Seixas, N. S. (2018). Estimating the population prevalence of traditional and novel occupational exposures in Federal Region X. Wiley. 10.1002/ajim.22931
- Froines, J., Wegman, D., & Eisen, E. (1989). Hazard surveillance in occupational disease. *American Journal of Public Health*, 79(Suppl), 26-31. 10.2105/AJPH.79.Suppl.26
- Frumkin, H., Walker, E. D., & Friedman, G. (1999). Minority Workers and Communities. OCCUPATIONAL MEDICINE: State of the Art Reviews, 14(3), 495-517.
- Fujishiro, K., Hajat, A., Landsbergis, P. A., Meyer, J. D., Schreiner, P. J., & Kaufman, J. D. (2017). Explaining racial/ethnic differences in all-cause mortality in the Multi-Ethnic Study of Atherosclerosis (MESA): Substantive complexity and hazardous working conditions as mediating factors. *SSM Population Health, 3*(C), 497-505. 10.1016/j.ssmph.2017.05.010
- Fullilove, M. T. (1998). Comment: Abandoning "Race" as a Variable in Public Health Research - An Idea Whose Time Has Come. *American Journal of Public Health*, 88(9), 1297-1298. 10.2105/ajph.88.9.1297
- Greife, A., Halperin, W., Groce, D., O'Brien, D., Pedersen, D., Myers, J. R., & Jenkins, L. (1995). Hazard Surveillance: Its Role in Primary Prevention of Occupational Disease and

Injury. *Applied Occupational and Environmental Hygiene*, *10*(9), 737-742. 10.1080/1047322X.1995.10387678

- Gustavsson, P., Wiebert, P., Tinnerberg, H., Bodin, T., Linnersjö, A., Myrberg, H., Albin, M.,
 & Selander, J. (2022). *Scandinavian Journal of Work, Environment & Health*, , 4040.
- Hilaski, H. (1981). Understanding Statistics on Occupational Illnesses. *Monthly Labor Review*, , 25-29.
- Juon, H., Hong, A., Pimpinelli, M., Rojulpote, M., McIntire, R., & Barta, J. A. (2021). Racial disparities in occupational risks and lung cancer incidence: Analysis of the National Lung Screening Trial. *Preventive Medicine*, 143, 106355. 10.1016/j.ypmed.2020.106355
- Kaplan, J. B., & Bennett, T. (2003). Use of Race and Ethnicity in Biomedical Publication. *JAMA: The Journal of the American Medical Association, 289*(20), 2709-2716.
 10.1001/jama.289.20.2709
- Kaufman, J. S., & Cooper, R. S. (2001). Commentary: Considerations for Use of Racial/Ethnic Classification in Etiologic Research. *American Journal of Epidemiology*, 154(4), 291-98.
 10.1093/aje/154.4.291
- Kauppinen, T., Toikkanen, J., & Pukkala, E. (1998). From cross-tabulations to multipurpose exposure information systems: A new job-exposure matrix. *American Journal of Industrial Medicine*, 33(4)10.1002/(sici)1097-0274(199804)33:4<409::aidajim12>3.0.co;2-2

- Krieger, N. (2010). Workers are people too: Societal aspects of occupational health disparitiesan ecosocial perspective. *American Journal of Industrial Medicine*, 53(2), 104-115. 10.1002/ajim.20759
- Krieger, N., Chen, J. T., Waterman, P. D., Hartman, C., Stoddard, A. M., Quinn, M. M., Sorensen, G., & Barbeau, E. M. (2008). The inverse hazard law: Blood pressure, sexual harassment, racial discrimination, workplace abuse and occupational exposures in US low-income black, white and Latino workers. *Social Science & Comp; Medicine (1982)*, 67(12), 1970-1981. 10.1016/j.socscimed.2008.09.039
- Krieger, N., Rowley, D. L., Herman, A. A., Avery, B., & Phillips, M. T. (1993). Racism, sexism, and social class: implications for studies of health, disease, and well-being. *American Journal of Preventive Medicine*, 9(6), 82-122.
- Lacourt, A., Cardis, E., Pintos, J., Richardson, L., Kincl, L., Benke, G., Fleming, S., Hours, M., Krewski, D., McLean, D., Parent, M., Sadetzki, S., Schlaefer, K., Schlehofer, B., Lavoue, J., van Tongeren, M., & Siemiatycki, J. (2013). INTEROCC case–control study: lack of association between glioma tumors and occupational exposure to selected combustion products, dusts and other chemical agents. *BMC Public Health*, *13*(1), 340. 10.1186/1471-2458-13-340
- LaMontagne, A. D., Ruttenber, J. A., & Wegman, D. H. (2000). Exposure Surveillance for Chemical and Physical Hazards. Workplace Health Surveillance: An Action-Oriented Approach (). Oxford University Press, Incorporated.

Lavoué, J. (2018). CANJEM. Retrieved July 27, 2022, from http://www.canjem.ca/

Lax, M. B., & Zoeckler, J. M. (2021). Occupational Disease in New York State: An Update. ().

- Lett, E., Asabor, E., Beltrán, S., Cannon, A. M., & Arah, O. A. (2022). Conceptualizing,
 Contextualizing, and Operationalizing Race in Quantitative Health Sciences Research. *The Annals of Family Medicine, 20*(2)10.1370/afm.2792
- Lipscomb, H. J., Loomis, D., McDonald, M. A., Argue, R. A., & Wing, S. (2006). A CONCEPTUAL MODEL OF WORK AND HEALTH DISPARITIES IN THE UNITED STATES. *International Journal of Health Services*, 36(1), 25-50. 10.2190/BRED-NRJ7-3LV7-2QCG
- Local Hazardous Waste Management Program in King County, Washington. (2018). *Racial Equity Strategic Plan.* (No. Volume 1). <u>https://www.kingcountyhazwastewa.gov/en/initiatives/-</u> /media/BEF6AE8C176041F6BB184244A3D86EE6.ashx
- Marsh, S. M., Menéndez, C. C., Baron, S. L., Steege, A. L., & Myers, J. R. (2013). Fatal Work-Related Injuries — United States, 2005–2009. *MMWR Suppl.*, 62(3), 41-45.
- Messing, K., Dumais, L., Courville, J., Seifert, A. M., & Boucher, M. (1994). Evaluation of Exposure Data from Men and Women with the Same Job Title. *J Occup Med*, 36(8), 913-917.
- Middendorf, P. J. (2004). Surveillance of occupational noise exposures using OSHA's Integrated Management Information System. *American Journal of Industrial Medicine*, 46(5), 492-504. 10.1002/ajim.20092

- Montoya-Barthelemy, A. G., Leniek, K., Bannister, E., Rushing, M., Abrar, F. A., Baumann, T. E., Manly, M., Wilhelm, J., Niece, A., Riester, S., Kim, H., Sellman, J., Desai, J., Anderson, P. J., Bovard, R. S., Pronk, N. P., & Mckinney, Z. J. (2022). Using advanced racial and ethnic identity demographics to improve surveillance of work-related conditions in an occupational clinic setting. *American Journal of Industrial Medicine,* 65(5)10.1002/ajim.23332
- Murray, L. R. (2003). Sick and Tired of Being Sick and Tired: Scientific Evidence, Methods, and Research Implications for Racial and Ethnic Disparities in Occupational Health. *American Journal of Public Health*, 93(2), 221-226. 10.2105/AJPH.93.2.221
- National Academies of Sciences, Engineering, and Medicine. (2018). A Smarter National Surveillance System for Occupational Safety and Health in the 21st Century. ().
 Washington, DC: National Academies Press. 10.17226/24835
- National Center for Health Statistics. (2011). *Survey Description, National Health Interview Survey, 2010.* (). Hyattsville, Maryland:
- National Center for Health Statistics. (2016). *Survey Description, National Health Interview Survey, 2015.* (). Hyattsville, Maryland:
- National Institute for Occupational Safety and Health. (1976). *National Occupational Hazard Survey Volume I Survey Manual.* (No. NIOSH-74-127).
- National Institute for Occupational Safety and Health. (2016). *Overview of NIOSH Surveillance*. Retrieved Feb 11, 2022, from

https://www.cdc.gov/niosh/topics/surveillance/pdfs/surveillance-briefingdocument_8.6.19_508.pdf

- OECD. (2022). *Wage levels*. OECD. Retrieved July 27, 2022, from https://data.oecd.org/earnwage/wage-levels.htm#indicator-chart
- Payne-Sturges, D. C., Gee, G. C., & Cory-Slechta, D. A. (2021). Confronting Racism in Environmental Health Sciences: Moving the Science Forward for Eliminating Racial Inequities. *Environmental Health Perspectives*, 129(5), 55002. 10.1289/EHP8186
- Peters, S. (2020). Although a valuable method in occupational epidemiology, job-exposure matrices are no magic fix. *Scand J Work Environ Health*, 46(3), 231-234. 10.5271/sjweh.3894
- Quinn, M. M. (2011). Why do women and men have different occupational exposures?
 Occupational and Environmental Medicine (London, England), 68(12), 861-862.
 10.1136/oemed-2011-100257
- Quinn, M. M., Sembajwe, G., Stoddard, A. M., Kriebel, D., Krieger, N., Sorensen, G.,
 Hartman, C., Naishadham, D., & Barbeau, E. M. (2007). Social disparities in the burden of occupational exposures: Results of a cross-sectional study. *American Journal of Industrial Medicine*, 50(12), 861-875. 10.1002/ajim.20529
- Richardson, D. B., Loomis, D., Bena, J., & Bailer, A. J. (2004). Fatal Occupational Injury
 Rates in Southern and Non-Southern States, by Race and Hispanic Ethnicity. *American Journal of Public Health*, 94(10)

- Roelofs, C., Baron, S. L., Wilson, S., & Aber, A. (2017). Occupational and Environmental Health Equity and Social Justice. In B. S. Levy, D. H. Wegman, S. L. Baron & R. K. Sokas (Eds.), *Occupational and Environmental Health* (). Oxford University Press. 10.1093/oso/9780190662677.003.0002
- Rosenman, K. D. (2016). Health Disparities in Occupational Exposures. *Health Disparities in Respiratory Medicine* (pp. 59-78). Springer International Publishing. 10.1007/978-3-319-23675-9_4
- Rosenman, K., Kalush, A., Reilly, M., Gardiner, J., Reeves, M., & Luo, Z. (2006). How Much Work-Related Injury and Illness is Missed By the Current National Surveillance System? *Journal of Occupational and Environmental Medicine*, 48(4), 357-365.
 10.1097/01.jom.0000205864.81970.63
- Sabbath, E. L., Boden, L. I., Williams, J. A., Hashimoto, D., Hopcia, K., & Sorensen, G. (2017). Obscured by administrative data? Racial disparities in occupational injury. *Scandinavian Journal of Work, Environment & amp; Health, 43*(2), 155-162. 10.5271/sjweh.3611
- Sauvé, J., Siemiatycki, J., Labrèche, F., Richardson, L., Pintos, J., Sylvestre, M., Gérin, M., Bégin, D., Lacourt, A., Kirkham, T. L., Rémen, T., Pasquet, R., Goldberg, M. S., Rousseau, M., Parent, M., & Lavoué, J. (2018). Development of and Selected
 Performance Characteristics of CANJEM, a General Population Job-Exposure Matrix
 Based on Past Expert Assessments of Exposure. *Annals of Work Exposures and Health*, 62(7), 783-795. 10.1093/annweh/wxy044

- Seabury, S. A., Terp, S., & Boden, L. I. (2017). Racial And Ethnic Differences In The Frequency Of Workplace Injuries And Prevalence Of Work-Related Disability. *Health Affairs*, 36(2), 266-273. 10.1377/hlthaff.2016.1185
- Seta, J. A., Sundin, D. S., & Pedersen, D. H. (1988). National occupational exposure survey. Volume I. Survey manual. (No. 88-106). <u>https://www.cdc.gov/niosh/docs/88-106/</u>

Sieber, W. K. (1990). National Occupational Exposure Survey: Sampling Methodology. ().

- Siemiatycki, J. (2000). Job-exposure matrices. *Encyclopedia of Epidemiologic Methods* (pp. 457-458)
- Siemiatycki, J., & Lavoué, J. (2018). Availability of a New Job-Exposure Matrix (CANJEM) for Epidemiologic and Occupational Medicine Purposes. *Journal of Occupational and Environmental Medicine*, 60(7), e324-e328. 10.1097/JOM.00000000001335
- Souza, K., Steege, A. L., & Baron, S. L. (2010). Surveillance of occupational health disparities:
 Challenges and opportunities. *American Journal of Industrial Medicine*, 53(2), 84-94.
 10.1002/ajim.20777
- Spieler, E. A., & Wagner, G. R. (2014). Counting matters: Implications of undercounting in the BLS survey of occupational injuries and illnesses. *American Journal of Industrial Medicine*, 57(10), 1077-1084. 10.1002/ajim.22382
- Stanbury, M., & Rosenman, K. D. (2014). Occupational health disparities: A state public health-based approach. *American Journal of Industrial Medicine*, 57(5), 596-604. 10.1002/ajim.22292

- Steege, A. L., Baron, S. L., Marsh, S. M., Menéndez, C. C., & Myers, J. R. (2014a). Examining occupational health and safety disparities using national data: A cause for continuing concern. *American Journal of Industrial Medicine*, 57(5), 527-538. 10.1002/ajim.22297
- Steege, A. L., Boiano, J. M., & Sweeney, M. H. (2014b). NIOSH Health and Safety Practices Survey of Healthcare Workers: Training and awareness of employer safety procedures. *American Journal of Industrial Medicine*, 57(6), 640-652. 10.1002/ajim.22305
- Sundin, D. S., & Frazier, T. M. (1989). Hazard surveillance at NIOSH. American Journal of Public Health (1971), 79(Suppl), 32-37. 10.2105/AJPH.79.Suppl.32
- Thacker, S. B., & Birkhead, G. S. (2008). Surveillance. In M. B. Gregg (Ed.), Field Epidemiology (pp. 38-64). Oxford University Press, Inc.
- The National Institute for Occupational Safety and Health. (2017). *National Occupational Exposure Survey (1981-1983)*. Retrieved July 27, 2022, from https://www.cdc.gov/noes/default.html
- The National Institute for Occupational Safety and Health. (2020). *Worker Health Information* from the National Health Interview Survey. The National Institute for Occupational Safety and Health. Retrieved July 27, 2022, from <u>https://www.cdc.gov/niosh/topics/nhis/</u>
- Todorov, D., & Reeb-Whitaker, C. (2021). *Surveillance of toxic inhalation for Washington workers*, 2017 – 2020. (No. 64-30-2021).

U.S. Bureau of Labor Statistics. (2021). *Industry-occupation matrix data: 336400 Aerospace* product and parts manufacturing. Retrieved October 12, 2022, from <u>https://data.bls.gov/projections/nationalMatrix?queryParams=336400&ioType=i</u>

United States Census Bureau. (2019). Quarterly Workforce Indicators 101. ().

- Vance-Sherman, A. (2022). King County profile. Washington State Employment Security Department. Retrieved June 24, 2022, from <u>https://esd.wa.gov/labormarketinfo/county-profiles/king</u>
- Washington Center for Equitable Growth. (2017). *Fact sheet: Occupational segregation in the United States.* Washington Center for Equitable Growth. Retrieved July 27, 2022, from <u>https://equitablegrowth.org/fact-sheet-occupational-segregation-in-the-united-states/</u>
- Wegman, D. H., & Froines, J. R. (1985). Surveillance needs for occupational health. American Journal of Public Health, 75(11)10.2105/ajph.75.11.1259
- Wegman, D. H. (1992). Hazard Surveillance. In W. Halperin, & E. L. Baker (Eds.), Public Health Surveillance (pp. 62-75). Van Nostrand Reinhold.
- Williams, D. R. (1999). Race, socioeconomic status, and health the added effects of racism and discrimination. *Annals of the New York Academy of Sciences, 896*(1), 173-188.
- Williams, J. I. (1966). Health Services Research. *Principles and Practice of Research* (pp. 290-307). Springer US. 10.1007/978-1-4684-0371-8 30

 Xu, M., Ho, V., Lavoue, J., Richardson, L., & Siemiatycki, J. (2022). Concordance of Occupational Exposure Assessment between the Canadian Job-Exposure Matrix (CANJEM) and Expert Assessment of Jobs Held by Women10.1093/annweh
This page intentionally left blank

Acknowledgements

We gratefully acknowledge the contributions of the following individuals to the work described in this report:

Marissa Baker (University of Washington) Roger Chin (Haz Waste Program) Dawn Duddleson (Haz Waste Program) Jérôme Lavoué (University of Montreal) Katie Fellow (Haz Waste Program) Steve Whittaker (Haz Waste Program) This page intentionally left blank

Appendix A: Full Tables

Industries with No Exposure Information

NAICS	Industry	Number of Total Employees ^{a,b}	Number of BIPOC Employees ^a
5112	Software Publishers	73200	33400
5511	Management of Companies and Enterprises	35500	11100
4541	Electronic Shopping and Mail-Order Houses	34100	17800
9211	Executive, Legislative, and Other General Government Support	15900	4900
5417	Scientific Research and Development Services	12600	3900
4251	Wholesale Electronic Markets and Agents and Brokers	10900	2800
5182	Data Processing, Hosting, and Related Services	10400	3100
5311	Lessors of Real Estate	9700	3400
9221	Justice, Public Order, and Safety Activities	8700	2900
4881	Support Activities for Air Transportation	6200	3400
6231	Nursing Care Facilities (Skilled Nursing Facilities)	5700	3300
8129	Other Personal Services	5700	2500
9231	Administration of Human Resource Programs	5300	2000
4831	Deep Sea, Coastal, and Great Lakes Water Transportation	5000	1000
5239	Other Financial Investment Activities	4800	1100
5222	Nondepository Credit Intermediation	4600	1100
4236	Household Appliances and Electrical and Electronic Goods Merchant Wholesalers	4500	1400
3117	Seafood Product Preparation and Packaging	3700	2300
7121	Museums, Historical Sites, and Similar Institutions	3700	1100
4248	Beer, Wine, and Distilled Alcoholic Beverage Merchant Wholesalers	3300	750
3339	Other General Purpose Machinery Manufacturing	3200	1300
7112	Spectator Sports	3200	940
4231	Motor Vehicle and Motor Vehicle Parts and Supplies Merchant Wholesalers	3100	800
2371	Utility System Construction	2900	590
5619	Other Support Services	2800	680
6215	Medical and Diagnostic Laboratories	2800	1100
4413	Automotive Parts, Accessories, and Tire Stores	2700	750
4533	Used Merchandise Stores	2600	1000
3391	Medical Equipment and Supplies Manufacturing	2500	1000
8132	Grantmaking and Giving Services	2500	740
2213	Water, Sewage and Other Systems	2400	750
6219	Other Ambulatory Health Care Services	2400	680
4239	Miscellaneous Durable Goods Merchant Wholesalers	2300	710
5611	Office Administrative Services	2200	630
6242	Community Food and Housing, and Emergency and Other Relief Services	2200	840
6243	Vocational Rehabilitation Services	2200	940
4242	Drugs and Druggists' Sundries Merchant Wholesalers	2000	620
7113	Promoters of Performing Arts, Sports, and Similar Events	2000	480

Table A-1. King County industries with no exposure information.

5414	Specialized Design Services	1900	410
4232	Furniture and Home Furnishing Merchant Wholesalers	1800	590
6117	Educational Support Services	1800	540
3344	Semiconductor and Other Electronic Component Manufacturing	1700	1100
4922	Local Messengers and Local Delivery	1700	780
4859	Other Transit and Ground Passenger Transportation	1600	780
5324	Commercial and Industrial Machinery and Equipment Rental and Leasing	1600	370
9261	Administration of Economic Programs	1600	290
3272	Glass and Glass Product Manufacturing	1500	680
4235	Metal and Mineral (except Petroleum) Merchant Wholesalers	1500	470
5223	Activities Related to Credit Intermediation	1500	540
3328	Coating, Engraving, Heat Treating, and Allied Activities	1400	750
4241	Paper and Paper Product Merchant Wholesalers	1400	370
4249	Miscellaneous Nondurable Goods Merchant Wholesalers	1400	380
5621	Waste Collection	1400	550
6115	Technical and Trade Schools	1400	340
3327	Machine Shops; Turned Product; and Screw, Nut, and Bolt Manufacturing	1300	320
3361	Motor Vehicle Manufacturing	1300	380
4246	Chemical and Allied Products Merchant Wholesalers	1300	310
4852	Interurban and Rural Bus Transportation	1200	400
5629	Remediation and Other Waste Management Services	1200	460
3114	Fruit and Vegetable Preserving and Specialty Food Manufacturing	1100	780
4412	Other Motor Vehicle Dealers	1100	210
4482	Shoe Stores	1100	540
5622	Waste Treatment and Disposal	1100	400
8113	Commercial and Industrial Machinery and Equipment (except Automotive and Electronic) Repair and Maintenance	1100	300
4442	Lawn and Garden Equipment and Supplies Stores	1000	160
3115	Dairy Product Manufacturing	970	310
6114	Business Schools and Computer and Management Training	960	290
1141	Fishing	950	510
3366	Ship and Boat Building	940	270
4855	Charter Bus Industry	940	390
5322	Consumer Goods Rental	880	290
4512	Book Stores and News Dealers	870	220
4884	Support Activities for Road Transportation	830	290
3363	Motor Vehicle Parts Manufacturing	790	390
3335	Metalworking Machinery Manufacturing	780	230
8114	Personal and Household Goods Repair and Maintenance	770	170
4543	Direct Selling Establishments	760	200
1114	Greenhouse, Nursery, and Floriculture Production	680	210
4453	Beer, Wine, and Liquor Stores	680	170
3332	Industrial Machinery Manufacturing	660	220
8112	Electronic and Precision Equipment Repair and Maintenance	660	150

4882	Support Activities for Rail Transportation	590	240
7131	Amusement Parks and Arcades	590	260
2372	Land Subdivision	500	160
3312	Steel Product Manufacturing from Purchased Steel	460	150
3352	Household Appliance Manufacturing	440	170
2123	Nonmetallic Mineral Mining and Quarrying	400	60
3279	Other Nonmetallic Mineral Product Manufacturing	400	140
4872	Scenic and Sightseeing Transportation, Water	390	80
3333	Commercial and Service Industry Machinery Manufacturing	380	110
7115	Independent Artists, Writers, and Performers	370	60
9241	Administration of Environmental Quality Programs	370	60
5179	Other Telecommunications	360	70
4531	Florists	330	80
5612	Facilities Support Services	330	230
4542	Vending Machine Operators	300	80
3274	Lime and Gypsum Product Manufacturing	280	120
4812	Nonscheduled Air Transportation	260	50
5122	Sound Recording Industries	260	50
1112	Vegetable and Melon Farming	250	60
5323	General Rental Centers	240	60
9251	Administration of Housing Programs, Urban Planning, and Community Development	230	110
3331	Agriculture, Construction, and Mining Machinery Manufacturing	220	70
3353	Electrical Equipment Manufacturing	220	50
5331	Lessors of Nonfinancial Intangible Assets (except Copyrighted Works)	220	60
3111	Animal Food Manufacturing	210	70
1119	Other Crop Farming	200	130
1152	Support Activities for Animal Production	180	50
3211	Sawmills and Wood Preservation	170	40
3343	Audio and Video Equipment Manufacturing	170	40
1121	Cattle Ranching and Farming	160	60
3334	Ventilation, Heating, Air-Conditioning, and Commercial Refrigeration Equipment	160	40
3253	Pesticide Fertilizer and Other Agricultural Chemical Manufacturing	130	30
5211	Monetary Authorities-Central Bank	130	60
1151	Support Activities for Crop Production	110	70
3351	Electric Lighting Equipment Manufacturing	110	30
4869	Other Pipeline Transportation	110	20
3362	Motor Vehicle Body and Trailer Manufacturing	100	30
4871	Scenic and Sightseeing Transportation. Land	100	10
7213	Rooming and Boarding Houses. Dormitories, and Workers' Camps	100	20
1133	Logging	90	20
7212	RV (Recreational Vehicle) Parks and Recreational Camps	90	20
3325	Hardware Manufacturing	80	30
3336	Engine, Turbine, and Power Transmission Equipment Manufacturing	80	30

1153	Support Activities for Forestry	70	20
3259	Other Chemical Product and Preparation Manufacturing	70	20
3262	Rubber Product Manufacturing	70	40
1113	Fruit and Tree Nut Farming	60	30
2212	Natural Gas Distribution	60	10
3169	Other Leather and Allied Product Manufacturing	60	40
3322	Cutlery and Handtool Manufacturing	60	20
4832	Inland Water Transportation	60	10
4889	Other Support Activities for Transportation	50	10
5259	Other Investment Pools and Funds	50	20
7114	Agents and Managers for Artists, Athletes, Entertainers, and Other Public Figures	50	20
1125	Aquaculture	40	10
1129	Other Animal Production	40	10
5174	Satellite Telecommunications	40	10
2131	Support Activities for Mining	30	10
3326	Spring and Wire Product Manufacturing	30	10
3346	Manufacturing and Reproducing Magnetic and Optical Media	30	10
3369	Other Transportation Equipment Manufacturing	20	0
4245	Farm Product Raw Material Merchant Wholesalers	20	10
4879	Scenic and Sightseeing Transportation, Other	20	10
1111	Oilseed and Grain Farming	10	0
3159	Apparel Accessories and Other Apparel Manufacturing	10	0
3252	Resin, Synthetic Rubber, and Artificial and Synthetic Fibers and Filaments Manufacturing	10	0
3271	Clay Product and Refractory Manufacturing	10	0
5251	Insurance and Employee Benefit Funds	0	0

^a Employee counts are rounded to the nearest 10s if <1000, and to the nearest 100s if >1000 ^b Table is sorted by industries with the highest number of total employees

