

SUBMITTED TO:

King County Department of Natural Resources and Parks Water and Land Resources Division 201 South Jackson Street Seattle, WA 98104

BY: Shannon & Wilson 400 N. 34th Street, Suite 100 Seattle, WA 98103

(206) 632-8020 www.shannonwilson.com

GEOTECHNICAL DATA REPORT Levee Breach Analysis Mapping and Risk Assessment, Lower Raging River KING COUNTY, WASHINGTON

November 9, 2021 Shannon & Wilson No: 103692-303

Submitted To:	King County Department of Natural Resources and Parks
	Water and Land Resources Division
	201 South Jackson Street
	Seattle, WA 98104
	Attn: Ms. Judi Radloff

Subject: GEOTECHNICAL DATA REPORT, LEVEE BREACH ANALYSIS MAPPING AND RISK ASSESSMENT, LOWER RAGING RIVER, KING COUNTY, WASHINGTON

We prepared this report to present the geotechnical data obtained for the Lower Raging River component of the King County Levee Breach Analysis Mapping and Risk Assessment project. This report presents the results of our geotechnical historical records research, subsurface explorations, and laboratory testing for the project. Our scope of services was specified in our Personal Services Agreement with King County, Number E00670E20, dated February 2, 2021.

We appreciate the opportunity to be of service to you on this project. If you have questions concerning this report, or we may be of further service, please contact us.

Sincerely,

SHANNON & WILSON

Oliver Hoopes, PE Associate

GVP:OTH:SRB/gvp

1	Introduction1		
2	Site Description1		
3	Geo	logy	
	3.1	Gener	al Geologic Setting2
	3.2	Site St	ubsurface Conditions
4	Leve	ee Cons	truction History
5	Proj	ect Sub	surface Explorations4
	5.1	Soil B	orings5
		5.1.1	Sonic Core Drilling Procedures
		5.1.2	Split-Spoon Sampling5
		5.1.3	Vibrating Wire Piezometer Installation6
		5.1.4	Material Descriptions and Boring Logs7
	5.2	Test P	it Excavations7
6	Hist	oric Sul	bsurface Explorations8
7	Geotechnical Laboratory Testing		
8	Hydrogeology9		
9	Use of Report9		
10	Closure9		
11	References10		

Figures

Figure 1:	Lower Raging River Vicinity Map
Figure 2:	Lower Raging River Geotechnical Site and Exploration Plan
Figure 3:	Lower Raging River 1936 Pre-Levee Aerials

Appendices

Appendix A: Project Subsurface Exploration Logs Appendix B: Historical Site Exploration Logs Appendix C: Geotechnical Laboratory Tet Results Appendix D: Hydrogeologic Data Results Important Information

1 INTRODUCTION

The King County Levee Breach Analysis Mapping and Risk Assessment (Project) is intended to identify the areas along portions of several river corridors within King County where containment levee systems may be vulnerable to breaching placing people, property, and infrastructure at risk. The Lower Raging River is one of the river systems included in the Project study.

Work for this Project involves data collection to physically characterize the levee systems, conducting seepage and levee failure analyses, hydrologic and hydraulic modeling, developing inundation mapping, and conducting economic risk analysis. Mapping and risk assessment results will be presented in subsequent reports.

This report presents the results of our geotechnical subsurface explorations and laboratory testing for the Lower Raging River corridor study, as well as available historical subsurface information. Subsurface explorations were performed to collect soil and groundwater data to support future geotechnical analyses of levee stability. The purpose of this report is to present the factual data collected during our geotechnical historical records research, subsurface explorations, and laboratory testing for the Lower Raging River study.

2 SITE DESCRIPTION

The Raging River is located in the central part of King County and flows into the Snoqualmie River at Fall City (see Figure 1). The Raging River basin has a watershed area of 33 square miles. Basin elevations range from 79 feet at the mouth of the Raging River to 3,517 feet on Rattlesnake Mountain. Except for the central valley floor and lower 8 miles of the river, the basin is generally steeply sloping and forested. The Upper Raging River flows in a narrow, V-shaped valley with an average gradient of about 3%. Between Upper Preston and Fall City, the Lower Raging River channel gradients range from 0.9% to 1.6%. Canyon Creek, Deep Creek, and Lake Creek are major tributaries of the Upper Raging River, and Icy Creek feeds into the Lower Raging River. From the Deep Creek confluence to Preston, the Upper Raging River flows northwest in a gently-sloping, 1,800-foot-wide valley. At Preston, the river turns abruptly to the northeast and flows through a steeper, narrower valley toward the Snoqualmie River at Fall City. In both the upper and lower valleys, the active floodplain is generally only a few hundred feet wide and lies between higher terraces. In its last mile, the river gradient flattens as it flows across an alluvial fan built by the Lower Raging River across the Snoqualmie River valley floor (Shannon & Wilson, 1991). Large areas of the Upper Raging River basin were logged from about 1900 to 1932, from the vicinity of Preston southeast to the Canyon Creek and Deep Creek drainages. Logging along the Upper Raging River revived sometime in the 1970s but was most intensive in the late 1980s and involved almost the entire watershed upstream from Highway 18, on the order of 25% of the total area of the Raging River basin. The hillsides of the Lower Raging River between Preston and Fall City were logged mainly by 1960. The Lower Raging River is also crossed by five bridges between Fall City and Preston. The Preston bridge washed out in a large 1932 flood and was later rebuilt. Minor erosion problems associated with some of these bridges have been controlled by riprap (Shannon & Wilson, 1991). Land use along the river is primarily residential with some commercial activity such as quarries and lumberyards.

The Lower Raging River containment levee system consists of four levees that are approximately 1.5 miles long on both banks of the river, totaling about 2.85 miles of levee on the river. These levees protect residences, businesses, commercial property, and infrastructure from flood hazards within the unincorporated town of Fall City.

3 GEOLOGY

3.1 General Geologic Setting

The Raging River is located near the eastern edge of the Puget Lowland, a north-trending basin filled with the deposits of multiple Quaternary glaciations. The river flows through floodplains of gravelly alluvium derived primarily from reworked glacial sediment. Glacial sediments form or mantle the valley walls or the Raging River; most of these sediments were deposited 13,000 to 15,000 years ago during the Vashon stage of Fraser glaciation, the latest glaciation in which ice covered the Snoqualmie Valley area. Exposures of glacial sediments in the riverbank is common throughout the Raging River. Tributary streams and landslides from the steep valley walls deliver sediment ranging in size from clay to boulders to the river. In the headwaters of the river basin, Tertiary bedrock of the Cascade Range is exposed on the hillsides and in places in the river channel (Booth, 1990; Dragovich and others, 2007).

Along the Lower Raging River, the river gradient averages 0.94% as it crosses its alluvial fan into the Snoqualmie River. This reach of river is confined between levees spaced 100 to 150 feet apart. Prior to construction of the levees, the active channel was wider and multiple channels existed across the fan. Figure 3 presents the current Lower Raging River right bank and left bank levee alignments overlain onto 1936 aerial photographs taken prior to levee construction. As indicated in Figure 3, the levees were constructed atop channel meanders at several locations. Since levee construction, alternate gravel bars have been deposited within the levees and are stabilized by vegetation in many cases.

3.2 Site Subsurface Conditions

Based on our historical information review the soils we sampled in our subsurface explorations, the following groups of materials are present in the upper 50 feet along the Lower Raging River system:

- Levee Fill Levee fill represents the material primarily used to construct the levees. Levee fill generally consists of poorly graded gravel with silt, sand and cobbles. Explorations encountered levee fill to a depth of 5 to 6 feet below ground surface (bgs) in all four borings.
- Native Gravel Gravel is present below the levee fill. The thickness of the native gravel ranges from 14 to 24 feet, with the layers ending 20 to 30 feet bgs in each boring. Native gravel primarily consists of poorly to well-graded gravel with silt, sand, and/or cobbles. In most borings, the contact between levee fill and native gravel is difficult to distinguish.
- Native Sand Native sand consists of silty sand to poorly graded sand with silt, with the sand particles being primarily fine- to medium-grained. Native sand underlies the native gravel in B-RR-1 and B-RR-3. In B-RR-1, the native sand layer encountered was 5 feet thick; in B-RR-3 the layer was 18 feet thick. Native sand ranged from brown to gray with iron oxide staining locally.
- Native Silt Silt was encountered in B-RR-1, B-RR-2, and B-RR-4, with the layer beginning between 22 and 30 feet bgs and extending to the bottom of each boring, to a depth of 51.5 feet bgs. In B-RR-2, the silt layer was directly beneath the native gravel layer. In B-RR-1, silt was encountered below the native sand layer, and in B-RR-4 silt was encountered beneath very soft silt. Native silt is primarily nonplastic to low plasticity silt or silt with sand ranging in color from brown to gray. Cohesionless native silt ranged from very loose to medium dense and cohesive native silt ranged from stiff to very stiff.
- Native Very Soft Silt Native very soft silt was encountered in B-RR-4 between 22 and 30 feet bgs, and in B-RR-3 from 25 to 26 feet bgs. This silt is brown and low to medium plasticity. In B-RR-3, some wood fragments and other organic materials were encountered in this unit.

4 LEVEE CONSTRUCTION HISTORY

The Lower Raging River is confined by levees armored with riprap where it crosses the Snoqualmie River floodplain and Lower Raging River alluvial fan built across the

Snoqualmie River valley floor. These levees were built between 1939 and 1941, at which time the river was also straightened and channelized (Shannon & Wilson, 1991 and King County, 1940). The levees were raised and reinforced in the early 1960s. Supplementary bank protection structures, primarily riprap, are widespread throughout the Lower Raging River but most are limited in length to one or two pieces of private property. Records for the County-maintained revetments on both rivers do not quantify historic expenditures but show that most of the revetments have required repairs or maintenance at least once (Shannon & Wilson, 1991).

Approximately 125,000 cubic yards of gravel was removed from the river during levee construction in the 1930s (King County, 1940). As part of the King County flood control program, gravel was also removed from the Lower Raging River during the 1960s. Sequential photographs show that deposition of gravel bars at the river mouth and within levees has occurred on the river since the cessation of gravel removal, and that many of the gravel bars have become stabilized by vegetation. Logs were regularly removed along the inhabited section of the river during the 1960s, and log removal by King County continued to a lesser extent through the 1970s. Log removal was eventually discontinued due to budget constraints, concerns about fish habitat and air pollution from burning, and growing evidence that woody debris reduced flow velocities and can in some cases contribute to channel stability. In the 1980s, sawing of large logs into smaller pieces and removal of log jams was done on a limited basis by local residents and King County (Shannon & Wilson, 1991).

5 PROJECT SUBSURFACE EXPLORATIONS

We performed four borings and eight test pits to characterize the subsurface conditions along the Lower Raging River study area. We subcontracted with Holt Services, Inc. of Edgewood, Washington, to drill the four borings and install four vibrating wire piezometers (VWPs). We subcontracted with Agostino Construction, Inc. of Maple Valley, Washington, to excavate the eight test pits.

We used the following general goals to guide our selection of the exploration locations:

- Locations near inside river bends because scour risk at those locations is greater.
- Areas where no historic subsurface data is present.
- Target a relatively even distribution or spread of explorations along the river within the study area.

 Locations where, based on the historic aerial photographs (see Figure 3), the levees were constructed atop old river channels.

We designated our explorations using the exploration method (i.e., "B-RR" for Raging River borings and "TP-RR" for Raging River test pit) and a number (i.e., "B-RR-1" and "TP-RR-01"). 1 Alliance Geomatics surveyed the boring and test pit locations and elevations after completion. The locations of the Lower Raging River subsurface explorations are shown in Figure 2.

5.1 Soil Borings

Holt drilled and sampled the four borings using sonic core drilling techniques between June 21 and 24, 2021. The borings were designated B-RR-1 through B-RR-4. Each boring reached a depth of approximately 51.5 feet bgs. A Shannon & Wilson representative observed, logged, and collected the soil samples retrieved from the borings.

5.1.1 Sonic Core Drilling Procedures

Holt performed sonic core drilling using a Terra Sonic TSI 150CC track-mounted sonic drill. The sonic core drilling method uses high-frequency vibratory motion applied to the top of the drill column, along with down-pressure and rotation, to obtain nearly continuous core samples in the soil. Soil samples were obtained using a 6-inch-outside-diameter (OD) core barrel. The core barrel was advanced into the ground a specific distance (termed a core "run") and then retrieved for extraction of the sample core. The amount of sample retrieved, expressed as a percentage of the length of the recovered sample to the total length of the core run, is presented in the boring logs in Appendix A. Following retrieval of the core barrel, a temporary casing was advanced to the bottom of the sampled interval. The casing was then cleared of slough and the next core sample was collected, starting at the bottom of the temporary casing.

Core samples were stored in plastic bags to preserve moisture and placed into 5-foot-long wooden boxes to preserve structure during transport. The wooden boxes were returned to our laboratory in Seattle, Washington, for further review.

5.1.2 Split-Spoon Sampling

We collected disturbed soil samples with a split-spoon sampler in conjunction with Standard Penetration Testing (SPT) in accordance with ASTM Designation D1586, Standard Test Method for Standard Penetration Test and Split-Barrel Sampling of Soils (ASTM, 2020). The SPT consists of a 2-inch-OD, 1.375-inch-inside-diameter split-spoon sampler driven 18 inches into the bottom of the borehole with a 140-pound hammer free falling 30 inches. The number of blows required to penetrate the final 12 inches is termed the Standard Penetration Resistance (N-value). The field N-values are plotted on the boring logs presented in Appendix A. These values provide an empirical means for evaluating the relative density of granular soil and the relative consistency (stiffness) of cohesive soil. Figure A-1 in Appendix A shows the relative density or consistency as it relates to the SPT N-value.

The presence of gravel and cobbles may impact measured penetration resistances and result in high SPT N-values. This can be especially pronounced when a geologic unit is known to be deposited in an environment where it is not overconsolidated, such as alluvium. Where gravelly/cobbly material is encountered in our explorations, our boring logs include a note that the blow counts recorded may not be indicative of the soil density due to the presence of gravel and cobbles.

SPT N-values can be affected by other factors, including the efficiency of the hammer used. N-values presented in this report are reported in blows per foot as counted in the field. No corrections have been applied. N-values of zero indicate that the sampler advanced the last 12 inches of the 18-inch sampling interval without a single hammer strike. That is, the weight of the drilling rods plus the weight of the hammer (not in motion), reported as "WOH", was sufficient to advance the sampler. An SPT was considered to have met refusal where more than 50 blows were required to drive the sampler 6 inches. If refusal was encountered, the test was terminated and the number of blows, along with the penetration distance recorded (i.e., 50/3").

We described each sample retrieved in the field and sealed the samples in labelled plastic jars to preserve moisture. We stored the sample jars in boxes and returned them to our laboratory in Seattle, Washington, for further review.

5.1.3 Vibrating Wire Piezometer Installation

Holt installed Geokon Model 4500S VWPs with a 350-kilopascal (50 pounds per square inch) pressure range in all boreholes in accordance with applicable Washington State Department of Ecology regulations. The VWP consists of a vibrating wire pressure transducer contained in stainless steel housing. The transducer is connected to a signal cable that is routed up the borehole to a datalogger at ground surface. Holt grouted the VWPs into place at depths ranging from 18 to 25 feet bgs by attaching it to a tremie pipe and pumping grout into the bottom of the borehole. A 12-inch-diameter steel monument was installed at the borehole to house and protect the datalogger.

5.1.4 Material Descriptions and Boring Logs

In the field, our field representative visually classified the soil samples in general accordance with ASTM D2488 Standard Practice for Description and Identification of Soils (Visual-Manual Procedure) (ASTM, 2020). Consistency, color, relative moisture, degree of plasticity, and other distinguishing characteristics of the samples were noted. Once returned to our offices, we performed an in-depth review of the sonic cores and SPT samples, took photographs of the cores, and assigned laboratory tests to select samples. Based on this review and the results of the laboratory tests, we modified the sample descriptions and classifications as necessary using elements of the Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System), ASTM D2487 (ASTM, 2020). However, ASTM 2487 was not followed in full because we did not perform both grain-size distribution analyses and Atterberg Limits determinations on each sample tested. Terminology used in our soil classifications is defined in the Soil Description and Log Key, Figure A-1.

Logs of the borings and photographs of the retrieved core runs are presented in Appendix A as Figures A-2 through A-9. The soil descriptions and interfaces on the logs are interpretive and the actual changes may be gradual. The left-hand portion of the boring logs provides our interpretation of the soil encountered in the boring. The right-hand portion of the boring logs show a graphic log, sample locations and designations, percent sample recovered, groundwater information, a graphical representation of N-values, and select laboratory test results.

In our material descriptions, we use density terms (loose, dense, etc.) versus consistency terms (soft, stiff, hard, etc.) based on their plasticity and soil behavior. We use density terms materials such as nonplastic silts, sands, and gravels. We use consistency terms for low to medium plasticity silts, elastic silts, and all clays.

5.2 Test Pit Excavations

Geotechnical test pits TP-RR-01 through TP-RR-08 were excavated by Agostino between June 21 and 22, 2021, using a Bobcat E45 Mini Excavator. Test pit depths ranged from approximately 2 to 8 feet bgs, and either a 2- or 4-foot-wide bucket was used for excavation. Agostino backfilled the test pits with the excavated materials (spoils). Agostino compacted the backfill in 12- to 16-inch lifts with a ho-pack plate compactor.

A Shannon & Wilson representative was present throughout the test pit excavation to collect samples, visually classify the soil, and prepare an exploration log for each test pit. We collected representative disturbed soil samples (grab samples) from the backhoe bucket or

spoil pile. After soil classification, we sealed the samples in 1-gallon bags to retain moisture and returned to our laboratory in Seattle, Washington, for further review.

The intervals over which the samples were collected are shown on the test pit logs presented in Appendix A as Figures A-10 through A-17.

6 HISTORIC SUBSURFACE EXPLORATIONS

We reviewed historical information available for the Lower Raging River study area and compiled nearby historic subsurface exploration logs in Appendix B. The historical explorations are from previous projects by Shannon & Wilson and King County Department of Transportation (DOT).

The historic Shannon & Wilson explorations along Lower Raging River consist of borings and test pits associated with the Raging River Bridge Replacement Project (Shannon & Wilson, 1997). The approximate boring locations are shown in Figure 2. The Shannon & Wilson boring logs, test pit logs, and associated lab testing records are provided in Appendix B as Figures B-1 through B-19.

The historic King County DOT boring and test pit logs are associated with the Smith-Parker Bridge Replacement Geotechnical Engineering Report (GeoEngineers, 1996). The approximate boring locations are shown in Figure 2. The legend for the GeoEngineers exploration location is provided in Appendix B, Figure B-20. The boring logs, test pit logs, and lab testing records are provided in Appendix B as Figures B-21 through B-35.

The historic explorations included in this report are from other projects and, except for the 1997 borings by Shannon & Wilson, conducted by other parties. The information associated with and location of historical exploration logs cannot be confirmed and is provided for reference only. We provide this data on an "as-is" basis.

7 GEOTECHNICAL LABORATORY TESTING

We subcontracted HWA GeoSciences, Inc. to perform geotechnical laboratory testing on select soil samples retrieved from the Lower Raging River study explorations. HWA performed visual classification on each of the retrieved samples. The laboratory testing program included water content determinations, grain-size distribution analyses, and Atterberg Limits determinations. A description of each laboratory test and the test results are provided in HWA's report (HWA, 2021), which is enclosed in Appendix C.

8 HYDROGEOLOGY

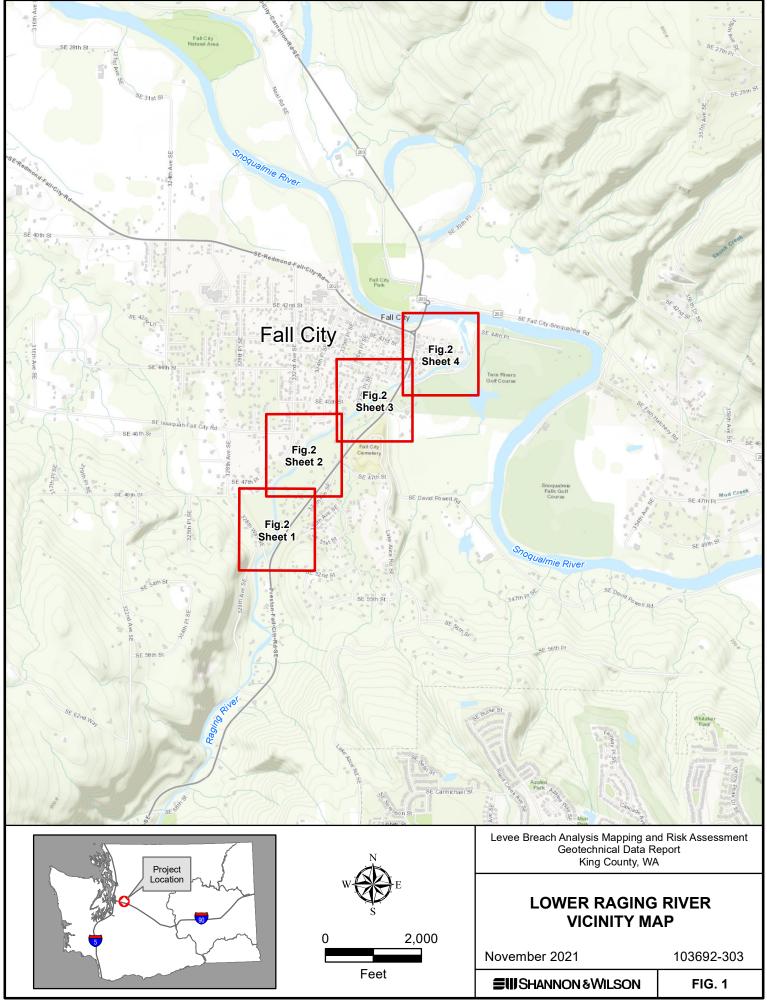
We collected hourly groundwater pressure data from the VWPs installed in the borings from June 21 to July 9, 2021. Over the course of our monitoring period, groundwater levels measured about 11 feet bgs in boring B-RR-1, 22 feet bgs in boring B-R-2, 18 feet bgs in boring B-RR-3, and 13 feet bgs in B-RR-4. The groundwater data and precipitation reported at Seatac Airport during the monitoring period are presented as Figures D-1 through D-4 in Appendix D. Additional groundwater data will be collected over the winter to aid in geotechnical stability analyses and risk assessment. An addendum to this report will be issued to present the additional data once it is available.

