

Treatment Plant Flows and Loadings Study

Results summary and next steps

Presentation to MWPAAC E&P

May 7, 2020

Tiffany Knapp, P.E., MPA, Project Manager

John Conway, Water Quality Planner

Presentation Overview

Background

Scope of study

Summary of capacity limitations

Planned next steps

Background

Assessing treatment plant capacity: flows and loadings

- Flow
 - Flow hydraulic
 - Traditionally used as a proxy for treatment plant capacity

- Loadings
 - Solids total suspended solids (TSS)
 - Dissolved organics biochemical oxygen demand (BOD)

Initiation of Study – why?

In 2014, Regional Wastewater Services Plan (RWSP) review: • Updated flows and loading projections *to* the treatment plants

- Found that:
 - Flow projections are less than previously forecasted
 - Loading rates will continue to increase with population growth

Changes to Flow and Loading Projections

Changes to Flow and Loading Projections

Loading continues to increase with population

Initiation of Study – why?

In 2014, Regional Wastewater Services Plan (RWSP) review:

- Updated flows and loading projections to the treatment plants
- Found that:
 - Flow projections are less than previously forecasted
 - Loading rates will continue to increase with population growth
 - Treatment plants will reach loading capacity before reaching flow capacity

RWSP review identified the need to understand individual process capacity *within* the treatment plants

Scope of Treatment Plant Flows and Loadings Study

For each regional treatment plant (South Plant, West Point, Brightwater), determine:

Capacity of each major process within the treatment plant

• Timing of when each major process will reach capacity

Study **does not** include:

- Alternatives analysis
- Project definitions
- Costs

Determining process capacity is complicated

Factors affecting capacity:

- Influent wastewater characteristics
- Regulatory requirements
- Operating configuration
- Process performance
- Operating constraints
- Reliability and redundancy

Key Assumptions

 Projections based on 20-year recurrence period for peak flows (e.g., 20-year rainfall event)

 Each plant receives only flow from its service area (no flow transfers)

Process Capacity Limitations

Near-term

Longer-term

Within next 10 years (now-2030)	Between approx. 2030-2040	Approx. 2040 and beyond
Projected to occur within	Projected to occur within	Projected to occur
next 10 years	10-20 years	20 years or more
(between now and	(between approximately	from now
approximately 2030)	2030 and 2040)	(in the 2040's)

Summary of Process Capacity Limitations

* Effluent Transfer System ** Aerated Grit Tanks Note: Boxes indicate approximate timing of process capacity limitation, not projects or project sequencing.

Next Steps

- Continue 3 projects underway
- Submitted near-term limitations to WTD's Capital Portfolio process for consideration as projects in future capital budgets
- Initiate Treatment Planning Program to define projects that consider capacity in context of other system needs, opportunities, & priorities:
 asset management
 - regulatory changes
 - climate change impacts
- Consider treatment capacity within context of Clean Water Plan

Questions?

Tiffany Knapp, P.E., MPA <u>tiffany.knapp@kingcounty.gov</u> Project Manager – Comprehensive Planning King County Wastewater Treatment Division