Analysis 1: Exposure Estimates – All Agent Categories

		# of Empl	oyees Expos	edª (% of De	emographic	Group)				
	CANJEM			•						
Agent	Chemical Agent							Multi-		
Rank ^b	Category	All	BIPOC	Hispanic	AIAN	Asian	Black	racial	NHPI	White
	a *	4700	1400	310	40	590	270	180	70	3300
140	1,1,1-Trichlorethane	(0.3%)	(0.3%)	(0.2%)	(0.3%)	(0.3%)	(0.3%)	(0.3%)	(0.6%)	(0.4%)
		59100	20700	7000	650	7700	3800	2300	480	38400
15	Abrasives dust	(4.2%)	(4%)	(5.4%)	(4.6%)	(3.3%)	(4.1%)	(3.9%)	(4.1%)	(4.3%)
		550	260	60	10	140	30	30	10	290
217	Acetate fibres	(0%)	(0.1%)	(0%)	(0%)	(0.1%)	(0%)	(0%)	(0%)	(0%)
		14700	5500	1700	150	2400	820	670	110	9100
80	Acetic acid	(1%)	(1.1%)	(1.3%)	(1.1%)	(1%)	(0.9%)	(1.2%)	(1%)	(1%)
07	A .	11000	4100	930	100	2100	560	460	80	6900
96	Acetone	(0.8%)	(0.8%)	(0.7%)	(0./%)	(0.9%)	(0.6%)	(0.8%)	(0.7%)	(0.8%)
162	A aatrilana	2900	830	240	40	310	150	110	20	2100
102	Acetylene	(0.2%)	(0.276)	(0.2%)	(0.276)	(0.1%)	(0.2%)	100	(0.270)	(0.2%)
172	Acrylic fibres	(0.2%)	(0.2%)	(0.2%)	(0.2%)	550 (0.2%)	(0.1%)	(0.2%)	20	(0.2%)
1/2	Activite notes	07100	38900	10300	070	17100	7500	4200	710	58200
9	Aliphatic alcohols	(6.9%)	(7.6%)	(8%)	(6.8%)	(7.4%)	(8.2%)	(7.2%)	(6.2%)	(6.4%)
,	7 inpliane alcohols	123800	52100	17200	1600	21000	8100	6400	1000	71700
4	Aliphatic aldehvdes	(8.8%)	(10.2%)	(13.3%)	(11.2%)	(9.1%)	(8.8%)	(11.1%)	(8.7%)	(7.9%)
	1 2	5000	1600	510	40	700	230	210	30	3400
137	Aliphatic esters	(0.4%)	(0.3%)	(0.4%)	(0.3%)	(0.3%)	(0.2%)	(0.4%)	(0.3%)	(0.4%)
		18900	6600	1900	190	3000	970	780	140	12300
62	Aliphatic ketones	(1.3%)	(1.3%)	(1.5%)	(1.3%)	(1.3%)	(1.1%)	(1.3%)	(1.2%)	(1.4%)
		17800	6400	2200	230	2300	1100	790	140	11400
70	Alkanes (C1-C4)	(1.3%)	(1.2%)	(1.7%)	(1.6%)	(1%)	(1.2%)	(1.4%)	(1.2%)	(1.3%)
		56800	18100	5600	620	7000	3100	2200	500	38700
17	Alkanes (C18+)	(4%)	(3.5%)	(4.3%)	(4.4%)	(3.1%)	(3.4%)	(3.7%)	(4.4%)	(4.3%)
		75200	25700	8800	860	9400	4500	2900	700	49500
11	Alkanes (C5-C17)	(5.3%)	(5%)	(6.8%)	(6%)	(4.1%)	(4.9%)	(5%)	(6.1%)	(5.5%)
		8400	2800	1400	110	690	380	310	80	5700
110	Alkyds	(0.6%)	(0.5%)	(1.1%)	(0.8%)	(0.3%)	(0.4%)	(0.5%)	(0.7%)	(0.6%)
20	4.1	28500	9000	2900	290	3700	1400	1000	210	19500
38	Alumina	(2%)	(1.8%)	(2.2%)	(2%)	(1.6%)	(1.5%)	(1.8%)	(1.8%)	(2.2%)
27	A 1	40900	12800	4000	410	5300	2000	1500	340	28100
21	Alummum	(2.9%)	(2.3%)	(3.170)	(2.9%)	(2.5%)	(2.270)	(2.0%)	(2.9%)	(5.1%)
121	Aluminium fumes	(0.5%)	2300	390 (0.5%)	/0 (0.5%)	(0.5%)	(0.4%)	(0.4%)	00 (0.6%)	5000 (0.6%)
121	Aluminum funcs	58500	24000	7300	660	10200	4100	2600	440	34600
16	Ammonia	(4.1%)	(4 7%)	(5.7%)	(4.7%)	(4.4%)	(4.5%)	(4.5%)	(3.8%)	(3.8%)
10	7 thintoina	14000	5100	1100	100	2600	850	550	80	8900
85	Anaesthetic gases	(1%)	(1%)	(0.9%)	(0.7%)	(1.1%)	(0.9%)	(0.9%)	(0.7%)	(1%)
	Animal, vegetable	350	170	50	0	80	30	10	10	180
223	glues	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)
	<u>a</u>	440	150	30	0	80	20	20	10	290
219	Antimony	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)
	u u u u u u u u u u u u u u u u u u u	8100	3100	720	80	1700	370	340	40	5000
113	Aromatic alcohols	(0.6%)	(0.6%)	(0.6%)	(0.5%)	(0.7%)	(0.4%)	(0.6%)	(0.4%)	(0.6%)
-		12000	4700	1700	150	1900	600	500	100	7300
92	Aromatic amines	(0.9%)	(0.9%)	(1.3%)	(1%)	(0.8%)	(0.7%)	(0.9%)	(0.9%)	(0.8%)
		60	20	0	0	10	0	0	0	40
235	Arsenic	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)
		22700	6400	2400	290	1800	1200	920	210	16300
49	Asbestos	(1.6%)	(1.3%)	(1.9%)	(2%)	(0.8%)	(1.3%)	(1.6%)	(1.8%)	(1.8%)
		44100	19800	7200	610	7300	3400	2300	360	24300
26	Ashes	(3.1%)	(3.9%)	(5.5%)	(4.3%)	(3.2%)	(3.7%)	(4%)	(3.2%)	(2.7%)

Table A-2. Estimated prevalence of exposure to all CANJEM agents in King County by race and ethnicity, 2019.

		# of Empl	oyees Expos	edª (% of De	emographic	Group)				
	CANJEM									
Agent	Chemical Agent							Multi-		
Rank ^b	Category ^c	All	BIPOC	Hispanic	AIAN	Asian	Black	racial	NHPI	White
		6100	1800	930	100	380	270	220	60	4300
126	Asphalt	(0.4%)	(0.4%)	(0.7%)	(0.7%)	(0.2%)	(0.3%)	(0.4%)	(0.5%)	(0.5%)
204	A	1100	350	70	10	160	70	40	20	750
204	Aviation gasoline	(0.1%)	(0.1%)	(0.1%)	(0.1%)	(0.1%)	(0.1%)	(0.1%)	(0.2%)	(0.1%)
215	Basic lead carbonate	570 (0%)	(0%)	(0.1%)	(0.1%)	50 (0%)	50 (0%)	20	(0.1%)	330 (0%)
215	Dasie lead carbonate	14200	4800	1900	180	1400	900	570	140	9400
83	Benzene	(1%)	(0.9%)	(1.5%)	(1.3%)	(0.6%)	(1%)	(1%)	(1.2%)	(1%)
		20100	6700	2300	240	2400	1100	800	160	13400
58	Benzo[a]pyrene	(1.4%)	(1.3%)	(1.8%)	(1.7%)	(1.1%)	(1.2%)	(1.4%)	(1.4%)	(1.5%)
		0	0	0	0	0	0	0	0	0
245	Beryllium	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)
		144200	59300	15800	1500	25500	12100	6300	1200	85000
3	Biocides	(10.2%)	(11.6%)	(12.2%)	(10.3%)	(11%)	(13.1%)	(10.8%)	(10%)	(9.4%)
07	DI 1	10900	4800	1100	120	2300	890	500	80	6100
9/	Bleaches	(0.8%)	(0.9%)	(0.9%)	(0.8%)	(1%)	(1%)	(0.9%)	(0.7%)	(0.7%)
179	Proce duct	(0.2%)	(0.1%)	160	20	310 (0.1%)	200	80 (0.1%)	10 (0.194)	1400
1/0	Blass dust	7900	2200	1200	120	(0.170)	310	200	60	5700
115	Brick dust	(0.6%)	(0.4%)	(0.9%)	(0.8%)	(0.2%)	(0.3%)	290	(0.5%)	(0.6%)
115	Brick dust	3300	1100	230	30	560	160	110	20	2200
158	Bronze dust	(0.2%)	(0.2%)	(0.2%)	(0.2%)	(0.2%)	(0.2%)	(0.2%)	(0.2%)	(0.2%)
100	Brone dabt	5200	1900	960	70	480	270	190	60	3300
134	Cadmium	(0.4%)	(0.4%)	(0.7%)	(0.5%)	(0.2%)	(0.3%)	(0.3%)	(0.5%)	(0.4%)
		60	20	0	0	10	0	0	0	40
233	Cadmium fumes	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)
		63100	18200	6100	630	6300	3500	2400	360	44900
13	Calcium carbonate	(4.5%)	(3.6%)	(4.7%)	(4.4%)	(2.7%)	(3.8%)	(4.1%)	(3.1%)	(5%)
	~	9900	3600	1500	140	1100	680	390	100	6300
102	Calcium oxide	(0.7%)	(0.7%)	(1.1%)	(1%)	(0.5%)	(0.7%)	(0.7%)	(0.8%)	(0.7%)
107	Coloine on the former	1400	420	110	20	170	70	50	10	1000
196	Calcium oxide fumes	(0.1%)	(0.1%)	(0.1%)	(0.1%)	(0.1%)	(0.1%)	(0.1%)	(0.1%)	(0.1%)
33	Calcium sulphate	(2.4%)	9300	4200	430 (3.1%)	2400	(1.7%)	(2.3%)	(2.4%)	(2,7%)
33	Calcium surpliate	4000	1300	290	30	630	230	(2.370)	30	2700
146	Carbon black	(0.3%)	(0.3%)	(0.2%)	(0.2%)	(0.3%)	(0.2%)	(0.3%)	(0.3%)	(0.3%)
		20	10	0	0	0	0	0	0	10
236	Carbon disulphide	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)
	•	54500	17500	5900	640	6000	3300	2200	510	36900
19	Carbon monoxide	(3.9%)	(3.4%)	(4.6%)	(4.5%)	(2.6%)	(3.6%)	(3.8%)	(4.4%)	(4.1%)
		2000	680	170	20	310	120	80	10	1300
180	Carbon tetrachloride	(0.1%)	(0.1%)	(0.1%)	(0.1%)	(0.1%)	(0.1%)	(0.1%)	(0.1%)	(0.1%)
	Caustic alkali	21300	7700	2300	210	3200	1400	910	140	13600
54	solutions	(1.5%)	(1.5%)	(1.8%)	(1.5%)	(1.4%)	(1.5%)	(1.6%)	(1.2%)	(1.5%)
25	C 11 1	44500	16300	3500	360	8600	2400	1800	350	28200
25	Cellulose	(3.1%)	(3.2%)	(2.7%)	(2.6%)	(3.7%)	(2.6%)	(3.1%)	(3.1%)	(3.1%)
220	Callulasa agatata	190	50 (0%)	20	0	20	10	10	0	140
229	Cellulose acetate	200	(0%)	(0%)	(0%)	20	20	20	(070)	280
221	Cellulose nitrate	(0%)	(0%)	40	0 (0%)	30 (0%)	20	20	0 (0%)	280
	Senaiose muaic	18100	6600	1600	170	3300	920	750	160	11600
67	Chlorinated alkanes	(1.3%)	(1.3%)	(1.2%)	(1.2%)	(1.4%)	(1%)	(1.3%)	(1.4%)	(1.3%)
~ ·		16900	6500	1400	150	3500	910	670	150	10400
74	Chlorinated alkenes	(1.2%)	(1.3%)	(1%)	(1.1%)	(1.5%)	(1%)	(1.1%)	(1.3%)	(1.2%)
		1800	680	180	20	210	210	70	10	1100
183	Chlorine	(0.1%)	(0.1%)	(0.1%)	(0.2%)	(0.1%)	(0.2%)	(0.1%)	(0.1%)	(0.1%)
		1100	520	130	20	160	180	40	10	610
203	Chlorine dioxide	(0.1%)	(0.1%)	(0.1%)	(0.1%)	(0.1%)	(0.2%)	(0.1%)	(0.1%)	(0.1%)
		1600	510	100	10	260	80	60	10	1100
188	Chloroform	(0.1%)	(0.1%)	(0.1%)	(0.1%)	(0.1%)	(0.1%)	(0.1%)	(0.1%)	(0.1%)

		# of Emp	loyees Expos	edª (% of De	emographic	Group)				
	CANJEM									
Agent	Chemical Agent							Multi-		
Rank ^b	Category ^c	All	BIPOC	Hispanic	AIAN	Asian	Black	racial	NHPI	White
	~ .	27800	8900	2500	250	4000	1300	980	200	18900
41	Chromium	(2%)	(1.7%)	(1.9%)	(1.8%)	(1.8%)	(1.5%)	(1.7%)	(1.7%)	(2.1%)
105	Characteristic (VII)	9400	3100	1200	110	1100	470	350	80	6300
105	Chromium (VI)	<u>(0.7%)</u> 8200	(0.6%)	(0.9%)	(0.7%)	(0.5%)	(0.5%)	200	(0.7%)	(0.7%)
112	Chromium fumes	(0.6%)	(0.5%)	(0.5%)	(0.5%)	(0.5%)	(0.4%)	(0.5%)	(0.5%)	(0.6%)
		3300	1100	580	50	220	150	120	30	2300
157	Clay dust	(0.2%)	(0.2%)	(0.4%)	(0.3%)	(0.1%)	(0.2%)	(0.2%)	(0.3%)	(0.2%)
		208500	87900	25500	2400	36000	17400	9700	1700	120600
1	Cleaning agents	(14.8%)	(17.2%)	(19.7%)	(16.8%)	(15.6%)	(18.9%)	(16.6%)	(14.9%)	(13.4%)
1.5.5	Coal combustion	3400	1200	420	40	480	190	170	20	2200
155	products	(0.2%)	(0.2%)	(0.3%)	(0.3%)	(0.2%)	(0.2%)	(0.3%)	(0.2%)	(0.2%)
187	Coal duct	1600	500 (0.1%)	100	20	1/0	90 (0.1%)	80 (0.1%)	10	(0.1%)
107	Coal dust	2100	660	370	40	120	90	80	20	1400
179	Coal tar and pitch	(0.1%)	(0.1%)	(0.3%)	(0.3%)	(0.1%)	(0.1%)	(0.1%)	(0.1%)	(0.2%)
	.	2800	900	200	20	480	130	100	20	1900
163	Cobalt	(0.2%)	(0.2%)	(0.2%)	(0.1%)	(0.2%)	(0.1%)	(0.2%)	(0.1%)	(0.2%)
	Coke combustion	0	0	0	0	0	0	0	0	0
242	products	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)
240	Calas data	0	0	0	0	0	0	0	0	0
240	Coke dust	26000	(0%)	3200	270	(0%)	1000	1000	210	20100
43	Concrete dust	(1.9%)	(1.3%)	(2.5%)	(2.6%)	(0.6%)	(1.1%)	(1.7%)	(1.8%)	(2.2%)
		114100	51500	17000	1500	19800	9300	6100	1000	62600
6	Cooking fumes	(8.1%)	(10.1%)	(13.1%)	(10.8%)	(8.6%)	(10.1%)	(10.4%)	(8.6%)	(6.9%)
		15400	4800	1100	130	2200	880	560	120	10600
79	Copper	(1.1%)	(0.9%)	(0.9%)	(0.9%)	(1%)	(1%)	(1%)	(1.1%)	(1.2%)
	a	5300	1600	420	50	650	290	200	60	3700
133	Copper fumes	(0.4%)	(0.3%)	(0.3%)	(0.4%)	(0.3%)	(0.3%)	(0.3%)	(0.5%)	(0.4%)
232	Cork dust	80 (0%)	30 (0%)	10	0 (0%)	10	10	0 (0%)	0 (0%)	50 (0%)
232	Colk dust	25700	10900	2100	220	5100	2600	1100	190	14800
45	Cosmetic tale	(1.8%)	(2.1%)	(1.6%)	(1.5%)	(2.2%)	(2.8%)	(1.8%)	(1.6%)	(1.6%)
		22000	9600	2300	210	4300	2000	920	210	12400
52	Cotton dust	(1.6%)	(1.9%)	(1.8%)	(1.5%)	(1.9%)	(2.2%)	(1.6%)	(1.8%)	(1.4%)
		1500	490	290	30	80	70	50	10	980
192	Creosote	(0.1%)	(0.1%)	(0.2%)	(0.2%)	(0%)	(0.1%)	(0.1%)	(0.1%)	(0.1%)
20	Cuintelline silies	38400	13300	5300	510	3900	2500	1500	340	25100
28	Cristanine sinca	360	(2.0%)	(4.170)	(5.0%)	30	(2.770)	(2.370)	(2.970)	(2.8%)
222	Crude petroleum	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)
	Cutting fluids post-	17700	5200	1200	140	2600	800	600	110	12500
71	1955	(1.3%)	(1%)	(0.9%)	(1%)	(1.1%)	(0.9%)	(1%)	(0.9%)	(1.4%)
		1000	360	100	10	160	50	40	10	650
205	Cyanides	(0.1%)	(0.1%)	(0.1%)	(0.1%)	(0.1%)	(0.1%)	(0.1%)	(0.1%)	(0.1%)
10	Diesel engine	56400	17900	6100	720	5200	4000	2300	690	38400
18	emissions	(4%)	(3.5%)	(4.7%)	(5.1%)	(2.3%)	(4.4%)	(4%)	(6%)	(4.3%)
120	Diesel oil	6000 (0.4%)	2000	610 (0.5%)	80 (0.6%)	(0.3%)	500 (0.5%)	240 (0.4%)	100	4000
129	Dieseron	3100	1100	190	20	570	210	110	20	2000
161	Diethyl ether	(0.2%)	(0.2%)	(0.1%)	(0.1%)	(0.2%)	(0.2%)	(0.2%)	(0.2%)	(0.2%)
		123500	41200	12100	1300	15400	8300	5100	1200	82300
5	Engine emissions	(8.7%)	(8.1%)	(9.4%)	(9.2%)	(6.7%)	(9%)	(8.8%)	(10.7%)	(9.1%)
		3800	1300	610	50	340	190	150	40	2500
147	Epoxies	(0.3%)	(0.3%)	(0.5%)	(0.4%)	(0.1%)	(0.2%)	(0.3%)	(0.3%)	(0.3%)
07	D 4 1	13500	5700	1200	140	3200	710	650	80	7700
8/	Ethanol	(1%)	(1.1%)	(1%)	(1%)	(1.4%)	(0.8%)	(1.1%)	(0.7%)	(0.9%)
148	Ethylene glycol	5800 (0.3%)	(0.3%)	550 (0.3%)	40 (0.3%)	(0.3%)	(0.2%)	(0.3%)	30 (0.2%)	2400 (0.3%)
110	Langiene grycor	(0.070)	(0.070)	(0.070)	(0.070)	(0.070)	(0.2/0)	(0.070)	(0.270)	(0.070)

		# of Emp	loyees Expos	sed ^a (% of D	emographi	c Group)				
	CANJEM									
Agent	Chemical Agent							Multi-		
Rank ^b	Category ^c	All	BIPOC	Hispanic	AIAN	Asian	Black	racial	NHPI	White
	FA 1 11	4400	1500	310	30	790	270	170	20	2800
143	Ethylene oxide	(0.3%)	(0.3%)	(0.2%)	(0.2%)	(0.3%)	(0.3%)	(0.3%)	(0.2%)	(0.3%)
86	Extandara	13700	4700	2100	180	1300	800	540	130	9000
80	Extenders	22800	12500	2600	240	5700	2700	1400	210	10400
34	Fabric dust	(2.3%)	(2.6%)	(2.8%)	(2.4%)	(2.5%)	(3%)	(2.5%)	(2.7%)	(2.1%)
	T done dust	400	100	30	0	30	10	2.0	0	300
220	Felt dust	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)
		2200	740	320	30	160	160	100	20	1400
177	Fertilizers	(0.2%)	(0.1%)	(0.2%)	(0.2%)	(0.1%)	(0.2%)	(0.2%)	(0.2%)	(0.2%)
		1900	760	190	20	360	130	90	20	1100
181	Flax fibres	(0.1%)	(0.1%)	(0.1%)	(0.1%)	(0.2%)	(0.1%)	(0.1%)	(0.2%)	(0.1%)
		21900	9700	3200	300	3700	1700	1100	210	12300
53	Flour dust	(1.6%)	(1.9%)	(2.5%)	(2.1%)	(1.6%)	(1.8%)	(2%)	(1.8%)	(1.4%)
		3700	1100	290	40	490	210	140	30	2500
150	Fluorides	(0.3%)	(0.2%)	(0.2%)	(0.3%)	(0.2%)	(0.2%)	(0.2%)	(0.3%)	(0.3%)
100	Fl	8500	3600	710	90	2200	350	400	50	4900
109	Fluorocarbons	(0.6%)	(0.7%)	(0.5%)	(0.6%)	(0.9%)	(0.4%)	(0.7%)	(0.4%)	(0.5%)
7	Formaldahyda	(7, 20/)	44200	(11.20%)	1300	18000	(7, 2%)	5400 (0.2%)	850	59100 (6.5%)
/	Formaldenyde	(7.570)	(8.070)	(11.370)	(9.370)	(7.870)	(7.270)	(9.370)	(7.470)	(0.376)
243	Formic acid	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)
245	I offine deld	1400	430	110	10	180	80	60	10	950
195	Fur dust	(0.1%)	(0.1%)	(0.1%)	(0.1%)	(0.1%)	(0.1%)	(0.1%)	(0.1%)	(0.1%)
		1500	460	200	20	130	70	60	10	1100
189	Glass dust	(0.1%)	(0.1%)	(0.2%)	(0.1%)	(0.1%)	(0.1%)	(0.1%)	(0.1%)	(0.1%)
		11100	3000	1200	140	840	480	420	80	8100
94	Glass fibres	(0.8%)	(0.6%)	(1%)	(1%)	(0.4%)	(0.5%)	(0.7%)	(0.7%)	(0.9%)
		4800	1800	540	50	750	270	220	30	3100
139	Glycol ethers	(0.3%)	(0.3%)	(0.4%)	(0.4%)	(0.3%)	(0.3%)	(0.4%)	(0.3%)	(0.3%)
		4900	1300	410	70	340	320	220	50	3600
138	Grain dust	(0.3%)	(0.3%)	(0.3%)	(0.5%)	(0.1%)	(0.3%)	(0.4%)	(0.4%)	(0.4%)
100	G 11 1	1300	420	110	10	100	150	60	10	910
199	Graphite dust	(0.1%)	(0.1%)	(0.1%)	(0.1%)	(0%)	(0.2%)	(0.1%)	(0.1%)	(0.1%)
110	Hain duat	(0.5%)	$\frac{3}{00}$	680	90	2400	290	400	30	4000
119	Hair dust	2200	720	(0.3%)	20	(170)	(0.5%)	(0.770) 80	20	(0.4%)
176	Heating oil	(0.2%)	(0.1%)	(0.3%)	(0.2%)	(0.1%)	(0.1%)	(0.1%)	(0.2%)	(0.2%)
170	meaning on	7800	2300	770	100	730	470	320	110	5400
118	Hvdraulic fluid	(0.5%)	(0.5%)	(0.6%)	(0.7%)	(0.3%)	(0.5%)	(0.6%)	(0.9%)	(0.6%)
	2	1100	280	80	10	110	40	40	10	860
202	Hydrogen	(0.1%)	(0.1%)	(0.1%)	(0.1%)	(0%)	(0%)	(0.1%)	(0.1%)	(0.1%)
		25000	7700	2500	260	3000	1300	960	190	17300
47	Hydrogen chloride	(1.8%)	(1.5%)	(1.9%)	(1.8%)	(1.3%)	(1.4%)	(1.6%)	(1.6%)	(1.9%)
		850	300	90	10	130	40	40	10	540
210	Hydrogen cyanide	(0.1%)	(0.1%)	(0.1%)	(0.1%)	(0.1%)	(0%)	(0.1%)	(0.1%)	(0.1%)
		3100	970	260	40	390	180	120	30	2100
160	Hydrogen fluoride	(0.2%)	(0.2%)	(0.2%)	(0.3%)	(0.2%)	(0.2%)	(0.2%)	(0.2%)	(0.2%)
104	YY 1 .1	9600	4100	850	90	2400	460	450	50	5500
104	Hydrogen peroxide	(0.7%)	(0.8%)	(0.7%)	(0.7%)	(1%)	(0.5%)	(0.8%)	(0.4%)	(0.6%)
140	TT 1 1 1 1	37/00	970	330	50	240	230	150	30	2800
149	Hydrogen sulphide	(0.5%)	(0.2%)	(0.3%)	(0.5%)	(0.1%)	(0.2%)	(0.5%)	(0.2%)	(0.3%)
29	Hypochlorites	30300 (2.6%)	(3.1%)	4000	410 (2.9%)	0300 (2 7%)	3400 (3.7%)	1/00	(2, 7%)	20000
27	rrypoemornes	4400	1500	680	60	440	250	160	50	2000
142	Industrial tale	(0.3%)	(0.3%)	(0.5%)	(0.4%)	(0.2%)	(0.3%)	(0.3%)	(0.4%)	(0.3%)
1.12	maaburar ture	12800	3900	930	100	1800	640	470	90	8900
89	Inks	(0.9%)	(0.8%)	(0.7%)	(0.7%)	(0.8%)	(0.7%)	(0.8%)	(0.8%)	(1%)
	Inorganic acid	31300	10000	3000	300	4200	1600	1200	220	21300
35	solutions	(2.2%)	(2%)	(2.4%)	(2.1%)	(1.8%)	(1.8%)	(2.1%)	(1.9%)	(2.4%)