9 USE OF REPORT

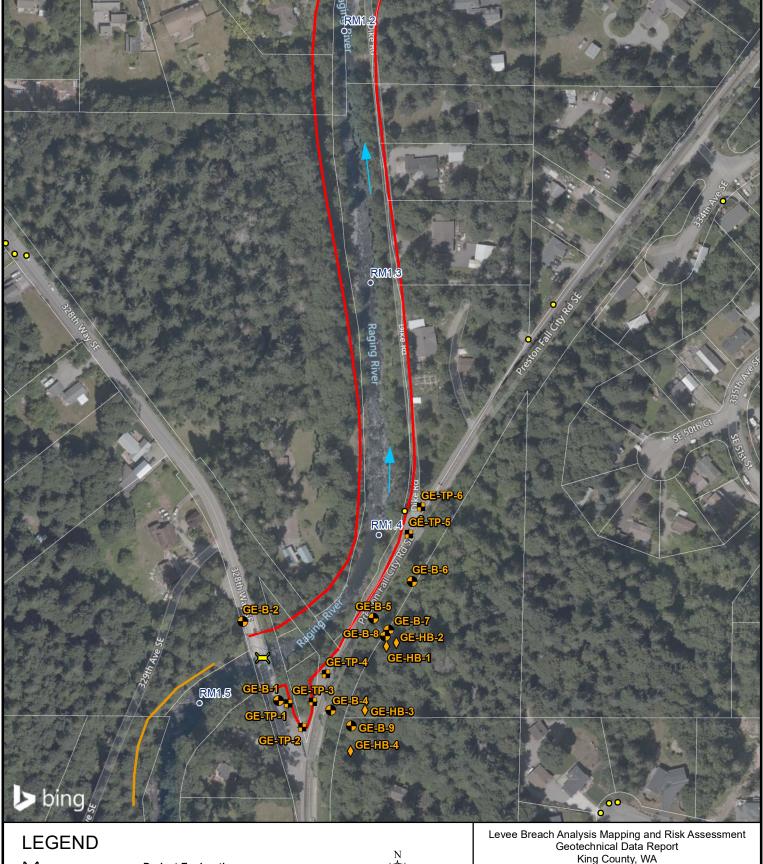
This Geotechnical Data Report (GDR) was prepared for the exclusive use of King County and the Project team to present data for inclusion in the analyses to be performed for the Lower Raging River area. This GDR was prepared under a scope of services and level of effort determined by King County to be suitable for its purposes. This GDR presents the data from field explorations and field and laboratory testing of subsurface conditions at the specific locations and depths indicated using the means and methods described in this report. No other representation is made. Subsurface conditions, such as those that may be interpreted from exploration logs and test results included in this report, should not be construed as a guarantee or warranty of any subsurface conditions. Depending upon the analysis approach, additional geotechnical data may be necessary.

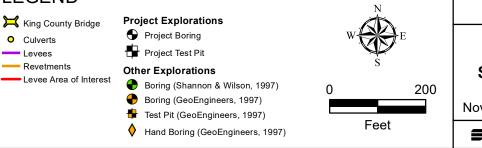
Natural processes or human activity may alter subsurface conditions. Because a geotechnical report is based on conditions that existed at the time of subsurface explorations, decisions on additional actions at the site should not be based on a report whose adequacy may have been affected by time, unless verified.

10 CLOSURE


Within the limitations of the scope, schedule, and budget, the interpretations and conclusions presented in this report were prepared in accordance with generally accepted professional geotechnical engineering principals and practice in this area at the time this report was prepared. We make no other warranty, either express or implied.

Shannon & Wilson has prepared the enclosed, "Important Information About Your Geotechnical Report," to assist you and others in understanding the use and limitations of our report. This enclosure is presented at the end of this report.


11 REFERENCES

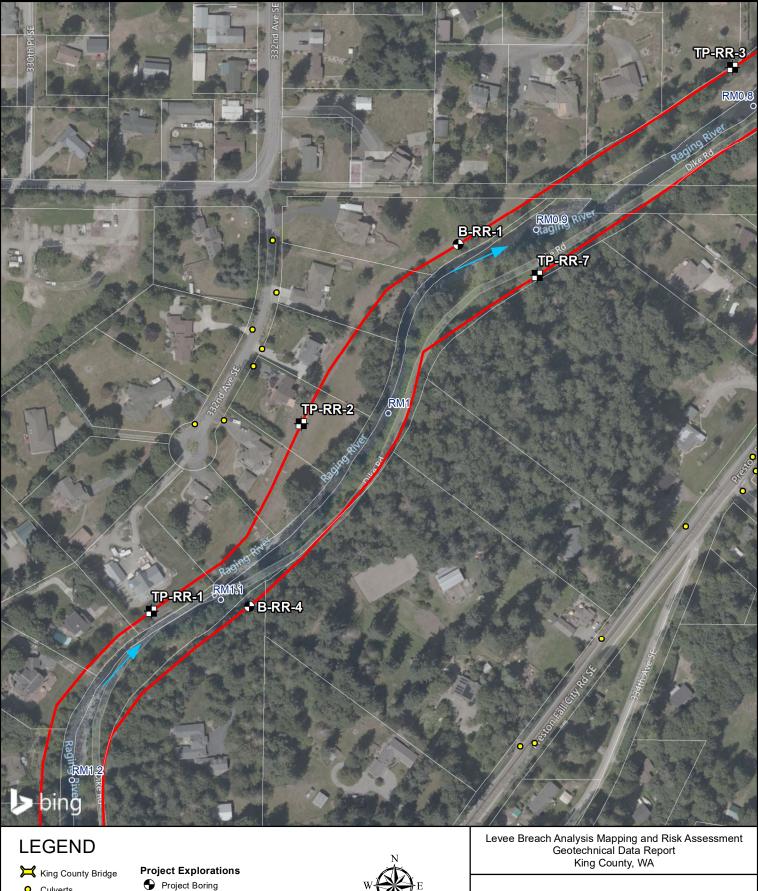

- ASTM International, 2020, Annual book of standards, construction, v. 4.08, soil and rock (I): D420 D5876: West Conshohocken, Penn., ASTM International, 1 v.
- Booth, D.B., 1990, Surficial geology of the Skykomish and Snoqualmie Rivers area, Snohomish and King Counties, Washington: U.S. Geological Survey Misc. Inv. Map I-1745.
- Dragovich, J.D., Anderson, M.L., Walsh, T.J., and others, 2007, Geologic map of the Fall City 7.5-minute quadrangle, King County, Washington: Washington State Division of Geology and Earth Resources Geologic Map GV-67, 16 p., 1 sheet, scale 1:24,000.
- GeoEngineers, 1996, Geotechnical Engineering Report: Smith Parker Bridge Replacement, King County, Washington: Report prepared by GeoEngineers, Seattle, Wash., for King County Department of Transportation, Project No. August 16.
- HWA Geosciences, Inc., 2021, Materials laboratory report, Lower Raging River King County Levee Project: Report prepared by HWA Geosciences, Inc., Bothell, Wash., client project no. 103692-303, for Shannon & Wilson, Inc., Seattle, Wash., July 20.
- King County, 1940, Fifth Annual Report of the County Road Engineer: Report prepared by H. Laufer under direction of H. H. Sisler for the King County Board of Commissioners, May.
- Shannon & Wilson, 1991, Tolt and Raging Rivers Channel Migration Study, King County, Washington: Report prepared by Shannon & Wilson, Seattle, Wash., for King County Surface Water Management Division, Project No. W-5666-01, April.
- Shannon & Wilson, 1997, Geotechnical Report, Raging River Bridge 234A Replacement, Fall City, Washington: Report prepared by Shannon & Wilson, Seattle, Wash., for King County Department of Transportation, Project No. W-6819-02, June.

Filename: I:\EF\SEA\103000s\103692 KC Levee Breach\200 GIS Database\MXD\p300 LRR\p300 LRR VicinityMap GDR.mxd Date: 11/5/2021 SNS

Filename: I:\EF\SEA\103000s\103692 KC Levee Breach\200 GIS Database\MXD\p300 LRR\p300 LRR ExplorationPlan GDR.mxd Date: 11/5/2021 SNS

King County, WA

LOWER RAGING RIVER SITE AND EXPLORATION PLAN


November 2021

103692-303

EWSHANNON & WILSON

FIG. 2 Sheet 1 of 4

O Culverts

Levees Revetments

Levee Area of Interest

Project Test Pit

Ð

Other Explorations

Boring (Shannon & Wilson, 1997)

Boring (GeoEngineers, 1997)

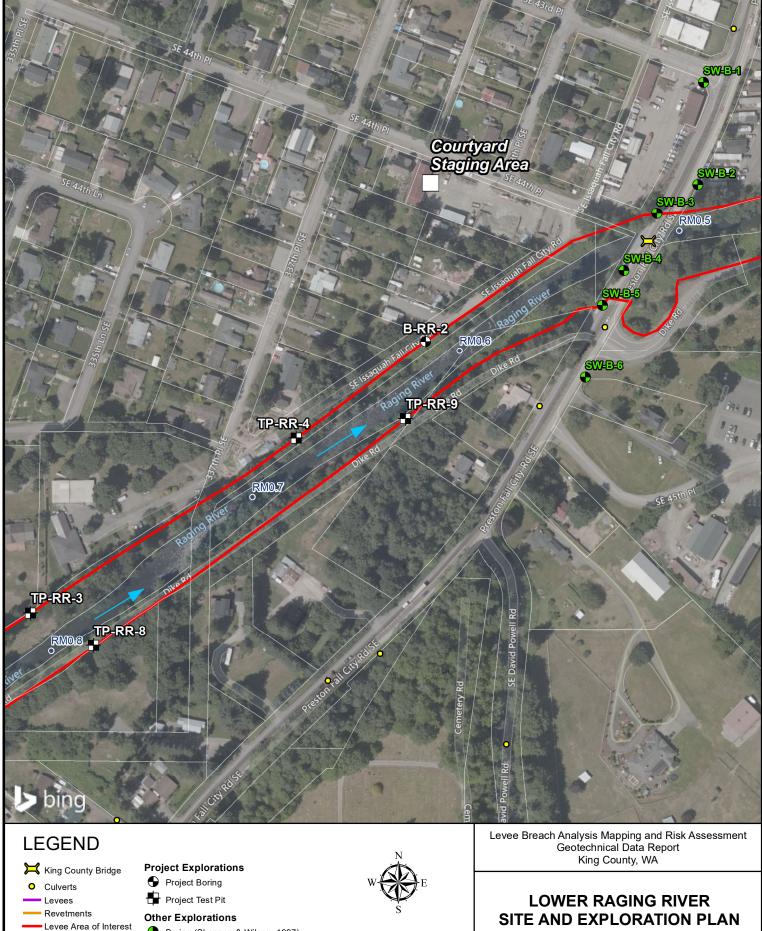
Hand Boring (GeoEngineers, 1997)

Test Pit (GeoEngineers, 1997)

LOWER RAGING RIVER SITE AND EXPLORATION PLAN

November 2021

200


Feet

0

103692-303

EWSHANNON & WILSON

FIG. 2 Sheet 2 of 4 Filename: I:\EF\SEA\103000s\103692 KC Levee Breach\200 GIS Database\MXD\p300 LRR\p300 LRR ExplorationPlan GDR.mxd Date: 11/5/2021 SNS

Other Explorations		
Ð	Boring (Shannon & Wilson, 1997)	
Ð	Boring (GeoEngineers, 1997)	
-	Test Pit (GeoEngineers, 1997)	

Hand Boring (GeoEngineers, 1997)

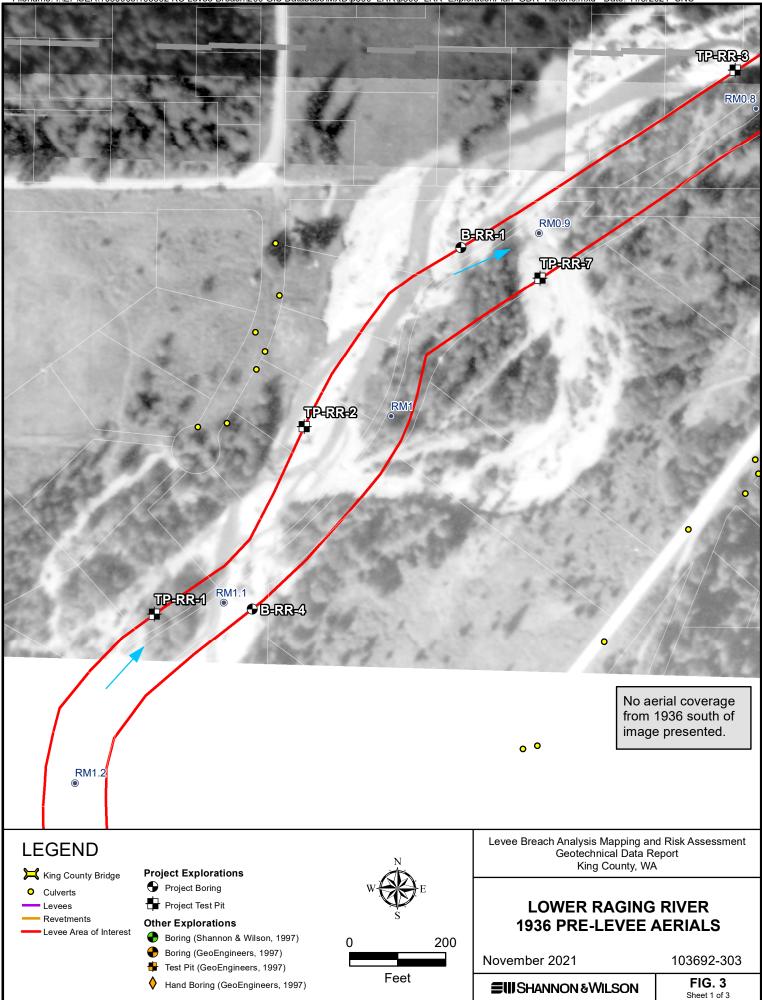
200 Feet

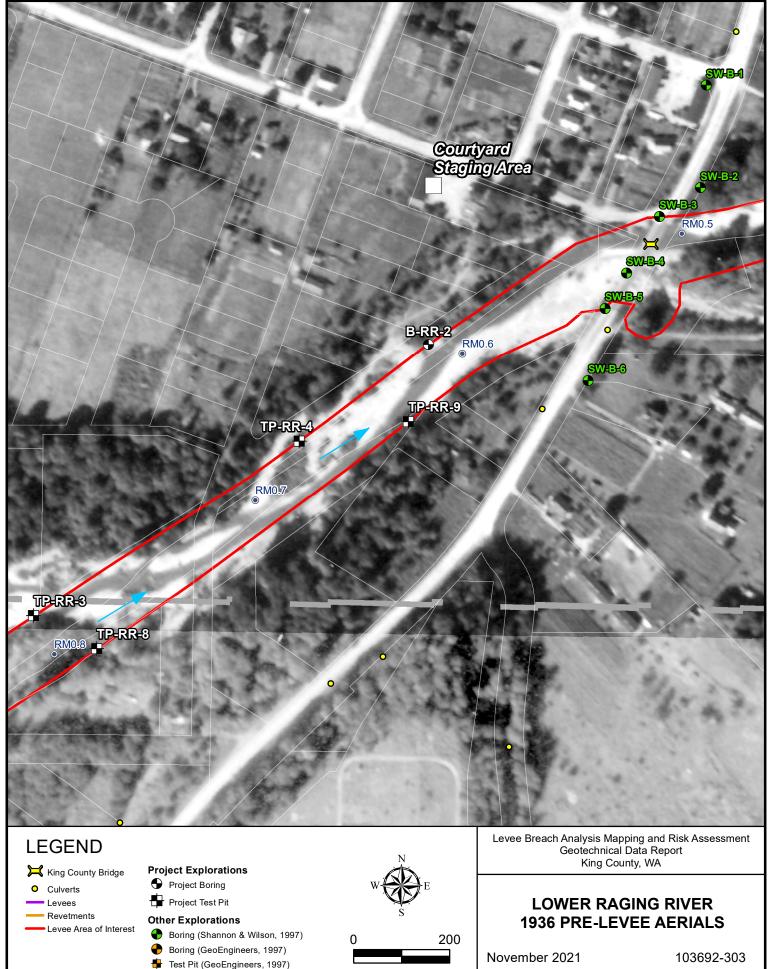
0

November 2021

103692-303

EWSHANNON & WILSON


FIG. 2 Sheet 3 of 4



LEGEND	Project Explorations	N	Levee Breach Analysis Mapping an Geotechnical Data R King County, WA	eport
 Culverts Levees 	 Project Boring Project Test Pit 	WEE	LOWER RAGING	RIVER
Revetments Levee Area of Interest	Other Explorations Boring (Shannon & Wilson, 1997) 0	s 0 200	SITE AND EXPLORATION PLAN	
	 Boring (GeoEngineers, 1997) Test Pit (GeoEngineers, 1997) 		November 2021	103692-303
	Hand Boring (GeoEngineers, 1997)	Feet	SHANNON & WILSON	FIG. 2 Sheet 4 of 4

Filename: I:\EF\SEA\103000s\103692 KC Levee Breach\200 GIS Database\MXD\p300 LRR\p300 LRR ExplorationPlan GDR Historic.mxd Date: 11/5/2021 SNS

Feet

Hand Boring (GeoEngineers, 1997)

SHANNON	&WILSON
----------------	---------

FIG. 3 Sheet 2 of 3

LEGEND	Project Explorations		Levee Breach Analysis Mapping and Risk Assessment Geotechnical Data Report King County, WA	
King County Bridge Culverts Levees Revetments Levee Area of Interest	 Project Boring Project Test Pit Other Explorations Boring (Shannon & Wilson, 1997) 	w е Е S 200	LOWER RAGING 1936 PRE-LEVEE	
	 Boring (GeoEngineers, 1997) Test Pit (GeoEngineers, 1997) 		November 2021	103692-303
	Hand Boring (GeoEngineers, 1997)	Feet	EWSHANNON & WILSON	FIG. 3 Sheet 3 of 3

Appendix A **Project Subsurface Exploration Logs**

CONTENTS

- Figure A-1 Soil Description and Log Key
- Figure A-2 Boring B-RR-1
- Figure A-3 Boring B-RR-1 Sonic Core Photographs
- Figure A-4 Boring B-RR-2
- Figure A-5 Boring B-RR-2 Sonic Core Photographs
- Figure A-6 Boring B-RR-3
- Figure A-7 Boring B-RR-3 Sonic Core Photographs
- Figure A-8 Boring B-RR-4
- Figure A-9 Boring B-RR-4 Sonic Core Photographs
- Figure A-10 Test Pit TP-RR-1
- Figure A-11 Test Pit TP-RR-2
- Figure A-12 Test Pit TP-RR-3
- Figure A-13 Test Pit TP-RR-4
- Figure A-14 Test Pit TP-RR-5
- Figure A-15 Test Pit TP-RR-6
- Figure A-16 Test Pit TP-RR-7
- Figure A-17 Test Pit TP-RR-8

WILSON & WILSON

Levee Breach Analysis Mapping and Risk Assessment, Geotechnical Data Report King County, Washington

Sheet 1 of 2

Shannon & Wilson uses a soil identification system modified from the Unified Soil Classification System (USCS). Elements of the USCS and other definitions are provided on this and the following page. Soil descriptions are based on visual-manual procedures (ASTM D2488) and laboratory testing procedures (ASTM D2487), if performed.

	Structure ¹
Interbedded	Alternating layers of varying material or color with layers at least 1/4-inch-thick; singular: bed.
Laminated	Alternating layers of varying material or color with layers less than 1/4-inch-thick; singular: lamination.
Fissured	Breaks along definite planes or fractures with little resistance.
Slickensided	Fracture planes appear polished or glossy; sometimes striated.
Blocky	Cohesive soil that can be broken down into small angular lumps that resist further breakdown.
Lensed	Inclusion of small pockets of different soils, such as small lenses of sand scattered through a mass of clay.
Homogeneous	Same color and appearance throughout.

	Angularity and Shape ¹
Angular	Sharp edges and unpolished planar surfaces.
Subangular	Similar to angular, but with rounded edges.
Subrounded	Nearly planar sides with well-rounded edges.
Rounded	Smoothly curved sides with no edges.
Flat	Width/thickness ratio > 3.
Elongated	Length/width ratio > 3.