		# of Emp	loyees Expos	sed ^a (% of De	emographi	c Group)				
	CANJEM									
Agent	Chemical Agent							Multi-		
Rank ^b	Category ^c	All	BIPOC	Hispanic	AIAN	Asian	Black	racial	NHPI	White
	Inorganic insulation	28100	7300	3200	360	1900	1100	1000	210	20800
39	dust	(2%)	(1.4%)	(2.5%)	(2.5%)	(0.8%)	(1.2%)	(1.8%)	(1.8%)	(2.3%)
	• • • ·	25900	8700	3900	330	2400	1400	990	250	17200
44	Inorganic pigments	(1.8%)	(1.7%)	(3%)	(2.3%)	(1%)	(1.6%)	(1.7%)	(2.2%)	(1.9%)
21	Iron	49600	(2.0%)	4/00	520 (2.7%)	5700	2500	(3, 29%)	380	34800
21	Iron	(5.5%)	(2.9%)	(3.0%)	(5.7%)	1000	(2.770) 820	600	(3.370)	(3.9%)
76	Iron fumes	(1.1%)	(0.9%)	(1.1%)	(1.2%)	(0.8%)	(0.9%)	(1%)	(1.1%)	(1.2%)
10	from funites	9100	3000	1400	120	760	540	370	90	6100
106	Iron oxides	(0.6%)	(0.6%)	(1%)	(0.9%)	(0.3%)	(0.6%)	(0.6%)	(0.8%)	(0.7%)
		2500	920	470	40	210	150	110	20	1600
171	Isocyanates	(0.2%)	(0.2%)	(0.4%)	(0.3%)	(0.1%)	(0.2%)	(0.2%)	(0.2%)	(0.2%)
		75000	31800	8500	780	14000	6300	3300	590	43200
12	Isopropanol	(5.3%)	(6.2%)	(6.6%)	(5.5%)	(6.1%)	(6.8%)	(5.7%)	(5.1%)	(4.8%)
		2200	830	240	20	370	150	80	20	1400
175	Kerosene	(0.2%)	(0.2%)	(0.2%)	(0.2%)	(0.2%)	(0.2%)	(0.1%)	(0.1%)	(0.2%)
		35800	11500	3700	390	4300	2000	1400	340	24200
31	Lead	(2.5%)	(2.3%)	(2.9%)	(2.7%)	(1.9%)	(2.2%)	(2.4%)	(2.9%)	(2.7%)
100	T 1 1 .	1300	480	210	20	130	90	50	10	800
198	Lead chromate	(0.1%)	(0.1%)	(0.2%)	(0.1%)	(0.1%)	(0.1%)	(0.1%)	(0.1%)	(0.1%)
10	T 10	25300	8000	2500	270	3100	1400	970	220	17300
46	Lead rumes	(1.8%)	(1.6%)	(2%)	(1.9%)	(1.3%)	(1.5%)	(1./%)	(2%)	(1.9%)
206	Land oxides	990 (0.1%)	340 (0.1%)	180	10	80 (0%)	40 (0%)	40 (0.1%)	10	650 (0.1%)
200	Leau Oxides	6200	2200	(0.170)	<u>(0.170)</u> <u>80</u>	760	460	250	(0.170)	4000
125	Leaded gasoline	(0.4%)	(0.4%)	(0.5%)	00 (0.5%)	(0.3%)	400	(0.4%)	(0.6%)	(0.4%)
125	Ecadea gasonne	190	90	20	0	60	10	10	0	100
228	Leather dust	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)
	Evaluation data	6500	2300	1200	90	580	310	240	70	4200
123	Linseed oil	(0.5%)	(0.5%)	(0.9%)	(0.6%)	(0.3%)	(0.3%)	(0.4%)	(0.6%)	(0.5%)
	Liquid fuel	6200	1700	790	80	440	280	230	40	4400
124	combustion products	(0.4%)	(0.3%)	(0.6%)	(0.6%)	(0.2%)	(0.3%)	(0.4%)	(0.4%)	(0.5%)
	Lubricating oils and	22400	7300	2200	250	2700	1400	930	240	15100
50	greases	(1.6%)	(1.4%)	(1.7%)	(1.8%)	(1.1%)	(1.5%)	(1.6%)	(2.1%)	(1.7%)
		1300	400	80	10	210	60	40	10	880
201	Magnesium	(0.1%)	(0.1%)	(0.1%)	(0.1%)	(0.1%)	(0.1%)	(0.1%)	(0.1%)	(0.1%)
50	M	19900	6300	2000	220	2400	1100	760	160	13600
59	Manganese	(1.4%)	(1.2%)	(1.5%)	(1.6%)	(1%)	(1.2%)	(1.3%)	(1.4%)	(1.5%)
64	Manganasa fumas	18400	5800	1900	210	2200	1000	(1.2%)	150	12600
04	Malamina Malamina	(1.5%)	210	(1.5%)	(1.3%)	(0.9%)	(1.170)	(1.270)	(1.570)	(1.4%)
212	formaldehyde	(0.1%)	(0%)	(0.1%)	(0.1%)	(0%)	40 (0%)	(0.1%)	(0.1%)	(0.1%)
212	Tormaldenyde	5200	1700	510	40	790	240	210	30	3500
135	Mercury	(0.4%)	(0.3%)	(0.4%)	(0.3%)	(0.3%)	(0.3%)	(0.4%)	(0.3%)	(0.4%)
100		10600	3600	1400	130	1000	710	430	110	7000
99	Metal coatings	(0.8%)	(0.7%)	(1.1%)	(0.9%)	(0.5%)	(0.8%)	(0.7%)	(1%)	(0.8%)
	Q	28000	8500	2600	300	3300	1500	1100	230	19500
40	Metal oxide fumes	(2%)	(1.7%)	(2%)	(2.1%)	(1.4%)	(1.6%)	(1.8%)	(2%)	(2.2%)
		51700	15500	4500	500	6400	2500	2000	410	36200
20	Metallic dust	(3.7%)	(3%)	(3.5%)	(3.6%)	(2.8%)	(2.8%)	(3.4%)	(3.6%)	(4%)
		4100	1700	530	50	600	330	210	40	2500
145	Methane	(0.3%)	(0.3%)	(0.4%)	(0.4%)	(0.3%)	(0.4%)	(0.4%)	(0.3%)	(0.3%)
		11100	3300	810	90	1500	660	400	60	7800
95	Methanol	(0.8%)	(0.7%)	(0.6%)	(0.6%)	(0.6%)	(0.7%)	(0.7%)	(0.5%)	(0.9%)
		2700	860	240	20	400	110	120	10	1800
165	Methyl methacrylate	(0.2%)	(0.2%)	(0.2%)	(0.1%)	(0.2%)	(0.1%)	(0.2%)	(0.1%)	(0.2%)
		7900	3400	870	90	1800	340	370	50	4500
117	Methylene chloride	(0.6%)	(0.7%)	(0.7%)	(0.6%)	(0.8%)	(0.4%)	(0.6%)	(0.4%)	(0.5%)
165	<i>хс</i>	2500	840	420	30	210	130	90	20	1700
167	Mica	(0.2%)	(0.2%)	(0.3%)	(0.2%)	(0.1%)	(0.1%)	(0.2%)	(0.2%)	(0.2%)

# of Employees Exposed ^a (% of Demographic Group)										
	CANJEM			``		• 1				
Agent	Chemical Agent							Multi-		
Rank ^b	Category ^c	All	BIPOC	Hispanic	AIAN	Asian	Black	racial	NHPI	White
27	NC11 / 1.1 /	29700	8500	2600	310	3200	1500	1100	220	21200
37	Mild steel dust	(2.1%)	(1.7%)	(2%)	(2.2%)	(1.4%)	(1.6%)	(1.9%)	(1.9%)	(2.3%)
24	1970	47400	(3.2%)	5500 (4.2%)	(3.6%)	(2.7%)	(3%)	(3.1%)	420	(3.4%)
	1970	20700	5200	2400	270	1200	790	770	160	15500
57	Mineral wool fibres	(1.5%)	(1%)	(1.9%)	(1.9%)	(0.5%)	(0.9%)	(1.3%)	(1.4%)	(1.7%)
	Mononuclear									
14	aromatic	59400	19700	6900 (5.20()	670	7000	3400	2300	530	39700
14	hydrocarbons	(4.2%)	(3.8%)	(5.3%)	(4./%)	(3.1%)	(3.7%)	(3.9%)	(4.6%)	(4.4%)
173	Natural gas	(0.2%)	(0.2%)	(0.3%)	(0.2%)	(0.2%)	(0.1%)	(0.2%)	(0.1%)	(0.1%)
	Natural gas	49400	22400	7700	670	8900	3500	2700	420	27000
22	combustion products	(3.5%)	(4.4%)	(5.9%)	(4.7%)	(3.8%)	(3.8%)	(4.6%)	(3.6%)	(3%)
		1500	470	140	20	150	110	60	20	1000
190	Natural rubber	(0.1%)	(0.1%)	(0.1%)	(0.1%)	(0.1%)	(0.1%)	(0.1%)	(0.1%)	(0.1%)
55	Niekol	20900	6500 (1.2%)	1400	170	3300	1000	(1.2%)	130	14400
33	NICKCI	7900	2500	590	70	1200	410	280	50	5400
116	Nickel fumes	(0.6%)	(0.5%)	(0.5%)	(0.5%)	(0.5%)	(0.4%)	(0.5%)	(0.5%)	(0.6%)
		60	40	10	0	20	10	0	0	20
234	Nitrates	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)
		3500	1000	250	20	480	160	130	20	2500
153	Nitric acid	(0.2%)	(0.2%)	(0.2%)	(0.2%)	(0.2%)	(0.2%)	(0.2%)	(0.1%)	(0.3%)
26	Nitro con ovidos	30500	10000	3600	390	3300	1800	(2.20)	260	20500
30	Nitrogen oxides	240	90	20	(2.7%)	40	20	(2.270)	(2.570)	(2.5%)
227	Nitroglycerine	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)
		6600	2400	760	70	950	350	300	60	4200
122	Nylon fibres	(0.5%)	(0.5%)	(0.6%)	(0.5%)	(0.4%)	(0.4%)	(0.5%)	(0.6%)	(0.5%)
	Organic dyes and	15500	6100	2300	200	2500	760	640	140	9300
78	pigments	(1.1%)	(1.2%)	(1.8%)	(1.4%)	(1.1%)	(0.8%)	(1.1%)	(1.2%)	(1%)
2	Organia galvanta	156900	55900	1/400 (12.5%)	1600	23000	9300	6400 (10.0%)	1200	101100 (11.2%)
2	Organic solvents	4700	1700	360	40	950	210	160	40	3000
141	Other mineral oils	(0.3%)	(0.3%)	(0.3%)	(0.3%)	(0.4%)	(0.2%)	(0.3%)	(0.4%)	(0.3%)
	Other paints,	36200	11800	4700	430	3800	1900	1400	320	24500
30	varnishes	(2.6%)	(2.3%)	(3.7%)	(3%)	(1.6%)	(2%)	(2.4%)	(2.8%)	(2.7%)
	Other pyrolysis	15800	5100	1500	170	2100	870	600	120	10700
77	fumes	(1.1%)	(1%)	(1.1%)	(1.2%)	(0.9%)	(0.9%)	(1%)	(1.1%)	(1.2%)
10	Ozono	84700	28700	6900 (5.3%)	810	12500	5700	3400	(6.3%)	56000
10	PAHs from any	99600	33800	10400	1100	12800	6300	4200	910	65800
8	source	(7%)	(6.6%)	(8%)	(7.9%)	(5.5%)	(6.8%)	(7.2%)	(7.9%)	(7.3%)
		2500	1100	340	30	520	200	90	20	1300
170	Perchloroethylene	(0.2%)	(0.2%)	(0.3%)	(0.2%)	(0.2%)	(0.2%)	(0.2%)	(0.2%)	(0.1%)
		3700	1300	440	40	410	250	190	30	2400
151	Pesticides	(0.3%)	(0.3%)	(0.3%)	(0.3%)	(0.2%)	(0.3%)	(0.3%)	(0.3%)	(0.3%)
208	Dhanal	940	300	60 (0%)	10	140	60 (0,1%)	40	10	650
208	Phenol-	780	220	120	10	40	30	30	10	560
211	formaldehyde	(0.1%)	(0%)	(0.1%)	(0.1%)	(0%)	(0%)	(0.1%)	(0.1%)	(0.1%)
	ý	570	300	80	10	140	70	20	10	270
216	Phosgene	(0%)	(0.1%)	(0.1%)	(0%)	(0.1%)	(0.1%)	(0%)	(0%)	(0%)
		2500	930	250	20	460	120	90	20	1600
169	Phosphoric acid	(0.2%)	(0.2%)	(0.2%)	(0.2%)	(0.2%)	(0.1%)	(0.2%)	(0.2%)	(0.2%)
104	Dhthalatas	1500	470	230	20	120	70	60 (0.19/)	10	1000
174	1 minarates	18000	5500	1900	190	2000	<u>(0.170)</u> 820	690	160	12500
68	Plastic dusts	(1.3%)	(1.1%)	(1.5%)	(1.3%)	(0.9%)	(0.9%)	(1.2%)	(1.4%)	(1.4%)
	Plastics pyrolysis	12000	4400	1200	130	1900	730	530	140	7600
91	fumes	(0.9%)	(0.9%)	(0.9%)	(0.9%)	(0.8%)	(0.8%)	(0.9%)	(1.2%)	(0.8%)

		# of Empl	oyees Expos	edª (% of De	emographic	c Group)				
	CANJEM									
Agent	Chemical Agent							Multi-		
Rank ^b	Category ^c	All	BIPOC	Hispanic	AIAN	Asian	Black	racial	NHPI	White
214	Disting colutions	660	220	50 (0%)	0 (0%)	130	20	20	0 (0%)	440
214	Plating solutions	6000	2000	1200	0%)	(0.1%)	270	220	(0%)	4000
127	Polv(vinvl acetate)	(0.4%)	(0.4%)	(0.9%)	(0.6%)	(0.2%)	(0.3%)	(0.4%)	(0.5%)	(0.4%)
		4300	1200	350	40	470	210	170	40	3100
144	Poly(vinyl chloride)	(0.3%)	(0.2%)	(0.3%)	(0.3%)	(0.2%)	(0.2%)	(0.3%)	(0.4%)	(0.3%)
		8300	2600	940	80	960	370	320	50	5700
111	Polyacrylates	(0.6%)	(0.5%)	(0.7%)	(0.6%)	(0.4%)	(0.4%)	(0.6%)	(0.5%)	(0.6%)
230	Polyamides	0	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0	0
239	Polychlorinated	1500	390	100	10	160	70	60	10	1100
193	biphenyls or PCBs	(0.1%)	(0.1%)	(0.1%)	(0.1%)	(0.1%)	(0.1%)	(0.1%)	(0.1%)	(0.1%)
	1 2	180	70	10	0	20	30	10	0	110
230	Polychloroprene	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)
		9600	4000	1100	100	1800	660	440	90	5600
103	Polyester fibres	(0.7%)	(0.8%)	(0.8%)	(0.7%)	(0.8%)	(0.7%)	(0.8%)	(0.7%)	(0.6%)
169	Delmastere	2500	820	200	20	370	150	100	20	1700
108	Polyesters	450	180	50	0.270)	80	30	20	10	270
218	Polvethylene	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0.1%)	(0%)
210	1 oljetiljiene	270	100	30	0	50	20	10	10	160
225	Polypropylene	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)
		700	230	100	10	70	30	30	10	470
213	Polystyrene	(0%)	(0%)	(0.1%)	(0.1%)	(0%)	(0%)	(0%)	(0.1%)	(0.1%)
100		6000	2100	920	70	630	300	230	70	3900
128	Polyurethanes	(0.4%)	(0.4%)	(0.7%)	(0.5%)	(0.3%)	(0.3%)	(0.4%)	(0.6%)	(0.4%)
03	Portland coment	11500	3200 (0.6%)	1600	$\frac{1}{0}$	600 (0.3%)	540 (0.6%)	420 (0.7%)	110	8400
)5	I offiand cement	5300	1800	660	70	550	390	220	40	3500
132	Propane	(0.4%)	(0.4%)	(0.5%)	(0.5%)	(0.2%)	(0.4%)	(0.4%)	(0.4%)	(0.4%)
	Propane combustion	17500	6200	2300	230	2200	960	800	130	11400
72	products	(1.2%)	(1.2%)	(1.8%)	(1.6%)	(0.9%)	(1%)	(1.4%)	(1.1%)	(1.3%)
	Propane engine	16600	5200	1400	170	1900	1000	680	240	11400
75	emissions	(1.2%)	(1%)	(1.1%)	(1.2%)	(0.8%)	(1.1%)	(1.2%)	(2.1%)	(1.3%)
56	Propellant gases	20800	9000	2300	230	4400	1400	970 (1.7%)	140	(1.3%)
50	T Topenant gases	1700	730	180	20	380	100	80	10	930
184	Rayon fibres	(0.1%)	(0.1%)	(0.1%)	(0.1%)	(0.2%)	(0.1%)	(0.1%)	(0.1%)	(0.1%)
	<i>.</i>	270	60	10	0	10	20	10	0	210
226	RDX	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)
		980	310	170	20	60	50	30	10	670
207	Refractory brick dust	(0.1%)	(0.1%)	(0.1%)	(0.1%)	(0%)	(0.1%)	(0.1%)	(0.1%)	(0.1%)
150	Pubbor dust	3100	1100	340	40	330	240	130	30	2100
139	Rubber pyrolysis	1700	(0.276) 540	(0.3%)	20	200	100	(0.276)	20	1200
185	fumes	(0.1%)	(0.1%)	(0.1%)	(0.1%)	(0.1%)	(0.1%)	(0.1%)	(0.1%)	(0.1%)
		3600	1400	780	60	260	200	140	40	2300
152	Selenium	(0.3%)	(0.3%)	(0.6%)	(0.4%)	(0.1%)	(0.2%)	(0.2%)	(0.4%)	(0.2%)
		22200	6800	2000	210	2900	1100	790	160	15500
51	Silicon carbide	(1.6%)	(1.3%)	(1.5%)	(1.5%)	(1.3%)	(1.2%)	(1.4%)	(1.4%)	(1.7%)
107	C.11 C1	1600	720	190	20	360	110	70	20	900
186	Silk fibres	(0.1%)	(0.1%)	(0.1%)	(0.1%)	(0.2%)	(0.1%)	(0.1%)	(0.1%)	(0.1%)
114	Silver	8000 (0.6%)	2500 (0.5%)	000 (0.5%)	60 (0.4%)	1200	550 (0.4%)	520 (0.6%)	40 (0.4%)	5500 (0.6%)
117	511701	2700	770	200	20	360	100	100	10	1900
164	Silver fumes	(0.2%)	(0.1%)	(0.2%)	(0.2%)	(0.2%)	(0.1%)	(0.2%)	(0.1%)	(0.2%)
		8800	3600	1300	110	1200	870	360	80	5100
108	Sodium carbonate	(0.6%)	(0.7%)	(1%)	(0.8%)	(0.5%)	(0.9%)	(0.6%)	(0.7%)	(0.6%)
	Sodium	920	290	80	10	120	40	40	10	630
209	hydrosulphite	(0.1%)	(0.1%)	(0.1%)	(0.1%)	(0.1%)	(0%)	(0.1%)	(0.1%)	(0.1%)

		# of Emp	loyees Expos	sedª (% of De	emographi	c Group)				
	CANJEM									
Agent	Chemical Agent							Multi-		
Rank ^b	Category ^c	All	BIPOC	Hispanic	AIAN	Asian	Black	racial	NHPI	White
		19300	5600	1600	180	2400	800	710	130	13800
60	Soldering fumes	(1.4%)	(1.1%)	(1.2%)	(1.2%)	(1.1%)	(0.9%)	(1.2%)	(1.1%)	(1.5%)
120	6	5700	1600	520	70	460	370	230	70	4100
130	Soot	(0.4%)	(0.3%)	(0.4%)	(0.5%)	(0.2%)	(0.4%)	(0.4%)	(0.6%)	(0.5%)
62	Stainlage steel dust	18/00	5700	1200	150	2900	8/0	640 (1.19/)	110	13000
05	Stanness steel dust	17100	(1.1%)	2500	220	2200	1200	(1.170) 970	(0.9%)	0200
73	Starch dust	(1.2%)	(1.5%)	(1.9%)	(1.6%)	(1.4%)	(1.4%)	(1.5%)	(1.5%)	(1%)
15	Staron dast	2200	730	180	20	320	130	90	10	1500
174	Styrene	(0.2%)	(0.1%)	(0.1%)	(0.1%)	(0.1%)	(0.1%)	(0.1%)	(0.1%)	(0.2%)
	Styrene-butadiene	1500	470	140	20	150	110	60	20	1000
191	rubber	(0.1%)	(0.1%)	(0.1%)	(0.1%)	(0.1%)	(0.1%)	(0.1%)	(0.1%)	(0.1%)
		17900	8000	2600	240	3200	1400	930	170	9800
69	Sugar dust	(1.3%)	(1.6%)	(2%)	(1.7%)	(1.4%)	(1.5%)	(1.6%)	(1.5%)	(1.1%)
		270	60	20	0	10	20	10	0	210
224	Sulfur	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)
0.1	0 1 1 1 1	14500	4800	1900	190	1500	870	600	110	9600
81	Sulphur dioxide	(1%)	(0.9%)	(1.5%)	(1.3%)	(0.6%)	(0.9%)	(1%)	(1%)	(1.1%)
08	Sulphuric acid	10/00	3400	800	90 (0.6%)	1000	510 (0.6%)	410	00 (0.5%)	/300
90	Sulphune acid	34900	11300	3900	370	4300	1700	1300	320	23600
32	Synthetic adhesives	(2.5%)	(2.2%)	(3%)	(2.6%)	(1.9%)	(1.9%)	(2.3%)	(2.8%)	(2.6%)
52	Synthetic dunesives	18200	7100	2100	190	3000	1200	820	170	11100
65	Synthetic fibres	(1.3%)	(1.4%)	(1.6%)	(1.4%)	(1.3%)	(1.3%)	(1.4%)	(1.5%)	(1.2%)
	<i>.</i>	0	0	0	0	0	0	0	0	0
238	Tannic acid	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)
		19200	5800	1500	170	2800	810	690	130	13400
61	Tin	(1.4%)	(1.1%)	(1.2%)	(1.2%)	(1.2%)	(0.9%)	(1.2%)	(1.1%)	(1.5%)
		14100	4100	1100	120	1900	590	510	100	10000
84	Tin fumes	(1%)	(0.8%)	(0.8%)	(0.9%)	(0.8%)	(0.6%)	(0.9%)	(0.9%)	(1.1%)
	TT:/ .	18200	6000	2100	200	2400	920	640	140	12100
66	Titanium	(1.3%)	(1.2%)	(1.6%)	(1.4%)	(1%)	(1%)	(1.1%)	(1.2%)	(1.3%)
120	Titanium dioxide	(0.5%)	2000	(1.1%)	(0.8%)	(0.2%)	400	290 (0.5%)	80 (0.7%)	4900
120	Titanium dioxide	0	0	0	0	0	0	0	0	0
241	fumes	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)
		0	0	0	0	0	0	0	0	0
237	Tobacco dust	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)
		24300	8100	3000	270	2800	1400	980	210	16200
48	Toluene	(1.7%)	(1.6%)	(2.3%)	(1.9%)	(1.2%)	(1.5%)	(1.7%)	(1.8%)	(1.8%)
		9000	2900	550	70	1500	480	320	90	6200
107	Trichloroethylene	(0.6%)	(0.6%)	(0.4%)	(0.5%)	(0.6%)	(0.5%)	(0.5%)	(0.8%)	(0.7%)
		0	0	0	0	0	0	0	0	0
244	Trinitrotoluene	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)
166	Tun aatan aamin ayin da	$\frac{2700}{(0.297)}$	760	160	20	380	120	90	20	2000
100	Tungsten compounds	2400	(0.1%)	(0.1%) 500	(0.276)	(0.270)	200	(0.270)	(0.170)	(0.2%)
156	Turnentine	(0.2%)	(0.2%)	(0.5%)	(0.4%)	(0.1%)	(0.2%)	(0.2%)	40	2300
150	Unsaturated aliphatic	3500	1100	310	40	390	220	140	30	2500
154	hydrocarbons	(0.3%)	(0.2%)	(0.2%)	(0.3%)	(0.2%)	(0.2%)	(0.2%)	(0.3%)	(0.3%)
		1800	600	350	30	120	80	60	20	1200
182	Urea-formaldehyde	(0.1%)	(0.1%)	(0.3%)	(0.2%)	(0.1%)	(0.1%)	(0.1%)	(0.2%)	(0.1%)
		110	40	10	0	20	10	0	0	70
231	Vanadium	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)
		5700	2600	530	60	1500	250	270	40	3100
131	Vinyl chloride	(0.4%)	(0.5%)	(0.4%)	(0.4%)	(0.7%)	(0.3%)	(0.5%)	(0.3%)	(0.3%)
0.0	***	13500	5100	1800	150	1800	1000	530	100	8400
88	Waxes, polishes	(1%)	(1%)	(1.4%)	(1.1%)	(0.8%)	(1.1%)	(0.9%)	(0.9%)	(0.9%)
42	Waldingfor	27000	8100	2500	290	3100 (1.49/)	1400	1000	240	18800
42	weiding lumes	(1.9%)	(1.0%)	(1.9%)	(2.1%)	(1.4%)	(1.3%)	(1.8%)	(270)	(2.1%)

		# of Emp	loyees Expos	sedª (% of D	emographic	c Group)				
Agent Rank ^b	CANJEM Chemical Agent Category ^c	All	BIPOC	Hispanic	AIAN	Asian	Black	Multi- racial	NHPI	White
200	Wood combustion products	1300 (0.1%)	510 (0.1%)	180 (0.1%)	20 (0.1%)	210 (0.1%)	60 (0.1%)	60 (0.1%)	10 (0.1%)	790 (0.1%)
23	Wood dust	48500 (3.4%)	14300 (2.8%)	6300 (4.9%)	650 (4.6%)	3700 (1.6%)	2400 (2.6%)	1900 (3.3%)	430 (3.7%)	34200 (3.8%)
101	Wood varnishes, stains and paints	10000 (0.7%)	3500 (0.7%)	1900 (1.4%)	150 (1%)	760 (0.3%)	520 (0.6%)	390 (0.7%)	100 (0.9%)	6500 (0.7%)
136	Wool fibres	5100 (0.4%)	2200 (0.4%)	630 (0.5%)	60 (0.4%)	970 (0.4%)	360 (0.4%)	230 (0.4%)	40 (0.4%)	2900 (0.3%)
90	Xylene	12200 (0.9%)	4100 (0.8%)	1700 (1.3%)	150 (1.1%)	1200 (0.5%)	730 (0.8%)	480 (0.8%)	110 (0.9%)	8200 (0.9%)
82	Zinc	14500 (1%)	4200 (0.8%)	1200 (0.9%)	140 (1%)	1800 (0.8%)	710 (0.8%)	540 (0.9%)	110 (1%)	10200 (1.1%)
100	Zinc fumes	10200 (0.7%)	2800 (0.5%)	780 (0.6%)	100 (0.7%)	1200 (0.5%)	400 (0.4%)	370 (0.6%)	80 (0.7%)	7400 (0.8%)
197	Zinc oxide	1300 (0.1%)	470 (0.1%)	180 (0.1%)	10 (0.1%)	190 (0.1%)	50 (0.1%)	50 (0.1%)	10 (0.1%)	870 (0.1%)

^a Employee counts are rounded to the nearest 10s if <1000, and to the nearest 100s if >1000 ^b Agents are ranked by estimated number of exposed employees ^c Table is sorted in alphabetical order by agent

Analysis 2: Estimates of Disproportionate Exposure – All Agents

		# Excess 1	Employees E	xposed (%	of Demogra	phic Group	Disproporti	onately Exp	osed)
Agent Rank ^b	CANJEM Chemical Agent Category ^c	BIPOC	Hispanic	AIAN	Asian	Black	Multi- racial	NHPI	White
		-290	-120	-10	-170	-30	-10	30	290
167	1,1,1-Trichlorethane	(-17.1%)	(-28.1%)	(-18.6%)	(-21.8%)	(-10%)	(-6.8%)	(82.7%)	(9.7%)
102	A 1	-710	1600	60	-2000	-80	-150	0	710
193	Abrasives dust	(-3.3%)	(29.9%)	(9.5%)	(-20.6%)	(-2.1%)	(-6.2%)	(-0.8%)	(1.9%)
46	Acetate fibres	(29.5%)	(20%)	(0.1%)	(54,5%)	(-5.3%)	(12.5%)	(27.2%)	(-16.7%)
		240	400	10	-20	-140	70	-10	-240
35	Acetic acid	(4.5%)	(29.5%)	(3.8%)	(-0.9%)	(-14.5%)	(11.6%)	(-6.4%)	(-2.6%)
		100	-80	-10	330	-150	10	-10	-100
43	Acetone	(2.6%)	(-7.9%)	(-9.8%)	(18.6%)	(-21.4%)	(2.6%)	(-11.8%)	(-1.4%)
150	A / 1	-230	-20	10	-170	-40	-10	0	230
159	Acetylene	(-21.9%)	(-9.1%)	(19.7%)	(-35%)	(-23.4%)	(-6.9%)	(-0.9%)	(12.4%)
72	Acrylic fibres	(-0.5%)	(10%)	0 (4.5%)	(-0.1%)	-30	(17.2%)	(-10.5%)	(0.3%)
12	Theryne mores	3800	1400	0	1300	1200	180	-80	-3800
9	Aliphatic alcohols	(10.8%)	(15.9%)	(-0.3%)	(8.2%)	(19.1%)	(4.5%)	(-10%)	(-6.1%)
	•	7300	5900	350	800	60	1300	-10	-7300
3	Aliphatic aldehydes	(16.4%)	(51.6%)	(28.3%)	(4%)	(0.8%)	(26.5%)	(-0.5%)	(-9.3%)
		-190	50	-10	-130	-100	0	-10	190
155	Aliphatic esters	(-10.3%)	(11.6%)	(-11.3%)	(-15.3%)	(-30.5%)	(0%)	(-20.7%)	(5.9%)
171		-240	160	0	-120	-260	0	-20	240
161	Aliphatic ketones	(-3.6%)	(9.5%)	(-1.9%)	(-4%)	(-21.1%)	(0.6%)	(-10.3%)	(2%)
114	Alkanes (C1 C4)	-60	590 (36.3%)	50 (30,5%)	-620	-60	60 (8,1%)	0	60 (0.5%)
114	Aikalies (CI-C4)	-2500	380	50	-2200	-580	-160	40	2500
237	Alkanes (C18+)	(-12.1%)	(7.4%)	(9%)	(-23.9%)	(-15.7%)	(-7%)	(8.6%)	(6.8%)
		-1500	1900	100	-2800	-370	-200	90	1500
225	Alkanes (C5-C17)	(-5.5%)	(27.4%)	(13.6%)	(-23%)	(-7.5%)	(-6.6%)	(14.5%)	(3.1%)
		-280	640	30	-680	-170	-40	10	280
166	Alkyds	(-9.4%)	(82.7%)	(35.1%)	(-49.6%)	(-31.3%)	(-10.6%)	(10.8%)	(5.3%)
		-1300	290	0	-1000	-470	-130	-30	1300
220	Alumina	(-13%)	(10.9%)	(1.5%)	(-21.5%)	(-25.4%)	(-11.3%)	(-11.3%)	(7.3%)
221	A 1	-2000	260	(0.80/)	-1400	-680	-190	$\begin{pmatrix} 0 \\ (1 \ 19/) \end{pmatrix}$	2000
231	Aluininun	-320	-90	-10	-120	-90	-40	(1.170)	320
169	Aluminium fumes	(-11.9%)	(-12.9%)	(-8.4%)	(-9.7%)	(-19.5%)	(-13.5%)	(7%)	(6.8%)
10)	7 Hummun Tumes	2800	2000	80	620	290	210	-40	-2800
10	Ammonia	(13.2%)	(36.5%)	(12.8%)	(6.5%)	(7.6%)	(8.6%)	(-8.6%)	(-7.5%)
		0	-180	-40	310	-60	-30	-30	0
70	Anaesthetic gases	(0%)	(-13.9%)	(-29.6%)	(13.4%)	(-6.4%)	(-4.9%)	(-27.3%)	(0%)
	Animal, vegetable	50	20	0	20	10	0	0	-50
47	glues	(37%)	(57%)	(16.7%)	(34.6%)	(38.9%)	(-5.3%)	(82.2%)	(-21%)
00	Antinoant	-10	-10	(26.49/)	10	-10	(15.49/)	0	10
00	Anumony	(-4.0%)	(-13.3%)	(-20.476)	(9.5%)	(-27.9%)	(-13.4%)	20	(2.0%)
30	Aromatic alcohols	(5.6%)	-10	(-3.9%)	(25.9%)	-130	(4%)	-20	(-3.1%)
57	Anomatic alconois	340	630	30	-70	-180	10	10	-340
31	Aromatic amines	(7.8%)	(57.6%)	(22.1%)	(-3.7%)	(-23.2%)	(1.7%)	(6%)	(-4.4%)
		0	0	<u>0</u>	0	Ò	0	0	0
75	Arsenic	(-9.9%)	(-27.1%)	(-66.8%)	(27.7%)	(-59.3%)	(-38.1%)	(-18%)	(5.6%)
		-1800	340	60	-1900	-290	-10	20	1800
229	Asbestos	(-22.2%)	(16.6%)	(26.5%)	(-52.2%)	(-19.5%)	(-1.4%)	(13.2%)	(12.6%)
0	A -1	3900	3100	170	80	540	510	0	-3900
8	Asnes	(24.4%)	(//.5%)	(57.9%)	(1.2%)	(18./%)	(28.1%)	(0.9%)	(-13.8%)
177	Asphalt	-390	570 (66.6%)	50 (57 4%)	-010	-150 (_32.6%)	-30 (-12 5%)	10 (14 1%)	390 (10.1%)
1//	лэрнан	(-1/.9/0)	(00.070)	(37.470)	(-01.0/0)	(-52.070)	(-12.3/0)	(14.1/0)	(10.170)

Table A-3. Estimated number and percent of excess workers exposed to all CANJEMagents in King County by race and ethnicity, 2019.

		# Excess Employees Exposed (% of Demographic Group Disproportionately Exposed)									
Agent Rank ^b	CANJEM Chemical Agent Category ^c	BIPOC	Hispanic	AIAN	Asian	Black	Multi- racial	NHPI	White		
112	Aviation gasoline	-50 (-11.9%)	-30 (-31.5%)	0 (-25.2%)	-20 (-10.1%)	-10 (-9%)	0 (-8.3%)	10 (124.2%)	50 (6.7%)		
65	Basic lead carbonate	10 (5.6%)	80 (160.9%)	0 (62.8%)	-60 (-63.2%)	-10 (-20.9%)	0 (-6.7%)	0 (46.4%)	-10 (-3.2%)		
171	Benzene	-360 (-7%)	610 (46.6%)	40 (25.7%)	-930 (-40%)	-20 (-2.5%)	-10 (-2.3%)	20 (20.4%)	360 (4%)		
1/1	Denzene	-560	500	40	-840	-180	-30	0	560		
187	Benzo[a]pyrene	<u>(-7.7%)</u> 0	<u>(27%)</u> 0	<u>(21.4%)</u> 0	<u>(-25.6%)</u> 0	<u>(-13.8%)</u> 0	<u>(-3.5%)</u> 0	<u>(-2%)</u> 0	<u>(4.4%)</u> 0		
85	Beryllium	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)		
4	Biocides	(13.6%)	2600 (19.7%)	10 (1%)	(8.3%)	2700 (28.2%)	360 (6.1%)	-20 (-1.6%)	-/100 (-7.7%)		
20	Bleaches	870 (22.1%)	120 (11.6%)	10 (6.9%)	550 (31.3%)	180 (25.1%)	50 (11.2%)	-10 (-9.9%)	-870 (-12.5%)		
01	D 1 /	-20	-40	0	-30	60	0	0	20		
91	Brass dust	<u>(-2.4%)</u> -680	<u>(-19.1%)</u> 440	<u>(-1/.3%)</u> 40	<u>(-10.1%)</u> -870	-210	<u>(-5.2%)</u> -40	<u>(-15.1%)</u> 0	<u>(1.3%)</u> 680		
191	Brick dust	(-23.9%)	(60.7%)	(50.1%)	(-67.9%)	(-40.1%)	(-11.1%)	(-7.3%)	(13.6%)		
144	Bronze dust	-120 (-10.1%)	-00 (-21.4%)	(-21.4%)	50 (5.3%)	-00 (-26.1%)	-30 (-20.1%)	-10 (-28.6%)	(5.7%)		
66	Cadmium	10 (0.6%)	490 (102 4%)	20 (38.4%)	-370 (-43,7%)	-70 (-19.6%)	-20 (-10.2%)	20 (41.9%)	-10 (-0.4%)		
		0	0	0	0	0	0	0	0		
76	Cadmium fumes	<u>(-12.6%)</u> -4600	<u>(-20.5%)</u> 280	<u>(-34%)</u> -10	<u>(5%)</u> -4000	<u>(-43.8%)</u> -620	<u>(-8.5%)</u> -220	<u>(-78.1%)</u> -150	<u>(7.2%)</u> 4600		
245	Calcium carbonate	(-20.3%)	(4.9%)	(-1%)	(-39%)	(-15%)	(-8.4%)	(-29.7%)	(11.5%)		
61	Calcium oxide	20 (0.5%)	570 (63.4%)	40 (40%)	-560 (-34.8%)	30 (5.1%)	-20 (-4%)	20 (19.4%)	-20 (-0.3%)		
139	Calcium oxide fumes	-100 (-19%)	-20 (-12 3%)	0 (14.5%)	-60 (-26.4%)	-20	-10 (-10.2%)	0 (-1.8%)	100		
157	Calcium oxide fumes	-2900	1100	100	-3200	-700	-90	0	2900		
238	Calcium sulphate	<u>(-23.1%)</u> -150	(34.7%) -80	(29.4%)	<u>(-56.7%)</u> -30	<u>(-31.3%)</u> -40	<u>(-6.4%)</u> -20	<u>(-0.8%)</u> 0	<u>(13.1%)</u> 150		
150	Carbon black	(-10.6%)	(-21%)	(-25.7%)	(-4.5%)	(-13.6%)	(-12.3%)	(5.7%)	(6%)		
74	Carbon disulphide	0 (-9.7%)	0 (-57.1%)	0 (-100%)	0 (27.4%)	0 (-38.2%)	0 (-2.6%)	0 (-100%)	0 (5.5%)		
222	Corbon monovido	-2200	950	90 (16.7%)	-2900	-270	-20	60 (14,5%)	2200		
233	Carbon monoxide	-30	-10	0	-10	-10	0	0	30		
98	Carbon tetrachloride	(-4.6%)	(-4.4%)	(-17.9%)	(-3.3%)	(-5.1%)	(-4.3%)	(-14.9%)	(2.6%)		
86	solutions	(-0.1%)	(18.6%)	(0.3%)	(-8.9%)	(-1.9%)	(4.4%)	(-17.4%)	(0.1%)		
36	Cellulose	200 (1.2%)	-580 (-14.3%)	-80 (-18.6%)	1300 (17.7%)	-480 (-16.5%)	-40 (-2.2%)	-10 (-2.3%)	-200 (-0.7%)		
0.6		-20	0	0	-10	0	0	0	20		
96	Cellulose acetate	-30	(24.9%)	0	-30	-10	0	0	30		
99	Cellulose nitrate	(-23.3%)	(21.3%)	(-3.1%)	(-52.6%)	(-28.2%)	(6.5%)	(-16.1%)	(13.2%)		
53	Chlorinated alkanes	(0.5%)	(-5.2%)	(-6.8%)	(12.4%)	(-22.2%)	(0.7%)	(5.7%)	(-0.3%)		
30	Chlorinated alkenes	360 (5.9%)	-200 (-12.9%)	-20 (-11.6%)	770 (28%)	-200 (-17.8%)	-30 (-4.2%)	10 (9.3%)	-360 (-3.4%)		
51	Chloriz -	30	10	0	-80	100	-10	0	-30		
51	Uniorine	(4%) 110	20	(27.1%) 10	<u>(-27.2%)</u> -20	(82.5%) 110	<u>(-/.0%)</u> 0	<u>(-0./%)</u> 0	(-2.3%) -110		
42	Chlorine dioxide	(26.7%)	(23.4%)	(46.2%)	(-11.7%)	(147.1%)	(-9.1%)	(11.2%)	(-15.1%)		
131	Chloroform	-00	-30	-10 (-42.5%)	(-1.6%)	(-23.2%)	(-5.2%)	-10 (-47.7%)	8%)		
214	Chromium	-1200	-40 (-1.6%)	-20	-490 (-10.8%)	-470 (-25.8%)	-160 (-13.8%)	-30	1200		
217	Chronnun	-270	320	10	-400	-150	-30	0	270		
164	Chromium (VI)	(-7.9%)	(37.4%)	(11.2%)	(-26.1%)	(-23.7%)	(-8.3%)	(1.5%)	(4.5%)		

		# Excess Employees Exposed (% of Demographic Group Disproportionately Exposed)									
Agent Rank ^b	CANJEM Chemical Agent Categorv ^c	BIPOC	Hispanic	AIAN	Asian	Black	Multi- racial	NHPI	White		
		-420	-150	-10	-90	-150	-50	-10	420		
179	Chromium fumes	(-14.1%)	(-19.6%)	(-11.4%)	(-6.4%)	(-28.3%)	(-14%)	(-18%)	(8%)		
147	Clay dust	(-11.3%)	(89.7%)	(45.2%)	(-59.2%)	(-29.3%)	-20 (-11.4%)	(20.4%)	(6.4%)		
	ý	12400	6400	280	1900	3800	1100	20	-12400		
1	Cleaning agents	(16.5%)	(33.8%)	(13.6%)	(5.7%)	(27.9%)	(12.8%)	(1.2%)	(-9.3%)		
69	products	(0.1%)	(33.7%)	(13.3%)	-80	-40 (-16.8%)	30 (20.9%)	-10 (-20.9%)	0 (0%)		
	•	-70	20	0	-90	-10	10	0	70		
128	Coal dust	(-13%)	(12.8%)	(13.5%)	(-35.4%)	(-11.4%)	(20.7%)	(-12.9%)	(7.3%)		
138	Coal tar and pitch	-100	(94.4%)	(71.1%)	-220 (-63.8%)	-40	-10 (-10.9%)	0	(7.1%)		
	F	-110	-60	-10	20	-60	-10	-10	110		
142	Cobalt	(-10.7%)	(-23.2%)	(-30.6%)	(5%)	(-31.1%)	(-11.1%)	(-26.5%)	(6.1%)		
82	products	0 (%)	0 (%)	0 (%)	0 (%)	0 (%)	0 (%)	0 (%)	0 (%)		
02	products	0	0	0	0	0	0	0	0		
80	Coke dust	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)		
240	Concrete dust	-3000 (-30.8%)	720 (29.1%)	100 (36.5%)	-2900 (-67%)	-730 (-41.5%)	-100 (-9.2%)	-10	3000		
240	Coherete dust	10200	6600	390	1200	1900	1400	70	-10200		
2	Cooking fumes	(24.8%)	(62.9%)	(33.8%)	(6.5%)	(24.9%)	(29.4%)	(7.1%)	(-14.1%)		
107	Common	-760	-300	-20	-300	-120	-70	0	760		
196	Copper	-310	-60	0	-210	-50	-20	20	310		
168	Copper fumes	(-16.5%)	(-12.8%)	(-4%)	(-24.6%)	(-15.8%)	(-7.8%)	(43.6%)	(9.3%)		
	~	10	0	0	0	0	0	0	-10		
62	Cork dust	(17.5%)	(26.5%)	(20.6%)	(0.3%)	(23.9%)	(-4%)	(280.1%)	<u>(-9.9%)</u> 1600		
16	Cosmetic talc	(16.9%)	(-9.5%)	(-14.9%)	(21.6%)	(55.1%)	(0.9%)	(-11.5%)	(-9.6%)		
-		1600	300	-10	760	590	20	30	-1600		
15	Cotton dust	(20.5%)	(15.1%)	(-4.2%)	(21.1%)	(41.2%)	(2.2%)	(16.4%)	(-11.6%)		
101	Creosote	-40 (-8.1%)	(117%)	(79.8%)	-100 (-66.7%)	-30	-10 (-11.1%)	0 (-4%)	(4.6%)		
		-620	1800	120	-2300	20	-100	20	620		
188	Cristalline silica	(-4.5%)	(52%)	(32.1%)	(-37.1%)	(0.9%)	(-6.2%)	(7.7%)	(2.5%)		
105	Crude petroleum	-40 (-27.1%)	0 (14.5%)	0 (39%)	-30 (-53.9%)	-10 (-39.4%)	0 (-14.8%)	0 (43.7%)	40 (15.3%)		
100	Cutting fluids post-	-1200	-450	-40	-280	-360	-120	-40	1200		
216	1955	(-18.6%)	(-27.7%)	(-20.2%)	(-9.8%)	(-30.8%)	(-17%)	(-24.5%)	(10.5%)		
87	Cyanides	-10 (-1.5%)	10 (11.3%)	0 (-3.9%)	-10 (-4.4%)	-10 (-20.7%)	0 (7.8%)	0 (31.9%)	10		
07	Diesel engine	-2500	900	160	-4000	350	20	230	2500		
236	emissions	(-12%)	(17.4%)	(28.2%)	(-43.6%)	(9.6%)	(0.7%)	(50.9%)	(6.8%)		
140	Discol oil	-150	60	20	-370	110	-10	50 (07.1%)	150		
149	Dieseron	-30	-90	-10	70	10	-10	-10	30		
97	Diethyl ether	(-2.7%)	(-32.9%)	(-37.2%)	(13.4%)	(6%)	(-10.2%)	(-29.3%)	(1.5%)		
244	En l'un contratione	-3400	830	60 (5,10/)	-4800	270	50	230	3400		
244	Engine emissions	-90	270	10	-280	-60	-10	(22.5%)	90		
132	Epoxies	(-6.5%)	(76.7%)	(36.6%)	(-45.4%)	(-22.5%)	(-6%)	(19.5%)	(3.7%)		
	54 4	860	10	0	980	-170	90	-30	-860		
21	Ethanol	<u>(17.7%)</u> -40	(0.6%)	(0.1%)	<u>(44.5%)</u> 10	<u>(-19.4%)</u> -40	(17%)	(-28.7%)	<u>(-10%)</u> 40		
100	Ethylene glycol	(-3.3%)	(-2.8%)	(-0.7%)	(1.1%)	(-15.9%)	(0.5%)	(-11.1%)	(1.9%)		
		-50	-90	-10	80	-10	-10	-10	50		
108	Ethylene oxide	(-3%)	(-22.9%)	(-33.2%)	(10.8%)	(-4.5%)	(-5.5%)	(-30.2%)	(1.7%)		
158	Extenders	-220 (-4.5%)	840 (67.3%)	40 (28.6%)	-920 (-41,1%)	-90 (-10,2%)	-20 (-4.2%)	20 (19,4%)	220 (2.6%)		
		1600	590	10	390	600	80	40	-1600		
17	Fabric dust	(13.5%)	(19.7%)	(2.5%)	(7.2%)	(28.2%)	(6%)	(16.8%)	(-7.6%)		

		# Excess Employees Exposed (% of Demographic Group Disproportionately Exposed)									
Agent Rank ^b	CANJEM Chemical Agent Category ^c	BIPOC	Hispanic	AIAN	Asian	Black	Multi- racial	NHPI	White		
112	E-14 date	-50	0	0	-30	-10	0	0	50		
113	Felt dust	-50	(-13.1%) 120	10	-190	20	(28.2%)	0	50		
110	Fertilizers	(-6.7%)	(58.4%)	(45.3%)	(-54%)	(12.9%)	(7.5%)	(19.6%)	(3.8%)		
45	Flax fibres	(14%)	(12.9%)	0 (1.9%)	(19.7%)	(5.2%)	(12.1%)	0 (18.9%)	-90 (-7.9%)		
12	Flour dust	1700 (21.6%)	1200 (59.6%)	80 (38%)	130 (3.7%)	250 (17.3%)	240 (26.2%)	30 (18.3%)	-1700		
12	Plour dust	-170	-40	0	-100	-30	-10	0	170		
154	Fluorides	(-13.1%)	(-11.9%)	(11.8%)	(-17.6%)	(-12.5%)	(-8.2%)	(3.6%)	(7.4%)		
23	Fluorocarbons	(17.7%)	(-9.1%)	(1.9%)	(56.6%)	(-36.8%)	(15.1%)	(-26.2%)	(-10%)		
5	Formaldehyde	6800 (18.3%)	5200 (55.3%)	310 (30%)	1200	-120 (-1.7%)	1200 (27.3%)	10 (1.4%)	-6800 (-10.3%)		
	Toffiadenyde	0	0	0	0	0	0	0	0		
83	Formic acid	<u>(%)</u> -70	<u>(%)</u> -20	<u>(%)</u>	<u>(%)</u> -50	<u>(%)</u> -10	<u>(%)</u>	<u>(%)</u>	<u>(%)</u> 70		
129	Fur dust	(-14.3%)	(-12.7%)	(2.1%)	(-20.3%)	(-14.4%)	(7.8%)	(-39.2%)	(8.1%)		
134	Glass dust	-90 (-16.4%)	60 (44,9%)	0 (25.8%)	-120 (-49,5%)	-30 (-25,7%)	0 (-1%)	0 (-11%)	90 (9.3%)		
134	Glass dust	-1000	220	20	-980	-250	-30	-10	1000		
210	Glass fibres	(-25.7%)	(21.5%)	(21.3%)	(-53.9%)	(-33.8%)	(-7.4%)	(-12.1%)	(14.6%)		
60	Glycol ethers	(1.2%)	(22.2%)	0 (4.7%)	-30 (-4.4%)	-30 (-14.6%)	(10.5%)	-10 (-14.3%)	(-0.7%)		
182	Grain duct	-450	-40	20	-460	$\begin{pmatrix} 0 \\ 0 \\ 29 \end{pmatrix}$	20	10	450		
162	Grain dust	-60	-10	0	-120	70	0	0	60		
118	Graphite dust	(-12.6%)	(-8.6%)	(8.4%)	(-56%)	(75.4%)	(8%)	(2.4%)	(7.1%)		
19	Hair dust	(32.7%)	-30 (-4.1%)	(13.8%)	(88.1%)	-210 (-42.4%)	90 (27.4%)	-30 (-52.4%)	-910 (-18.5%)		
117	Heeting all	-60	160	10	-190	-20	-10	0	60		
117	Heating on	-460	50	20	-540	-30	0	40	460		
183	Hydraulic fluid	(-16.4%)	(7.5%)	(22.6%)	(-42.5%)	(-6.4%)	(0.7%)	(67.6%)	(9.3%)		
146	Hydrogen	-130 (-31.8%)	-20 (-19.3%)	0 (-7.6%)	-80 (-41.5%)	-30 (-43%)	0 (-5.8%)	0 (-35.7%)	130 (18%)		
	YY 1 11 1	-1300	210	10	-1100	-360	-70	-20	1300		
221	Hydrogen chloride	<u>(-14.5%)</u> 0	<u>(9.2%)</u> 10	<u>(2.2%)</u> 0	<u>(-26.6%)</u> -10	<u>(-22.2%)</u> -10	<u>(-6.9%)</u> 0	<u>(-8.6%)</u> 0	<u>(8.2%)</u> 0		
71	Hydrogen cyanide	(-0.4%)	(15.7%)	(-0.3%)	(-4.4%)	(-19.3%)	(11.3%)	(12.4%)	(0.2%)		
151	Hydrogen fluoride	-150 (-13.5%)	-20 (-7.1%)	10 (20%)	-120 (-23.1%)	-20 (-10.3%)	-10 (-6.1%)	0 (10.7%)	150 (7.6%)		
		600	-30	0	780	-160	50	-30	-600		
22	Hydrogen peroxide	-380	-20	<u>(-4.3%)</u> 10	<u>(49.9%)</u> -370	<u>(-26.1%)</u> -10	(13.9%) 0	<u>(-40%)</u> 0	(-9.8%) 380		
175	Hydrogen sulphide	(-28.3%)	(-4.5%)	(21.5%)	(-60.1%)	(-5.8%)	(0.5%)	(-8.8%)	(16%)		
11	Hypochlorites	2700 (20.6%)	1300 (37.9%)	50 (12.4%)	360 (6%)	1100 (44.9%)	180 (11.7%)	10 (4.7%)	-2700 (-11.6%)		
100		-70	270	10	-280	-40	-20	10	70		
122	Industrial talc	<u>(-4.2%)</u> -710	<u>(68.1%)</u> -240	(32.3%)	(-39.1%) -240	<u>(-13.8%)</u> -190	<u>(-9.5%)</u> -60	(31.7%) -10	(2.4%) 710		
195	Inks	(-15.4%)	(-20.7%)	(-23%)	(-11.5%)	(-22.9%)	(-11.2%)	(-12.3%)	(8.7%)		
219	Inorganic acid solutions	-1300 (-11.6%)	170 (6%)	-10 (-4%)	-960 (-18.8%)	-410 (-20,1%)	-80 (-6,2%)	-40 (-15.1%)	1300 (6.6%)		
	Inorganic insulation	-2900	610	80	-2700	-710	-110	-20	2900		
239	dust	<u>(-28.4%)</u> -660	(23.9%)	<u>(27.6%)</u> 70	(-59.1%) -1800	<u>(-39%)</u> -260	<u>(-9.6%)</u> -70	<u>(-8.3%)</u> 40	(16.1%)		
190	Inorganic pigments	(-7.1%)	(64.2%)	(28%)	(-42.8%)	(-15.1%)	(-6.8%)	(17.8%)	(4%)		
241	Iron	-3100 (-17,3%)	170 (3.7%)	30 (5.3%)	-2400 (-29.2%)	-770 (-23,7%)	-190 (-9.3%)	-30 (-7%)	3100 (9.8%)		
271	101	-980	-20	10	-720	-220	-60	0	980		
205	Iron fumes	(-16.9%)	(-1.5%)	(8.6%)	(-27.6%)	(-21.4%)	(-8.8%)	(1.6%)	(9.6%)		