Standard Penetration Test	(SPT) ³
	()

Hammer	140 pounds with a 30-inch free fall. Rope on 6- to 10-inch-diameter cathead 2-1/4 rope turns, > 100 rpm. If automatic hammers are used, blow counts shown on boring logs should be adjusted to account for efficiency of hammer.
Sampler	10 to 30 inches long Shoe I.D. = 1.375 inches Barrel I.D. = 1.5 inches Barrel O.D. = 2 inches
N-Value	Sum blow counts for second and third 6-inch increments. Refusal: 50 blows for 6 inches or less or 10 blows for 0 inch.

	Moisture Content
Dry	Absence of moisture, dusty, dry to the touch.
Moist	Damp but no visible water.
Wet	Visible free water, from below water table.

Poorly Graded	Narrow range of grain sizes present or, within the range of grain sizes present, one or more sizes are missing (Gap Graded). Meets criteria in ASTM D2487, if tested.
Well-Graded	Full range and even distribution of grain sizes present. Meets criteria in ASTM D2487, if tested.

Gradation

SOIL DESCRIPTION AND LOG KEY

Cementation ¹						
Weak	Crumbles/breaks with handling or slight finger pressure.					
Moderate	Crumbles or breaks with considerable finger pressure.					
Strong	Will not crumble or break with finger pressure.					

Plasticity ²								
Nonplastic	Cannot roll a 1/8-in. thread at any water content.	PI < 4						
Low	A thread can barely be rolled and a lump cannot be formed when drier than the plastic limit.	4 < PI < 10						
Medium	A thread is easy to roll and not much time is required to reach the plastic limit. The thread cannot be rerolled after reaching the plastic limit. A lump crumbles when drier than the plastic limit.	10 < PI < 20						
High	It takes considerable time rolling and kneading to reach the plastic limit. A thread can be rerolled several times after reaching the plastic limit. A lump can be formed without crumbling when drier than the plastic limit.	PI > 21						

Additional Terms						
Mottled	Irregular patches of different colors.					
Bioturbated	Soil disturbance or mixing by plants or animals.					
Diamict	Nonsorted sediment; sand and gravel in silt and/or clay matrix.					
Cuttings	Material brought to surface by drilling.					
Slough	Material that caved from sides of borehole.					
Sheared	Disturbed texture, mix of strengths.					

Notes:

¹Reprinted, with permission, from ASTM D2488 - 09a Standard Practice for Description and Identification of Soils (Visual-Manual Procedure), copyright ASTM International, 100 Barr Harbor Drive, West Conshohocken, PA 19428. A copy of the complete standard may be obtained from ASTM International, www.astm.org.

²Adapted, with permission, from ASTM D2488 - 09a Standard Practice for Description and Identification of Soils (Visual-Manual Procedure), copyright ASTM International, 100 Barr Harbor Drive, West Conshohocken, PA 19428. A copy of the complete standard may be obtained from ASTM International, www.astm.org.

³Penetration resistances (N-values) shown on boring logs are as recorded in the field and have not been corrected for hammer efficiency, overburden, or other factors.

EWSHANNON & WILSON

SOIL DESCRIPTION AND LOG KEY

Levee Breach Analysis Mapping and Risk Assessment, Geotechnical Data Report King County, Washington

Sheet 2 of 2

Unified Soil Classification System (USCS) Modified From USACE Tech Memo 3-357, ASTM D2487, and ASTM D2488									
	Major Divisions				Typical Identifications				
		Gravel	GW		Well-graded Gravel; Well-graded Gravel with Sand				
	Gravels (more than 50% of coarse fraction	(less than 5% fines)	GP		Poorly Graded Gravel; Poorly Graded Gravel with Sand				
	retained on No. 4 sieve)	Silty or Clayey Gravel	GM		Silty Gravel; Silty Gravel with Sand				
Coarse-Grained Soils		(more than 12% fines)	GC		Clayey Gravel; Clayey Gravel with Sand				
(more than 50% retained on No. 200 sieve)	Sands (50% or more of coarse fraction passes the No. 4 sieve)	Sand	SW	••••••	Well-graded Sand; Well-graded Sand with Gravel				
		(less than 5% fines) –	SP		Poorly Graded Sand; Poorly Graded Sand with Gravel				
		Silty or Clayey Sand _ (more than 12% fines)	SM		Silty Sand; Silty Sand with Gravel				
			SC		Clayey Sand; Clayey Sand with Gravel				
		Inorgonia	ML		Silt; Silt with Sand or Gravel; Sandy or Gravelly Silt				
	Silts and Clays (liquid limit less than 50)	Inorganic -	CL		Lean Clay; Lean Clay with Sand or Gravel; Sandy or Gravelly Lean Cla				
Fine-Grained Soils		Organic	OL		Organic Silt or Clay; Organic Silt or Clay with Sand or Gravel; Sandy or Gravelly Organic Silt or Clay				
(50% or more passes the No. 200 sieve)		Inorganic -	MH		Elastic Silt; Elastic Silt with Sand or Gravel; Sandy or Gravelly Elastic S				
	Silts and Clays (liquid limit 50 or more)	morganic	СН		Fat Clay; Fat Clay with Sand or Gravel; Sandy or Gravelly Fat Clay				
		Organic	ОН		Organic Silt or Clay; Organic Silt or Clay with Sand or Gravel; Sandy or Gravelly Organic Silt or Clay				
Highly Organic Soils	Primarily organic matter, dark	in color, and organic odor	PT		Peat or other highly organic soils (see ASTM D4427)				

Acronyms and Abbreviations

		Acronyms and Abbreviations	Well and Backfill Symbols			
ATD	At Time of Drilling	MgO Magnesium Oxide psi Pounds per Square Inch		Bentonite Cement Grout		
Diam.	Diameter	mm Millimeter PVC Polyvinyl Chloride		Dentonite Cement Grout		
Elev.	Elevation	MnO Manganese Oxide rpm Rotations per Minute		Bentonite Grout		
ft	Feet	NA Not Applicable or Not Available SPT Standard Penetration Test				
FeO	Iron Oxide	NP Nonplastic USCS Unified Soil Classification System		Bentonite Chips		
gal	Gallons	O.D. Outside Diameter q _u Unconfined Compressive Strength		Bentonite Chips		
Horiz.	Horizontal	OW Observation Well VWP Vibrating Wire Piezometer		Silica Sand		
HSA	Hollow-Stem Auger	pcf Pounds per Cubic Foot Vert. Vertical		Silica Saliu		
I.D.	Inside Diameter	PID Photoionization Detector WOH Weight of Hammer		Perforated or Screened Casing		
in	Inches	PMT Pressuremeter Test WOR Weight of Rods		Periorated of Screened Casing		
lbs	Pounds	ppm Parts per Million Wt Weight		Surface Cement Seal		

Relative Density Cohesionless Soils

N, SPT, Blows/ft	Relative Density
< 4	Very loose
4 - 10	Loose
10 - 30	Medium dense
30 - 50	Dense
> 50	Very dense

Relative Consistency Cohesive Soils							
N, SPT, Blows/ft	Relative Consistency						
< 2	Very soft						
2 - 4	Soft						
4 - 8	Medium stiff						
8 - 15	Stiff						
15 - 30	Very stiff						

Hard

weigin	
Pei	rcentages ^{1, 2}
Trace	< 5%
Few	5 to 10%
Little	15 to 25%
Some	30 to 45%
Mostly	50 to 100%

Chips d or Screened Casing ement Seal Asphalt or Cap Slough Inclinometer or Non-perforated Casing Instrumentation Riser or Electrical Lead Vibrating Wire Piezometer with Designation

Notes:

Dual symbols (symbols separated by a hyphen, i.e., SP-SM, Sand with Silt) are used for soils with between 5% and 12% fines or when the liquid limit and plasticity index values plot in the CL-ML area of the plasticity chart. Graphics shown on the logs for these soil types are a combination of the two graphic symbols (e.g., SP and SM).

Borderline symbols (symbols separated by a slash, i.e., CL/ML, Lean Clay to Silt; SP-SM/SM, Sand with Silt to Silty Sand) indicate that the soil properties are close to the defining boundary between two groups.

No. 4 size = 4.75 mm = 0.187 in.; No. 200 size = 0.075 mm = 0.003 in.

> 30

Total Depth: <u>51.5 ft.</u> Northing: <u>206,580 ft.</u>		lling Me		Sonic Co	-	Hole Diam.:	<u>6 in.</u>
Top Elevation: 131.6 ft. Easting: 1,377,911 ft. Vert. Datum:		-	ompany: quipment	Holt Serv t: TerraSon		Rod Diam.: Hammer Type	<u> </u>
Horiz. Datum: Offset:		-	nments:	4" core/6			
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	Samples	Ground Water Depth, ft.			ANCE (blows/foot) 40 lbs / 30 inches 40 60
Medium dense, brown to gray-brown, <i>Poorly</i> <i>Graded Gravel with Sand and Cobbles (GP)</i> ; moist; few cobbles; fine to coarse, subangular to rounded gravel; fine to coarse sand; trace nonplastic fines. Medium dense, brown to brown-gray, <i>Poorly to</i> <i>Well-Graded Gravel with Silt and Sand and</i> <i>Cobbles (GP-GM/GW-GM)</i> to <i>Poorly Graded</i> <i>Gravel with Sand and Cobbles (GP)</i> ; moist, wet below about 11 feet; few cobbles; fine to coarse, subangular to rounded gravel; fine to coarse sand; nonplastic fines.	- 6.0		R4 S3 R3 S2 R2 S-1 R1 √√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√	5 10 10 15			40 00 50/11/
CONTINUED NEXT SHEET LEGEND * Sample Not Recovered Image: Construction of Symbols, codes, abbreviations 2.0" O.D. Split Spoon Sample Image: Construction of Symbols, codes, abbreviations 1 Refer to KEY for explanation of symbols, codes, abbreviations 2. Groundwater level, if indicated above, is for the date specified a 3. USCS designation is based on visual-manual classification and	e-Cemer e Chips/l e Grout Water Le and defi and may	nt Grout Pellets evel in V initions. y vary.	WP	As:	Plastic L ee Breach Ar sessment, Go King Cou	20 % Fines (< % Water C imit Matural Water C halysis Mappir eotechnical Da unty, Washing BORING B RAGING F SON, INC. al Consultants	content Liquid Limit ontent ng and Risk ata Report ton

MASTER_LOG_E 103692.GPJ SHAN_WIL.GDT 11/5/21 Log: DPO Rev: SAW Typ: DPO

Total Depth: 51.5 ft. Northing: 206,580 ft. Top Elevation: 131.6 ft. Easting: 1,377,911 ft. Vert. Datum: Station: - Horiz. Datum: Offset: -	<u>t.</u> Dr Dr	illing C ill Rig	/lethod: Compan Equipm omment	y: <u>Ho</u> ent: <u>Te</u>		ices Rod Diam.:	6 in. 1.75" e: <u>Automatic</u>
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	Samples	Ground Water	Depth, ft.	PENETRATION RESIST. ▲ Hammer Wt. & Drop: <u>1</u> 0 20	· · · ·
- Sandy layer from about 20 to 21 feet. - Red-brown and iron-oxide staining at 18 and 24 feet.							
Medium dense, brown to gray, <i>Silty Sand</i> (<i>SM</i>); wet; fine sand; nonplastic fines; few low plasticity silt zones below about 28 feet.	- 24.5		R-6 S-5		25		
 Strong iron-oxide staining at about 29 feet. Medium stiff to very stiff, gray, interbedded, Silt (ML), Silt with Sand (ML), and Sandy Silt (ML) and medium dense, gray, Silty Sand (SM); wet; trace fine, subangular gravel; fine to medium sand; nonplastic to low plasticity. Strong iron-oxide staining at about 31 feet. 	- 29.5		$\frac{R.7}{\sqrt{2}} \frac{5.6}{\sqrt{2}}$		30		•
Stiff to very stiff, gray, <i>Silt (ML)</i> and <i>Silt with</i> <i>Sand (ML)</i> ; moist to wet; trace fine to coarse, subrounded gravel; fine to medium sand; low to medium plasticity; few lean clay seams and nonplastic silty sand layers. - Coarse, subrounded gravel at about 39 feet.	- 36.0				35		
☑ Soil Core (as in Sonic Core Borings) Image: Soil Spit Spoon Sample Image: Spit Spit Spit Spit Spit Spit Spit Spit	creen and nite-Ceme nite Chips nite Grout d Water L	ent Grou /Pellets .evel in	ut VWP			0 20	Content Liquid Limit Content ng and Risk ata Report
 Refer to KEY for explanation of symbols, codes, abbreviation Groundwater level, if indicated above, is for the date specifie USCS designation is based on visual-manual classification a 	d and ma	iy vary.			L ovem	OG OF BORING E OWER RAGING F ber 2021	RIVER 103692-303
				Ge	eotechnic	NON & WILSON, INC.	FIG. A-2 Sheet 2 of 3

REV 1.0 - FINAL

Total Depth: 51.5 ft. Northing: 206,580 ft. Top Elevation: 131.6 ft. Easting: 1,377,911 ft. Vert. Datum: Station: - Horiz. Datum: Offset: -	_ Dril _ Dril	ling (I Rig	Method: Company Equipme omments	: <u>Ho</u> ent: <u>Ter</u>			Hole Diam.: Rod Diam.: Hammer Type	6 in. 1.75" a: Automatic
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	Samples	Ground Water	Depth, ft.			ANCE (blows/foot) 40 lbs / 30 inches 40 60
- Laminated to interbedded low plasticity silt with fine sand seams from 42 to 45 feet. BOTTOM OF BORING COMPLETED 6/21/2021 NOTE: Where gravels exceeding ½ the inside diameter of the split spoon sampler, cobbles, or boulders are present the SPT blow counts are not reliable indicators of soil density or stiffness. The interpreted density and stiffness of these soil zones presented in the boring log is based on density of other soil zones encountered and interpretation of the geologic depositional environment instead of the blow count versus relative density relationship presented in Figure A-1.	51.5		S-10 R-10 S-9 R-9 S-8		45 50			
LEGEND * Sample Not Recovered Image: Soil Core (as in Sonic Core Borings) Image: Soil Core (as in Sonic Core (as in Sonic Core (as in Sonicore (as in Sonic Core (as in Sonic Core (e-Cemer e Chips/F e Grout Vater Le and defin	t Gro Pellets vel in nition	ut s i VWP s.		Ass L L ovem	Plastic L ee Breach Ar sessment, Go King Cou	20 SORING E SOR, INC. al Consultants	Content Liquid Limit content ng and Risk ata Report ton

Log: DPO Rev: SAW Typ: DPO MASTER LOG E 103692.GPJ SHAN WIL.GDT 11/5/21

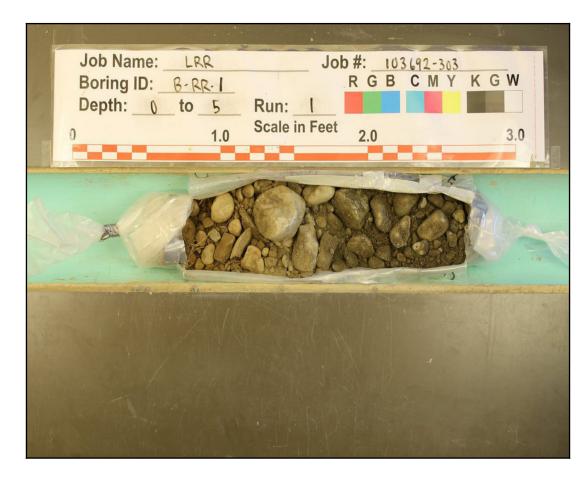
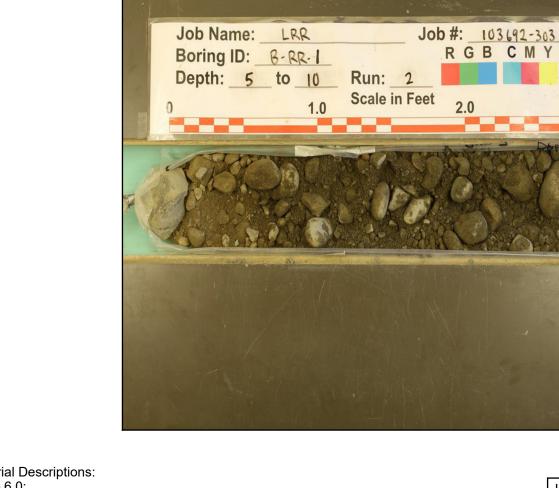


FIG.

⋗ O, 55 110/

1. Material Descriptions:

0.0 to 5.0:


Medium dense, brown to gray-brown, Poorly Graded Gravel with Sand and Cobbles (GP); moist; few cobbles; fine to coarse, subangular to rounded gravel; fine to coarse sand; trace nonplastic fines.

Levee Breach Analysis Mapping and Risk Assessment Geotechnical Data Report King County, Washington

BORING B-RR-1 SONIC CORE PHOTOGRAPHS

103692-303

October 2021 FIG. A-3 SHANNON & WILSON, INC. Geotechnical and Environmental Consultants Sheet 1 of 15

1. Material Descriptions:

5.0 to 6.0:

Medium dense, brown to gray-brown, Poorly Graded Gravel with Sand and Cobbles (GP); moist; few cobbles; fine to coarse, subangular to rounded gravel; fine to coarse sand; trace nonplastic fines.

6.0 to 10.0:

Medium dense, brown to brown-gray, Poorly to Well-Graded Gravel with Silt and Sand and Cobbles (GP-GM/GW-GM) to Poorly Graded Gravel with Sand and Cobbles (GP); moist, wet below about 11 feet; few cobbles; fine to coarse, subangular to rounded gravel; fine to coarse sand; nonplastic.

Levee Breach Analysis Mapping and Risk Assessment Geotechnical Data Report King County, Washington

KGW

3.0

RGB

2.0

CMY

BORING B-RR-1 SONIC CORE PHOTOGRAPHS

103692-303

SHANNON & WILSON, INC. Geotechnical and Environmental Consultants	FIG. A-3
Geotechnical and Environmental Consultants	Sheet 2 of 15

October 2021

FIG.

⋗ 0 lσ**ω**

1. Material Descriptions:

10.0 to 15.0:

Medium dense, brown to brown-gray, Poorly to Well-Graded Gravel with Silt and Sand and Cobbles (GP-GM/GW-GM) to Poorly Graded Gravel with Sand and Cobbles (GP); moist, wet below about 11 feet; few cobbles; fine to coarse, subangular to rounded gravel; fine to coarse sand; nonplastic. Levee Breach Analysis Mapping and Risk Assessment Geotechnical Data Report King County, Washington

BORING B-RR-1 SONIC CORE PHOTOGRAPHS

103692-303

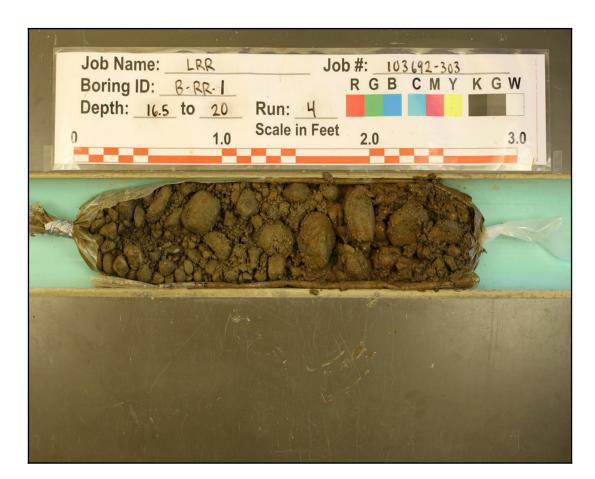
nts

October 2021

FIG. A-3 Sheet 3 of 15

of 15

Medium dense, brown to brown-gray, Poorly to Well-Graded Gravel with Silt and Sand and Cobbles (GP-GM/GW-GM) to Poorly Graded Gravel with Sand and Cobbles (GP); moist, wet below about 11 feet; few cobbles; fine to coarse, subangular to rounded gravel; fine to coarse sand; nonplastic. Levee Breach Analysis Mapping and Risk Assessment Geotechnical Data Report King County, Washington


BORING B-RR-1 SONIC CORE PHOTOGRAPHS

103692-303

SHANNON & WILSON, INC. Geotechnical and Environmental Consultants

October 2021

FIG. A-3 Sheet 4 of 15

- 1. Material Descriptions:
 - 16.5 to 20.0:

Medium dense, brown to brown-gray, Poorly to Well-Graded Gravel with Silt and Sand and Cobbles (GP-GM/GW-GM) to Poorly Graded Gravel with Sand and Cobbles (GP); moist, wet below about 11 feet; few cobbles; fine to coarse, subangular to rounded gravel; fine to coarse sand; nonplastic. Levee Breach Analysis Mapping and Risk Assessment Geotechnical Data Report King County, Washington

BORING B-RR-1 SONIC CORE PHOTOGRAPHS

 October 2021
 103692-303

 SHANNON & WILSON, INC.
 FIG. A-3

 Geotechnical and Environmental Consultants
 Sheet 5 of 15

 σ ⋗ 56

1. Material Descriptions:

Medium dense, brown to brown-gray, Poorly to Well-Graded Gravel with Silt and Sand and Cobbles (GP-GM/GW-GM) to Poorly Graded Gravel with Sand and Cobbles (GP); moist, wet below about 11 feet; few cobbles; fine to coarse, subangular to rounded gravel; fine to coarse sand; nonplastic.

Levee Breach Analysis Mapping and Risk Assessment Geotechnical Data Report King County, Washington

BORING B-RR-1 SONIC CORE PHOTOGRAPHS

October 2021 103692-303 FIG. A-3 **SHANNON & WILSON, INC.** Geotechnical and Environmental Consultants

Sheet 6 of 15

FIG.

ୁ **ନ** ଜୁ ଅନ୍ତି 1. Material Descriptions:

21.5 to 24.5:

Medium dense, brown to brown-gray, Poorly to Well-Graded Gravel with Silt and Sand and Cobbles (GP-GM/GW-GM) to Poorly Graded Gravel with Sand and Cobbles (GP); moist, wet below about 11 feet; few cobbles; fine to coarse, subangular to rounded gravel; fine to coarse sand; nonplastic.

24.5 to 25.0:

Medium dense, brown to gray, Silty Sand (SM); wet; fine sand; nonplastic; few low plasticity silt zones below about 28 feet.

Levee Breach Analysis Mapping and Risk Assessment Geotechnical Data Report King County, Washington

BORING B-RR-1 SONIC CORE PHOTOGRAPHS

103692-303

SHANNON & WILSON, INC. Geotechnical and Environmental Consultants Sheet 7 of 15

October 2021

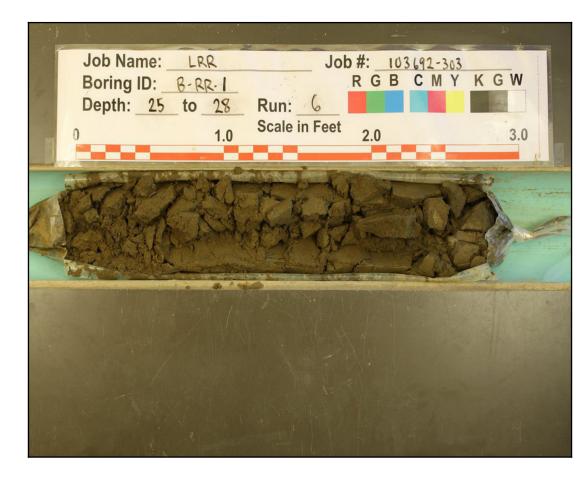


FIG.

3 of 15

110

1. Material Descriptions:

25.0 to 28.0:

Medium dense, brown to gray, Silty Sand (SM); wet; fine sand; nonplastic; few low plasticity silt zones below about 28 feet.

Levee Breach Analysis Mapping and Risk Assessment Geotechnical Data Report King County, Washington

BORING B-RR-1 SONIC CORE PHOTOGRAPHS

103692-303

SHANNON & WILSON, INC. Geotechnical and Environmental Consultants

October 2021

FIG. A-3 Sheet 8 of 15

1. Material Descriptions:

28.0 to 29.5:

Medium dense, brown to gray, Silty Sand (SM); wet; fine sand; nonplastic; few low plasticity silt zones below about 28 feet.

29.5 to 30.0:

Medium dense, gray, interbedded, Silty Sand (SM) and medium stiff to very stiff, gray, Silt (ML), Silt with Sand (ML), and Sandy Silt (ML); wet; trace fine, subangular gravel; fine to medium sand; nonplastic to low plasticity.

Levee Breach Analysis Mapping and Risk Assessment Geotechnical Data Report King County, Washington

BORING B-RR-1 SONIC CORE PHOTOGRAPHS

103692-303

SHANNON & WILSON, INC. Geotechnical and Environmental Consultants	F
Geotechnical and Environmental Consultants	Sh Sh

October 2021

FIG. A-3 Sheet 9 of 15

FIG.

A-3 0 of 15 1. Material Descriptions:

30.0 to 35.0:

Medium dense, gray, interbedded, Silty Sand (SM) and medium stiff to very stiff, gray, Silt (ML), Silt with Sand (ML), and Sandy Silt (ML); wet; trace fine, subangular gravel; fine to medium sand; nonplastic to low plasticity.

Levee Breach Analysis Mapping and Risk Assessment Geotechnical Data Report King County, Washington

BORING B-RR-1 SONIC CORE PHOTOGRAPHS

103692-303

SHANNON & WILSON, INC. Geotechnical and Environmental Consultants

October 2021

YKGW

3.0

FIG. A-3 Sheet 10 of 15

FIG.

A-3 1 of 15 1. Material Descriptions:

35.0 to 36.0:

Medium dense, gray, interbedded, Silty Sand (SM) and medium stiff to very stiff, gray, Silt (ML), Silt with Sand (ML), and Sandy Silt (ML); wet; trace fine, subangular gravel; fine to medium sand; nonplastic to low plasticity. 36.0 to 37.5:

Stiff to very stiff, gray, Silt (ML) and Silt with Sand (ML); moist to wet; trace fine to coarse, subrounded gravel; fine to medium sand; low to medium plasticity; few lean clay seams and nonplastic silty sand layers.

Levee Breach Analysis Mapping and Risk Assessment Geotechnical Data Report King County, Washington

BORING B-RR-1 SONIC CORE PHOTOGRAPHS

103692-303

SHANNON & WILSON, INC. Geotechnical and Environmental Consultants She

October 2021

FIG. A-3 Sheet 11 of 15

FIG

₽ ¦ω

15

- 1. Material Descriptions:
 - 37.5 to 40.0:

Stiff to very stiff, gray, Silt (ML) and Silt with Sand (ML); moist to wet; trace fine to coarse, subrounded gravel; fine to medium sand; low to medium plasticity; few lean clay seams and nonplastic silty sand layers.

Levee Breach Analysis Mapping and Risk Assessment Geotechnical Data Report King County, Washington

BORING B-RR-1 SONIC CORE PHOTOGRAPHS

103692-303

SHANNON & WILSON, INC. Geotechnical and Environmental Consultants

October 2021

FIG. A-3 Sheet 12 of 15

Vol1\EF\SEA\103000s

A-3 3 of 15 ω

	Job Name: Boring ID: Depth: 40	-RR.I	Jok Run: <u>9</u> Scale in Feet	2.0	-303 MYKGW 3.0
					Hur
•					

Stiff to very stiff, gray, Silt (ML) and Silt with Sand (ML); moist to wet; trace fine to coarse, subrounded gravel; fine to medium sand; low to medium plasticity; few lean clay seams and nonplastic silty sand layers.

Levee Breach Analysis Mapping and Risk Assessment Geotechnical Data Report King County, Washington

BORING B-RR-1 SONIC CORE PHOTOGRAPHS

103692-303

SHANNON & WILSON, INC. Geotechnical and Environmental Consultants

October 2021

FIG. A-3 Sheet 13 of 15

FIG.

15

₽-'3

- 1. Material Descriptions:
 - 42.5 to 45.0:

Stiff to very stiff, gray, Silt (ML) and Silt with Sand (ML); moist to wet; trace fine to coarse, subrounded gravel; fine to medium sand; low to medium plasticity; few lean clay seams and nonplastic silty sand layers.

Levee Breach Analysis Mapping and Risk Assessment Geotechnical Data Report King County, Washington

BORING B-RR-1 SONIC CORE PHOTOGRAPHS

103692-303

SHANNON & WILSON, INC. Geotechnical and Environmental Consultants

October 2021

FIG. A-3 Sheet 14 of 15

FIG

₽ ¦ω

15

- 1. Material Descriptions:
 - 45.0 to 50.0:

Stiff to very stiff, gray, Silt (ML) and Silt with Sand (ML); moist to wet; trace fine to coarse, subrounded gravel; fine to medium sand; low to medium plasticity; few lean clay seams and nonplastic silty sand layers.

Levee Breach Analysis Mapping and Risk Assessment Geotechnical Data Report King County, Washington

BORING B-RR-1 SONIC CORE PHOTOGRAPHS

103692-303

SHANNON & WILSON, INC. Geotechnical and Environmental Consultants

October 2021

FIG. A-3 Sheet 15 of 15

Total Depth: 51.5 ft. Northing: 207,530 ft. Top Elevation: 118.0 ft. Easting: 1,379,335 ft. Vert. Datum: Station: - Horiz. Datum: Offset: -	_ Dril _ Dril	ling C I Rig	lethod: Company Equipme omments	/: _ ent: _	Sonic Cor Holt Servi TerraSoni 4" core/6"	ices ic 150	Hole Diam.: Rod Diam.: Hammer Typ	6 in. 1.75" e: <u>Automatic</u>
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	Samples	Ground	Water Depth, ft.			ANCE (blows/foot) 40 lbs / 30 inches 40 60
Medium dense, brown, <i>Poorly Graded Gravel</i> <i>with Silt and Sand (GP-GM</i>); moist; fine to coarse, subangular to rounded gravel; fine to coarse sand; nonplastic fines; few cobbles below 5 feet.			AVVVVV D		5			
Medium dense, brown to gray-brown, <i>Poorly to</i> <i>Well-Graded Gravel with Silt and Sand and</i> <i>Cobbles (GP-GM/GW-GM)</i> ; moist, wet below about 17 feet; few cobbles; fine to coarse, subangular to rounded gravel; fine to coarse sand; nonplastic fines; few silty gravel and sandy zones.	6.0				10			
			R4 84 R3		15	· · · • • • · · · · · ·		
CONTINUED NEXT SHEET LEGEND					6/29/	0	20	40 60
* Sample Not Recovered □ Well Scree □ Grab Sample □ Bentonite □ Soil Core (as in Sonic Core Borings) □ Bentonite □ 2.0" O.D. Split Spoon Sample □ □ ↓ 4 ↓ Cround Well Screet ↓ 2.0" O.D. Split Spoon Sample □ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	-Cemer Chips/f Grout	nt Grou Pellets	ıt			Plastic L Nee Breach Ar sessment, Ge	♦ % Fines (♦ % Water (imit ↓ ● Natural Water (nalysis Mappi eotechnical E unty, Washing	Content Liquid Limit <u>Content</u> ng and Risk Data Report
 NOTES 1. Refer to KEY for explanation of symbols, codes, abbreviations a 2. Groundwater level, if indicated above, is for the date specified a 3. USCS designation is based on visual-manual classification and 	and may	vary.					Boring E Raging I	
						ber 2021		103692-303 FIG. A-4 Sheet 1 of 3 EV 1.0 - FINAL

MASTER_LOG_E 103692.GPJ SHAN_WIL.GDT 11/3/21 Log: DPO Rev: SAW Typ: DPO

REV 1.0 - FINAL

Total Depth: 51.5 ft. Northing: 207,530 ft. Top Elevation: 118.0 ft. Easting: 1,379,335 ft. Vert. Datum: Station: - Horiz. Datum: Offset: -	_ Dril _ Dril	ling C I Rig	lethod: Company Equipmo omments	r: <u>Ho</u> ent: <u>Ter</u>			6 in. 1.75" : <u>Automatic</u>
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	Samples	Ground Water	Depth, ft.	PENETRATION RESISTA ▲ Hammer Wt. & Drop: <u>1</u> 0 <u>20</u>	,
Medium dense, red-brown turning gray-brown below 25 feet, <i>Well-Graded Gravel with Sand</i> <i>and Cobbles (GW)</i> to <i>Well-Graded Gravel with</i> <i>Silt and Sand and Cobbles (GW-GM)</i> ; wet; few cobbles; fine to coarse, subangular to rounded gravel; fine to coarse sand; nonplastic fines; stratified gravel with sandy zones; cobble layer below 28 feet.	22.0		$\frac{R_6}{2} = \frac{8_6}{2} \frac{R_5}{2} = \frac{8_5}{2}$		25		
Loose to medium dense, gray-brown, <i>Silt with</i> <i>Sand (ML)</i> ; wet; trace fine to coarse, subrounded gravel; fine sand; nonplastic to low plasticity; few silty sand and sandy silt layers interbedded.	29.5		$\frac{R.8}{2} \frac{S.8}{2} \frac{R.7}{2} \frac{S.7}{2}$		30		
CONTINUED NEXT SHEET LEGEND * Sample Not Recovered G Grab Sample 2 Soil Core (as in Sonic Core Borings) 2 Soil Core (as in Sonic Core Borings) 2 Soil Core (as in Sonic Core Borings) 2 Core (as in Sonic Core Borings) 3 Core (as in Sonic Core (as in	e-Cemer e Chips/l e Grout Vater Le and defi and may	nt Grou Pellets evel in nitions / vary.	vwp		Ass L L ovem	0 20 ♦ % Fines (< ● % Water O Plastic Limit Natural Water C ee Breach Analysis Mappir sessment, Geotechnical Da King County, Washing OG OF BORING E OWER RAGING F ber 2021 NON & WILSON, INC. al and Environmental Consultants	Content Liquid Limit ontent ng and Risk ata Report ton

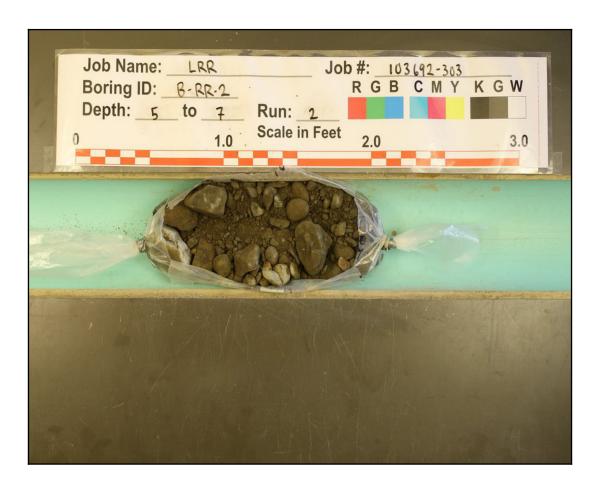
Total Depth: 51.5 ft. Top Elevation: 118.0 ft. Vert. Datum:	Northing: 207,530 ft. Easting: 1,379,335 ft. Station: - Offset: -	Dril Dril	ling C I Rig	/lethod: Company Equipmo omments	/: <u>Ho</u> ent: <u>Te</u>			6 in. <u>1.75"</u> e: <u>Automatic</u>
subsurface materials and drilli lines indicated below represen	CRIPTION proper understanding of the ng methods. The stratification nt the approximate boundaries the transition may be gradual.	Depth, ft.	Symbol	Samples	Ground Water	Depth, ft.	PENETRATION RESIST ▲ Hammer Wt. & Drop:1	•
- Becomes gray at abou	ıt 42 feet.			R-9 S-9				
Loose to medium dense Silt (ML) and Silty Sana nonplastic to low plastic	(SM); wet; fine sand;	- 45.0		R-10 \$-10		45		
BOTTOM C COMPLETE NOTE: Where gravels of diameter of the split spo or boulders are present are not reliable indicato stiffness. The interpret	D 6/22/2021 exceeding ½ the inside oon sampler, cobbles, the SPT blow counts rs of soil density or	- 51.5		5 5		50		
of these soil zones pres is based on density of o encountered and interp depositional environme count versus relative de presented in Figure A-1	ented in the boring log ther soil zones retation of the geologic nt instead of the blow ensity relationship							
* Sample Not Recovered Grab Sample Soil Core (as in Sonic Co 2.0" O.D. Split Spoon Sar		e-Cemer e Chips/I	it Grou	ut	[Leve	0 20	Content - Liquid Limit Content
2. Groundwater level, if indicat		and may	nitions vary.	5.		Ass L	OG OF BORING I LOWER RAGING I	Data Report gton B-RR-2
							NON & WILSON, INC.	FIG. A-4 Sheet 3 of 3

1. Material Descriptions:

1.5 to 5.0:

Medium dense, brown, Poorly Graded Gravel with Silt and Sand (GP-GM); moist; fine to coarse, subangular to rounded gravel; fine to coarse sand; nonplastic; few cobbles below 5 feet.

Levee Breach Analysis Mapping and Risk Assessment Geotechnical Data Report King County, Washington


BORING B-RR-2 SONIC CORE PHOTOGRAPHS

October 2021 103692-303 FIG. A-5 SHANNON & WILSON, INC. Geotechnical and Environmental Consultants

Sheet 1 of 16

FIG.

ା **A-5** ର୍ମ 16 110/

1. Material Descriptions:

5.0 to 6.0:

Medium dense, brown, Poorly Graded Gravel with Silt and Sand (GP-GM); moist; fine to coarse, subangular to rounded gravel; fine to coarse sand; nonplastic; few cobbles below 5 feet.

6.0 to 7.0:

Medium dense, brown to gray-brown, Poorly to Well-Graded Gravel with Silt and Sand and Cobbles (GP-GM/GW-GM); moist, wet below about 17 feet; few cobbles; fine to coarse, subangular to rounded gravel; fine to coarse sand; nonplastic; few silty gravel and sandy zones.

Levee Breach Analysis Mapping and Risk Assessment Geotechnical Data Report King County, Washington

BORING B-RR-2 SONIC CORE PHOTOGRAPHS

103692-303

SHANNON & WILSON, INC. Geotechnical and Environmental Consultants	FIG. A-5
Geotechnical and Environmental Consultants	Sheet 2 of 16

October 2021

1. Material Descriptions:

7.0 to 10.0:

Medium dense, brown to gray-brown, Poorly to Well-Graded Gravel with Silt and Sand and Cobbles (GP-GM/GW-GM); moist, wet below about 17 feet; few cobbles; fine to coarse, subangular to rounded gravel; fine to coarse sand; nonplastic; few silty gravel and sandy zones. Levee Breach Analysis Mapping and Risk Assessment Geotechnical Data Report King County, Washington

BORING B-RR-2 SONIC CORE PHOTOGRAPHS

103692-303

SHANNON & WILSON, INC. Geotechnical and Environmental Consultants

October 2021

FIG. A-5 Sheet 3 of 16

FIG. A-5 Sheet 3 of 16 5.000001/1028/103805

- 1. Material Descriptions:
 - 10.0 to 15.0:

Medium dense, brown to gray-brown, Poorly to Well-Graded Gravel with Silt and Sand and Cobbles (GP-GM/GW-GM); moist, wet below about 17 feet; few cobbles; fine to coarse, subangular to rounded gravel; fine to coarse sand; nonplastic; few silty gravel and sandy zones.

Levee Breach Analysis Mapping and Risk Assessment Geotechnical Data Report King County, Washington

BORING B-RR-2 SONIC CORE PHOTOGRAPHS

103692-303

SHANNON & WILSON, INC. Geotechnical and Environmental Consultants

October 2021

3.0

FIG. A-5 Sheet 4 of 16

⋗

FIG.

ୁ **ନ** ଜୁ **ନ**୍ଦୁ 1. Material Descriptions:

15.0 to 20.0:

Medium dense, brown to gray-brown, Poorly to Well-Graded Gravel with Silt and Sand and Cobbles (GP-GM/GW-GM); moist, wet below about 17 feet; few cobbles; fine to coarse, subangular to rounded gravel; fine to coarse sand; nonplastic; few silty gravel and sandy zones. Levee Breach Analysis Mapping and Risk Assessment Geotechnical Data Report King County, Washington

BORING B-RR-2 SONIC CORE PHOTOGRAPHS

103692-303

SHANNON & WILSON, INC. Geotechnical and Environmental Consultants

October 2021

KGW

3.0

FIG. A-5 Sheet 5 of 16

Levee Breach Analysis Mapping and Risk Assessment Geotechnical Data Report King County, Washington

BORING B-RR-2 SONIC CORE PHOTOGRAPHS

October 2021 103692-303 FIG. A-5 SHANNON & WILSON, INC.

Notes:

FIG.

σ े **A-5** 110

- 1. Material Descriptions:
 - 20.0 to 22.0:

Medium dense, brown to gray-brown, Poorly to Well-Graded Gravel with Silt and Sand and Cobbles (GP-GM/GW-GM); moist, wet below about 17 feet; few cobbles; fine to coarse, subangular to rounded gravel; fine to coarse sand; nonplastic; few silty gravel and sandy zones.

Geotechnical and Environmental Consultants

KGW

3.0

RGB

2.0

CMY

Sheet 6 of 16

FIG. Sheet

ୁ **ନ** ଜୁ **ନ**୍ଦୁ 1. Material Descriptions:

22.0 to 25.0:

Medium dense, red-brown turning gray-brown below 25 feet, Well-Graded Gravel with Sand and Cobbles (GW) to Well-Graded Gravel with Silt and Sand and Cobbles (GW-GM); wet; few cobbles; fine to coarse, subangular to rounded gravel; fine to coarse sand; nonplastic; stratified gravel with sandy zones; cobble layer below 28 feet. Levee Breach Analysis Mapping and Risk Assessment Geotechnical Data Report King County, Washington

BORING B-RR-2 SONIC CORE PHOTOGRAPHS

103692-303

SHANNON & WILSON, INC. Geotechnical and Environmental Consultants

October 2021

FIG. A-5 Sheet 7 of 16

1. Material Descriptions:

25.0 to 27.0:


Medium dense, red-brown turning gray-brown below 25 feet, Well-Graded Gravel with Sand and Cobbles (GW) to Well-Graded Gravel with Silt and Sand and Cobbles (GW-GM); wet; few cobbles; fine to coarse, subangular to rounded gravel; fine to coarse sand; nonplastic; stratified gravel with sandy zones; cobble layer below 28 feet. Levee Breach Analysis Mapping and Risk Assessment Geotechnical Data Report King County, Washington

BORING B-RR-2 SONIC CORE PHOTOGRAPHS

 October 2021
 103692-303

 SHANNON & WILSON, INC.
 FIG. A-5

 Geotechnical and Environmental Consultants
 Sheet 8 of 16

1. Material Descriptions:

29.5 to 30.0:

Loose to medium dense, gray-brown, Silt with Sand (ML); wet; trace fine to coarse, subrounded gravel; fine sand; nonplastic to low plasticity; few silty sand and sandy silt layers interbedded.