		# Excess Employees Exposed (% of Demographic Group Disproportionately Exposed)									
Agent Rank ^b	CANJEM Chemical Agent Category ^c	BIPOC	Hispanic	AIAN	Asian	Black	Multi- racial	NHPI	White		
165	Inon orridor	-280	520 (62.20/)	30	-730	-60	$\begin{pmatrix} 0 \\ (0, 79) \end{pmatrix}$	10	280		
165	Iron oxides	20	240	(35.7%)	-200	-10	0	0	-20		
58	Isocyanates	(2.2%)	(106.4%)	(44.9%)	(-49.4%)	(-6.5%)	(3.6%)	(21.6%)	(-1.2%)		
6	Isopropagal	4700	1600 (23.0%)	30 (3.8%)	1700	1400 (28,7%)	210 (6.8%)	-20	-4700		
0	isopiopation	30	30	0	10	0	-10	0	-30		
52	Kerosene	(3.2%)	(16.2%)	(2.6%)	(1.8%)	(1.8%)	(-14%)	(-15.9%)	(-1.8%)		
223	Lead	-1400 (-11%)	420 (12.8%)	30 (7.7%)	-1500 (-25.8%)	-300 (-12 7%)	-90 (-5.9%)	50 (16.4%)	1400		
	2000	20	100	0	-80	10	0	0	-20		
57	Lead chromate	(3.5%)	(83.2%)	(36.4%)	(-39.6%)	(6.6%)	(0.3%)	(29.6%)	(-2%)		
211	Lead fumes	-1100 (-12.4%)	210 (8.9%)	10 (5.7%)	-1000 (-25.4%)	-250 (-15.2%)	-/0 (-6.9%)	20 (8.8%)	(7%)		
		-20	90	0	-80	-20	-10	0	20		
93	Lead oxides	(-5.4%)	(103.1%)	(40.9%)	(-52.1%)	(-30.8%)	(-12.4%)	(31.2%)	(3.1%)		
121	Leaded gasoline	(-3.2%)	(15.9%)	(22.9%)	-240 (-24%)	(15.7%)	(-2.8%)	(46.2%)	(1.8%)		
		20	0	0	20	0	0	0	-20		
55	Leather dust	(33.8%)	<u>(6%)</u> 620	(-24.5%)	(74.5%)	(-10.5%)	(-29.4%)	(13.2%)	(-19.1%)		
89	Linseed oil	(-0.9%)	(104.9%)	(38.8%)	(-44.9%)	(-27.3%)	(-11%)	(36.5%)	(0.5%)		
104	Liquid fuel	-490	230	20	-570	-120	-20	-10	490		
184	Lubricating oils and	<u>(-21.9%)</u> -820	<u>(40%)</u> 170	(35.2%)	<u>(-56.4%)</u> -1000	<u>(-30.4%)</u> -50	<u>(-9.3%)</u> 10	<u>(-10.8%)</u> 50	<u>(12.4%)</u> 820		
199	greases	(-10.1%)	(8.4%)	(11.9%)	(-27.6%)	(-3.6%)	(1.1%)	(29.9%)	(5.7%)		
110	Maanaaium	-60	-40	$\begin{pmatrix} 0 \\ (22, 40/) \end{pmatrix}$	10 (2.29/)	-20	-10	$\begin{pmatrix} 0 \\ (240/) \end{pmatrix}$	60		
119	Magnesium	-880	(-52.4%)	20	-830	-200	-60	0	880		
201	Manganese	(-12.3%)	(9.9%)	(10.8%)	(-25.6%)	(-15.4%)	(-7.3%)	(1.1%)	(7%)		
108	Manganese filmes	-810 (-12.2%)	230 (13.4%)	30 (15%)	-840 (-28.1%)	-170 (-14%)	-50 (-6.6%)	0 (2.9%)	810 (6.9%)		
170	Malganese runes	-70	10	0	-60	-20	10	0	70		
130	formaldehyde	(-24.3%)	(10.7%)	(2.7%)	(-50.9%)	(-31.2%)	(16.9%)	(-8.2%)	(13.8%)		
153	Mercury	-160 (-8.4%)	30 (6.6%)	-10 (-17.9%)	-70 (-7.7%)	-100 (-30.7%)	0 (-1.6%)	-10 (-26.9%)	160 (4.8%)		
		-260	440	20	-690	10	-10	20	260		
163	Metal coatings	(-6.7%)	(45.1%)	(21.5%)	(-39.8%)	(1.8%)	(-2.7%)	(27.5%)	(3.8%)		
226	Metal oxide fumes	-1600 (-15.8%)	80 (3.2%)	20 (7.9%)	-1300 (-28.5%)	-350 (-18.9%)	-90 (-7.4%)	0 (0.5%)	(8.9%)		
		-3200	-230	-20	-2000	-830	-170	-10	3200		
242	Metallic dust	(-17%)	(-4.9%)	(-2.9%)	(-23.9%)	(-24.5%)	<u>(-7.9%)</u> 40	(-2.4%)	(9.6%)		
38	Methane	(10.9%)	(39.7%)	(26.9%)	-30 (-11.4%)	(22.4%)	(26%)	(9.7%)	(-6.2%)		
102		-700	-210	-20	-350	-70	-60	-30	700		
192	Methanol	<u>(-17.3%)</u> -110	<u>(-20.2%)</u> -10	<u>(-20.5%)</u> -10	<u>(-19.5%)</u> -40	<u>(-9.9%)</u> -60	<u>(-12.8%)</u> 10	<u>(-38.1%)</u> -10	<u>(9.8%)</u> 110		
143	Methyl methacrylate	(-11.8%)	(-3.2%)	(-27.3%)	(-8.6%)	(-35.5%)	(5.5%)	(-36.3%)	(6.7%)		
27	Mathrilana ahlanida	520	140	10	540 (429()	-170	40	-20	-520		
21	Methylene chloride	-60	19.0%)	10	-190	-40	-10	0	<u>(-10.4%)</u> 60		
115	Mica	(-6.8%)	(82%)	(37%)	(-47.7%)	(-22.2%)	(-7.6%)	(1.3%)	(3.9%)		
234	Mild steel dust	-2200	-90 (3.1%)	10	-1600	-480	-90 (7.6%)	-30	2200		
234	Mineral spirits post	-790	1100	40	-1400	-280	-160	30	790		
197	1970	(-4.6%)	(26%)	(7.8%)	(-18.7%)	(-9.1%)	(-8.4%)	(8%)	(2.6%)		
235	Mineral wool fibres	-2300 (-30.6%)	510 (26.7%)	60 (30%)	-2200 (-64 7%)	-560 (-41 2%)	-80 (-9.1%)	-10 (-7.8%)	2300 (17.3%)		
	Mononuclear	(50.070)	(20.770)	(3070)	(07.770)	(71.2/0)	().170)	(1.070)	(17.370)		
229	aromatic	-1800	1400	80	-2700	-460	-160	50	1800		
228	nydrocarbons	<u>(-8.5%)</u> 190	(20.3%) 150	<u>(12./%)</u> 10	$\frac{(-2/.4\%)}{30}$	<u>(-11.8%)</u> 0	<u>(-0.4%)</u> 30	(10.3%) 0	(4.8%) -190		
37	Natural gas	(24.1%)	(73.7%)	(38.2%)	(9.5%)	(-2.2%)	(36.8%)	(-7.4%)	(-13.7%)		

		# Excess Employees Exposed (% of Demographic Group Disproportionately Exposed)									
Agent	CANJEM Chemical Agent	PIPOC	II:i-	ALAN	A .:	Dlash	Multi-	NHDI	W/h:4.		
Kank	Natural gas	4500	3100	170	Asian 820	320	raciai	20	-4500		
7	combustion products	(25.4%)	(69.3%)	(34.7%)	(10.1%)	(10.1%)	(32.3%)	(4%)	(-14.4%)		
125	Natural rubber	-70 (-12.3%)	10 (4.7%)	10 (36.5%)	-100	20 (15.4%)	0 (3.3%)	0 (30.1%)	70 (7%)		
		-1100	-490	-40	-110	-340	-130	-40	1100		
212	Nickel	(-13.9%)	(-25.7%)	(-19.3%)	(-3.1%)	(-24.9%)	(-15.5%)	(-25.8%)	(7.9%)		
173	Nickel fumes	-380 (-13.2%)	-130 (-17.5%)	-10 (-9%)	-120 (-9.3%)	-110 (-20.6%)	-40 (-12.3%)	-10 (-14.6%)	380 (7.5%)		
		20	0	0	10	0	0	0	-20		
54	Nitrates	(73.1%)	(12.2%)	(42.9%)	(119%)	(40.6%)	(-30.2%)	(550.5%)	(-41.4%)		
162	Nitric acid	-250 (-20%)	-70 (-22.7%)	-10 (-31.7%)	-90 (-15.7%)	-70 (-30%)	-10 (-10%)	-10 (-44.5%)	250 (11.3%)		
		-1000	850	80	-1600	-230	0	10	1000		
206	Nitrogen oxides	(-9.1%)	(30.6%)	(26%)	(-32.8%)	(-11.7%)	(0.2%)	(5.5%)	(5.2%)		
73	Nitroglycerine	0 (-2.5%)	-10 (-28.2%)	0 (-18.1%)	0 (7.6%)	0 (11.5%)	0 (-7%)	0 (-17 7%)	(1.4%)		
	Throughy certifie	-20	160	0	-120	-80	30	10	20		
90	Nylon fibres	(-1%)	(26.4%)	(4.6%)	(-11.5%)	(-18.2%)	(11.2%)	(20.7%)	(0.6%)		
25	Organic dyes and	530	870	40	-30	-250	0	10	-530		
25	pigments	(9.4%)	(61.4%)	(25.8%)	(-1.4%)	(-24.7%)	(0.1%)	(7.9%)	(-5.3%)		
202	Organic solvents	-890	(21.3%)	(4.6%)	(-10.1%)	(-9.3%)	-90 (-1.4%)	-00	(0.9%)		
		10	-70	-10	190	-90	-30	0	-10		
67	Other mineral oils	(0.4%)	(-15.6%)	(-20.6%)	(25.4%)	(-31.2%)	(-17.2%)	(6.5%)	(-0.2%)		
017	Other paints,	-1300	1400	70	-2100	-500	-90	30	1300		
217	Other pyrolysis	<u>(-10.3%)</u> -640	(43.2%)	<u>(18.5%)</u> 10	<u>(-36.2%)</u> -460	<u>(-21.4%)</u> -160	<u>(-5.8%)</u> -50	(9.1%)	(5.8%)		
189	fumes	(-11.3%)	(0.5%)	(5.2%)	(-17.8%)	(-15.9%)	(-7.8%)	(-4.6%)	(6.4%)		
		-1900	-880	-40	-1300	210	-110	30	1900		
230	Ozone	(-6.3%)	(-11.3%)	(-5.1%)	(-9.4%)	(3.8%)	(-3.1%)	(4.4%)	(3.6%)		
222	PAHs from any	-2200	1300	120	-3500	-200	90 (2.2%)	100	2200		
232	source	240	110	0	(-21.3%)	40	-10	0	-240		
33	Perchloroethylene	(27.5%)	(49.4%)	(12.7%)	(29.4%)	(27.5%)	(-11.7%)	(3.7%)	(-15.6%)		
100	N	-50	100	0	-190	10	40	0	50		
109	Pesticides	(-3.6%)	(30.9%)	(2.1%)	(-31.4%)	(5%)	(26.9%)	(-3%)	(2.1%)		
104	Phenol	-40 (-13.2%)	-20 (-24.9%)	(-21.1%)	-20 (-10.2%)	(-8.1%)	(-8.2%)	(-2.3%)	40 (7.5%)		
	Phenol-	-60	50	0	-80	-20	0	0	60		
120	formaldehyde	(-22.4%)	(63.8%)	(35%)	(-65.9%)	(-41%)	(-9%)	(8.3%)	(12.7%)		
4.4	Dhaaaaaa	90 (44.0%)	30	0 (10, 40/)	40	30	$\begin{pmatrix} 0 \\ (2, 20) \end{pmatrix}$	0 (18.20/)	-90		
44	Phosgene	(44.9%)	(50.4%)	(10.4%)	<u>(44./%)</u> 50	(81.4%)	(-2.2%)	(18.5%)	<u>(-25.5%)</u> _20		
59	Phosphoric acid	(2.1%)	(9.8%)	(-6%)	(12.3%)	(-29.1%)	(-8.5%)	(20.3%)	(-1.2%)		
		-70	90	10	-120	-30	0	0	70		
127	Phthalates	(-12.4%)	(67.5%)	(34%)	(-50.2%)	(-29.9%)	(-3.4%)	(-5.4%)	(7%)		
207	Plastic dusts	-1000 (-15.9%)	240 (14.8%)	10	-900 (-30.8%)	-350 (-29.7%)	-50 (-6.4%)	10 (8.7%)	1000		
207	Plastics pyrolysis	40	90	10	-80	-50	40	40	-40		
50	fumes	(0.9%)	(8.6%)	(7.5%)	(-3.9%)	(-6.8%)	(8%)	(42.7%)	(-0.5%)		
	No. 1	-20	-10	0	20	-20	0	0	20		
94	Plating solutions	(-8.8%)	(-22.9%)	(-37.8%)	(20.1%)	(-55.2%)	(-16.1%)	(-33.1%)	(5%)		
145	Poly(vinyl acetate)	(-5.9%)	(111.9%)	(49.7%)	-570 (-58.6%)	-120 (-29.9%)	-30 (-10.5%)	(28.6%)	(3.3%)		
		-350	-40	0	-230	-80	-10	10	350		
170	Poly(vinyl chloride)	(-22.1%)	(-10.9%)	(-4.5%)	(-33.1%)	(-26.8%)	(-6.2%)	(21.3%)	(12.5%)		
180	Polyacrylates	-430 (-14.2%)	180	0 (1.3%)	-400 (-29 4%)	-170 (-31.4%)	-20 (-4.6%)	-10 (-20.8%)	430 (8%)		
100	i orgaorgiateo	0	0	0	0	0	0	0	0		
79	Polyamides	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)		
148	Polychlorinated	-140 (-26 7%)	-30	0 (-15 104)	-80	-30 (-27 6%)	(-4, 40%)	0 (_35 404)	140		
140	Siphenyis of 1 CDS	(20.770)	(27.7/0)	(12.170)	(33.070)	(21.070)	(7.7/0)	((13.170)		

		# Excess Employees Exposed (% of Demographic Group Disproportionately Exposed)									
Agent Rank ^b	CANJEM Chemical Agent Category ^e	BIPOC	Hispanic	AIAN	Asian	Black	Multi- racial	NHPI	White		
		10	0	0	-10	20	0	0	-10		
63	Polychloroprene	<u>(9.8%)</u> 480	<u>(-26.5%)</u> 220	<u>(-20.6%)</u> 10	(-23.5%)	<u>(142.4%)</u> 30	<u>(13%)</u> 50	(6.9%) 10	<u>(-5.5%)</u> -480		
28	Polyester fibres	(14%)	(24.6%)	(7.5%)	(14.2%)	(4.8%)	(12.3%)	(9.6%)	(-7.9%)		
137	Polvesters	-100 (-10.6%)	-30 (-12.2%)	0 (-12.7%)	-50 (-11.5%)	-10 (-8.9%)	-10 (-5.2%)	0 (-18,5%)	100 (6%)		
107		20	10	0	0	0	0	10	-20		
56	Polyethylene	<u>(9.8%)</u> 10	(14.2%)	(7.1%)	(4.3%)	(2.2%)	(-5.1%)	(197.5%)	(-5.6%)		
64	Polypropylene	(6.9%)	(8.1%)	(-3.1%)	(5.9%)	(-5.4%)	(-0.8%)	(152.2%)	(-3.9%)		
95	Polystyrene	-20 (-9%)	30 (53.2%)	0 (31.4%)	-50 (-40,4%)	-10 (-23.2%)	0 (-2.5%)	0 (30.1%)	20 (5.1%)		
	Torjstyrene	-100	370	10	-350	-90	-20	20	100		
136	Polyurethanes	(-4.7%)	(66.9%)	(21.8%)	(-36.1%)	(-23%)	(-6.5%)	(38.6%)	(2.7%)		
209	Portland cement	(-24.2%)	(47.5%)	(50.5%)	(-67.9%)	(-28.4%)	(-10.4%)	(12.9%)	(13.7%)		
141	Propage	-110 (-5.9%)	170 (35.8%)	10 (23.9%)	-320	40 (11.6%)	10 (2.6%)	0 (-3.5%)	110		
141	Propane combustion	-160	700	50	-680	-180	80	-20	160		
152	products Propaga angina	(-2.5%)	(43.3%)	(28.9%)	(-23.8%)	(-15.9%)	(10.9%)	(-10.9%)	(1.4%)		
200	emissions	-830 (-13.9%)	(-9.6%)	(3.6%)	(-28.7%)	-40 (-4.1%)	(-0.5%)	(80.8%)	(7.9%)		
10	Dron allout access	1500	420	20	980 (20,1%)	50 (2, 49/)	110	-30	-1500		
18	Propenant gases	120	20	0	(29.1%)	-10	10	0	-120		
41	Rayon fibres	(20.8%)	(16.3%)	(1.1%)	(39.4%)	(-9.4%)	(12.3%)	(10.8%)	(-11.8%)		
107	RDX	-40 (-38.1%)	-10 (-38.5%)	0 (59.2%)	-30 (-74.2%)	0 (1.8%)	0 (11.7%)	0 (33.3%)	40 (21.6%)		
102	D.C. (1111)	-40	80	10	-100	-20	-10	0	40		
102	Refractory brick dust	-70	<u>(92%)</u> 50	(54.5%) 10	(-60.4%) -170	<u>(-26.9%)</u> 40	(-15.2%)	0	(6.4%)		
123	Rubber dust	(-6.6%)	(17.7%)	(19.5%)	(-34.3%)	(19.7%)	(4.5%)	(11.9%)	(3.7%)		
124	Rubber pyrolysis fumes	-70 (-11.9%)	10 (9.1%)	0 (7.8%)	-80 (-29.2%)	-10 (-9%)	0 (1.2%)	0 (14.2%)	70 (6.7%)		
		50	450	20	-330	-40	-10	10	-50		
48	Selenium	(3.8%) -1300	<u>(136%)</u> -40	<u>(56.8%)</u> -10	<u>(-56.2%)</u> -730	<u>(-15.3%)</u> -370	<u>(-7.4%)</u> -120	<u>(41.3%)</u> -30	<u>(-2.2%)</u> 1300		
222	Silicon carbide	(-15.6%)	(-2.1%)	(-4.2%)	(-20.2%)	(-25.5%)	(-13%)	(-13.9%)	(8.9%)		
40	Silk fibres	140 (23.1%)	40 (25.8%)	0 (6.8%)	90 (35.7%)	0 (3%)	10 (9%)	0 (19.6%)	-140 (-13.1%)		
		-380	-70	-20	-100	-190	-10	-20	380		
174	Silver	<u>(-13.2%)</u> -200	<u>(-9.5%)</u> -40	<u>(-22.4%)</u> 0	<u>(-7.5%)</u> -70	<u>(-36%)</u> -70	(-2.2%)	<u>(-34.3%)</u> -10	<u>(7.5%)</u> 200		
157	Silver fumes	(-20.3%)	(-16.4%)	(-17.7%)	(-16.5%)	(-42.7%)	(-7.2%)	(-34.3%)	(11.5%)		
29	Sodium carbonate	460 (14.5%)	470 (58 5%)	20 (22.9%)	-270 (-18 5%)	300 (51.6%)	0 (0.5%)	0 (5.6%)	-460 (-8.2%)		
	Sodium	-40	0	0	-30	-20	0	0	40		
103	hydrosulphite	(-13.2%)	(-1.3%)	(-1.2%)	(-18.5%)	(-30.1%)	(10.6%)	(-18.8%)	(7.5%)		
224	Soldering fumes	(-20.5%)	(-10.1%)	(-8.7%)	(-23%)	(-36.4%)	(-11.1%)	(-17.3%)	(11.6%)		
181	Soot	-440	0	10 (14,5%)	-470 (50.3%)	$\begin{pmatrix} 0 & 4\% \end{pmatrix}$	$\begin{pmatrix} 0 \\ (2, 1\%) \end{pmatrix}$	30 (57 1%)	440		
101	5001	-1100	-490	-40	-110	-350	-130	-40	1100		
213	Stainless steel dust	(-15.8%)	(-28.7%)	(-22%)	(-3.6%)	(-28.6%)	(-17.2%)	(-29.3%)	(9%)		
13	Starch dust	(26.1%)	950 (60.3%)	50 (29.9%)	390 (13.8%)	210 (18.4%)	(24.2%)	50 (19.8%)	-1000 (-14.8%)		
116	Strmong	-60	-20	0	-30	-10	0	0	60 (4.5%)		
110	Styrene-butadiene	<u>(-/.9%)</u> -70	(-8.2%) 10	(-8.5%) 10	<u>(-8.6%)</u> -100	<u>(-/./%)</u> 20	<u>(-4.1%)</u> 0	<u>(-1/.1%)</u> 0	(4.5%) 70		
126	rubber	(-12.3%)	(4.7%)	(36.5%)	(-40.4%)	(15.4%)	(3.3%)	(30.1%)	(7%)		
14	Sugar dust	(24.4%)	970 (59.2%)	(35.5%)	260 (9%)	240 (20.4%)	(26.4%)	30 (19.9%)	-1600 (-13.8%)		

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		# Excess Employees Exposed (% of Demographic Group Disproportionately Exposed)										
Agent Chemical Agent Multi- Rank ^b Category ^c BIPOC Hispanic AIAN Asian Black racial NHP1 White -40 -10 0 -30 0 0 0 0 0 40 106 Sulfur (-37.8%) (-38.2%) (58%) (-73.6%) (1.6%) (10.8%) (32.3%) (21.4%) -400 590 40 -890 -70 10 -10 400 178 Sulphur dioxide (-7.6%) (44.1%) (30%) (-37.7%) (-7.9%) (1.3%) (-5.3%) (4.3%) 185 Sulphuric acid (-12.9%) (-20%) (-8.5%) (-26.8%) (-6%) (-32.4%) (7.3%) 218 Synthetic adhesives (-10.6%) (22.2%) (7%) (-24.7%) (-24.3%) (-7%) (11.5%) (6%) 26 Synthetic fibres (8%) (27.3%) (6.1%) <th></th> <th>CANJEM</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>		CANJEM										
Rank ^b Category ^c BIPOC Hispanic AIAN Asian Black racial NHPI White -40 -10 0 -30 0 0 0 0 40 106 Sulfur (-37.8%) (-38.2%) (58%) (-73.6%) (1.6%) (10.8%) (32.3%) (21.4%) -400 590 40 -890 -70 10 -10 400 178 Sulphur dioxide (-7.6%) (44.1%) (30%) (-73.7%) (-7.9%) (1.3%) (-5.3%) (4.3%) 185 Sulphuric acid (-12.9%) (-12%) (-20%) (-8.5%) (-26.8%) (-6%) (-32.4%) (7.3%) -1300 710 20 -1400 -550 -100 30 1300 218 Synthetic adhesives (-10.6%) (22.2%) (7%) (-24.3%) (-7%) (11.5%) (6%) 26 Synthetic fibres (8%) (27.3%) (6.1%) (2%)	Agent	Chemical Agent						Multi-				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Rank ^b	Category ^c	BIPOC	Hispanic	AIAN	Asian	Black	racial	NHPI	White		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	107	G 16	-40	-10	0	-30	0	0	0	40		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	106	Sulfur	(-37.8%)	(-38.2%)	(58%)	(-/3.6%)	(1.6%)	(10.8%)	(32.3%)	(21.4%)		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	178	Sulphur dioxide	-400	590 (44,1%)	40 (30%)	-890	-/0 (7.0%)	10	-10	400		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	178	Sulphui uloxide	-500	-120	-20	-150	-190	-30	-30	500		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	185	Sulphuric acid	(-12.9%)	(-12%)	(-20%)	(-8.5%)	(-26.8%)	(-6%)	(-32.4%)	(7.3%)		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	100	Duiphane aeta	-1300	710	20	-1400	-550	-100	30	1300		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	218	Synthetic adhesives	(-10.6%)	(22.2%)	(7%)	(-24.7%)	(-24.3%)	(-7%)	(11.5%)	(6%)		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			530	450	10	60	-10	70	20	-530		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	26	Synthetic fibres	(8%)	(27.3%)	(6.1%)	(2%)	(-0.8%)	(9.3%)	(15.6%)	(-4.5%)		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-0		0	0	0	0	0	0	0	0		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	78	Tannic acid	(%)	(%)	(%)	(%)	(%)	<u>(%)</u>	(%)	<u>(%)</u>		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	215	Tin	-1200	-2/0	-30	-360	-440	-100	-30	1200		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	215	1 in	(-10.0%)	(-15.5%)	(-14.1%)	(-11.4%)	(-35%)	(-13%)	(-18.3%)	(9.4%)		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	204	Tin fumes	-970	-210 (-15.9%)	-20	-370	-350	-70	-20	(10.7%)		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	204	1 III Tullies	-520	430	10	-570	-260	-100	-10	520		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	186	Titanium	(-7.9%)	(26.2%)	(7.5%)	(-19.2%)	(-22.2%)	(-14%)	(-4.7%)	(4.5%)		
135 Titanium dioxide (-3.5%) (111.7%) (51.8%) (58%) (10.0%) (7.6%) (29.8%) (20.%)			-100	770	40	-720	-100	-20	20	100		
(-1.070) = (-1.070)	135	Titanium dioxide	(-3.5%)	(111.7%)	(51.8%)	(-58%)	(-19.9%)	(-7.6%)	(28.8%)	(2%)		
Titanium dioxide 0		Titanium dioxide	0	0	0	0	0	0	0	0		
<u>81 fumes (%) (%) (%) (%) (%) (%) (%) (%)</u>	81	fumes	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)		
0 0 0 0 0 0 0 0 0			0	0	0	0	0	0	0	0		
77 Tobacco dust (%) <th< td=""><td>77</td><td>Tobacco dust</td><td>(%)</td><td>(%)</td><td>(%)</td><td>(%)</td><td>(%)</td><td>(%)</td><td>(%)</td><td>(%)</td></th<>	77	Tobacco dust	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)		
-710 740 20 -1200 -230 -20 10 710 710 (2000)	104	T 1	-710	740	20	-1200	-230	-20	10	710		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	194	loluene	(-8%)	(33.3%)	(9.3%)	(-29.1%)	(-14.6%)	(-2.4%)	(5.4%)	(4.6%)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	176	Trichloroethylene	-390	-280	-30	10	-110	-30	20 (25%)	590 (6.8%)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	170	Themoroeutytene	0	0	0	0	0	0	0	0		
84 Trinitrotoluene (%) (%) (%) (%) (%) (%) (%) (%)	84	Trinitrotoluene	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)		
-230 -90 -10 -60 -60 -20 -10 230			-230	-90	-10	-60	-60	-20	-10	230		
160 Tungsten compounds (-22.9%) (-34.6%) (-20.6%) (-14%) (-33.6%) (-19.3%) (-23.8%) (13%)	160	Tungsten compounds	(-22.9%)	(-34.6%)	(-20.6%)	(-14%)	(-33.6%)	(-19.3%)	(-23.8%)	(13%)		
-90 270 20 -330 -20 -10 10 90			-90	270	20	-330	-20	-10	10	90		
<u>133</u> Turpentine (-7.6%) (87%) (47.2%) (-58.6%) (-11%) (-9.3%) (44.9%) (4.3%)	133	Turpentine	(-7.6%)	(87%)	(47.2%)	(-58.6%)	(-11%)	(-9.3%)	(44.9%)	(4.3%)		
Unsaturated aliphatic -200 -20 10 -190 -10 -10 10 200		Unsaturated aliphatic	-200	-20	10	-190	-10	-10	10	200		
<u>156 hydrocarbons (-15.5%) (-4.9%) (17.9%) (-32.5%) (-3.3%) (-3.7%) (19.9%) (8.8%)</u>	156	hydrocarbons	(-15.5%)	(-4.9%)	(17.9%)	(-32.5%)	(-3.3%)	(-3.7%)	(19.9%)	(8.8%)		
-50 190 10 -180 -40 -10 0 50 (112,00) (111	XX C 111 1	-50	190	10	-180	-40	-10	0	50		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	111	Urea-formaldehyde	(-/.6%)	(113.6%)	(45%)	(-60.6%)	(-33.8%)	(-12.3%)	(24.5%)	(4.3%)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	69	Vanadium	(5, 5%)	0 (18.1%)	0	0 (12,5%)	(27.6%)	(1.6%)	0	(2 10/)		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	08	vanadium	530	10	10	620	-120	40	-10	-530		
24 Vinvl chloride (25.6%) (2.5%) (9.2%) (66.1%) (-33.3%) (15.7%) (-18.1%) (-14.5%)	24	Vinvl chloride	(25.6%)	(2.5%)	(9.2%)	(66.1%)	(-33.3%)	(15.7%)	(-18.1%)	(-14.5%)		
$\frac{210}{240} = \frac{580}{580} = \frac{100}{100} = \frac{100}{100} = \frac{1000}{100} = \frac{1000}{$		villyrellioride	240	580	10	-400	150	-30	-10	-240		
34 Waxes, polishes (4.8%) (46.6%) (11%) (-18.2%) (16.9%) (-5.2%) (-8.5%) (-2.7%)	34	Waxes, polishes	(4.8%)	(46.6%)	(11%)	(-18.2%)	(16.9%)	(-5.2%)	(-8.5%)	(-2.7%)		
-1600 0 20 -1300 -350 -90 20 1600		<i>,</i> ,	-1600	0	20	-1300	-350	-90	20	1600		
<u>227</u> Welding fumes (-16.8%) (-0.1%) (8.1%) (-28.8%) (-20%) (-7.9%) (7.1%) (9.5%)	227	Welding fumes	(-16.8%)	(-0.1%)	(8.1%)	(-28.8%)	(-20%)	(-7.9%)	(7.1%)	(9.5%)		
Wood combustion 40 60 0 0 -20 10 0 -40		Wood combustion	40	60	0	0	-20	10	0	-40		
<u>49</u> products (7.8%) (49.7%) (27%) (-1.3%) (-24.2%) (15%) (-11.4%) (-4.4%)	49	products	(7.8%)	(49.7%)	(27%)	(-1.3%)	(-24.2%)	(15%)	(-11.4%)	(-4.4%)		
-3200 1900 160 -4200 -800 -100 30 3200			-3200	1900	160	-4200	-800	-100	30	3200		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	243	Wood dust	(-18.3%)	(42.4%)	(33.1%)	(-53.2%)	(-25.3%)	(-5%)	(8.2%)	(10.4%)		
Wood varnishes, -110 950 50 -870 -130 -20 20 110	140	Wood varnishes,	-110	950	50	-870	-130	-20	20	110		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	140	stains and paints	(-5.1%)	(104.1%)	(43.3%)	(-33.1%)	(-19.9%)	(-0.1%)	(27.1%)	(1.8%)		
32 Wool fibres (17.7%) (35.2%) (15.5%) (16.6%) (7.5%) (11.8%) (5.7%) (-1.0%)	32	Wool fibres	330 (17.7%)	(35.2%)	(15.5%)	(16.6%)	20 (7.5%)	20 (11.8%)	0 (5.7%)	-330		