27.0 to 29.5:

Medium dense, red-brown turning gray-brown below 25 feet, Well-Graded Gravel with Sand and Cobbles (GW) to Well-Graded Gravel with Silt and Sand and Cobbles (GW-GM); wet; few cobbles; fine to coarse, subangular to rounded gravel; fine to coarse sand; nonplastic; stratified gravel with sandy zones; cobble layer below 28 feet. Levee Breach Analysis Mapping and Risk Assessment Geotechnical Data Report King County, Washington

BORING B-RR-2 SONIC CORE PHOTOGRAPHS

103692-303

SHANNON & WILSON, INC.	FIG
Geotechnical and Environmental Consultants	Sheet

October 2021

FIG. A-5 Sheet 9 of 16

A-5 0 of 16 /11/

1. Material Descriptions:

Loose to medium dense, gray-brown, Silt with Sand (ML); wet; trace fine to coarse, subrounded gravel; fine sand; nonplastic to low plasticity; few silty sand and sandy silt layers interbedded.

Levee Breach Analysis Mapping and Risk Assessment Geotechnical Data Report King County, Washington

BORING B-RR-2 SONIC CORE PHOTOGRAPHS

103692-303

SHANNON & WILSON, INC. Geotechnical and Environmental Consultants

October 2021

FIG. A-5 Sheet 10 of 16

FIG.

P-5

1. Material Descriptions:

35.0 to 37.5:

Loose to medium dense, gray-brown, Silt with Sand (ML); wet; trace fine to coarse, subrounded gravel; fine sand; nonplastic to low plasticity; few silty sand and sandy silt layers interbedded.

Levee Breach Analysis Mapping and Risk Assessment Geotechnical Data Report King County, Washington

BORING B-RR-2 SONIC CORE PHOTOGRAPHS

SHANNON & WILSON, INC. Geotechnical and Environmental Consultants

October 2021

103692-303

FIG. A-5

Sheet 11 of 16

FIG.

A-2 2 of 16

- 1. Material Descriptions:
 - 37.5 to 40.0:

Loose to medium dense, gray-brown, Silt with Sand (ML); wet; trace fine to coarse, subrounded gravel; fine sand; nonplastic to low plasticity; few silty sand and sandy silt layers interbedded.

Levee Breach Analysis Mapping and Risk Assessment Geotechnical Data Report King County, Washington

BORING B-RR-2 SONIC CORE PHOTOGRAPHS

103692-303

SHANNON & WILSON, INC. Geotechnical and Environmental Consultants

October 2021

FIG. A-5 Sheet 12 of 16

Ş FIG

A-5 3 of 16 /11/

1. Material Descriptions:

40.0 to 41.5:

Loose to medium dense, gray-brown, Silt with Sand (ML); wet; trace fine to coarse, subrounded gravel; fine sand; nonplastic to low plasticity; few silty sand and sandy silt layers interbedded.

Levee Breach Analysis Mapping and Risk Assessment Geotechnical Data Report King County, Washington

BORING B-RR-2 SONIC CORE PHOTOGRAPHS

October 2021

SHANNON & WILSON, INC. Geotechnical and Environmental Consultants

103692-303

FIG. A-5

Sheet 13 of 16

FIG

P-5

- 1. Material Descriptions:
 - 41.5 to 45.0:

Loose to medium dense, gray-brown, Silt with Sand (ML); wet; trace fine to coarse, subrounded gravel; fine sand; nonplastic to low plasticity; few silty sand and sandy silt layers interbedded.

Levee Breach Analysis Mapping and Risk Assessment Geotechnical Data Report King County, Washington

BORING B-RR-2 SONIC CORE PHOTOGRAPHS

103692-303

SHANNON & WILSON, INC. Geotechnical and Environmental Consultants

October 2021

FIG. A-5 Sheet 14 of 16

FIG.

A-5 of 16

Vol1

- 1. Material Descriptions:
 - 45.0 to 47.5:

Loose to medium dense, gray, interbedded, Silt (ML) and Silty Sand (SM); wet; fine sand; nonplastic to low plasticity.

Levee Breach Analysis Mapping and Risk Assessment Geotechnical Data Report King County, Washington

BORING B-RR-2 SONIC CORE PHOTOGRAPHS

103692-303

SHANNON & WILSON, INC. Geotechnical and Environmental Consultants

October 2021

FIG. A-5 Sheet 15 of 16

- 1. Material Descriptions:
 - 47.5 to 50.0:

Loose to medium dense, gray, interbedded, Silt (ML) and Silty Sand (SM); wet; fine sand; nonplastic to low plasticity.

Levee Breach Analysis Mapping and Risk Assessment Geotechnical Data Report King County, Washington

BORING B-RR-2 SONIC CORE PHOTOGRAPHS

103692-303

SHANNON & WILSON, INC. Geotechnical and Environmental Consultants

October 2021

FIG. A-5 Sheet 16 of 16

σ **A-5** ^{6 of 16}

FIG.

/III/

Total Depth: <u>51.5 ft.</u> Northing: <u>208,109 ft.</u> Top Elevation: <u>106.8 ft.</u> Easting: <u>1,380,701 ft.</u>	_	•	lethod: compar			nic Cor t Servi	
Vert. Datum: Station: Horiz. Datum: Offset:	_ Dri	ll Rig	Equipn ommen	nent:	Ter	raSoni	
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	Samples	Ground	Water	Depth, ft.	PENETRATION RESISTANCE (blows/foot) ▲ Hammer Wt. & Drop: <u>140 lbs / 30 inches</u> 0 20 40 60
Brown to gray-brown, <i>Poorly Graded Gravel</i> <i>with Sand and Cobbles (GP)</i> to <i>Poorly Graded</i> <i>Gravel with Silt and Sand and Cobbles</i> <i>(GP-GM)</i> ; moist; few cobbles; fine to coarse, subangular to rounded gravel; fine to coarse sand; nonplastic fines.			R-1 S-1				
Medium dense, brown and gray-brown, <i>Poorly</i> <i>Graded Gravel with Silt and Sand and Cobbles</i> <i>(GP-GM)</i> to <i>Well-Graded Gravel with Silt and</i> <i>Sand and Cobbles (GW-GM)</i> ; moist, wet below about 17 feet; few cobbles, fine to coarse, subangular to rounded gravel; fine to coarse sand; nonplastic to low plasticity fines; pulverized rock and rock flour from drill action at about 11.5 feet.	5.0		rad			5	
			$\frac{s_4}{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt$			15	● ◇ 50/5"2
Red-brown, <i>Poorly Graded Gravel (GP</i>); wet; fine to coarse, subangular to rounded gravel; few fine to coarse sand; trace nonplastic fines.	- 18.0 - 19.5		R-4				
Sample Not Recovered IEGEND Sample Not Recovered Grab Sample Soil Core (as in Sonic Core Borings) Soil Core (as in Sonic Core (as in Sonic Core Borings) Soil Core (as in Sonic (as in Sonic (as in Sonic Core (as in S	e-Cemer e Chips/ e Grout	nt Grou Pellets	ıt				0 20 40 60
<u>NOTES</u> 1. Refer to KEY for explanation of symbols, codes, abbreviations a 2. Groundwater level, if indicated above, is for the date specified a 3. USCS designation is based on visual-manual classification and	and may	y vary.					OG OF BORING B-RR-3 .OWER RAGING RIVER
							ber 2021 103692-303 NON & WILSON, INC. FIG. A-6 al and Environmental Consultants Sheet 1 of 3

Total Depth: 51.5 ft. Northing: 208,109 ft. Top Elevation: 106.8 ft. Easting: 1,380,701 ft. Vert. Datum: Station: - Horiz. Datum: Offset: -	<u>.</u> Dri	illing Metho illing Comp ill Rig Equi her Comm	oany: pment:	Holt Teri	<u>ic Cor</u> Servi aSoni ore/6"	ices ic 15			Roo	e Dia d Dia mme	m.:			<u>6 ir</u> 1.75 utorr		
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries	Depth, ft.	Symbol Samples		Water	Depth, ft.		NET Hami		-					•		
between material types, and the transition may be gradual. Loose, gray-brown, <i>Poorly Graded Gravel with</i>			, }			0			20			4	0			60
Silt and Sand and Cobbles (GP-GM); wet; trace cobbles; fine to coarse, subangular to rounded gravel; fine to coarse sand; nonplastic fines; few silty seams; few wood fragments.											· · · · · · · · · · · · · · · · · · ·	• • • • •			• • • • •	
Loose, gray, <i>Poorly Graded Sand (SP)</i> to <i>Poorly Graded Sand with Silt (SP-SM)</i> ; wet; fine to medium sand; nonplastic fines; few wood fragments.	24.0				25	wo	ЭH									
Very soft, dark brown, <i>Organic Silt with Sand</i> (<i>OL</i>) and <i>Silt (ML</i>); wet; low to medium plasticity; few wood fragments. Medium dense, brown to gray, interbedded,	26.0	Re Re										· · · · · · · · · · · · · · · · · · ·				
Poorly Graded Sand with Silt (SP-SM), Poorly Graded Sand (SP), and Silty Sand (SM); wet; trace to few fine gravel; fine to medium sand; nonplastic fines; iron-oxide staining around 27 feet; few wood fragments.	30.0	8-7			30		\. 		•						•	
Medium dense, gray, <i>Silty Sand (SM)</i> ; wet; trace fine gravel; fine to medium sand; nonplastic fines.		R-7						/								
Brown, <i>Poorly Graded Gravel with Silt and</i> <i>Sand (GP-GM)</i> to <i>Silty Gravel (GM)</i> ; wet; fine \to coarse gravel and sand; nonplastic fines. Very loose, gray, <i>Silty Sand (SM)</i> to <i>Poorly</i>	- 34.0 /- 35.0				35		/									
Graded Sand with Silt (SP-SM) and Poorly Graded Sand (SP); wet; fine to medium sand, grading to coarse sand with depth; nonplastic fines.		R-8									· · · · · · · · · · · · · · · · · · ·					
Brown, <i>Silty Gravel with Sand (GM)</i> ; wet; fine to coarse gravel and sand; nonplastic fines.	- 39.0							\ \ \		• • • • •		• • • • •	• • •		• • • • • •	
CONTINUED NEXT SHEET LEGEND * Sample Not Recovered G Grab Sample Soil Core (as in Sonic Core Borings) O Soil Core (as in Sonic Core (as in Sonic Core Borings) O Soil Core (as in Sonic Core (as in Soni	creen and hite-Ceme hite Chips, hite Grout	ent Grout /Pellets		~~~~	Leve		reac	tic Li N h An	● % mit latur alys		ater e ater lapp	<0.07 Cor - 1 L <u>Con</u> ing	nten ₋iqui tent and	it id Li I Ris	sk	60
 MOTES 1. Refer to KEY for explanation of symbols, codes, abbreviation 2. Groundwater level, if indicated above, is for the date specifie 3. USCS designation is based on visual-manual classification a 	is and dei d and ma	ay vary.			L	ہ OG	men ≺ing 6 Ol	Cou F B	onty,	Wa RIN	shin G	gtor B-F	י RR	-3	rt	
			-	Nc	L veml					אווכ	U		V I		-30	3
				Şŀ			8		SON	I, IN	C.	Γ	FIC	G. A	\-6	

Total Depth: <u>51.5 ft.</u> Top Elevation: <u>106.8 ft.</u> Vert. Datum: Horiz. Datum:	Northing: 208,109 ft. Easting: 1,380,701 ft. Station: - Offset: -	_ Dril _ Dril	ling C I Rig I	lethod: ompany: Equipme mments:	<u>Ho</u> nt: <u>Te</u>			1.75"
SOIL DESC Refer to the report text for a p subsurface materials and drilling lines indicated below represent between material types, and the	roper understanding of the methods. The stratification the approximate boundaries	Depth, ft.	Symbol	Samples	Ground Water	Depth, ft.	PENETRATION RESIS ▲ Hammer Wt. & Drop: 0 20	• • • •
Medium dense, gray, Silt Graded Sand with Silt (Si medium sand, grading to depth; nonplastic fines.	P-SM); wet; fine to	40.0		R-9 S-9				
Medium dense, brown an Poorly Graded Gravel wit (GP-GM) and Poorly Gra (GP); wet; fine to coarse, subrounded gravel; fine t nonplastic fines. - Strong iron-oxide stainin	th Silt and Sand ded Gravel with Sand subangular to o coarse sand; ng at about 46 feet.	44.0		R-10 S-10		45		
Very loose, gray-brown, S grading to <i>Poorly Gradeo</i> (<i>SP-SM</i>); wet; trace fine g sand, grading to coarse s	Sand with Silt gravel; fine to medium			S-11		50		
BOTTOM OF COMPLETED NOTE: Where gravels ex diameter of the split spoo or boulders are present th are not reliable indicators stiffness. The interpreted of these soil zones prese is based on density of oth encountered and interpret	6/23/2021 cceeding ½ the inside on sampler, cobbles, ne SPT blow counts of soil density or d density and stiffness nted in the boring log ner soil zones	- 51.5	<u>+ + + +</u>			55		
depositional environment count versus relative den presented in Figure A-1.	instead of the blow							
* Sample Not Recovered Grab Sample Soil Core (as in Sonic Core 2.0" O.D. Split Spoon Samp		e-Cemer e Chips/F	it Grou				0 20	er Content
 Soil Core (as in Sonic Core Soil Core (as in Sonic Core 2.0" O.D. Split Spoon Samp 1. Refer to KEY for explanation of 2. Groundwater level, if indicated 3. USCS designation is based or 	above, is for the date specified	and definand may	nitions vary.			Ass L	OG OF BORING	Data Report ington B-RR-3
				Jourig.	N		ber 2021	103692-303
					S		NON & WILSON, INC	FIG. A-6 Sheet 3 of 3

- 1. Material Descriptions:
 - 1.5 to 5.0:

Brown to gray-brown, Poorly Graded Gravel with Sand and Cobbles (GP) to Poorly Graded Gravel with Silt and Sand and Cobbles (GP-GM); moist; few cobbles; fine to coarse, subangular to rounded gravel; fine to coarse sand; nonplastic.

Levee Breach Analysis Mapping and Risk Assessment Geotechnical Data Report King County, Washington

BORING B-RR-3 SONIC CORE PHOTOGRAPHS

103692-303

SHANNON & WILSON, INC. Geotechnical and Environmental Consultants

October 2021

FIG. A-7

Sheet 1 of 14

FIG. Sheet

⋗

FIG. Sheet

⋗

1. Material Descriptions:

5.0 to 10.0:

Medium dense, brown and gray-brown, Poorly Graded Gravel with Silt and Sand and Cobbles (GP-GM) to Well-Graded Gravel with Silt and Sand and Cobbles (GW-GM); moist, wet below about 17 feet; few cobbles, fine to coarse, subangular to rounded gravel; fine to coarse sand; nonplastic to low plasticity; pulverized rock and rock flour from drill action at about 11.5 feet.

Levee Breach Analysis Mapping and Risk Assessment Geotechnical Data Report King County, Washington

BORING B-RR-3 SONIC CORE PHOTOGRAPHS

103692-303

SHANNON & WILSON, INC. Geotechnical and Environmental Consultants

October 2021

FIG. A-7 Sheet 2 of 14

1. Material Descriptions:

10.0 to 15.0:

Medium dense, brown and gray-brown, Poorly Graded Gravel with Silt and Sand and Cobbles (GP-GM) to Well-Graded Gravel with Silt and Sand and Cobbles (GW-GM); moist, wet below about 17 feet; few cobbles, fine to coarse, subangular to rounded gravel; fine to coarse sand; nonplastic to low plasticity; pulverized rock and rock flour from drill action at about 11.5 feet.

Levee Breach Analysis Mapping and Risk Assessment Geotechnical Data Report King County, Washington

BORING B-RR-3 SONIC CORE PHOTOGRAPHS

103692-303

SHANNON & WILSON, INC. Geotechnical and Environmental Consultants

October 2021

FIG. A-7 Sheet 3 of 14

FIG. Sheet

⋗

1. Material Descriptions:

15.0 to 17.5:

Medium dense, brown and gray-brown, Poorly Graded Gravel with Silt and Sand and Cobbles (GP-GM) to Well-Graded Gravel with Silt and Sand and Cobbles (GW-GM); moist, wet below about 17 feet; few cobbles, fine to coarse, subangular to rounded gravel; fine to coarse sand; nonplastic to low plasticity; pulverized rock and rock flour from drill action at about 11.5 feet.

Levee Breach Analysis Mapping and Risk Assessment Geotechnical Data Report King County, Washington

BORING B-RR-3 SONIC CORE PHOTOGRAPHS

103692-303

SHANNON & WILSON, INC. Geotechnical and Environmental Consultants

October 2021

KGW

3.0

FIG. A-7 Sheet 4 of 14

FIG.

의 **주** 14 **7** 1. Material Descriptions:

17.5 to 18.0:

Medium dense, brown and gray-brown, Poorly Graded Gravel with Silt and Sand and Cobbles (GP-GM) to Well-Graded Gravel with Silt and Sand and Cobbles (GW-GM); moist, wet below about 17 feet; few cobbles, fine to coarse, subangular to rounded gravel; fine to coarse sand; nonplastic to low plasticity; pulverized rock and rock flour from drill action at about 11.5 feet. 19.5 to 20.0:

Loose, gray-brown, Poorly Graded Gravel with Silt and Sand and Cobbles (GP-GM); wet; trace cobbles; fine to coarse, subangular to rounded gravel; fine to coarse sand; nonplastic; few silty seams; few wood fragments. 18.0 to 19.5:

Red-brown Poorly Graded Gravel (GP): wet: fine to coarse subangular to rounded

Levee Breach Analysis Mapping and Risk Assessment Geotechnical Data Report King County, Washington

BORING B-RR-3 SONIC CORE PHOTOGRAPHS

	October 2021	103692-303
1	SHANNON & WILSON, INC. Geotechnical and Environmental Consultants	FIG. A-7 Sheet 5 of 14

gravel; few fine to coarse sand; nonplastic.

FIG.

⋗ 7

1. Material Descriptions:

20.0 to 24.0:

Loose, gray-brown, Poorly Graded Gravel with Silt and Sand and Cobbles (GP-GM); wet; trace cobbles; fine to coarse, subangular to rounded gravel; fine to coarse sand; nonplastic; few silty seams; few wood fragments.

24.0 to 25.0:

Loose, gray, Poorly Graded Sand (SP) to Poorly Graded Sand with Silt (SP-SM); wet; fine to medium sand; nonplastic; few wood fragments.

Levee Breach Analysis Mapping and Risk Assessment Geotechnical Data Report King County, Washington

BORING B-RR-3 SONIC CORE PHOTOGRAPHS

October 2021 103692-303 FIG. A-7 **SHANNON & WILSON, INC.** Geotechnical and Environmental Consultants

⋗

Very soft, dark brown, Organic Silt with Sand (OL) and Silt (ML); wet; low to medium plasticity; few wood fragments.

Medium dense, brown to gray, interbedded, Poorly Graded Sand with Silt (SP-SM), Poorly Graded Sand (SP), and Silty Sand (SM); wet; trace to few fine gravel; fine to medium sand; nonplastic; iron-oxide staining around 27 feet; few wood fragments. Levee Breach Analysis Mapping and Risk Assessment Geotechnical Data Report King County, Washington

BORING B-RR-3 SONIC CORE PHOTOGRAPHS

103692-303

SHANNON & WILSON, INC. Geotechnical and Environmental Consultants

October 2021

FIG. A-7 Sheet 7 of 14

FIG.

⋗

- 1. Material Descriptions:
 - 27.5 to 30.0:

Medium dense, brown to gray, interbedded, Poorly Graded Sand with Silt (SP-SM), Poorly Graded Sand (SP), and Silty Sand (SM); wet; trace to few fine gravel; fine to medium sand; nonplastic; iron-oxide staining around 27 feet; few wood fragments. Levee Breach Analysis Mapping and Risk Assessment Geotechnical Data Report King County, Washington

BORING B-RR-3 SONIC CORE PHOTOGRAPHS

103692-303

SHANNON & WILSON, INC. Geotechnical and Environmental Consultants

October 2021

FIG. A-7 Sheet 8 of 14

FIG.

⋗

1. Material Descriptions:

30.0 to 32.5:

Medium dense, gray, Silty Sand (SM); wet; trace fine gravel; fine to medium sand; nonplastic.

Levee Breach Analysis Mapping and Risk Assessment Geotechnical Data Report King County, Washington

BORING B-RR-3 SONIC CORE PHOTOGRAPHS

103692-303

SHANNON & WILSON, INC. Geotechnical and Environmental Consultants

October 2021

FIG. A-7 Sheet 9 of 14

FIG.

1. Material Descriptions:

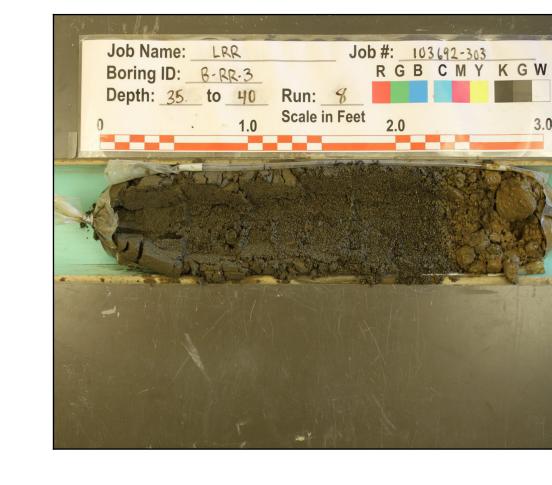
32.5 to 34.0:

Medium dense, gray, Silty Sand (SM); wet; trace fine gravel; fine to medium sand; nonplastic.

34.0 to 35.0:

Brown, Poorly Graded Gravel with Silt and Sand (GP-GM) to Silty Gravel (GM); wet; fine to coarse gravel and sand; nonplastic.

Levee Breach Analysis Mapping and Risk Assessment Geotechnical Data Report King County, Washington


BORING B-RR-3 SONIC CORE PHOTOGRAPHS

103692-303

SHANNON & WILSON, INC. F Geotechnical and Environmental Consultants St

October 2021

FIG. A-7 Sheet 10 of 14

1. Material Descriptions:

35.0 to 39.0:

Very loose, gray, Silty Sand (SM) to Poorly Graded Sand with Silt (SP-SM) and Poorly Graded Sand (SP); wet; fine to medium sand, grading to coarse sand with depth; nonplastic.

39.0 to 40.0:

Brown, Silty Gravel with Sand (GM); wet; fine to coarse gravel and sand; nonplastic.

Levee Breach Analysis Mapping and Risk Assessment Geotechnical Data Report King County, Washington

BORING B-RR-3 SONIC CORE PHOTOGRAPHS

103692-303

SHANNON & WILSON, INC. Geotechnical and Environmental Consultants Sheet 11 of 14

October 2021

nne\1n3e92 KC I evee Breach\300 LRR\03. Geotech Data Collection\Subsurface Exploration

FIG.

1. Material Descriptions:

40.0 to 44.0:

Medium dense, gray, Silty Sand (SM) to Poorly Graded Sand with Silt (SP-SM); wet; fine to medium sand, grading to coarse sand with depth; nonplastic. 44.0 to 45.0:

Medium dense, brown and gray, interbedded, Poorly Graded Gravel with Silt and Sand (GP-GM) and Poorly Graded Gravel with Sand (GP); wet; fine to coarse, subangular to subrounded gravel; fine to coarse sand; nonplastic.

Levee Breach Analysis Mapping and Risk Assessment Geotechnical Data Report King County, Washington

BORING B-RR-3 SONIC CORE PHOTOGRAPHS

103692-303

SHANNON & WILSON, INC.	
Geotechnical and Environmental Consultants	Sheet 12 of 14

October 2021

3EA\10300s\103692 KC Levee Breach\300 LRR\03.

FIG.

FIG

- 1. Material Descriptions:
 - 45.0 to 47.0:

Medium dense, brown and gray, interbedded, Poorly Graded Gravel with Silt and Sand (GP-GM) and Poorly Graded Gravel with Sand (GP); wet; fine to coarse, subangular to subrounded gravel; fine to coarse sand; nonplastic.

Levee Breach Analysis Mapping and Risk Assessment Geotechnical Data Report King County, Washington

BORING B-RR-3 SONIC CORE PHOTOGRAPHS

ONIC CORE PHOTOGRAPHS

103692-303

SHANNON & WILSON, INC. Geotechnical and Environmental Consultants Sheet

October 2021

FIG. A-7 Sheet 13 of 14

FIG.

⋗

1. Material Descriptions:

48.0 to 50.0:

Very loose, gray-brown, Silty Sand (SM) grading to Poorly Graded Sand with Silt (SP-SM); wet; trace fine gravel; fine to medium sand, grading to coarse sand; nonplastic.

47.0 to 48.0:

Medium dense, brown and gray, interbedded, Poorly Graded Gravel with Silt and Sand (GP-GM) and Poorly Graded Gravel with Sand (GP); wet; fine to coarse, subangular to subrounded gravel; fine to coarse sand; nonplastic.

Levee Breach Analysis Mapping and Risk Assessment Geotechnical Data Report King County, Washington

BORING B-RR-3 SONIC CORE PHOTOGRAPHS

103692-303

SHANNON & WILSON, INC. Geotechnical and Environmental Consultants	FIG. A-7
Geotechnical and Environmental Consultants	Sheet 14 of 14

October 2021

Total Depth: 51.5 ft. Top Elevation: 141.4 ft. Vert. Datum:		205,826 ft. ,377,482 ft. - -	_ Dril _ Dril	ling Co I Rig E	ethod: ompany Equipme mments	nt: <u>Ter</u>	nic Col t Serv raSon core/6	ices ic 15			Roo	e Dia I Diai nmer			6 in. 1.75 Autom	"
SOIL DES Refer to the report text for a subsurface materials and drilli lines indicated below represer between material types, and t	proper understandin ng methods. The str nt the approximate bo	ratification oundaries	Depth, ft.	Symbol	Samples	Ground Water	Depth, ft.				-				(blo / 30 ir	
Brown, <i>Poorly Graded C</i> <i>Cobbles (GP)</i> ; moist; fe coarse, subangular to re coarse sand; trace none	w cobbles; fine ounded gravel; f	to			R-1-1											
Medium dense, brown t Graded Gravel with Silt (GP-GM) to Poorly Grad and Cobbles (GP); mois coarse, subangular to re coarse sand; nonplastic	and Sand and (ded Gravel with st; few cobbles; punded gravel; f	Cobbles Sand fine to	5.0	$\begin{array}{c} \circ \circ$	R-2 S-1		5								· · · · · · · · ·	88/1
					s-2		10			· · · · · · · · · · · · · · · · · · ·		· · · · ·				
Medium dense, brown t Graded Gravel with Sar moist to wet; few cobble subangular to rounded sand; trace nonplastic fi	nd and Cobbles es; fine to coarse gravel; fine to co	(<i>GP</i>); e,	12.0		S-3 R-3	eloci2001			•							50/2
- Red-brown below abc	ut 18 feet.				R-4											
CONTINU Sample Not Recovered Soil Core (as in Sonic Cor 2.0" O.D. Split Spoon San	re Borings)	Well Scre Bentonite Bentonite	-Cemer Chips/I	Sand F			Leve	0 0 Pe B		stic Li N	● % mit latur	b Wa I−−∙ al Wa	ater C	onte Liq onter	ent uid Lir	
 Refer to KEY for explanation Groundwater level, if indicat USCS designation is based 	<u>NOTES</u> n of symbols, codes, a ed above, is for the d	date specified a	and defi Ind may	nitions. [,] vary.			As:		men ≺ing 6 O VE	t, Ge Cοι F Ε R F	eote inty,	chnic Was RIN		ton	Report	t
									-		SON	I, IN	C .	F	3692- I G. A nneet 1 c	-8

Total Depth: 51.5 ft. Northing: 205,826 ft. Top Elevation: 141.4 ft. Easting: 1,377,482 ft. Vert. Datum: Station: - Horiz. Datum: Offset: -	_ Dril _ Dril	ling C I Rig I	lethod: company Equipme omments	r: <u>Hol</u> ent: <u>Ter</u>		ices	Hole Diam.: Rod Diam.: Hammer Typ	6 in. 1.75" De: <u>Automatic</u>
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	Samples	Ground Water	Depth, ft.	PENETRA		EXANCE (blows/foot) 140 lbs / 30 inches
 Soft, brown, <i>Lean Clay (CL)</i>; moist to wet; few cobbles and gravel above about 22 feet; low plasticity to medium plasticity. N-values for Sample S-4 may be overstated due to driving on gravel slough in drill casing. Brown, <i>Sandy Silt (ML)</i>; wet; fine to medium sand; nonplastic; few iron-oxide stained seams. Very loose, brown, <i>Silt (ML)</i>; moist to wet; few fine sand; low plasticity. Gray at about 28 feet overlying sandy silt layer with strong iron-oxide staining. Loose to medium dense, brown, turning gray below 33 feet, <i>Silt (ML)</i> and <i>Sandy Silt (ML)</i>; wet; fine sand; grades low plasticity to nonplastic with depth; few sand seams. 	20.0		R.7 $S.6$ $R.6$ $S.5$ $R.5$ $S.4$		25			
Loose to medium dense, gray, interbedded, Silt (ML), Sandy Silt (ML), and Silty Sand	- 39.0		R-8 S-7		35			
CONTINUED NEXT SHEET <u>LEGEND</u> * Sample Not Recovered ○ Soil Core (as in Sonic Core Borings) ○ 2.0" O.D. Split Spoon Sample ○ Bentonite ○ Bentonite	e-Cemer e Chips/f e Grout	nt Grou Pellets	ıt			ee Breach A sessment, G	20 ◇ % Fines (● % Water imit ● Natural Water nalysis Mapp ieotechnical I unty, Washin	Content
NOTES 1. Refer to KEY for explanation of symbols, codes, abbreviations 2. Groundwater level, if indicated above, is for the date specified 3. USCS designation is based on visual-manual classification and	and may	/ vary.					BORING RAGING	
				N	ovem	ber 2021		103692-303
				SI Ge		NON & WIL al and Environment		FIG. A-8 Sheet 2 of 3

REV 1.0 - FINAL

Total Depth: 51.5 ft. Top Elevation: 141.4 ft. Vert. Datum:	Northing: <u>205,826 f</u> Easting: <u>1,377,482</u> Station: <u>-</u> Offset: <u>-</u>	<u>ft.</u> Dril Dril	ling I Rig	j Εqι	nod: npany: uipmei nents:	<u>Ho</u> nt: <u>Te</u>	nic Col It Servi rraSon core/6'	ices ic 18	50			Hole Rod Han	l Dia	am.				<u>6 ii</u> 1.7 iton	5″	ic
SOIL DESC Refer to the report text for a j subsurface materials and drillin lines indicated below represen between material types, and th	proper understanding of the g methods. The stratification the approximate boundaries	Depth, ft.	Svmbol		Samples	Ground Water	Depth, ft.					ON Vt. 8 20					bs /	•		s/foot hes 6
<i>(SM</i>); wet; fine sand; not plasticity.	nplastic to low			R-9 S-8			45					· · · · · · · · · · · · · · · · · · ·								· · · · · · · · · · · · · · · · · · ·
				R-10 S-9																
BOTTOM O COMPLETEI NOTE: Where gravels e	0 6/24/2021			S-10			50			•										· · · · · · · · · · · · · · · · · · ·
diameter of the split spo or boulders are present are not reliable indicator stiffness. The interprete of these soil zones prese is based on density of of encountered and interpr	the SPT blow counts s of soil density or d density and stiffness ented in the boring log her soil zones						55		· · · · · · · · · · · · · · · · · · ·											
depositional environmer count versus relative de presented in Figure A-1.	t instead of the blow nsity relationship								• • • • •	•										
* Sample Not Recovered Soil Core (as in Sonic Core 2.0" O.D. Split Spoon Sam	e Borings) N Bento ple S Bento D Bento	Screen and nite-Cemer nite Chips/l nite Grout	nt Gro Pellet	out s			Leve		Brea	ach	c Lir N An	nit atura alys	SW H al W is N	′ate ● /ate /ate	er (er C	Con I L Cont	⁵ 5mn iten iqui <u>ent</u> and	t d L I Ri	sk	
 Refer to KEY for explanation Groundwater level, if indicate USCS designation is based of 	<u>NOTES</u> of symbols, codes, abbreviatio d above, is for the date specifi	ed and may	nitior vary	1S. 1.			L	00	Kin G (WI	DF EF	Cou B	otec nty, OF	Wa RIN	ash IG	ing E	gtor 8-F RI\	RR /E	-4 R		
							ovem				/11.5	ON				1	036		2-30 	

FIG.

A-9 of 15 1. Material Descriptions:

0.0 to 5.0:

Brown, Poorly Graded Gravel with Sand and Cobbles (GP); moist; few cobbles; fine to coarse, subangular to rounded gravel; fine to coarse sand; nonplastic.

Levee Breach Analysis Mapping and Risk Assessment Geotechnical Data Report King County, Washington

BORING B-RR-4 SONIC CORE PHOTOGRAPHS

103692-303

SHANNON & WILSON, INC. Geotechnical and Environmental Consultants

October 2021

FIG. A-9 Sheet 1 of 15

FIG.

P of 15

1. Material Descriptions:

5.0 to 6.5:

Medium dense, brown to gray-brown, Poorly Graded Gravel with Silt and Sand and Cobbles (GP-GM) to Poorly Graded Gravel with Sand and Cobbles (GP); moist; few cobbles; fine to coarse, subangular to rounded gravel; fine to coarse sand; nonplastic.

Levee Breach Analysis Mapping and Risk Assessment Geotechnical Data Report King County, Washington

BORING B-RR-4 SONIC CORE PHOTOGRAPHS

102602.20

SHANNON & WILSON, INC. Geotechnical and Environmental Consultants

October 2021

103692-303

FIG. A-9

Sheet 2 of 15

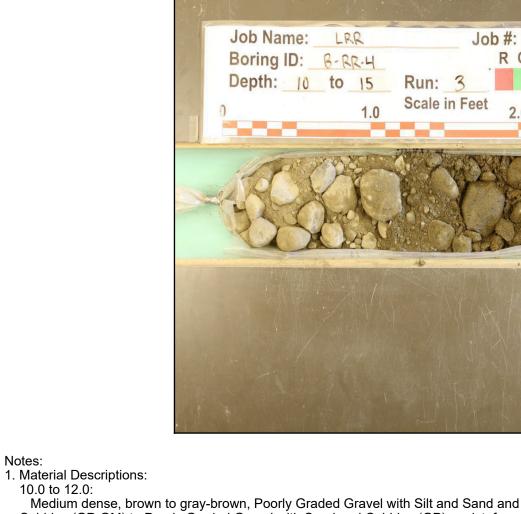
FIG.

Side 15

1. Material Descriptions:

6.5 to 10.0:

Medium dense, brown to gray-brown, Poorly Graded Gravel with Silt and Sand and Cobbles (GP-GM) to Poorly Graded Gravel with Sand and Cobbles (GP); moist; few cobbles; fine to coarse, subangular to rounded gravel; fine to coarse sand; nonplastic.


Levee Breach Analysis Mapping and Risk Assessment Geotechnical Data Report King County, Washington

BORING B-RR-4 SONIC CORE PHOTOGRAPHS

October 2021
SHANNON & WILSON, INC.
Geotechnical and Environmental Consultants

103692-303 FIG. A-9

Sheet 3 of 15

Job #:

RG B С

2.0

103692-303

GW

3.0

October 2021

Geotechnical and Environmental Consultants

Cobbles (GP-GM) to Poorly Graded Gravel with Sand and Cobbles (GP); moist; few cobbles; fine to coarse, subangular to rounded gravel; fine to coarse sand;

nonplastic. 12.0 to 15.0:

FIG.

⋗ <u>o</u> 56

Medium dense, brown to red-brown, Poorly Graded Gravel with Sand and Cobbles (GP); moist to wet; few cobbles; fine to coarse, subangular to rounded gravel; fine to coarse sand; nonplastic.

Levee Breach Analysis Mapping and Risk Assessment Geotechnical Data Report King County, Washington

BORING B-RR-4 SONIC CORE PHOTOGRAPHS

103692-303 FIG. A-9 **SHANNON & WILSON, INC.**

Sheet 4 of 15

FIG.

5 of 15

1. Material Descriptions:

15.0 to 20.0:

Medium dense, brown to red-brown, Poorly Graded Gravel with Sand and Cobbles (GP); moist to wet; few cobbles; fine to coarse, subangular to rounded gravel; fine to coarse sand; nonplastic.

Levee Breach Analysis Mapping and Risk Assessment Geotechnical Data Report King County, Washington

BORING B-RR-4 SONIC CORE PHOTOGRAPHS

October 2021 103692-303

SHANNON & WILSON, INC. Geotechnical and Environmental Consultants She

FIG. A-9 Sheet 5 of 15

FIG.

6 of 15

1. Material Descriptions:

20.0 to 22.0:

Soft, brown, Lean Clay (CL); moist to wet; few cobbles and gravel above about 22 feet; low plasticity to medium plasticity.

22.0 to 22.5:

Brown, Sandy Silt (ML); wet; fine to medium sand; nonplastic; few iron-oxide stained seams.

Levee Breach Analysis Mapping and Risk Assessment Geotechnical Data Report King County, Washington

BORING B-RR-4 SONIC CORE PHOTOGRAPHS

103692-303

SHANNON & WILSON, INC. Geotechnical and Environmental Consultants Shee

October 2021

FIG. A-9 Sheet 6 of 15



FIG.

ୁ **ନ** ଜୁ **ନ** 1. Material Descriptions:

22.5 to 25.0:

Very loose, brown, Silt (ML); moist to wet; few fine sand; low plasticity.

Levee Breach Analysis Mapping and Risk Assessment Geotechnical Data Report King County, Washington

BORING B-RR-4 SONIC CORE PHOTOGRAPHS

FIG.

8 of 15

1. Material Descriptions:

25.0 to 27.5:

Very loose, brown, Silt (ML); moist to wet; few fine sand; low plasticity.

Levee Breach Analysis Mapping and Risk Assessment Geotechnical Data Report King County, Washington

BORING B-RR-4 SONIC CORE PHOTOGRAPHS

103692-303

SHANNON & WILSON, INC. Geotechnical and Environmental Consultants

October 2021

FIG. A-9 Sheet 8 of 15

1. Material Descriptions:

27.5 to 30.0:

Very loose, brown, Silt (ML); moist to wet; few fine sand; low plasticity.

Levee Breach Analysis Mapping and Risk Assessment Geotechnical Data Report King County, Washington

BORING B-RR-4 SONIC CORE PHOTOGRAPHS

October 2021103692-303SHANNON & WILSON, INC.FIG. A-9Geotechnical and Environmental ConsultantsSheet 9 of 15

ЧS FIG.

0 **A-9** 0 of 15 Vol1/FF

1. Material Descriptions:

30.0 to 35.0:

Loose to medium dense, brown, turning gray below 33 feet, Silt (ML) and Sandy Silt (ML); wet; fine sand; grades low plasticity to nonplastic with depth; few sand seams.

Levee Breach Analysis Mapping and Risk Assessment Geotechnical Data Report King County, Washington

BORING B-RR-4 SONIC CORE PHOTOGRAPHS

103692-303

SHANNON & WILSON, INC. Geotechnical and Environmental Consultants

October 2021

FIG. A-9 Sheet 10 of 15

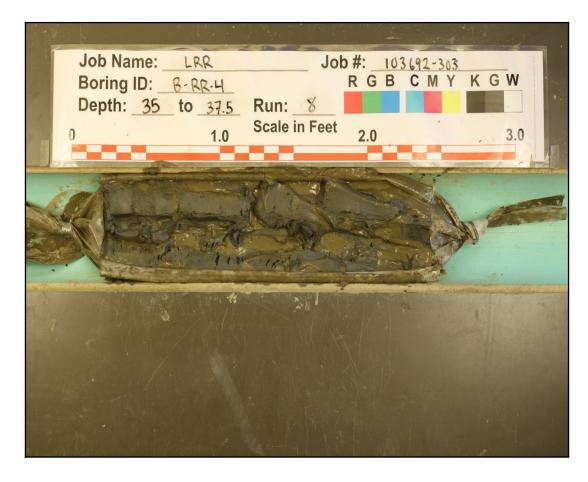


FIG.

15

A-9

1. Material Descriptions:

35.0 to 37.5:

Loose to medium dense, brown, turning gray below 33 feet, Silt (ML) and Sandy Silt (ML); wet; fine sand; grades low plasticity to nonplastic with depth; few sand seams.

Levee Breach Analysis Mapping and Risk Assessment Geotechnical Data Report King County, Washington

BORING B-RR-4 SONIC CORE PHOTOGRAPHS

103602 30

SHANNON & WILSON, INC. Geotechnical and Environmental Consultants

October 2021

103692-303

FIG. A-9

Sheet 11 of 15

1. Material Descriptions:

39.0 to 40.0:

Loose to medium dense, gray, interbedded, Silt (ML), Sandy Silt (ML), and Silty Sand (SM); wet; fine sand; nonplastic to low plasticity.

37.5 to 39.0:

Loose to medium dense, brown, turning gray below 33 feet, Silt (ML) and Sandy Silt (ML); wet; fine sand; grades low plasticity to nonplastic with depth; few sand seams.

Levee Breach Analysis Mapping and Risk Assessment Geotechnical Data Report King County, Washington

BORING B-RR-4 SONIC CORE PHOTOGRAPHS

•••	 			
		1(03692	-303

KGW

3.0

Y

С M

> FIG. A-9 Sheet 12 of 15

ЧS FIG

N **A-9** 2 of 15 /11/

1. Material Descriptions:

40.0 to 42.5:

Loose to medium dense, gray, interbedded, Silt (ML), Sandy Silt (ML), and Silty Sand (SM); wet; fine sand; nonplastic to low plasticity.

Levee Breach Analysis Mapping and Risk Assessment Geotechnical Data Report King County, Washington

BORING B-RR-4 SONIC CORE PHOTOGRAPHS

October 2021 103692-303 FIG. A-9 SHANNON & WILSON, INC. Geotechnical and Environmental Consultants

Sheet 13 of 15

FIG.

A-9 3 of 15

1. Material Descriptions:

42.5 to 45.0:

Loose to medium dense, gray, interbedded, Silt (ML), Sandy Silt (ML), and Silty Sand (SM); wet; fine sand; nonplastic to low plasticity.

Levee Breach Analysis Mapping and Risk Assessment Geotechnical Data Report King County, Washington

BORING B-RR-4 SONIC CORE PHOTOGRAPHS

October 2021 103692-303 FIG. A-9 SHANNON & WILSON, INC. Geotechnical and Environmental Consultants

Sheet 14 of 15

Ş FIG.

A-9 4 of 15 Vol1/I

FIG.

A-9 5 of 15 1. Material Descriptions:

45.0 to 50.0:

Loose to medium dense, gray, interbedded, Silt (ML), Sandy Silt (ML), and Silty Sand (SM); wet; fine sand; nonplastic to low plasticity.