		-370	560	30	-820	-70	-20	10	370
172	Xylene	(-8.3%)	(50.5%)	(22.6%)	(-41.1%)	(-8.9%)	(-3.9%)	(9.7%)	(4.7%)
		-1000	-140	-10	-600	-240	-60	-10	1000
208	Zinc	(-19.4%)	(-10.9%)	(-6.4%)	(-25.4%)	(-25.1%)	(-9.6%)	(-6.2%)	(11%)
		-920	-150	-10	-470	-270	-50	-10	920
203	Zinc fumes	(-24.9%)	(-16.5%)	(-6.2%)	(-28.5%)	(-40%)	(-12.6%)	(-7.4%)	(14.1%)
		-20	60	0	-30	-30	0	0	20
92	Zinc oxide	(-3.4%)	(46.5%)	(-0.9%)	(-14.2%)	(-39.6%)	(-1.3%)	(-16.8%)	(1.9%)

^a Employee counts are rounded to the nearest 10s if <1000, and to the nearest 100s if >1000 ^b Agents are ranked by estimates of disproportionate exposure for BIPOC employees ^c Table is sorted in alphabetical order by agent

This page intentionally left blank

Appendix B: Estimates of High Exposure

Analysis 1-B: Estimates of High Exposure – All Agents

	# of Employees Highly Exposed ^a (% of Demographic Group)									
	CANJEM									
Agent	Chemical Agent								Multi-	
Rank ^b	Category ^c	All	BIPOC	Hispanic	AIAN	Asian	Black	NHPI	racial	White
10	1,1,1-	880	240	60	10	120	40	0	30	640
46	Trichlorethane	(0.1%)	(0%)	(0%)	(0.1%)	(0.1%)	(0%)	(0%)	(0.1%)	(0.1%)
20	A hunariyyaa duat	1800	620	130	10 (0.19/)	320	100	10 (0.19/)	/0	1200
20	Abrasives dust	(0.1%)	(0.1%)	(0.1%)	(0.1%)	(0.1%)	(0.1%)	(0.1%)	(0.1%)	(0.1%)
171	Acetate fibres	0 (0%)	(0%)	(0%)	(0%)	(0%)	(0%)	0%)	(0%)	(0%)
1/1	Tieduite Holes	0	0	0	0	0	0	0	0	0
210	Acetic acid	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)
		370	140	30	0	70	20	10	10	220
77	Acetone	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)
		0	0	0	0	0	0	0	0	0
193	Acetylene	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)
120	A	30	20	0	0	10	(0)	0	0	10
128	Acrylic libres	1800	640	(0%)	10	200	(0%)	10	(0%)	1200
21	Aliphatic alcohols	(0.1%)	(0.1%)	(0.1%)	(0.1%)	300 (0.1%)	(0.1%)	(0.1%)	(0.1%)	(0.1%)
21	Aliphatic	1000	310	90	10	110	60	10	40	700
38	aldehydes	(0.1%)	(0.1%)	(0.1%)	(0.1%)	(0%)	(0.1%)	(0.1%)	(0.1%)	(0.1%)
	2	1100	350	80	10	180	50	10	40	750
35	Aliphatic esters	(0.1%)	(0.1%)	(0.1%)	(0.1%)	(0.1%)	(0.1%)	(0.1%)	(0.1%)	(0.1%)
		1300	440	90	10	240	70	10	40	850
27	Aliphatic ketones	(0.1%)	(0.1%)	(0.1%)	(0.1%)	(0.1%)	(0.1%)	(0.1%)	(0.1%)	(0.1%)
		0	0	0	0	0	0	0	0	0
240	Alkanes (C1-C4)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)
2	Aller	8800	2800	780	90	1200	430	60	300	6000
3	Alkanes (C18+)	5000	1700	(0.070)	(0.0%)	620	240	(0.0%)	180	2200
6	Alkanes (C5-C17)	(0.4%)	(0.3%)	(0.5%)	(0.4%)	(0.3%)	(0.3%)	(0.4%)	(0.3%)	(0.4%)
0	Tikulies (C5 C17)	580	190	30	0	110	30	0	20	400
59	Alkvds	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)
	2	20	10	0	0	0	0	0	0	10
133	Alumina	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)
		1200	400	70	10	220	60	10	40	840
32	Aluminium	(0.1%)	(0.1%)	(0.1%)	(0.1%)	(0.1%)	(0.1%)	(0.1%)	(0.1%)	(0.1%)
		110	40	10	0	10	10	0	0	70
109	Aluminium fumes	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)
00	A	250	120	60 (0%)	(0)	30	30	(0)	10	130
90	Ammonia	070)	0	0	0	0	0	070)	0	(076)
195	Anaesthetic gases	0 (0%)	(0%)	(0%)	(0%)	(0%)	(0%)	0 (0%)	(0%)	(0%)
175	Animal, vegetable	10	0	0	0	0	0	0	0	0
144	glues	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)
	0	40	20	0	0	10	0	0	0	30
124	Antimony	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)
		0	0	0	0	0	0	0	0	0
242	Aromatic alcohols	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)
101		30	10	0	0	0	0	0	0	30
131	Aromatic amines	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)
224	Arconio	U (0%)	0	U (0%)	0	0	0	0	0	U (0%)
234	Arsenic	<u>(U%)</u> 80	20	10	0	0	0%)	(0%)	0	70
118	Ashestos	00 (0%)	20 (0%)	(0%)	0 (0%)	(0%)	(0%)	0 (0%)	0 (0%)	(0%)
110	10000000	0	0	0	0	0	0	0	0	0
154	Ashes	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)
		1200	460	290	20	70	60	10	50	780
31	Asphalt	(0.1%)	(0.1%)	(0.2%)	(0.2%)	(0%)	(0.1%)	(0.1%)	(0.1%)	(0.1%)

Table B-1. Estimated prevalence of high exposures to all CANJEM agents in King County by race and ethnicity, 2019.

		# of Emp	loyees Higl	hly Exposed	^a (% of D	emographi	c Group)			
Agent	CANJEM Chemical Agent	_							Multi-	
Rank ^b	Category ^c	All	BIPOC	Hispanic	AIAN	Asian	Black	NHPI	racial	White
225	Aviation gasoline	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)
162	Basic lead carbonate	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)
		370	140	80	10	30	20	10	10	220
78	Benzene	(0%)	(0%)	(0.1%)	(0%)	(0%)	(0%)	(0.1%)	(0%)	<u>(0%)</u> 170
87	Benzo[a]pyrene	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)
230	Beryllium	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)
230	Deryman	2600	770	250	20	310	120	20	100	1800
15	Biocides	(0.2%)	(0.2%)	(0.2%)	(0.2%)	(0.1%)	(0.1%)	(0.2%)	(0.2%)	(0.2%)
245	Bleaches	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0(0%)
150	Duran durat	0	0	0	0	0	0	0	0	0
152	Brass dust	240	<u>(0%)</u> 60	30	0	10	10	0%)	10	<u>(0%)</u> 180
92	Brick dust	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)
151	Bronze dust	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)
		0	0	0	0	0	0	0	0	0
237	Cadmium	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)
203	Cadmium fumes	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)
24		1300	410	210	20	70	70	10	50	930
26	Calcium carbonate	(0.1%) 270	<u>(0.1%)</u> 110	(0.2%)	<u>(0.2%)</u> 0	<u>(0%)</u> 20	<u>(0.1%)</u> 10	0.1%)	<u>(0.1%)</u> 10	<u>(0.1%)</u> 170
85	Calcium oxide	(0%)	(0%)	(0.1%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)
107	Calcium oxide	$\begin{pmatrix} 0 \\ (0\%) \end{pmatrix}$	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)
197	Tumes	1100	350	210	20	60	50	10	40	720
34	Calcium sulphate	(0.1%)	(0.1%)	(0.2%)	(0.1%)	(0%)	(0.1%)	(0.1%)	(0.1%)	(0.1%)
122	Carbon black	50 (0%)	10 (0%)	0 (0%)	0 (0%)	10 (0%)	0 (0%)	0 (0%)	0 (0%)	40 (0%)
		0	0	0	0	0	0	0	0	0
217	Carbon disulphide	<u>(0%)</u> 750	<u>(0%)</u> 200	<u>(0%)</u> 70	<u>(0%)</u> 10	<u>(0%)</u> 50	<u>(0%)</u> 40	<u>(0%)</u> 10	<u>(0%)</u> 30	<u>(0%)</u> 550
53	Carbon monoxide	(0.1%)	(0%)	(0.1%)	(0.1%)	(0%)	(0%)	(0.1%)	(0.1%)	(0.1%)
215	Carbon	0 (0%)	0 (0%)	0 (0%)	0	0 (0%)	0 (0%)	0 (0%)	0	0 (0%)
213	Caustic alkali	340	150	70	0	40	30	0	10	190
79	solutions	(0%)	(0%)	(0.1%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)
28	Cellulose	(0.1%)	430 (0.1%)	120 (0.1%)	10 (0.1%)	180 (0.1%)	70 (0.1%)	30 (0.2%)	50 (0.1%)	820 (0.1%)
		10	0	0	0	0	0	0	0	0
141	Cellulose acetate	(0%)	<u>(0%)</u>	<u>(0%)</u>	<u>(0%)</u>	<u>(0%)</u>	<u>(0%)</u>	<u>(0%)</u>	(0%)	<u>(0%)</u>
172	Cellulose nitrate	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)
10	Chlorinated	1900	570	130	20	280	90 (0.19/)	10	70	1300
19	Chlorinated	2400	830	180	20	430	120	20	90	1600
17	alkenes	(0.2%)	(0.2%)	(0.1%)	(0.2%)	(0.2%)	(0.1%)	(0.2%)	(0.2%)	(0.2%)
43	Chlorine	890 (0.1%)	430 (0.1%)	100 (0.1%)	10 (0.1%)	130	170 (0.2%)	10 (0.1%)	30 (0.1%)	470 (0.1%)
-15	Childrine	890	430	100	10	130	170	10	30	470
44	Chlorine dioxide	(0.1%)	(0.1%)	(0.1%)	(0.1%)	(0.1%)	(0.2%)	(0.1%)	(0.1%)	(0.1%)
216	Chloroform	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)
	<i>.</i>	1200	400	70	10	220	60	10	40	840
33	Chromium	(0.1%) 670	(0.1%)	<u>(0.1%)</u> 40	(0.1%)	(0.1%) 120	<u>(0.1%)</u> 30	(0.1%)	(0.1%)	(0.1%) 450
57	Chromium (VI)	(0%)	(0%)	(0%)	(0%)	(0.1%)	(0%)	(0%)	(0%)	(0.1%)

		# of Employees Highly Exposed ^a (% of Demographic Group)									
	CANJEM										
Agent Rank ^b	Chemical Agent	A11	RIPOC	Hisnanic	AIAN	Asian	Black	NHPI	Multi- racial	White	
Канк	Category	10	10	0	0	0	0	0	0	10	
143	Chromium fumes	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	
132	Clay dust	20 (0%)	10 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	10 (0%)	
	5	2900	1200	320	30	450	300	20	120	1700	
12	Cleaning agents	(0.2%)	(0.2%)	(0.2%)	(0.2%)	(0.2%)	(0.3%)	(0.2%)	(0.2%)	(0.2%)	
204	products	(0%)	(0%)	(0%)	(0%)	0 (0%)	0 (0%)	0 (0%)	(0%)	0 (0%)	
	G 11	270	60	10	0	10	20	0	10	210	
86	Coal dust	(0%)	<u>(0%)</u> 90	<u>(0%)</u> 60	(0%)	<u>(0%)</u> 10	<u>(0%)</u> 10	(0%)	<u>(0%)</u> 10	<u>(0%)</u> 160	
91	Coal tar and pitch	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	
222	C 1 1	0	0	0	0	0	0	0	0	0	
233	Cobait Coke combustion	0%)	0	0	0%)	0%)	0%)	0%)	0%)	0%)	
207	products	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	
193	Colvo dust	0 (0%)	0 (0%)	(0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	
185	Coke dust	940	220	110	10	40	30	10	30	720	
41	Concrete dust	(0.1%)	(0%)	(0.1%)	(0.1%)	(0%)	(0%)	(0.1%)	(0.1%)	(0.1%)	
1	Cooking fumes	17900	8200 (1.6%)	2900 (2.2%)	260 (1.8%)	3200	1200	150	1000	9700 (1.1%)	
1	cooking funies	850	250	50	10	120	50	10	30	600	
48	Copper	(0.1%)	(0%)	(0%)	(0.1%)	(0.1%)	(0%)	(0.1%)	(0.1%)	(0.1%)	
200	Copper fumes	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	
200	Copper funites	0	0	0	0	0	0	0	0	0	
165	Cork dust	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	
156	Cosmetic talc	0 (0%)	0 (0%)	0(0%)	0(0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	
		180	90	10	0	60	10	0	0	90	
100	Cotton dust	<u>(0%)</u> 10	(0%)	(0%)	(0%)	(0%)	<u>(0%)</u>	(0%)	(0%)	(0%)	
145	Creosote	(0%)	(0%)	(0%)	(0%)	0 (0%)	(0%)	0 (0%)	(0%)	(0%)	
50		760	200	110	10	30	30	10	20	560	
52	Cristalline silica	<u>(0.1%)</u> 0	<u>(0%)</u> 0	<u>(0.1%)</u> 0	0.1%)	0%)	0%)	0.1%)	0%)	0	
224	Crude petroleum	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	
4	Cutting fluids	6700 (0.5%)	2000	410	50 (0.4%)	1100	330	40 (0.3%)	230	4700	
4	post-1955	100	30	10	0	20	0	0	0	70	
117	Cyanides	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	
13	Diesel engine emissions	2800 (0.2%)	740 (0.1%)	320 (0.2%)	50 (0.3%)	140 (0.1%)	150 (0.2%)	30 (0.3%)	110	2000	
15	Chilissions	0	0	0	0	0	0	0	0	0	
222	Diesel oil	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	
212	Diethyl ether	0(0%)	0(0%)	0(0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	
	Bieuryr euror	3700	1300	530	50	340	260	30	160	2400	
11	Engine emissions	(0.3%)	(0.3%)	(0.4%)	(0.4%)	(0.1%)	(0.3%)	(0.3%)	(0.3%)	(0.3%)	
63	Epoxies	560 (0%)	180	30 (0%)	0(0%)	(0%)	30 (0%)	0(0%)	20 (0%)	380	
	•	150	50	10	0	30	10	0	0	100	
107	Ethanol	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	
121	Ethylene glycol	(0%)	20 (0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	40 (0%)	
		390	150	20	0	80	30	0	10	240	
75	Ethylene oxide	<u>(0%)</u> 100	<u>(0%)</u> 30	<u>(0%)</u> 10	<u>(0%)</u> 0	<u>(0%)</u> 10	<u>(0%)</u> 0	<u>(0%)</u> 0	<u>(0%)</u> 0	<u>(0%)</u> 70	
115	Extenders	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	
70	F1 1 .	490	240	50	0	160	20	0	20	250	
/0	Fabric dust	(0%)	(0%)	(0%)	(0%)	(0.1%)	(0%)	(0%)	(0%)	(0%)	

	# of Employees Highly Exposed ^a (% of Demographic Group)										
Agent	CANJEM Chemical Agent								Multi-		
Rank ^b	Category ^c	All	BIPOC	Hispanic	AIAN	Asian	Black	NHPI	racial	White	
167	Felt dust	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	
88	Fertilizers	270 (0%)	60 (0%)	10 (0%)	0 (0%)	10 (0%)	20 (0%)	0 (0%)	10 (0%)	210 (0%)	
164	F1 C1	0	0	0	0	0	0	0	0	0	
164	Flax fibres	720	280	<u>(0%)</u> 80	<u>(0%)</u> 10	<u>(0%)</u> 110	<u>(0%)</u> 60	<u>(0%)</u> 10	<u>(0%)</u> 30	<u>(0%)</u> 450	
55	Flour dust	(0.1%)	(0.1%)	(0.1%)	(0.1%)	(0%)	(0.1%)	(0.1%)	(0.1%)	(0%)	
227	Fluorides	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	
		530	230	40	0	150	20	0	20	300	
67	Fluorocarbons	<u>(0%)</u> 1000	<u>(0%)</u> 310	<u>(0%)</u> 90	<u>(0%)</u> 10	(0.1%)	<u>(0%)</u> 60	<u>(0%)</u> 10	<u>(0%)</u> 40	<u>(0%)</u> 700	
37	Formaldehyde	(0.1%)	(0.1%)	(0.1%)	(0.1%)	(0%)	(0.1%)	(0.1%)	(0.1%)	(0.1%)	
211	Formic acid	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	
		30	20	0	0	10	0	0	0	10	
126	Fur dust	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	
147	Glass dust	(0%)	0 (0%)	(0%)	(0%)	0 (0%)	0 (0%)	(0%)	0 (0%)	(0%)	
148	Glass fibres	0 (0%)	0	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0	0 (0%)	0 (0%)	
140	Glass Holes	80	30	10	0	10	10	0	0	50	
120	Glycol ethers	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	
25	Grain dust	(0.1%)	350 (0.1%)	90 (0.1%)	20 (0.1%)	80 (0%)	(0.1%)	(0.2%)	60 (0.1%)	(0.1%)	
127	Creatite dust	20	10	0	0	10	0	0	0	10	
137	Graphite dust	0%)	0%)	0%)	0%)	0%)	0%)	0%)	0%)	0%)	
166	Hair dust	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	
223	Heating oil	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	
112	Hydraulic fluid	110	20 (0%)	10 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	90 (0%)	
	Tryutune nute	0	0	0	0	0	0	0	0	0	
185	Hydrogen	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	
119	Hydrogen chloride	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	
186	Hudrogen gyanide	0 (0%)	$\binom{0}{0}$	0 (0%)	0	0 (0%)	0 (0%)	$\binom{0}{(0\%)}$	0 (0%)	0 (0%)	
180	Hydrogen cyanide	0	0	0	0	0	0	0	0	0	
187	Hydrogen fluoride	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	
83	peroxide	(0%)	(0%)	30 (0%)	0 (0%)	(0%)	(0%)	0 (0%)	20 (0%)	(0%)	
190	II	0	0	0	0	0	0	0	0	0	
189	Hydrogen sulphide	0	0	0%)	0%)	0	0%)	0%)	0	0	
228	Hypochlorites	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	
149	Industrial talc	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	
	T 1	890	310	70	10	170	40	10	30	580	
45	Inks Inorganic acid	(0.1%) 790	(0.1%)	<u>(0.1%)</u> 50	<u>(0%)</u> 10	(0.1%)	<u>(0%)</u> 30	0.1%)	<u>(0%)</u> 30	<u>(0.1%)</u> 530	
51	solutions	(0.1%)	(0%)	(0%)	(0%)	(0.1%)	(0%)	(0%)	(0%)	(0.1%)	
146	Inorganic insulation dust	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	
	Inorganic	210	70	20	0	30	10	0	10	140	
95	pigments	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	
18	Iron	(0.2%)	(0.1%)	(0.1%)	(0.1%)	(0.2%)	(0.1%)	(0.1%)	(0.1%)	(0.2%)	
106	Iron fumes	160	70 (0%)	30 (0%)	0	20 (0%)	10	0	10	100	
100	non runtes	(0/0)	(0/0)	(0/0)	(0/0)	(0/0)	(0/0)	(0/0)	(0/0)	(0/0)	

	# of Employees Highly Exposed ^a (% of Demographic Group)									
	CANJEM	•	<u>, </u>	- · - ·			• /			
Agent	Chemical Agent		DIDOC	· ·				NIIDI	Multi-	XX71 • /
Kank [®]	Category	All 180	BIPOC 70	Hispanic 10	AIAN	Asian 20	Black 30	0	racial	White 110
99	Iron oxides	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)
		1100	430	270	20	70	60	10	40	670
36	Isocyanates	(0.1%)	(0.1%)	(0.2%)	(0.1%)	(0%)	(0.1%)	(0.1%)	(0.1%)	(0.1%)
56	Isopropanol	(0%)	(0.1%)	(0.1%)	(0.1%)	(0%)	(0.1%)	(0.1%)	(0%)	(0%)
-	• •	0	0	0	0	0	0	0	0	0
221	Kerosene	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)
66	Lead	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)
		0	0	0	0	0	0	0	0	0
163	Lead chromate	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)
68	Lead fumes	(0%)	(0%)	(0%)	(0%)	80 (0%)	(0%)	(0%)	(0%)	(0%)
		0	0	0	0	0	0	0	0	0
161	Lead oxides	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)
220	Leaded gasoline	(0%)	(0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	(0%)	(0%)	0 (0%)
	0	10	0	0	0	0	0	0	0	10
140	Leather dust	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)
74	Linseed oil	410 (0%)	(0%)	40 (0%)	0(0%)	50 (0%)	20 (0%)	10 (0%)	10 (0%)	280
	Liquid fuel	(*:-)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)
102	combustion	170	30	10	0	10	10	0	0	140
103	products Lubricating oils	210	<u>(0%)</u> 50	<u>(0%)</u> 20	0%)	20	<u>(0%)</u> 10	0%)	<u>(0%)</u> 10	<u>(0%)</u> 160
96	and greases	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)
		0	0	0	0	0	0	0	0	0
231	Magnesium	(0%)	<u>(0%)</u> 40	<u>(0%)</u> 10	(0%)	<u>(0%)</u> 10	<u>(0%)</u> 10	<u>(0%)</u>	<u>(0%)</u>	(0%)
113	Manganese	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)
		110	40	10	0	10	10	0	0	70
110	Manganese fumes	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)
178	formaldehyde	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)
-	*	0	0	0	0	0	0	0	0	0
239	Mercury	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)
58	Metal coatings	(0%)	(0%)	40 (0%)	0 (0%)	(0%)	30 (0%)	(0%)	(0%)	420 (0%)
	0	1200	390	150	20	130	60	10	50	850
29	Metal oxide fumes	(0.1%)	(0.1%)	(0.1%)	(0.1%)	(0.1%)	(0.1%)	(0.1%)	(0.1%)	(0.1%)
7	Metallic dust	4/00 (0.3%)	(0.3%)	(0.2%)	40 (0.3%)	(0.3%)	(0.3%)	30 (0.3%)	(0.3%)	(0.4%)
		0	0	0	0	0	0	0	0	0
191	Methane	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)
69	Methanol	510 (0%)	(0%)	80 (0.1%)	10 (0%)	60 (0%)	40 (0%)	0(0%)	20 (0%)	320 (0%)
	Methyl	340	100	30	0	40	10	0	20	240
80	methacrylate	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)
108	chloride	120	50 (0%)	10 (0%)	0 (0%)	20 (0%)	10	0 (0%)	0	/0 (0%)
100	cinonae	0	0	0	0	0	0	0	0	0
155	Mica	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)
30	Mild steel dust	950 (0.1%)	320	70 (0.1%)	10	150	70 (0.1%)	10	30 (0.1%)	630 (0.1%)
37	Mineral spirits	4100	1400	540	40	530	200	40	150	2700
8	post 1970	(0.3%)	(0.3%)	(0.4%)	(0.3%)	(0.2%)	(0.2%)	(0.3%)	(0.3%)	(0.3%)
152	Mineral wool	(0^{9})	(0.00)	(0)	(0.00)	0 (0%)	(0^{9})	0 (0%)	0 (0%)	$(0^{9/})$
133	Mononuclear	(070)	(070)	(070)	(070)	(070)	(070)	(070)	(070)	(070)
	aromatic	3900	1400	610	50	410	190	40	150	2500
10	hydrocarbons	(0.3%)	(0.3%)	(0.5%)	(0.3%)	(0.2%)	(0.2%)	(0.4%)	(0.3%)	(0.3%)

		# of Employees Highly Exposed ^a (% of Demographic Group)									
Agent Bonk ^b	CANJEM Chemical Agent	A 11	PIPOC	Uispania	ATAN	Asian	Dlaak	NHDI	Multi-	White	
Nalik	Category	0	0	0	0	0	0	0	0	0	
190	Natural gas Natural gas	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	
22	combustion	1700	780	280	20	300	110	10	100	910 (0.1%)	
23	products	0	0	0	0	0	0	0	0	0	
169	Natural rubber	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	
65	Nickel	300 (0%)	(0%)	30 (0%)	0 (0%)	(0%)	30 (0%)	0 (0%)	20 (0%)	380 (0%)	
199	Nickel fumes	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	
220	Nitrotes	$\binom{0}{(0\%)}$	$\binom{0}{0}$	0 (0%)	$\binom{0}{(0\%)}$	0 (0%)	0 (0%)	0 (0%)	0	$\binom{0}{(0\%)}$	
229	Muates	0	0	0	0	0	0	0	0	0	
208	Nitric acid	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	
138	Nitrogen oxides	20 (0%)	10 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	10 (0%)	
213	Nitroglycerine	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	
126		20	10	0	0	10	0	0	0	10	
136	Organic dyes and	<u>(0%)</u> 160	<u>(0%)</u> 50	<u>(0%)</u> 10	<u>(0%)</u> 0	20	<u>(0%)</u> 10	<u>(0%)</u> 0	<u>(0%)</u> 0	<u>(0%)</u> 110	
104	pigments	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	
2	Organic solvents	9000 (0.6%)	3100	1200	100	1200	460 (0.5%)	80 (0.7%)	330 (0.6%)	5900 (0.7%)	
2	Organic solvents	810	280	60	10	150	30	10	30	530	
50	Other mineral oils	(0.1%)	(0.1%)	(0%)	(0%)	(0.1%)	(0%)	(0.1%)	(0%)	(0.1%)	
14	varnishes	2700 (0.2%)	930 (0.2%)	490 (0.4%)	40 (0.3%)	(0.1%)	(0.1%)	30 (0.2%)	(0.2%)	(0.2%)	
~	Other pyrolysis	570	210	50	10	100	30	10	20	360	
61	fumes	<u>(0%)</u> 40	<u>(0%)</u> 20	<u>(0%)</u> 0	<u>(0%)</u> 0	<u>(0%)</u> 10	<u>(0%)</u> 0	<u>(0.1%)</u> 0	<u>(0%)</u> 0	<u>(0%)</u> 30	
123	Ozone	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	
9	PAHs from any	4100	1300	340 (0.3%)	40 (0.3%)	610 (0.3%)	200	40 (0.3%)	150 (0.3%)	2800 (0.3%)	
	Jouree	430	130	50	10	40	20	0	20	300	
72	Perchloroethylene	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	
244	Pesticides	0 (0%)	0 (0%)	0(0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	
210	NI 1	0	0	0	0	0	0	0	0	0	
218	Phenol Phenol-	<u>(0%)</u> 330	<u>(0%)</u> 70	<u>(0%)</u> 30	<u>(0%)</u> 0	<u>(0%)</u> 10	<u>(0%)</u> 10	<u>(0%)</u> 0	<u>(0%)</u> 10	<u>(0%)</u> 270	
81	formaldehyde	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	
194	Phoseene	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	
	Those of the	0	0	0	0	0	0	0	0	0	
209	Phosphoric acid	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	
243	Phthalates	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	
97	Plastic dusts	200 (0%)	70 (0%)	30 (0%)	0 (0%)	20 (0%)	10 (0%)	0 (0%)	10 (0%)	140 (0%)	
	Plastics pyrolysis	1600	580	140	10	260	90	20	60	1000	
24	fumes	(0.1%)	<u>(0.1%)</u> 90	(0.1%)	(0.1%)	(0.1%)	(0.1%)	(0.2%)	(0.1%)	(0.1%)	
84	Plating solutions	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	
120	Poly(vinyl sector)	30 (0%)	10 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	30 (0%)	
127	Poly(vinyl	160	70	20	0	30	10	0	10	90	
105	chloride)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	
142	Polyacrylates	(0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0(0%)	0 (0%)	10 (0%)	
176	Polyamides	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	

	# of Employees Highly Exposed ^a (% of Demographic Group)										
Agent	CANJEM Chemical Agent								Multi-		
Rank ^D	Category ^c		BIPOC	Hispanic	AIAN	Asian	Black	<u>NHPI</u>		White 0	
226	biphenyls or PCBs	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	
182	Polychloroprene	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%) 120	
94	Polyester fibres	230	110 (0%)	30 (0%)	0 (0%)	60 (0%)	10 (0%)	0 (0%)	10 (0%)	130	
		0	0	0	0	0	0	0	0	0	
180	Polyesters	(0%)	<u>(0%)</u>	<u>(0%)</u>	<u>(0%)</u> 0	<u>(0%)</u>	<u>(0%)</u> 0	<u>(0%)</u> 0	0%)	<u>(0%)</u>	
173	Polyethylene	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	
174	Polypropylene	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	
175	Polystyrene	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	
170	D 1 1	0	0	0	0	0	0	0	0	0	
179	Polyurethanes	<u>(0%)</u> 170	<u>(0%)</u> 30	<u>(0%)</u> 10	0%)	<u>(0%)</u> 10	<u>(0%)</u> 10	0%)	0%)	<u>(0%)</u> 140	
102	Portland cement	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	
192	Propage	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	
172	Propane	(070)	(070)	(070)	(070)	(070)	(070)	(070)	(070)	(070)	
120	combustion	30	10	0	0	0	0	0	0	20	
130	Propane engine	1200	360	100	20	110	90	20	50	<u>(0%)</u> 850	
30	emissions	(0.1%)	(0.1%)	(0.1%)	(0.1%)	(0%)	(0.1%)	(0.1%)	(0.1%)	(0.1%)	
196	Propellant gases	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	
170	Tiopenant gases	30	20	0	0	10	0	0	0	10	
127	Rayon fibres	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	
214	RDX	0 (0%)	0 (0%)	0 (0%)	0 (0%)	(0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	
1.50	Refractory brick	0	0	0	0	0	0	0	0	0	
150	dust	(0%)	<u>(0%)</u> 0	0%)	0%)	<u>(0%)</u> 0	<u>(0%)</u> 0	0%)	0	<u>(0%)</u> 0	
184	Rubber dust	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	
206	Rubber pyrolysis	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0	
200	Tumes	0	0	0	0	0	0	0	0	0	
235	Selenium	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	
134	Silicon carbide	20 (0%)	(0%)	0 (0%)	0(0%)	0 (0%)	0 (0%)	0(0%)	0(0%)	(0%)	
120	a'''' (1)	10	0	0	0	0	0	0	0	0	
139	Silk fibres	0	<u>(0%)</u> 0	<u>(0%)</u> 0	<u>(0%)</u> 0	0	0%)	0	0	<u>(0%)</u> 0	
236	Silver	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	
202	Silver fumes	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	
202	Silver lunies	0	0	0	0	0	0	0	0	0	
157	Sodium carbonate	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	
158	hydrosulphite	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	
71	Soldering fumes	490 (0%)	170	30 (0%)	0 (0%)	120	10	0 (0%)	10 (0%)	310	
/1	Soldering fumes	180	60	20	0	20	10	0	10	120	
101	Soot	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	
22	Stainless steel dust	1700 (0.1%)	540 (0.1%)	90 (0.1%)	10 (0.1%)	310 (0.1%)	80 (0.1%)	10 (0.1%)	50 (0.1%)	1100 (0.1%)	
		190	60	10	0	30	10	0	10	120	
98	Starch dust	(0%)	<u>(0%)</u> 240	<u>(0%)</u> 50	(0%)	(0%)	$\frac{(0\%)}{40}$	(0%)	<u>(0%)</u> 30	<u>(0%)</u> 500	
54	Styrene	(0.1%)	(0%)	(0%)	(0%)	(0.1%)	(0%)	(0%)	(0%)	(0.1%)	
191	Styrene-butadiene	0	0 (0%)	0 (0%)	0 (0%)	0 (0%)	$0_{(0^{9/3})}$	0 (0%)	0 (0%)	0	
101	rubber	(070)	(070)	(070)	(070)	(070)	(070)	(070)	(070)	(070)	

	# of Employees Highly Exposed ^a (% of Demographic Group)									
Agont	CANJEM Chamical Agant								Multi	
Rank ^b	Category ^c	All	BIPOC	Hispanic	AIAN	Asian	Black	NHPI	racial	White
82	Sugar dust	320 (0%)	90 (0%)	20 (0%)	0 (0%)	30 (0%)	20 (0%)	0 (0%)	10 (0%)	240 (0%)
150	Sulfur	0	0	0	0	0	0	0	0	0
159	Sulfur	0%)	0%)	0%)	0%)	0%)	0%)	0	0%)	0%)
188	Sulphur dioxide	<u>(0%)</u> 820	(0%)	(0%)	(0%)	(0%)	<u>(0%)</u> 40	(0%)	(0%)	<u>(0%)</u> 550
49	Sulphuric acid	(0.1%)	(0.1%)	(0%)	(0%)	(0.1%)	(0%)	(0%)	(0%)	(0.1%)
40	Synthetic adhesives	950 (0.1%)	330 (0.1%)	120 (0.1%)	10 (0.1%)	130 (0.1%)	40 (0%)	10 (0.1%)	30 (0.1%)	620 (0.1%)
76	Sumthatia filmas	380	190	40	0	120	20	0	10	190
70	Synthetic hores	0	0	0	0	0	0	0	0	0
170	Tannic acid	<u>(0%)</u> 260	<u>(0%)</u> 100	<u>(0%)</u> 20	<u>(0%)</u> 0	<u>(0%)</u> 60	<u>(0%)</u> 10	<u>(0%)</u> 0	<u>(0%)</u> 10	<u>(0%)</u> 170
89	Tin	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)
93	Tin fumes	240 (0%)	90 (0%)	20 (0%)	0 (0%)	60 (0%)	10 (0%)	0 (0%)	10 (0%)	160 (0%)
60	Titonium	580	190	30 (0%)	0	100	30	0	20	390
00	Thainum	20	10	0	0	0	0	0	0	20
135	Titanium dioxide	(0%)	<u>(0%)</u>	<u>(0%)</u>	<u>(0%)</u> 0	<u>(0%)</u>	<u>(0%)</u> 0	<u>(0%)</u> 0	<u>(0%)</u>	<u>(0%)</u>
198	fumes	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)
168	Tobacco dust	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)
16	Toluene	2500	900	420	30	270	120	20 (0.2%)	90 (0.2%)	1600
10	Toluelle	880	240	60	10	120	40	0	30	640
47	Trichloroethylene	(0.1%)	<u>(0%)</u> 0	<u>(0%)</u> 0	(0.1%)	(0.1%)	<u>(0%)</u> 0	<u>(0%)</u> 0	<u>(0.1%)</u> 0	(0.1%)
219	Trinitrotoluene	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)
238	Tungsten compounds	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)
111	Turpentine	110	30 (0%)	10 (0%)	0	10	10 (0%)	0 (0%)	0 (0%)	70 (0%)
111	Unsaturated	(070)	(070)	(070)	(070)	(070)	(070)	(070)	(070)	(070)
241	aliphatic hydrocarbons	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)
177	Urea-	0	0	0	0	0	0	0	0	0
1//	formaldenyde	0%)	0%)	0%)	0%)	0%)	0%)	0	0%)	0
232	Vanadium	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)
64	Vinyl chloride	(0%)	(0%)	(0%)	(0%)	(0.1%)	(0%)	(0.1%)	(0%)	(0%)
116	Waxes, polishes	100 (0%)	30 (0%)	10 (0%)	0 (0%)	20 (0%)	0 (0%)	0 (0%)	0 (0%)	70 (0%)
12	Walding fumas	920	270	100	10	90	40	10	30	650
42	Wood combustion	0	0	0	0	0	0	0	0	0
205	products	<u>(0%)</u> 5100	<u>(0%)</u> 1800	<u>(0%)</u> 1000	<u>(0%)</u> 80	<u>(0%)</u> 330	<u>(0%)</u> 260	<u>(0%)</u> 60	<u>(0%)</u> 190	(0%)
5	Wood dust	(0.4%)	(0.3%)	(0.8%)	(0.6%)	(0.1%)	(0.3%)	(0.5%)	(0.3%)	(0.4%)
62	Wood varnishes, stains and paints	570 (0%)	220 (0%)	140 (0.1%)	10 (0.1%)	30 (0%)	30 (0%)	10 (0.1%)	20 (0%)	350 (0%)
125	Wool fibres	30	20	0	0	20	0	0	0	10
123	wool notes	420	160	80	10	40	20	10	10	270
73	Xylene	<u>(0%)</u> 110	<u>(0%)</u> 40	(0.1%)	(0%)	<u>(0%)</u> 10	<u>(0%)</u> 10	<u>(0%)</u> 0	<u>(0%)</u> 0	<u>(0%)</u> 70
114	Zinc	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)
201	Zinc fumes	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)
# of Employees Highly Exposed ^a (% of Demographic Group)										
---	-----------------------	------	-------	----------	------	-------	-------	------	--------	-------
	CANJEM								M L.	
Agent	Chemical Agen	τ							Multi-	
Rank ^b	Category ^c	All	BIPOC	Hispanic	AIAN	Asian	Black	NHPI	racial	White
		0	0	0	0	0	0	0	0	0
160	Zinc oxide	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)

^a Employee counts are rounded to the nearest 10s if <1000, and to the nearest 100s if >1000 ^b Agents are ranked by estimates for all employees ^c Table is sorted in alphabetical order by agent

This page intentionally left blank

Appendix C: Sensitivity Analysis

Sensitivity Analysis Results

Coverage analysis

A summary of CANJEM's coverage of industries and employees in King County in the stringent analysis are shown in Table C-1. Coverage of industries reduced from 136 (47.7%) in the primary analysis to 127 (44.6%) in the stringent analysis. Coverage of all employees reduced from 1,040,900 (73.6%) in the primary analysis to 1,024,400 (72.5%) in the stringent analysis. Lastly, coverage of BIPOC employees reduced from 372,100 (72.8%) in the primary analysis to 365,000 (71.4%) in the stringent analysis. Overall, this suggests that applying more stringent criteria for the CANJEM data had very little effect on coverage of exposure information for the King County workforce.

Sensitivity analysis for all worker exposure estimates

Comparison of all worker exposure estimates calculated in the primary analysis versus the more stringent analysis are present in Table C-2. In the both the primary and stringent analyses, cleaning agents, organic solvents, and biocides remained the most common exposures. Of the 25 most common exposures in the primary analysis, 24 of the agents remained in the top 25 rankings in the stringent analysis. Among the 25 most common exposures, using the more stringent confidence rating resulted in a reduction of burden estimates of 12.9 to 68.0%. The median percent reduction in the exposure estimates was 33.0%. (IQR: 25.6%, 35.6%).

In the entire dataset, using the more stringent confidence rating resulted in a reduction of exposure estimates from 0% (i.e., no change, 1 agent) to 100% (11 agents). The median percent reduction in the exposure estimates was 49.3% (IQR: 32.7%, 68.3%). The rank of exposures changed a minimum of zero positions to a maximum of 99 positions. The median change in ranks was 10 positions (IQR: 5, 21).

Overall, applying more stringent criteria lowered the overall exposure estimates, as expected, but had less effect on rankings of the agent categories in terms of most prevalent exposures in King County, especially among the most common occupational hazards.

Sensitivity analysis for BIPOC worker exposure estimates

Comparison of BIPOC worker exposure estimates calculated in the primary analysis versus the more stringent analysis are present in Table C-3. In the both the primary and stringent analyses, cleaning agents remained the most common exposure. Of the 25 most common exposures among BIPOC workers in the primary analysis, 23 of the agents remained in the top rankings in the stringent analysis. Among the 25 most common exposures experienced by BIPOC workers, using the more stringent confidence rating resulted in a reduction of burden estimates of 12.6 to 67.6%. The median percent reduction in the exposure estimates was 33.0%(IQR: 26.5%, 38.8%)

In the entire dataset, using the more stringent confidence rating resulted in a reduction of exposure estimates from 0% (i.e., no change, 1 agent) to 100% (11 agents). The median percent reduction in the exposure estimates was 49.9% (IQR: 31.9%, 69.1%). The rank of exposures changed a minimum of zero positions to a maximum of 102 positions. The median change in ranks was 9 positions (IQR: 3, 21).

Similar to the analysis of all workers, applying more stringent criteria had the expected effect of lowering the overall exposure estimates among BIPOC workers, but had less effect on rankings of the agent categories in terms of most prevalent exposures among this workforce, especially among the most common occupational hazards.

Sensitivity analysis for number of excess exposures

The results of the sensitivity analysis examining changes in the number of excess exposures identified within each race/ethnicity group as a result of using a more stringent confidence rating are presented in Table C-4. The number of agents in which a group is disproportionately exposed decreased for all race/ethnicity categories with a median reduction of 12 agents. The magnitude of reduction varied by race/ethnicity, with Asian and Black workers having one and two less excess exposures, respectively, and NHPI and AIAN having 19 and 25 less excess exposures. The latter finding of more change among NHPI and AIAN may be due smaller populations of these workers in King County, which results in a substantial reduction in the proportion of estimated workers exposed in these groups when the more stringent inclusion criteria are applied.

Table C-1. Summary of CANJEM coverage for stringent analysis. Table contains the number and percent of King County industries and employees within these industries with exposure information.

Indicator	Number of Industry Groups (%)	Number of Employees ^a (%)	Number of BIPOC Employees ^a
Total workforce	285 (100%)	1,413,400 (100%)	511,600 (100%)
Have exposure information	127 (44.6%)	1,024,400 (72.5%)	365,000 (71.4%)
No exposure information	158 (55.4%)	388,900 (27.5%)	146,200 (28.6%)

^aEmployee counts are rounded to the nearest 10s if <1000, and to the nearest 100s if >1000

 County, 2019.

	CANJEM Chemical Agent Category ^b	Primary analysis estimate (#) ^a	Stringent analysis estimate (#) ^a	Absolute change (#) ^a	Percent change (%)	Primary analysis rank	Stringent analysis rank	Rank change
1	Cleaning agents	208500	181600	-26900	-12.9	1	1	0
2	Organic solvents	156900	116400	-40600	-25.8	2	2	0
3	Biocides	144200	96600	-47600	-33	3	3	0
4	Aliphatic aldehydes	123800	50100	-73700	-59.5	4	10	6
5	Engine emissions	123500	89600	-34000	-27.5	5	5	0
6	Cooking fumes	114100	90200	-23800	-20.9	6	4	-2
7	Formaldehyde	103300	33000	-70200	-68	7	21	14
8	PAHs from any source	99600	74500	-25200	-25.3	8	6	-2
9	Aliphatic alcohols	97100	63800	-33300	-34.3	9	8	-1
10	Ozone	84700	64100	-20600	-24.3	10	7	-3
11	Alkanes (C5-C17)	75200	51400	-23800	-31.7	11	9	-2
12	Isopropanol	75000	49700	-25300	-33.8	12	11	-1
13	Calcium carbonate	63100	42000	-21100	-33.4	13	14	1
14	Mononuclear aromatic hydrocarbons	59400	43000	-16400	-27.7	14	13	-1
15	Abrasives dust	59100	33200	-25800	-43.8	15	20	5
16	Ammonia	58500	39100	-19400	-33.2	16	15	-1
17	Alkanes (C18+)	56800	38100	-18700	-32.9	17	16	-1
18	Diesel engine emissions	56400	34000	-22300	-39.6	18	18	0
19	Carbon monoxide	54500	43300	-11200	-20.6	19	12	-7
20	Metallic dust	51700	33800	-17900	-34.6	20	19	-1
21	Iron	49600	31500	-18100	-36.5	21	24	3
22	Natural gas combustion products	49400	32500	-16900	-34.2	22	22	0
23	Wood dust	48500	36400	-12100	-25	23	17	-6
24	Mineral spirits post 1970	47400	31700	-15600	-33	24	23	-1
25	Cellulose	44500	24000	-20500	-46	25	30	5
26	Ashes	44100	15100	-29000	-65.8	26	44	18
27	Aluminium	40900	21800	-19200	-46.8	27	33	6
28	Cristalline silica	38400	16300	-22100	-57.5	28	42	14
29	Hypochlorites	36500	25800	-10700	-29.3	29	27	-2
30	Other paints, varnishes	36200	24900	-11300	-31.1	30	29	-1
31	Lead	35800	27600	-8100	-22.7	31	25	-6
32	Synthetic adhesives	34900	26500	-8500	-24.3	32	26	-6
33	Calcium sulphate	34300	25100	-9200	-26.9	33	28	-5
34	Fabric dust	32800	21600	-11200	-34.2	34	34	0
35	Inorganic acid solutions	31300	17900	-13500	-43	35	38	3
36	Nitrogen oxides	30500	23600	-6900	-22.5	36	31	-5
37	Mild steel dust	29700	18600	-11100	-37.3	37	37	0
38	Alumina	28500	10500	-18000	-63.2	38	65	27
39	Inorganic insulation dust	28100	17200	-10900	-38.7	39	40	1

	CANJEM Chemical Agent Category ^b	Primary analysis estimate (#) ^a	Stringent analysis estimate (#) ^a	Absolute change (#) ^a	Percent change (%)	Primary analysis rank	Stringent analysis rank	Rank change
40	Metal oxide fumes	28000	20200	-7800	-27.9	40	35	-5
41	Chromium	27800	14100	-13700	-49.3	41	46	5
42	Welding fumes	27000	16800	-10100	-37.6	42	41	-1
43	Concrete dust	26900	21900	-5000	-18.5	43	32	-11
44	Inorganic pigments	25900	17500	-8400	-32.3	44	39	-5
45	Cosmetic talc	25700	10900	-14800	-57.7	45	62	17
46	Lead fumes	25300	20200	-5100	-20.3	46	36	-10
47	Hydrogen chloride	25000	11000	-14000	-56	47	58	11
48	Toluene	24300	13200	-11200	-45.9	48	50	2
49	Asbestos	22700	11000	-11700	-51.6	49	59	10
50	Lubricating oils and greases	22400	14100	-8400	-37.4	50	47	-3
51	Silicon carbide	22200	6700	-15600	-69.9	51	89	38
52	Cotton dust	22000	15400	-6500	-29.6	52	43	-9
53	Flour dust	21900	10700	-11200	-51.2	53	63	10
54	Caustic alkali solutions	21300	14700	-6600	-30.9	54	45	-9
55	Nickel	20900	12000	-8900	-42.7	55	54	-1
56	Propellant gases	20800	14000	-6700	-32.5	56	48	-8
57	Mineral wool fibres	20700	10600	-10100	-48.6	57	64	7
58	Benzo[a]pyrene	20100	6400	-13800	-68.4	58	92	34
59	Manganese	19900	8000	-11900	-59.7	59	78	19
60	Soldering fumes	19300	13800	-5500	-28.5	60	49	-11
61	Tin	19200	12600	-6600	-34.3	61	53	-8
62	Aliphatic ketones	18900	7400	-11400	-60.5	62	82	20
63	Stainless steel dust	18700	11600	-7100	-37.8	63	55	-8
64	Manganese fumes	18400	7400	-11000	-59.7	64	83	19
65	Synthetic fibres	18200	10200	-8000	-43.9	65	68	3
66	Titanium	18200	8700	-9400	-51.8	66	74	8
67	Chlorinated alkanes	18100	5800	-12400	-68.2	67	96	29
68	Plastic dusts	18000	10200	-7800	-43.5	68	69	1
69	Sugar dust	17900	6100	-11800	-66.1	69	93	24
70	Alkanes (C1-C4)	17800	10300	-7500	-42.1	70	67	-3
71	Cutting fluids post-1955	17700	12700	-5000	-28	71	51	-20
72	Propane combustion products	17500	10400	-7200	-40.9	72	66	-6
73	Starch dust	17100	9100	-8100	-47	73	72	-1
74	Chlorinated alkenes	16900	4500	-12400	-73.2	74	101	27
75	Propane engine emissions	16600	12600	-3900	-23.7	75	52	-23
76	Iron fumes	15900	9100	-6900	-43.1	76	73	-3
77	Other pyrolysis fumes	15800	7800	-8000	-50.6	77	80	3
78	Organic dyes and pigments	15500	7300	-8200	-53.1	78	84	6
79	Copper	15400	10900	-4400	-28.8	79	61	-18

	CANJEM Chemical Agent Category ^b	Primary analysis estimate (#) ^a	Stringent analysis estimate (#) ^a	Absolute change (#) ^a	Percent change (%)	Primary analysis rank	Stringent analysis rank	Rank change
80	Acetic acid	14700	11500	-3200	-21.6	80	56	-24
81	Sulphur dioxide	14500	11300	-3200	-22.3	81	57	-24
82	Zinc	14500	7100	-7300	-50.7	82	85	3
83	Benzene	14200	9100	-5100	-35.8	83	71	-12
84	Tin fumes	14100	8600	-5500	-38.7	84	75	-9
85	Anaesthetic gases	14000	7500	-6500	-46.6	85	81	-4
86	Extenders	13700	9900	-3800	-27.5	86	70	-16
87	Waxes, polishes	13500	10900	-2600	-19.3	87	60	-27
88	Ethanol	13500	3000	-10500	-77.7	88	124	36
89	Inks	12800	3800	-9000	-70.6	89	108	19
90	Xylene	12200	5600	-6600	-54	90	97	7
91	Plastics pyrolysis fumes	12000	7000	-5000	-41.8	91	86	-5
92	Aromatic amines	12000	5100	-7000	-57.9	92	99	7
93	Portland cement	11500	6900	-4600	-39.8	93	87	-6
94	Methanol	11100	7900	-3200	-28.9	94	79	-15
95	Glass fibres	11100	4600	-6600	-59	95	100	5
96	Acetone	11000	5900	-5100	-46.8	96	95	-1
97	Bleaches	10900	6400	-4500	-41.1	97	91	-6
98	Sulphuric acid	10700	6600	-4100	-38.7	98	90	-8
99	Metal coatings	10600	8000	-2600	-24.5	99	76	-23
100	Zinc fumes	10200	3600	-6600	-64.9	100	114	14
101	Wood varnishes, stains and paints	10000	8000	-2000	-19.8	101	77	-24
102	Calcium oxide	9900	2900	-7000	-71.1	102	125	23
103	Hydrogen peroxide	9600	5900	-3700	-39	103	94	-9
104	Polyester fibres	9600	3700	-5900	-61.6	104	109	5
105	Chromium (VI)	9400	3000	-6400	-67.7	105	121	16
106	Iron oxides	9100	3600	-5600	-61.1	106	115	9
107	Trichloroethylene	9000	3600	-5400	-60.2	107	113	6
108	Sodium carbonate	8800	240	-8500	-97.3	108	207	99
109	Fluorocarbons	8500	2000	-6500	-75.9	109	138	29
110	Alkyds	8400	3100	-5300	-63.3	110	120	10
111	Polyacrylates	8300	3400	-4900	-58.9	111	117	6
112	Chromium fumes	8200	2700	-5500	-67.1	112	128	16
113	Aromatic alcohols	8100	900	-7200	-88.8	113	169	56
114	Silver	8000	4400	-3500	-44.5	114	102	-12
115	Methylene chloride	7900	1200	-6700	-84.8	115	159	44
116	Brick dust	7900	5600	-2300	-29	116	98	-18
117	Nickel fumes	7900	2700	-5200	-65.6	117	127	10
118	Hydraulic fluid	7800	3700	-4100	-52.6	118	110	-8
119	Hair dust	7700	6800	-950	-12.3	119	88	-31