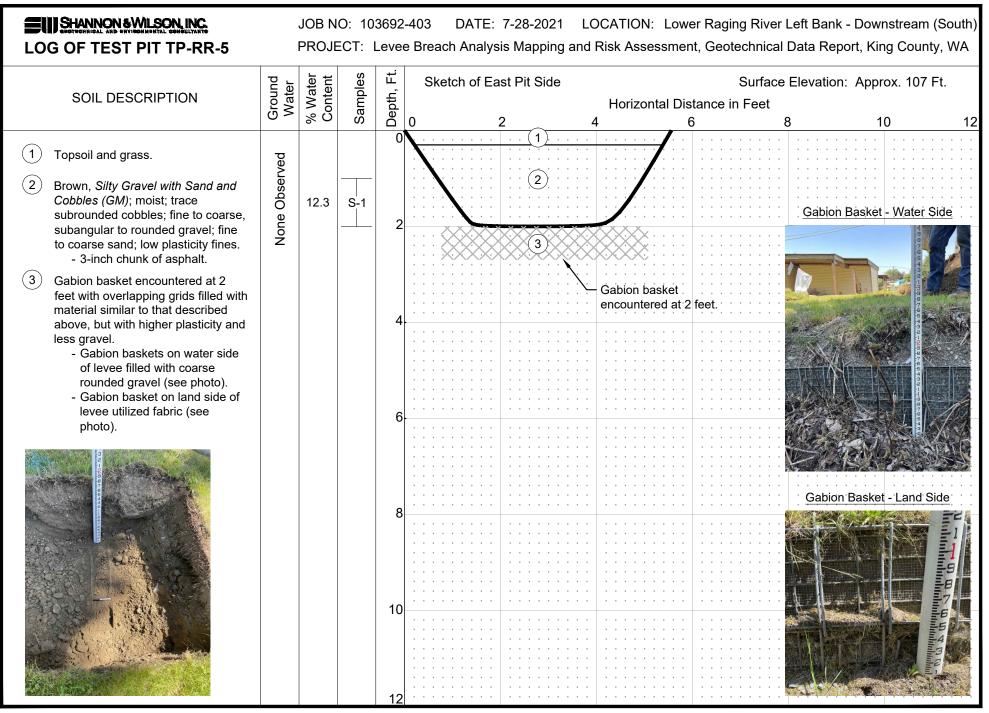
Levee Breach Analysis Mapping and Risk Assessment Geotechnical Data Report King County, Washington

BORING B-RR-4 SONIC CORE PHOTOGRAPHS

 October 2021
 103692-303

 SHANNON & WILSON. INC.
 FIG. A-9

SHANNON & WILSON, INC. Geotechnical and Environmental Consultants


FIG. A-9 Sheet 15 of 15

LOG OF TEST PIT TP-RR-1			O: 1036 ECT: Le ^v	02-403 DATE: 7-28-2021 LOCATION: Lower Raging River Left Bank - Upstream (South) wee Breach Analysis Mapping and Risk Assessment, Geotechnical Data Report, King County, WA
SOIL DESCRIPTION	Ground Water	% Water Content	Samples	Sketch of Southeast Pit Side Surface Elevation: Approx. 142 Ft. Horizontal Distance in Feet
 Topsoil and grass. Brown, Well-Graded Gravel with Silt and Sand and Cobbles (GW-GM); moist; subrounded to rounded cobbles; fine to coarse gravel; fine to coarse sand; nonplastic fines. Few roots from about 3 to 4 feet. Brown, Silty Sand (SM) and Sandy Silt (ML); moist; few fine to coarse, subrounded gravel; fine to coarse sand; low plasticity fines. Gray to brown, Poorly Graded Sand with Gravel (SP) to Poorly Graded Gravel with Sand (GP); moist; fine to coarse, subrounded gravel; fine to coarse sand; trace nonplastic fines. 	None Observed	15.1	S-1 S-2	6 2 4 6 8 10 12 1 1 1 1 1 1 1 1 2 2 2 2 1 1 1 1 1 4 1
		4.3		

SOIL DESCRIPTION by by by geo of ge	EWISHANNON & WILSON INC. LOG OF TEST PIT TP-RR-2		JOB N PROJE			2-403 DATE: 7-28-2021 LOCATION: Lower Raging River Left Bank - Upstream (North) ee Breach Analysis Mapping and Risk Assessment, Geotechnical Data Report, King County, W	,	
1 Topsoil and grass with crushed gravel. 2 4 (a) Angular boulders observed on east edge of test pit to about 6 feel west of the eastern edge of the levee. 0 3 Brown, Wel-Graded Gravel with subtrounded to rounded gravel; fine to coarse sand; trace nonplastic fines. • Few roots from about 3 to 4 feet. if et. 0 </th <th>SOIL DESCRIPTION</th> <th>Sround Water</th> <th>b Water Content</th> <th>amples</th> <th>epth, Ft.</th> <th>Sketch of East Pit Side Surface Elevation: Approx. 136 Ft. Horizontal Distance in Feet</th> <th></th>	SOIL DESCRIPTION	Sround Water	b Water Content	amples	epth, Ft.	Sketch of East Pit Side Surface Elevation: Approx. 136 Ft. Horizontal Distance in Feet		
gravel. 2 Angular boulders observed on east edge of test pit to about 6 feet west of the eastern edge of the leves. 3 Brown, Well-Graded Gravel with Sand and Cobbles (GW); moist; subrounded to rounded gravel; fine to coarse sand; trace nonplastic fines. - Few roots from about 3 to 4 feet.			~ 0	0)		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12	
edge of test pit to about 6 feet west of the eastern edge of the levee. (a) Brown, Well-Graded Gravel with Sand and Cobbles (GW); moist; subrounded to bolkes; fine to coarse, subrounded to bolkes; fine to coarse, subrounded to rounded gravel; fine to coarse sand; trace nonplastic fines. - Few roots from about 3 to 4 feet.		erved					· ·	
Brown, Well-Graded Gravel with subrounded cobbles; fine to coarse, subrounded to rounded gravel; fine to coarse sand; trace nonplastic fines. - Few roots from about 3 to 4 feet. Feet for about 3 to 4 feet for about 3 t	edge of test pit to about 6 feet west	one Obs			2	2	· · · ·	
fines. - Few roots from about 3 to 4 feet.	3 Brown, <i>Well-Graded Gravel with</i> <i>Sand and Cobbles (GW)</i> ; moist; subrounded cobbles; fine to coarse, subrounded to rounded gravel; fine	Ž		S-1			· · · · · · · · · · · · · · · · · · ·	
	fines. - Few roots from about 3 to 4				4	4 Roots	· · ·	
						6		· · ·
						0	o	· · · · · · · · · · · · · · · · · · ·
							· · · · · · · · · · · · · · · · · · ·	

	SHANNON & WILSON INC. G OF TEST PIT TP-RR-3		job n Proje									ver Left Bank - C cal Data Report,				
	SOIL DESCRIPTION	Ground Water Content Content Depth, Ft.						st Pit Side 2	Ho 4_	Surface Elevation: Approx. 125 Ft. Horizontal Distance in Feet 6 8 10 12						
1	Topsoil and grass.	ved			0	• •			 	· · · · · · · ·			· · · · · · · · · · · · · · · · · · ·			
2	Gray-brown crushed gravel mixed with topsoil. - Grass roots at about 1 foot.	None Observ	ne Observed	ne Obser			2		· · · · · · · · · · · · · · · · · · ·		3	· · · · · · · · · · · · · · · · · · ·		• •		
3	Gray-brown, angular Boulders and Cobbles mixed with <i>Poorly Graded</i> <i>Gravel with Sand (GP)</i> ; moist; angular boulders; subrounded gravel; fine to coarse sand; trace nonplastic fines.			S-1		[
4	Brown and gray, <i>Poorly Graded</i> <i>Gravel with Silt and Sand and</i> <i>Cobbles (GP-GM)</i> ; moist; subrounded cobbles; fine to coarse, subrounded to rounded gravel; fine to coarse sand; nonplastic fines.			S-2	6											
						8				· · · · · · · · · · · · · · · · · · ·	• •					
					10											
					10				· · · · · · · · · · · · · · · · · · ·		· ·	· ·				

EWISHANNON & WILSON INC. LOG OF TEST PIT TP-RR-4		JOB N PROJE				LOCATION: Lower Raging River Left d Risk Assessment, Geotechnical Dat	
SOIL DESCRIPTION	Ground Water	% Water Content	Samples	Depth, Ft.	Sketch of East Pit Side	Surface Ele Horizontal Distance in Feet	evation: Approx. 121 Ft.
	0-	% O	ű	طّ	0 2	4 6 8	10 12
1 Topsoil and grass.	ed			0	D	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
2 Brown and gray crushed gravel.	None Observed		S-1				
3 Brown, <i>Poorly Graded Gravel with</i> Silt and Sand and Cobbles	one O			2	2	· · · · · · · · · · · · · · · · · · ·	
(<i>GP-GM</i>); moist; subrounded cobbles; fine to coarse gravel; fine to coarse sand; nonplastic fines. - roots from about 3 to 4 feet.	Ž						
				4			
			S-2	6			
				8		1 1	
				10		Image: second	
				10		• •	

LOG OF TEST PIT TP-RR-6	JOB NO: 103692-403 DATE: 7-28-2021 LOCATION: Lower Raging River Left Bank - Downstream (North) PROJECT: Levee Breach Analysis Mapping and Risk Assessment, Geotechnical Data Report, King County, WA												
SOIL DESCRIPTION	Ground Water	% Water Content	Samples	Depth, Ft.	Sketch of East Pi		Horizontal Dist	ance in Feet	Elevation: Appro				
 Topsoil and grass over crushed gravel. Brown, <i>Poorly Graded Gravel with Sand and Cobbles (GP)</i>; moist; subrounded cobbles; fine to coarse, subrounded to rounded gravel; fine to coarse sand; trace nonplastic fines. 	None Observed				2			6 1) 2) 2)	8				
		4.0	S-1	6 8 10						1 1			

EWISHANNON & WILSON INC. LOG OF TEST PIT TP-RR-7		JOB N PROJE					7-28-2 sis Mapp						light Bank - Sou Data Report, Kin	
SOIL DESCRIPTION	Ground Water	% Water Content	Samples	Depth, Ft.	Sk	etch of Ea	ast Pit S	ide	Horizo	ontal Dis	Sui tance in Fe		Elevation: Appro	ox. 129 Ft.
	0-	% O	ů	ď	0		2	2	4	6	5	. 8	1() 12
 Gravel and patchy grass at the surface with topsoil. Brown, <i>Poorly Graded Gravel with Sand and Cobbles (GP)</i>; moist; 	e Observed			0										
subrounded cobbles; fine to coarse, subrounded to rounded gravel; fine to coarse sand; trace nonplastic fines. - Roots from about 3 to 4 feet.	None		S-1	2				2			Roots	
				6		~		ots.]	
				8		· · · · · · · · · · · · · · · · · · ·						· · · · · · · · · · · · · · · · · · ·		
				10		· ·		· ·	· · · · · · · · · · · · · · · · · · ·	· ·			· ·	· ·

LOG OF TEST PIT TP-RR-8			NO: 10 ECT:		403 DATE: 7-28 e Breach Analysis Ma				Right Bank - Nor Data Report, Kin	
SOIL DESCRIPTION	Ground Water	% Water Content	Samples	Depth, Ft.	Sketch of East Pit	F	Horizontal Dist	ance in Feet	Elevation: Appro	
 Topsoil and grass. Brown, <i>Poorly Graded Gravel with</i> Sand and Cobbles (GP); moist; subrounded cobbles; fine to coarse, subrounded to rounded gravel; fine to coarse sand; trace nonplastic fines. Cobbles up to 10 inches encountered. Possible boulders. Fine roots above 2 feet and 1 inch roots from 3 to 4 feet. Gray, clean gravel pocket at about 6 feet on the north side. 	None Observed	2.5	0 S-1	<u>0</u> 0 2 4			Broke	8		
				6 8 10	Gray, d					

Appendix B Historical Site Exploration Logs

CONTENTS

- Shannon & Wilson 1997 Boring Logs and Lab Data (23 sheets)
- GeoEngineers 1996 Boring Logs and Lab Data (19 sheets)

Shannon & Wilson, Inc. (S&W), uses a soil classification system modified from the Unified Soil Classification (USC) System. Elements of the USC and other definitions are provided on this and the following page. Soil descriptions are based on visualmanual procedures (ASTM D 2488-93) unless otherwise noted.

S&W CLASSIFICATION OF SOIL CONSTITUENTS

- MAJOR constituents compose more than 50 percent, by weight, of the soil. Major constituents are capitalized (SAND).
- Minor constituents compose 12 to 50 percent of the soil and precede the major constituents (silty SAND). Minor constituents preceded by "slightly" compose 5 to 12 percent of the soil (slightly silty SAND).
- Trace constituents compose 0 to 5 percent of the soil (slightly silty SAND, trace of gravel).

MOISTURE CONTENT DEFINITIONS

Dry	Absence of moisture, dusty, dry to the touch
Moist	Damp but no visible water
Wet	Visible free water, from below water

ABBREVIATIONS

table

ATD	At Time of Drilling
Elev.	Elevation
ft	feet
HSA	Hollow Stem Auger
ID	Inside Diameter
in	inches
lbs	pounds
Mon.	Monument cover
N	Blows for last two 6-inch increments
NA	Not Applicable or Not Available
OD	Outside Diameter
OVA	Organic Vapor Analyzer
PID	Photoionization Detector
ppm	parts per million
PVC	Polyvinyl Chloride
SS	Split Spoon sampler
SPT	Standard Penetration Test
USC	Unified Soil Classification
WLI	Water Level Indicator

GRAIN SIZE DEFINITIONS

DESCRIPTION	SIEVE SIZE
FINES	< #200 (0.08 mm)
SAND*	
• Fine	• #200 - #40 (0.4 mm)
• Medium	• #40 - #10 (2 mm)
Coarse	• #10 - #4 (5 mm)
GRAVEL*	
• Fine	• #4 - 3/4 inch
Coarse	• 3/4 - 3 inches
COBBLES	3 - 12 inches
BOULDERS	> 12 inches

* Unless otherwise noted, sand and gravel, when present, range from fine to coarse in grain size.

RELATIVE DENSITY / CONSISTENCY

COARSE-G	RAINED SOILS	FINE-GRAINED/COHESIVE SOILS				
N, SPT, <u>BLOWS/FT</u> . 0 - 4 4 - 10 10 - 30 30 - 50 Over 50	RELATIVE DENSITY Very loose Loose Medium dense Dense Very dense	N, SPT, BLOWS/FT. <2 2 - 4 4 - 8 8 - 15 15 - 30 Over 30	RELATIVE CONSISTENCY Very soft Soft Medium stiff Stiff Very stiff Hard			

WELL AND OTHER SYMBOLS

		Cement/Concr	ete 🗾		Asphalt c	or PVC Cap			
		Bentonite Grou	nt Pa	~	Cobbles				
		Bentonite Seal		\bigotimes	Fill				
	<u>///≷</u>	Slough	4	4	Ash				
		Silica Sand			Bedrock				
		2" I.D. PVC Sc (0.010-inch Slo							
-									
			Raging Ri Fall City		Bridge 2 /ashingt				
				,, .					
			SOIL CLA AND		G KE				
		Janu	ary 1997			W-6819	-02		
		SHA! Geotech	SHANNON & WILSON, INC. Geotechnical and Environmental Consultants Sheet 1 of 2						

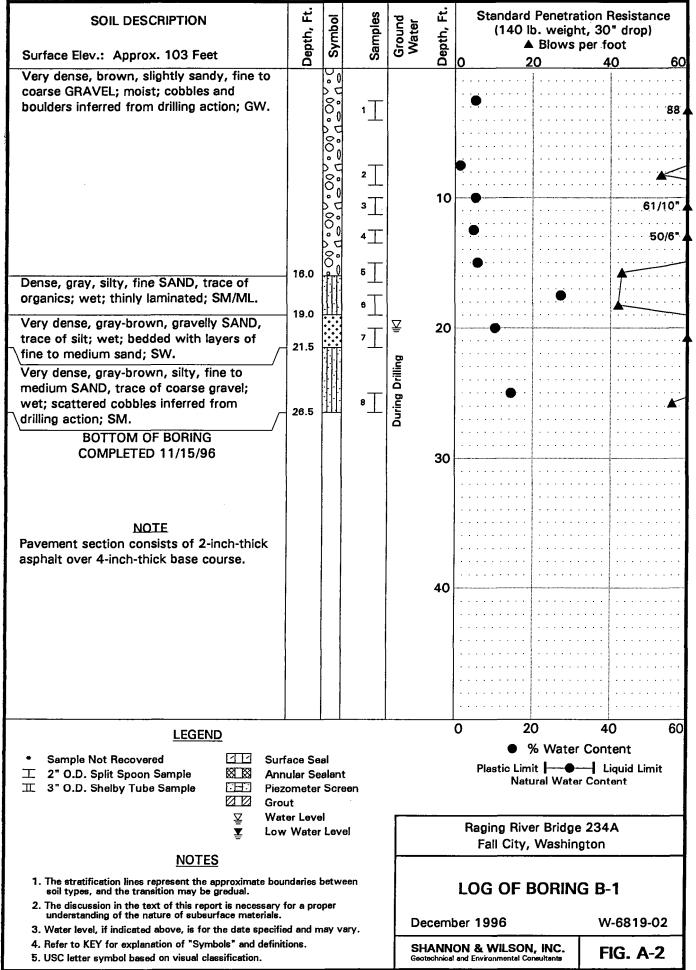
a the base tools a

	948 MAR 1995 - CAMPARAN	SOIL CLASS m ASTM D 24	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
MA	JOR DIVISIONS		GROUP/G SYME		TYPICAL DESCRIPTION
	Gravels	Clean Gravels	GW	0.0	Well-Graded Gravels, Gravel-Sand Mixtures, Little or No Fines
	(more than 50%) of coarse	5% fines)	GP		Poorly Graded Gravels, Gravel-Sand Mixtures, Little or No Fines
Coarse-Grained Soils <i>(more than</i>	fraction retained on No. 4 sieve)	Gravels with Fines (more	GM		Silty Gravels, Gravel-Sand-Silt Mixtures
50% retained on No. 200 sieve)		than 12% fines)	GC		Clayey Gravels, Gravel-Sand-Clay Mixtures
	Sands	Clean Sands ^① (less than	sw		Well-Graded Sands, Gravelly Sands, Little or No Fines
	(50% or more of coarse fraction passes the No. 4 sieve)	5% fines)	SP		Poorly Graded Sand, Gravelly Sands, Little or No Fines
[Use Dual Symbols for 5 - 12% Fines (i.e. GP-GM)]①		Sands with ^① Fines <i>(more</i>	SM		Silty Sands, Sand-Silt Mixtures
		than 12% fines)	sc		Clayey Sands, Sand-Clay Mixtures
	Silts and Clays	Inorganic	ML		Inorganic Silts of Low to Medium Plasticity, Rock Flour, or Clayey Silts with Slight Plasticity
	(liquid limit less than 50)	·	CL		Inorganic Clays of Low to Medium Plasticity, Gravelly Clays, Sandy Clays, Silty Clays, Lean Clays
Fine-Grained Soils (50% or more		Organic	OL		Organic Silts and Organic Silty Clays of Low Plasticity
passes the No. 200 sieve)			СН		Inorganic Clays of Medium to High Plasticity, Sandy Fat Clay, Gravelly Fat Clay
	Silts and Clays (liquid limit 50 or more)	Inorganic	MH		Inorganic Silts, Micaceous or Diatomaceous Fine Sands or Silty Soils, Elastic Silt
		Organic	ОН		Organic Clays of Medium to High Plasticity, Organic Silts
Highly Organic Soils	Primarily organic color, and or		PT		Peat, Humus, Swamp Soils with High Organic Content (See D 4427-92)

<u>NOTES</u>

- Dual symbols (symbols separated by a hyphen, i.e., SP-SM, slightly silty fine SAND) are used for soils with between 5% and 12% fines or when the liquid limit and plasticity index values plot in the CL-ML area of the plasticity chart.
- Borderline symbols (symbols separated by a slash, i.e., CL/ML, silty CLAY/clayey SILT; GW/SW, sandy GRAVEL/gravelly SAND) indicated that the soil may fall into one of two possible basic groups.

Raging River Bridge 234A Fall City, Washington


SOIL CLASSIFICATION AND LOG KEY

January 1997

W-6819-02

SHANNON & WILSON, INC. Geotechnical and Environmental Consultants FIG. A-1 Sheet 2 of 2

MASTERLG 5/15/97

.

ι.

κ.

• -

۰. .

SOIL DESCRIPTION	Depth, Ft.	Symbol	Samples	Ground Water	Depth, Ft.	Porter Penetration Resistance (40 lb. weight, 18" drop) Blows per 6"		
Surface Elev.: Approx. 104 Feet	Dex	Ś	Sa	<u>כ ט</u>	Dej	<u>0 20 40 60</u>		
Loose, brown, fine sandy SILT; moist to dry; trace of gravel; scattered roots; (Fill); SM.			1	Drilling	2			
Medium dense to very dense, light brown, silty, fine sandy GRAVEL; moist to dry;	5.5		2	None Observed During Drilling	4 6			
GW.		00.00	4	Nor	8	50/5"		
BOTTOM OF BORING COMPLETED 12/11/96	8.5	.0	۰		o			
					10			
					12			
					14			
					16			
					18			
						0 20 40 60		
工 2" O.D. Split Spoon Sample		ealar r Sci				 % Water Content Plastic Limit Matural Water Content 		
	ter Lev / Wate		el			Raging River Bridge 234A Fall City, Washington		
 The stratification lines represent the approximate bou soil types, and the transition may be gredual. The discussion in the text of this report is necessary 	 The stratification lines represent the approximate boundaries between soil types, and the transition may be gredual. The discussion in the text of this report is necessary for a proper 					LOG OF BORING B-2		
understanding of the nature of subsurface materials. 3. Water level, if indicated above, is for the date specified and may vary. 4. Refer to KEY for explanation of "Symbols" and definitions. 5. USC letter symbol based on visual classification.				December 1996 W-6819-02 SHANNON & WILSON, INC. FIG. A-3 Geotechnical and Environmental Consultants FIG. A-3				

. .