	CANJEM Chemical Agent Category ^b	Primary analysis estimate (#) ^a	Stringent analysis estimate (#) ^a	Absolute change (#) ^a	Percent change (%)	Primary analysis rank	Stringent analysis rank	Rank change
120	Titanium dioxide	7600	2300	-5200	-69.1	120	132	12
121	Aluminium fumes	7300	3400	-3900	-53.1	121	116	-5
122	Nylon fibres	6600	3000	-3600	-54.1	122	123	1
123	Linseed oil	6500	3300	-3200	-49.2	123	118	-5
124	Liquid fuel combustion products	6200	4000	-2200	-35.6	124	105	-19
125	Leaded gasoline	6200	4200	-2000	-31.8	125	103	-22
126	Asphalt	6100	3800	-2200	-36.7	126	106	-20
127	Polyurethanes	6000	2200	-3800	-63.9	127	136	9
128	Diesel oil	6000	4100	-1900	-31.7	128	104	-24
129	Poly(vinyl acetate)	6000	400	-5600	-93.3	129	194	65
130	Vinyl chloride	5700	80	-5600	-98.6	130	220	90
131	Soot	5700	3600	-2100	-36.5	131	112	-19
132	Propane	5300	1600	-3700	-69.2	132	146	14
133	Copper fumes	5300	2400	-2900	-55.2	133	129	-4
134	Mercury	5200	3800	-1500	-27.9	134	107	-27
135	Cadmium	5200	340	-4800	-93.5	135	199	64
136	Wool fibres	5100	3600	-1500	-28.6	136	111	-25
137	Aliphatic esters	5000	2200	-2800	-55.5	137	135	-2
138	Grain dust	4900	2300	-2600	-53.2	138	133	-5
139	Glycol ethers	4800	130	-4700	-97.3	139	214	75
140	Other mineral oils	4700	2000	-2700	-57.7	140	139	-1
141	1,1,1-Trichlorethane	4700	2400	-2300	-49.1	141	130	-11
142	Industrial talc	4400	830	-3600	-81	142	171	29
143	Ethylene oxide	4400	1800	-2600	-59.2	143	143	0
144	Poly(vinyl chloride)	4300	1400	-2900	-66.8	144	152	8
145	Methane	4100	1700	-2400	-58.1	145	144	-1
146	Carbon black	4000	1400	-2600	-64.2	146	151	5
147	Epoxies	3800	2700	-1000	-27.5	147	126	-21
148	Ethylene glycol	3800	1300	-2500	-66.5	148	158	10
149	Hydrogen sulphide	3700	1400	-2300	-61.5	149	153	4
150	Pesticides	3700	3000	-670	-18.2	150	122	-28
151	Fluorides	3700	1200	-2500	-67.8	151	161	10
152	Selenium	3600	180	-3400	-95	152	210	58
153	Unsaturated aliphatic hydrocarbons	3500	1900	-1600	-46.1	153	140	-13
154	Nitric acid	3500	2300	-1100	-32.6	154	131	-23
155	Turpentine	3400	2300	-1200	-34.1	155	134	-21
156	Coal combustion products	3400	1600	-1800	-51.9	156	145	-11
157	Clay dust	3300	520	-2800	-84.3	157	185	28
158	Bronze dust	3300	3300	-10	-0.3	158	119	-39
159	Rubber dust	3100	1500	-1600	-50.4	159	149	-10

	CANJEM Chemical Agent Category ^b	Primary analysis estimate (#) ^a	Stringent analysis estimate (#) ^a	Absolute change (#) ^a	Percent change (%)	Primary analysis rank	Stringent analysis rank	Rank change
160	Hydrogen fluoride	3100	620	-2500	-80	160	181	21
161	Diethyl ether	3100	1300	-1800	-58.3	161	155	-6
162	Acetylene	2900	1600	-1300	-45.9	162	148	-14
163	Cobalt	2800	560	-2200	-80.1	163	183	20
164	Tungsten compounds	2700	560	-2200	-79.6	164	183	19
165	Methyl methacrylate	2700	2100	-580	-21.6	165	137	-28
166	Silver fumes	2700	970	-1700	-63.5	166	166	0
167	Polyesters	2500	690	-1800	-72.7	167	175	8
168	Phosphoric acid	2500	660	-1900	-73.8	168	177	9
169	Mica	2500	0	-2500	-100	169	226	57
170	Isocyanates	2500	360	-2100	-85.4	170	195	25
171	Perchloroethylene	2500	1500	-970	-39.6	171	150	-21
172	Kerosene	2200	360	-1900	-83.7	172	196	24
173	Heating oil	2200	1200	-1000	-46.5	173	162	-11
174	Fertilizers	2200	1300	-860	-39.5	174	154	-20
175	Styrene	2200	620	-1600	-71.3	175	180	5
176	Acrylic fibres	2200	650	-1500	-69.9	176	178	2
177	Natural gas	2200	1200	-980	-45.4	177	160	-17
178	Brass dust	2100	1900	-240	-11.2	178	141	-37
179	Coal tar and pitch	2100	250	-1900	-88.3	179	206	27
180	Carbon tetrachloride	2000	1900	-110	-5.4	180	142	-38
181	Flax fibres	1900	1600	-260	-14	181	147	-34
182	Chlorine	1800	430	-1400	-76	182	192	10
183	Urea-formaldehyde	1800	680	-1100	-61.9	183	176	-7
184	Rubber pyrolysis fumes	1700	520	-1200	-69.7	184	187	3
185	Rayon fibres	1700	1100	-560	-33.6	185	163	-22
186	Chloroform	1600	920	-720	-43.8	186	167	-19
187	Silk fibres	1600	860	-750	-46.5	187	170	-17
188	Coal dust	1600	1300	-330	-20.8	188	157	-31
189	Glass dust	1500	1000	-520	-33.9	189	165	-24
190	Natural rubber	1500	440	-1100	-70.3	190	190	0
191	Styrene-butadiene rubber	1500	440	-1100	-70.3	190	190	0
192	Creosote	1500	120	-1400	-91.8	192	217	25
193	Polychlorinated biphenyls or PCBs	1500	400	-1100	-72.7	193	193	0
194	Phthalates	1500	270	-1200	-81.5	194	201	7
195	Calcium oxide fumes	1400	170	-1300	-87.9	195	212	17
196	Fur dust	1400	520	-860	-62.4	196	186	-10
197	Graphite dust	1300	920	-420	-31.4	197	168	-29
198	Zinc oxide	1300	780	-550	-41.4	198	172	-26
199	Wood combustion products	1300	1100	-250	-19.2	199	164	-35

	CANJEM Chemical Agent Category ^b	Primary analysis estimate (#) ^a	Stringent analysis estimate (#) ^a	Absolute change (#) ^a	Percent change (%)	Primary analysis rank	Stringent analysis rank	Rank change
200	Lead chromate	1300	630	-640	-50.3	200	179	-21
201	Magnesium	1300	1300	0	0	201	156	-45
202	Hydrogen	1100	490	-650	-57.2	202	188	-14
203	Chlorine dioxide	1100	0	-1100	-100	203	226	23
204	Aviation gasoline	1100	0	-1100	-100	204	226	22
205	Cyanides	1000	350	-660	-65.1	205	197	-8
206	Lead oxides	990	450	-540	-54.8	206	189	-17
207	Refractory brick dust	980	730	-250	-25.2	207	173	-34
208	Phenol	940	10	-930	-99	208	223	15
209	Sodium hydrosulphite	920	0	-920	-100	209	226	17
210	Hydrogen cyanide	850	260	-590	-69.8	210	204	-6
211	Melamine-formaldehyde	780	260	-520	-66.4	211	203	-8
212	Phenol-formaldehyde	780	130	-650	-83.8	212	215	3
213	Polystyrene	700	690	0	-0.7	213	174	-39
214	Plating solutions	660	620	-40	-6.7	214	182	-32
215	Phosgene	570	180	-390	-68.4	215	210	-5
216	Basic lead carbonate	570	270	-300	-52	216	200	-16
217	Acetate fibres	550	250	-300	-54.8	217	205	-12
218	Polyethylene	450	120	-330	-73	218	216	-2
219	Antimony	440	90	-350	-79	219	219	0
220	Felt dust	400	0	-400	-100	220	226	6
221	Cellulose nitrate	390	340	-50	-12.9	221	198	-23
222	Crude petroleum	360	110	-250	-68.9	222	218	-4
223	Animal, vegetable glues	350	220	-120	-35.4	223	208	-15
224	Sulfur	270	270	0	-0.8	224	202	-22
225	Polypropylene	270	10	-260	-97.7	225	224	-1
226	RDX	270	0	-270	-100	226	226	0
227	Nitroglycerine	240	190	-50	-20.6	227	209	-18
228	Leather dust	190	130	-60	-32.5	228	213	-15
229	Cellulose acetate	190	10	-180	-94.1	229	222	-7
230	Polychloroprene	180	0	-180	-100	230	226	-4
231	Vanadium	110	0	-110	-100	231	226	-5
232	Cork dust	80	0	-80	-98.2	232	225	-7
233	Arsenic	60	0	-60	-100	233	226	-7
234	Cadmium fumes	60	20	-40	-68.3	234	221	-13
235	Nitrates	60	0	-60	-100	235	226	-9
236	Carbon disulphide	20	0	-20	-100	236	226	-10

^aEmployee counts are rounded to the nearest 10s if <1000, and to the nearest 100s if >1000 ^bTable is sorted by agents with the highest exposure estimates in the primary analysis

 County, 2019.

	CANJEM Chemical Agent Category ^b	Primary analysis estimate ^a (#)	Stringent analysis estimate ^a (#)	Absolute change ^a (#)	Percent change (%)	Primary analysis rank	Stringent analysis rank	Rank change
1	Cleaning agents	87900	76800	-11100	-12.6	1	1	0
2	Biocides	59300	40000	-19300	-32.6	2	4	2
3	Organic solvents	55900	41900	-14000	-25	3	2	-1
4	Aliphatic aldehydes	52100	20900	-31200	-59.9	4	9	5
5	Cooking fumes	51500	40800	-10700	-20.8	5	3	-2
6	Formaldehyde	44200	14300	-29800	-67.6	6	14	8
7	Engine emissions	41200	29800	-11500	-27.8	7	5	-2
8	Aliphatic alcohols	38900	25500	-13400	-34.4	8	6	-2
9	PAHs from any source	33800	25200	-8600	-25.4	9	7	-2
10	Isopropanol	31800	20900	-11000	-34.5	10	10	0
11	Ozone	28700	21600	-7100	-24.8	11	8	-3
12	Alkanes (C5-C17)	25700	17700	-8000	-31	12	11	-1
13	Ammonia	24000	16300	-7700	-32.2	13	12	-1
14	Natural gas combustion products	22400	14600	-7800	-34.8	14	13	-1
15	Abrasives dust	20700	10800	-9900	-47.9	15	21	6
16	Ashes	19800	6800	-13100	-65.9	16	35	19
17	Mononuclear aromatic hydrocarbons	19700	14300	-5400	-27.5	17	15	-2
18	Calcium carbonate	18200	11600	-6600	-36.5	18	18	0
19	Alkanes (C18+)	18100	12000	-6100	-33.8	19	17	-2
20	Diesel engine emissions	17900	10600	-7300	-41	20	23	3
21	Carbon monoxide	17500	14100	-3500	-19.7	21	16	-5
22	Mineral spirits post 1970	16300	10900	-5400	-33	22	20	-2
23	Cellulose	16300	8900	-7400	-45.2	23	27	4
24	Hypochlorites	15900	11300	-4600	-28.6	24	19	-5
25	Metallic dust	15500	10200	-5400	-34.6	25	24	-1
26	Iron	14800	9400	-5500	-36.9	26	25	-1
27	Wood dust	14300	10700	-3600	-25.3	27	22	-5
28	Fabric dust	13500	9300	-4100	-30.7	28	26	-2
29	Cristalline silica	13300	4800	-8500	-64.1	29	46	17
30	Aluminium	12800	6800	-6000	-46.9	30	34	4
31	Other paints, varnishes	11800	8400	-3400	-28.9	31	30	-1
32	Lead	11500	8700	-2800	-24.4	32	29	-3
33	Synthetic adhesives	11300	8700	-2600	-22.7	33	28	-5
34	Cosmetic talc	10900	4900	-6000	-55.2	34	45	11
35	Inorganic acid solutions	10000	5600	-4400	-44.2	36	40	4
36	Nitrogen oxides	10000	7900	-2100	-20.7	35	31	-4
37	Flour dust	9700	4700	-4900	-51.3	37	47	10
38	Cotton dust	9600	7100	-2400	-25.3	38	32	-6
39	Calcium sulphate	9500	7000	-2500	-26.2	39	33	-6

	CANJEM Chemical Agent Category ^b	Primary analysis estimate ^a (#)	Stringent analysis estimate ^a (#)	Absolute change ^a (#)	Percent change (%)	Primary analysis rank	Stringent analysis rank	Rank change
40	Alumina	9000	3300	-5600	-62.8	41	67	26
41	Propellant gases	9000	6200	-2800	-31.3	40	37	-3
42	Chromium	8900	4400	-4500	-50.7	42	51	9
43	Inorganic pigments	8700	6100	-2600	-30.2	43	38	-5
44	Mild steel dust	8500	5400	-3100	-37	45	43	-2
45	Metal oxide fumes	8500	6100	-2500	-28.9	44	39	-5
46	Welding fumes	8100	5000	-3100	-37.9	46	44	-2
47	Toluene	8100	4500	-3600	-44.7	47	48	1
48	Lead fumes	8000	6200	-1800	-22.2	49	36	-13
49	Sugar dust	8000	2700	-5300	-66.5	48	81	33
50	Starch dust	7800	4200	-3600	-46.3	50	54	4
51	Hydrogen chloride	7700	3100	-4700	-60.2	51	69	18
52	Caustic alkali solutions	7700	5400	-2300	-29.5	52	42	-10
53	Inorganic insulation dust	7300	4400	-2900	-39.5	54	50	-4
54	Lubricating oils and greases	7300	4400	-2900	-39.3	53	49	-4
55	Synthetic fibres	7100	4000	-3100	-43.7	55	55	0
56	Silicon carbide	6800	2000	-4800	-70.1	56	94	38
57	Concrete dust	6700	5500	-1200	-17.6	57	41	-16
58	Benzo[a]pyrene	6700	2200	-4500	-66.6	58	90	32
59	Aliphatic ketones	6600	2700	-3900	-59.2	60	82	22
60	Chlorinated alkanes	6600	1800	-4700	-72	59	97	38
61	Nickel	6500	3600	-2900	-44.2	61	60	-1
62	Chlorinated alkenes	6500	1700	-4800	-73.6	62	99	37
63	Asbestos	6400	3100	-3300	-51.9	63	70	7
64	Alkanes (C1-C4)	6400	3400	-2900	-45.9	64	64	0
65	Manganese	6300	2500	-3800	-60.7	65	84	19
66	Propane combustion products	6200	3400	-2700	-44.4	66	65	-1
67	Organic dyes and pigments	6100	3000	-3100	-51.3	67	74	7
68	Titanium	6000	3000	-3100	-50.7	68	72	4
69	Tin	5800	3600	-2200	-37.5	70	61	-9
70	Manganese fumes	5800	2300	-3600	-60.8	69	88	19
71	Stainless steel dust	5700	3500	-2200	-39	72	63	-9
72	Ethanol	5700	1300	-4400	-77.2	71	107	36
73	Soldering fumes	5600	3800	-1800	-31.7	73	59	-14
74	Plastic dusts	5500	3100	-2400	-44	75	71	-4
75	Acetic acid	5500	4300	-1200	-22.2	74	52	-22
76	Mineral wool fibres	5200	2800	-2400	-46.6	77	78	1
77	Cutting fluids post-1955	5200	3800	-1400	-27	76	58	-18
78	Propane engine emissions	5200	3800	-1300	-25.6	78	57	-21
79	Other pyrolysis fumes	5100	2400	-2600	-51.9	80	86	6

	CANJEM Chemical Agent Category ^b	Primary analysis estimate ^a (#)	Stringent analysis estimate ^a (#)	Absolute change ^a (#)	Percent change (%)	Primary analysis rank	Stringent analysis rank	Rank change
80	Anaesthetic gases	5100	2700	-2400	-46.5	81	80	-1
81	Waxes, polishes	5100	4200	-910	-17.6	79	53	-26
82	Iron fumes	4800	2800	-2000	-42.2	85	79	-6
83	Copper	4800	3400	-1400	-30	83	66	-17
84	Sulphur dioxide	4800	3800	-990	-20.5	82	56	-26
85	Benzene	4800	3000	-1800	-37.7	86	73	-13
86	Bleaches	4800	2900	-1900	-38.7	84	75	-9
87	Extenders	4700	3600	-1100	-23.7	87	62	-25
88	Aromatic amines	4700	2100	-2600	-55.4	88	92	4
89	Plastics pyrolysis fumes	4400	2500	-1900	-43.9	89	85	-4
90	Zinc	4200	2100	-2200	-51	90	93	3
91	Tin fumes	4100	2300	-1800	-44	91	87	-4
92	Xylene	4100	1800	-2300	-56.1	94	98	4
93	Acetone	4100	2200	-1900	-47.1	92	91	-1
94	Hydrogen peroxide	4100	2500	-1500	-37.5	93	83	-10
95	Polyester fibres	4000	1600	-2400	-60.4	95	103	8
96	Inks	3900	1200	-2700	-69.2	96	110	14
97	Hair dust	3700	3300	-400	-10.8	97	68	-29
98	Metal coatings	3600	2800	-820	-22.7	100	77	-23
99	Calcium oxide	3600	940	-2600	-73.7	101	124	23
100	Sodium carbonate	3600	120	-3500	-96.7	98	199	101
101	Fluorocarbons	3600	750	-2900	-79.4	99	131	32
102	Wood varnishes, stains and paints	3500	2900	-650	-18.5	102	76	-26
103	Sulphuric acid	3400	1900	-1400	-42.6	104	96	-8
104	Methylene chloride	3400	450	-2900	-86.6	103	154	51
105	Methanol	3300	2300	-1100	-31.6	105	89	-16
106	Portland cement	3200	2000	-1200	-37.7	106	95	-11
107	Chromium (VI)	3100	930	-2200	-70.4	107	125	18
108	Aromatic alcohols	3100	280	-2800	-91.1	108	169	61
109	Glass fibres	3000	1300	-1700	-56	110	106	-4
110	Iron oxides	3000	1100	-1900	-62	109	113	4
111	Trichloroethylene	2900	1200	-1700	-59.5	111	112	1
112	Zinc fumes	2800	890	-1900	-67.8	112	126	14
113	Alkyds	2800	1100	-1600	-59.6	113	115	2
114	Polyacrylates	2600	1100	-1400	-56	116	114	-2
115	Titanium dioxide	2600	880	-1800	-66.5	114	127	13
116	Vinyl chloride	2600	30	-2600	-98.7	115	217	102
117	Chromium fumes	2500	770	-1800	-69.8	117	130	13
118	Silver	2500	1400	-1100	-45.2	118	105	-13
119	Nickel fumes	2500	770	-1700	-68.7	119	129	10

	CANJEM Chemical Agent Category ^b	Primary analysis estimate ^a (#)	Stringent analysis estimate ^a (#)	Absolute change ^a (#)	Percent change (%)	Primary analysis rank	Stringent analysis rank	Rank change
120	Nylon fibres	2400	1100	-1300	-53.3	120	117	-3
121	Hydraulic fluid	2300	1100	-1300	-53.6	121	119	-2
122	Aluminium fumes	2300	1100	-1200	-53.3	122	118	-4
123	Linseed oil	2300	1200	-1200	-49.7	123	111	-12
124	Brick dust	2200	1600	-530	-24.7	124	100	-24
125	Leaded gasoline	2200	1600	-580	-26.9	126	102	-24
126	Wool fibres	2200	1600	-550	-25.4	125	101	-24
127	Polyurethanes	2100	790	-1300	-61.8	127	128	1
128	Diesel oil	2000	1400	-640	-31.8	129	104	-25
129	Poly(vinyl acetate)	2000	140	-1900	-93.1	128	191	63
130	Cadmium	1900	130	-1800	-93.3	130	197	67
131	Asphalt	1800	1100	-700	-38.9	132	116	-16
132	Propane	1800	370	-1400	-79.6	131	162	31
133	Glycol ethers	1800	40	-1700	-97.6	133	215	82
134	Liquid fuel combustion products	1700	1200	-520	-29.8	134	109	-25
135	Mercury	1700	1200	-490	-28.5	135	108	-27
136	Other mineral oils	1700	670	-1000	-60.5	136	139	3
137	Methane	1700	710	-950	-57.4	137	134	-3
138	Soot	1600	1000	-590	-36.4	139	122	-17
139	Copper fumes	1600	680	-920	-57.6	140	138	-2
140	Aliphatic esters	1600	700	-940	-57.3	138	136	-2
141	Industrial talc	1500	340	-1200	-77.9	142	165	23
142	Ethylene oxide	1500	620	-910	-59.4	141	144	3
143	1,1,1-Trichlorethane	1400	700	-700	-49.9	143	135	-8
144	Selenium	1400	70	-1300	-94.7	144	208	64
145	Grain dust	1300	630	-700	-52.8	145	143	-2
146	Carbon black	1300	520	-780	-60	147	149	2
147	Epoxies	1300	950	-340	-26.2	149	123	-26
148	Ethylene glycol	1300	460	-850	-64.8	146	152	6
149	Pesticides	1300	1100	-230	-17.9	148	121	-27
150	Poly(vinyl chloride)	1200	310	-910	-74.2	151	166	15
151	Coal combustion products	1200	610	-630	-50.7	150	146	-4
152	Fluorides	1100	360	-780	-68.3	152	163	11
153	Unsaturated aliphatic hydrocarbons	1100	600	-480	-44.4	156	147	-9
154	Turpentine	1100	740	-410	-35.7	153	132	-21
155	Clay dust	1100	130	-930	-87.5	157	193	36
156	Bronze dust	1100	1100	0	-0.2	158	120	-38
157	Rubber dust	1100	520	-530	-50.5	159	150	-9
158	Diethyl ether	1100	440	-640	-59.1	155	156	1
159	Perchloroethylene	1100	730	-400	-35.7	154	133	-21

	CANJEM Chemical Agent Category ^b	Primary analysis estimate ^a (#)	Stringent analysis estimate ^a (#)	Absolute change ^a (#)	Percent change (%)	Primary analysis rank	Stringent analysis rank	Rank change
160	Nitric acid	1000	670	-340	-33.9	160	140	-20
161	Hydrogen sulphide	970	370	-600	-61.6	163	161	-2
162	Hydrogen fluoride	970	180	-780	-80.9	161	182	21
163	Natural gas	970	540	-430	-44.6	162	148	-14
164	Phosphoric acid	930	210	-720	-77.6	164	179	15
165	Isocyanates	920	140	-780	-85.2	165	192	27
166	Cobalt	900	180	-720	-80.1	166	183	17
167	Methyl methacrylate	860	650	-210	-24.1	167	141	-26
168	Mica	840	0	-840	-100	168	226	58
169	Acetylene	830	460	-370	-44.4	169	153	-16
170	Kerosene	830	120	-700	-85	170	198	28
171	Polyesters	820	240	-580	-70.5	171	174	3
172	Acrylic fibres	780	280	-500	-63.6	172	167	-5
173	Silver fumes	770	230	-540	-70.4	173	177	4
174	Tungsten compounds	760	180	-580	-76.3	175	183	8
175	Flax fibres	760	630	-140	-17.9	174	142	-32
176	Brass dust	750	680	-70	-9.2	176	137	-39
177	Fertilizers	740	440	-300	-40.5	177	157	-20
178	Heating oil	730	400	-330	-45.3	178	159	-19
179	Styrene	730	220	-510	-70.2	179	178	-1
180	Rayon fibres	730	470	-260	-35.8	180	151	-29
181	Silk fibres	720	350	-370	-50.9	181	164	-17
182	Carbon tetrachloride	680	610	-60	-9.4	183	145	-38
183	Chlorine	680	130	-550	-81.1	182	195	13
184	Coal tar and pitch	660	90	-570	-86.1	184	204	20
185	Urea-formaldehyde	600	200	-400	-66.3	185	180	-5
186	Rubber pyrolysis fumes	540	160	-380	-69.7	186	185	-1
187	Chlorine dioxide	520	0	-520	-100	187	226	39
188	Chloroform	510	250	-250	-49.8	189	171	-18
189	Wood combustion products	510	450	-60	-11.4	188	155	-33
190	Coal dust	500	410	-90	-17.7	190	158	-32
191	Creosote	490	30	-460	-93.4	191	219	28
192	Lead chromate	480	240	-240	-50.4	192	175	-17
193	Natural rubber	470	140	-330	-69.6	193	189	-4
194	Styrene-butadiene rubber	470	140	-330	-69.6	193	189	-4
195	Phthalates	470	90	-380	-81.1	196	205	9
196	Zinc oxide	470	280	-180	-39.7	195	168	-27
197	Glass dust	460	270	-190	-41.3	197	170	-27
198	Fur dust	430	160	-260	-61.7	198	186	-12
199	Calcium oxide fumes	420	50	-370	-89.1	200	214	14

	CANJEM Chemical Agent Category ^b	Primary analysis estimate ^a (#)	Stringent analysis estimate ^a (#)	Absolute change ^a (#)	Percent change (%)	Primary analysis rank	Stringent analysis rank	Rank change
200	Graphite dust	420	250	-180	-41.9	199	173	-26
201	Magnesium	400	400	0	0	201	160	-41
202	Polychlorinated biphenyls or PCBs	390	130	-260	-67.4	202	196	-6
203	Cyanides	360	110	-250	-68.9	203	200	-3
204	Aviation gasoline	350	0	-350	-100	204	226	22
205	Lead oxides	340	160	-180	-53.5	205	187	-18
206	Refractory brick dust	310	250	-70	-21	206	172	-34
207	Phenol	300	0	-290	-99.2	209	224	15
208	Hydrogen cyanide	300	80	-220	-73.1	207	206	-1
209	Phosgene	300	70	-230	-76	208	208	0
210	Sodium hydrosulphite	290	0	-290	-100	210	226	16
211	Hydrogen	280	150	-130	-45.6	211	188	-23
212	Acetate fibres	260	130	-130	-49.4	212	194	-18
213	Polystyrene	230	230	0	-0.5	213	176	-37
214	Phenol-formaldehyde	220	30	-190	-84.7	216	218	2
215	Plating solutions	220	200	-20	-7.5	215	181	-34
216	Basic lead carbonate	220	110	-110	-51.1	214	202	-12
217	Melamine-formaldehyde	210	60	-150	-70.8	217	211	-6
218	Polyethylene	180	50	-130	-72.3	218	213	-5
219	Animal, vegetable glues	170	110	-60	-35.6	219	201	-18
220	Antimony	150	30	-120	-81	220	220	0
221	Cellulose nitrate	110	100	-10	-11.1	221	203	-18
222	Felt dust	100	0	-100	-100	223	226	3
223	Crude petroleum	100	40	-60	-61.3	224	216	-8
224	Polypropylene	100	0	-100	-97.1	222	222	0
225	Nitroglycerine	90	70	-10	-14.1	226	207	-19
226	Leather dust	90	70	-20	-25.8	225	210	-15
227	Polychloroprene	70	0	-70	-100	227	226	-1
228	Sulfur	60	60	0	-1.2	228	212	-16
229	RDX	60	0	-60	-100	229	226	-3
230	Cellulose acetate	50	0	-50	-95.6	230	223	-7
231	Vanadium	40	0	-40	-100	231	226	-5
232	Nitrates	40	0	-40	-100	232	226	-6
233	Cork dust	30	0	-30	-99.5	233	225	-8
234	Arsenic	20	0	-20	-100	234	226	-8
235	Cadmium fumes	20	10	-10	-64.9	235	221	-14
236	Carbon disulphide	10	0	-10	-100	236	226	-10

^aEmployee counts are rounded to the nearest 10s if <1000, and to the nearest 100s if >1000 ^bTable is sorted by agents with the highest exposures estimates in the primary analysis

Table C-4. Summary of sensitivity analysis results showing changes in the number of disproportionate exposures. The results compare changes in the number of disproportionate exposures in the primary analysis to that of the analysis using a more stringent exposure assignment reliability rating.

Race/ethnicity	# Disproportionate exposures in primary analysis	# Disproportionate exposures in stringent analysis	Change in # of disproportionate exposures
Hispanic	149	130	-19
BIPOC	67	61	-6
AIAN	118	93	-25
Asian	56	55	-1
Black	48	46	-2
Multiracial	60	51	-9
NHPI	73	54	-19
White	160	145	-15