.

-

- -

5

SOIL DESCRIPTION	Depth, Ft.	Symbol	Samples	Ground Water	Depth, Ft.	Standard Penetration Resistance (140 lb. weight, 30" drop) ▲ Blows per foot
Surface Elev.: Approx. 112 Feet	Dep	S,	Sa	ō ≤	Dep	0 <u>20</u> <u>40</u> <u>60</u>
Loose, brown, silty, fine SAND, trace of gravel; moist; (Fill); SM. Medium dense to very dense, brown, gravelly, silty SAND; scattered cobbles inferred from drilling action; moist; (Fill); SM.	6.0 12.0 15.0		1 2 3 4 4 5 6*		10	73 50/4"
Medium dense, slightly silty, sandy GRAVEL; moist; GW.		000			20	
Very dense, gray-brown, silty, sandy GRAVEL; wet; cobbles and boulders inferred from drilling action; GW.		00,00°,00°	7 8 9	Drilling 1	30	• 62 • 84/8* • 50/4*
Medium dense, brown, clean to slightly silty, fine to medium SAND; wet; scattered laminations of organic silt; SM.	39.0 43.0		10⊥ 11⊥	During	40	
Dense to very dense, gray, silty, gravelly SAND; wet; SP-SM.			12 + ⊥		50	
Very dense, gray, silty, fine SAND, scattered gravel; wet; SM. Very dense, yellow-brown, sandy GRAVEL, trace of silt; wet; GW.	56.0 61.0		13⊥ 14⊥ 15⊥		60	• 77 • 50/6"
Dense, gray, slightly sandy, slightly clayey SILT; wet; scattered pockets of peat; ML. Very dense, yellow-brown, gravelly, fine to coarse SAND, trace of silt; wet; SW.	67.0 73.0		16⊥ 17⊥		70	.62/6**
- cobbles inferred from drilling action between 76 and 78 feet. BOTTOM OF BORING	80.5		18		80	74
COMPLETED 11/20/96					90	
⊥ 2" O.D. Split Spoon Sample 🕅 🕅 Annu	ace Sea ular Sea ometer	elent			I (0 20 40 60 • % Water Content Plastic Limit Liquid Limit Natural Water Content
	er Leve Water		el			Raging River Bridge 234A Fall City, Washington
<u>NOTES</u> 1. The stratification lines represent the approximate bour soil types, and the transition may be gradual.			een			Log of Boring B-3
 The discussion in the text of this report is necessary founderstanding of the nature of subsurface materials. Water level, if indicated above, is for the date specifie Pater to KEV for explanation of "Symbols" and definiti 	d and m		ary.			ver 1996 W-6819-02
 Refer to KEY for explanation of "Symbols" and definiti USC letter symbol based on visual classification. 	0118.					DN & WILSON, INC. end Environmental Consultants FIG. A-4

, .

. .

s. ..

. .

.

Sec. 1

۰.

SOIL DESCRIPTION	Depth, Ft.	Symbol	Samples	Ground Water	Depth, Ft.	Standard Penetra (140 lb. weigi ▲ Blows	ht, 30" drop)
Surface Elev.: Approx. 102 Feet	De	Ś	Sa	<u></u> ס >	Dei	0 20	40 60
Medium dense, gray-brown, silty, fine SAND; moist; SM.	7.0		1	1		•	
Very dense, gray-brown, silty, sandy GRAVEL; wet; cobbles inferred from drilling action; GW.	7.0		2*==		10		50/6*
- layers of silty, fine sand inferred from drill cuttings between 17 and 19 feet.		000	3⊥	Drilling 1	20		
		000	4Ⅲ 5Ⅲ	During Dri	20	• • • • • • • • • • • • • • • • • • • •	50/8"
Large cobbles and boulders inferred from drilling action; GW.	28.0	por Dov	6—	۵	30		
Dense, gray, silty, fine SAND; wet; scattered pockets of organic, clayey silt; SM.	38.0		7⊥		40		
Very dense, gray-brown, gravelly, fine to coarse SAND and sandy GRAVEL, trace of silt; wet; SW/GW.			8 — 9 —		40	•	50/4************************************
sift; wet; Sw/Gw.			10		50	•	
Very dense, gray-brown, silty, fine SAND;	58.0		11 <u>T</u>		60	•	50/6*
wet; laminated with sandy silt; trace of fine gravel; SM. BOTTOM OF BORING COMPLETED 12/11/96	61.5		12		70		88
					80		
					90		
LEGEND		<u> </u>	1			0 20	40 60
Sample Not Recovered □□ Surfa Z" O.D. Split Spoon Sample □□ Piezo Sample □□ Group		alant Scre				● % Wate Plastic Limit ┃ Natural Wate	
¥ Low	er Leve Water		1			Raging River Bridg Fall City, Washin	
<u>NOTES</u> 1. The stratification lines represent the approximate bour soil types, and the transition may be gradual.			en			LOG OF BORIN	G B-4
 The discussion in the text of this report is necessary for understanding of the nature of subsurface materials. Water level, if indicated above, is for the date specifier 	d and n		iry.	December 1996 W-6819-02			
 Refer to KEY for explanation of "Symbols" and definitions. USC letter symbol based on visual classification. 				SHANNON & WILSON, INC. Geotechnical and Environmental Consultants FIG. A-5			

.

•

•

۰. ..

• -

s. ...

....

e. ..

MASTERLG 5/15/97					. 1		<u> </u>	
SOIL DESCRIPTION	Depth, Ft.	Symbol	Samples	Ground Water	Depth, Ft.	Standard Penetra {140 lb. weigh ▲ Blows	it, 30" drop)	
Surface Elev.: Approx. 110 Feet	Dep) Ś	Sa	<u>5</u> 2	Der	0 20	40 60	
Medium dense, brown, silty, fine SAND,	3.0							
trace of gravel, trace of organics; moist; / (Fill); SM.	0.0	0°0	1⊥ 2⊥			•		
Medium dense to very dense, gray-brown,		ŏ	3 <u>⊤</u>		10		64	
silty, sandy GRAVEL, trace of silt; moist; scattered cobbles and boulders inferred		þd	4*				50/1"	
\sim from drilling action; GW.	16.0	ŏ.	5• <u> </u>			▲		
Boulders and cobbles inferred from drilling	17.5	ĬĬ	6				50/4"	
action; GW.	19.4	0			20	· · · · · · · · · · · · · · · · · · ·		
Gray, slightly clayey SILT inferred from drill cuttings; ML.		0	7工	≅			k <	
Very dense, brown, sandy GRAVEL, trace		þď	877	Drilling	30		50/5"	
\uparrow of silt; moist; cobbles and boulders \int	31.0	Ŏ,		D D	50	• •		
hinferred from drilling action; GW.	33.5	ŢŢ	9 <u> </u>	During		· · · · · · · · · · · · · · · · · · ·		
Boulders inferred from drilling action; GW.				Δ				
Medium dense, slightly clayey, silty, fine			10丁		40		· · · · · · · · · · · · · · · · · · ·	
SAND and fine sandy SILT; wet; thinly	44.0	ļ	4 4				EAVet	
bedded with organic silt; numerous wood fragments; SM/ML.			11 🎞	ĺ		• • • • • • • • • • • • • • • • • • •		
Dense to very dense, yellow-brown,			12		50	· · · · · · · · · · · · · · · · · · ·		
gravelly, fine to coarse SAND and sandy					50	••••••		
GRAVEL; wet; trace of silt; SW/GW.			13 <u>T</u>			•	100/10"	
			14 工	l	60	· · · · · · • • • • • • • • • • • • • •	91/9"	
	64.0		ا م ا					
Very dense, gray-brown, silty, fine SAND;	65.0		15 工	i F			100/10"	
wet; laminated with sandy silt; SM.	Ì		16		70	· · · · · · · · · · · · · · · · · · ·	70/9*	
Very dense, gray-green, sandey, clayey	72.0	ļļļļ,						
Dense, gray, slightly clayey, slightly	76.0		17 🔳				▲ · · · · · · · · · · · · · · · · · · ·	
gravelly, silty, fine SAND and fine sandy				ļ			/	
SILT; wet; SM/ML.	80.5	ШЦ	18 🔟		80		.	
Dense, gray, slightly silty to silty, fine SAND; wet; SM.						· ·		
BOTTOM OF BORING				1				
COMPLETED 11/22/96					90			
	ĺ			1				
						• •		
	Ĺ							
LEGEND					(0 20	40 60	
* Sample Not Recovered 🛛 🖄 Surf	face Se	eal					Content	
⊥ 2" O.D. Split Spoon Sample 🖾 🕅 Ann	ular Se		t			Plastic Limit Natural Wate		
	omete	r Scr	əen			IVALUIAI IVALU	Jonton	
⊠_⊠ Grou ⊽ Wet	ut ter Lev	el					······	
<u>-</u>	/ Wate		el			Raging River Bridge	234A	
						Fall City, Washin	gton	
<u>NOTES</u> 1. The stratification lines represent the approximate bou	ndaries	betw	een					
soil types, and the transition may be gredual. 2. The discussion in the text of this report is necessary t				LOG OF BORING B-5				
understanding of the nature of subsurface materials. 3. Water level, if indicated above, is for the date specified and may va				December 1996 W-6819-02				
-	nd and r	may v	ary.	De	cemt	ler 1990	VV-0019-02	

. .

2

• -

· ·

. .

SOIL DESCRIPTION	Depth, Ft.	Symbol	Samples	Ground Water	Depth, Ft.	Standard Penetration Resistance (140 lb. weight, 30" drop) Blows per foot	
Surface Elev.: Approx. 108 Feet	Dep	Ś	Sa	< ق	Der	0 20 40 60	
Medium dense, brown, gravelly, silty, fine to medium SAND; moist; (Fill); SM.	4.0		1				
Very dense, slightly sandy, fine to coarse GRAVEL; moist; cobbles and boulders inferred from drilling action; GW.	4.0	00000	2⊥	During Drilling		• 50/6 * 4	
BOTTOM OF BORING	14.6	00.00.00	3	Observed	10	• 50/1", • 50/6",	
COMPLETED 11/25/96				None	20		
NOTES 1. Upper 6 inches consists of crushed gravel. 2. Drilling refusal at bottom of boring.					20		
					30		
					40		
					40	· · · · · · · · · · · · · · · · · · ·	
					-	0 20 40 60	
工 2" O.D. Split Spoon Sample 図题 Ann 亚 3" O.D. Shelby Tube Sample ご日 Piez G Grab Sample 辺辺 Grou	-	ealan r Scr		_		● % Water Content Plastic Limit	
	ter Levo V Water		vel			Raging River Bridge 234A Fall City, Washington	
1. The stratification lines represent the approximate boundaries between soil types, and the transition may be gredual. 2. The discussion in the text of this report is necessary for a proper						LOG OF BORING B-6	
 The discussion in the text of this report is necessary for a proper understanding of the nature of subsurface materials. Water level, if indicated above, is for the date specified and may vary. 			December 1996 W-6819-02				
4. Refer to KEY for explanation of "Symbols" and definit 5. USC letter symbol based on visual classification.	tions.			Sł Geo	IANN technical	ON & WILSON, INC. and Environmental Consultants FIG. A-7	

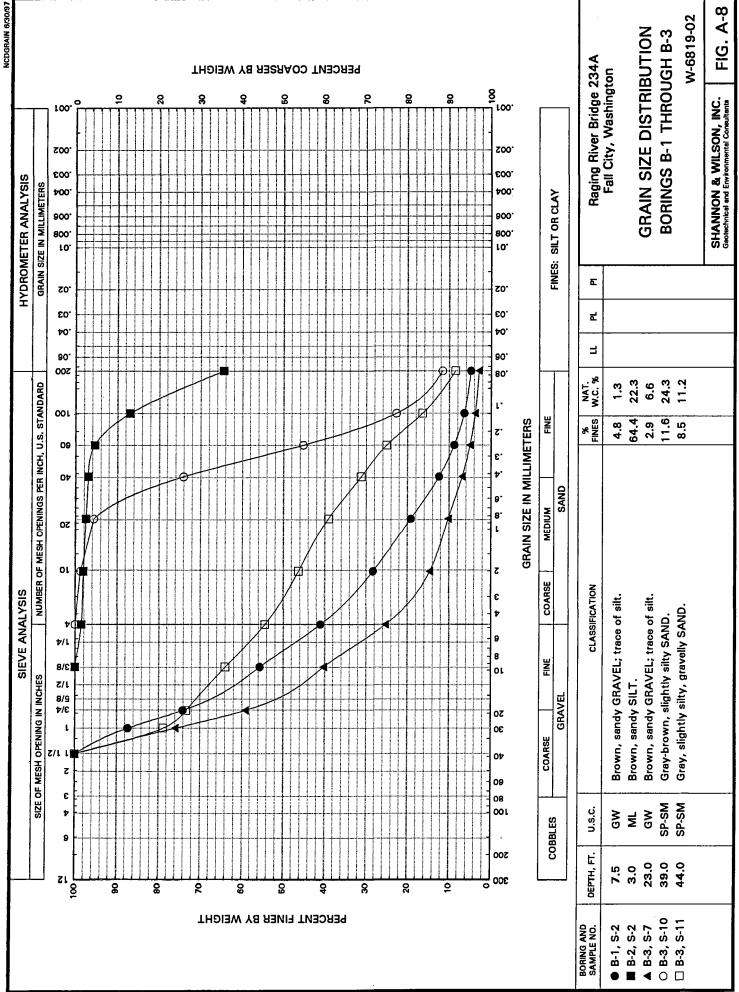
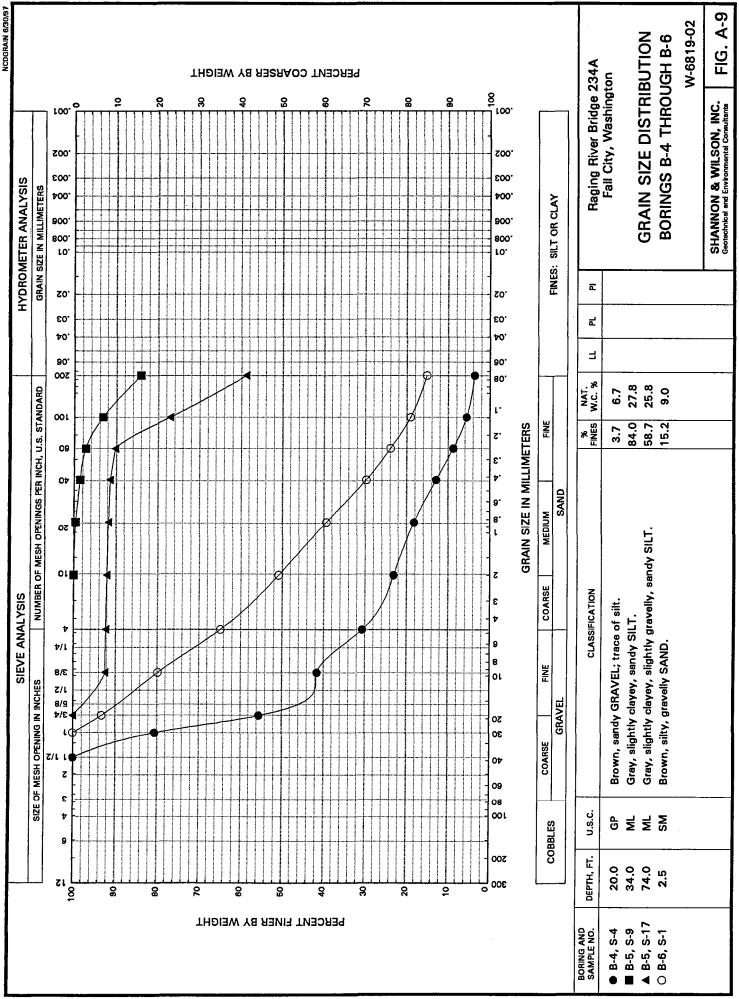
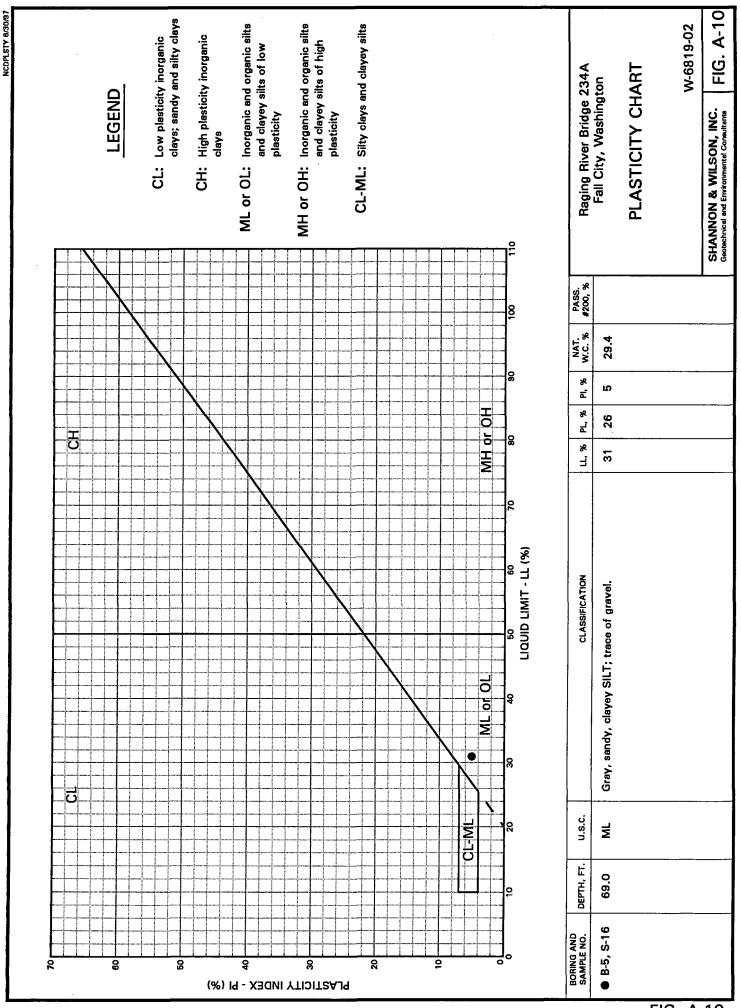
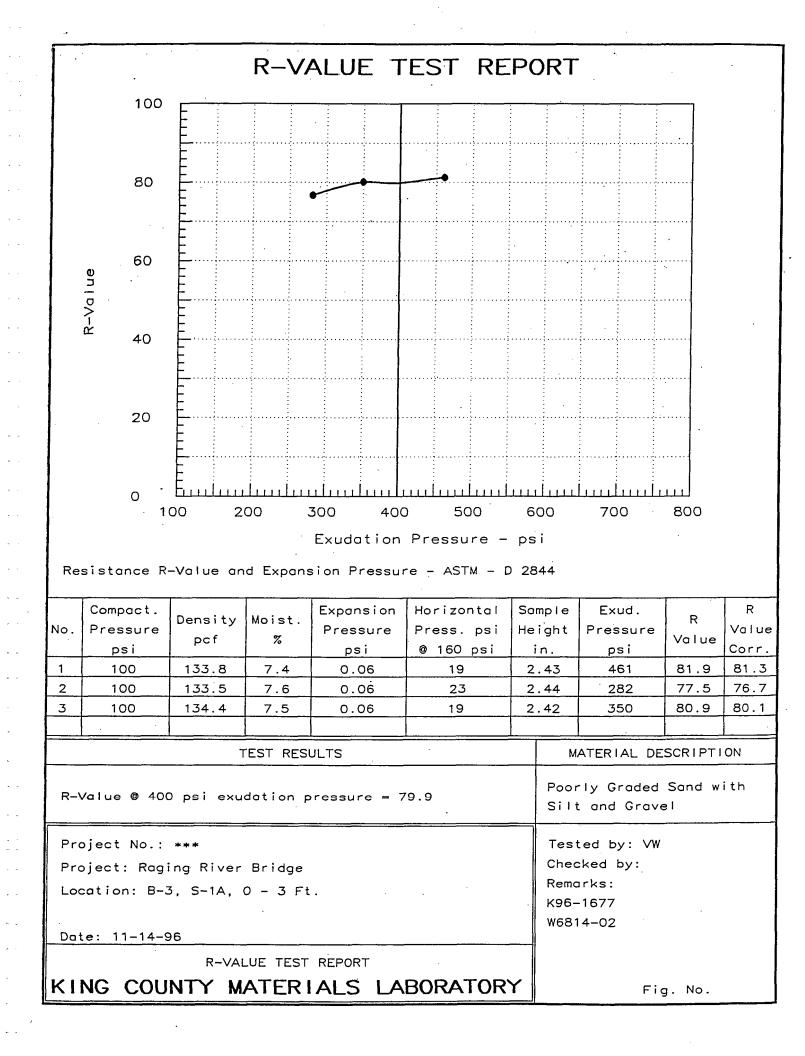
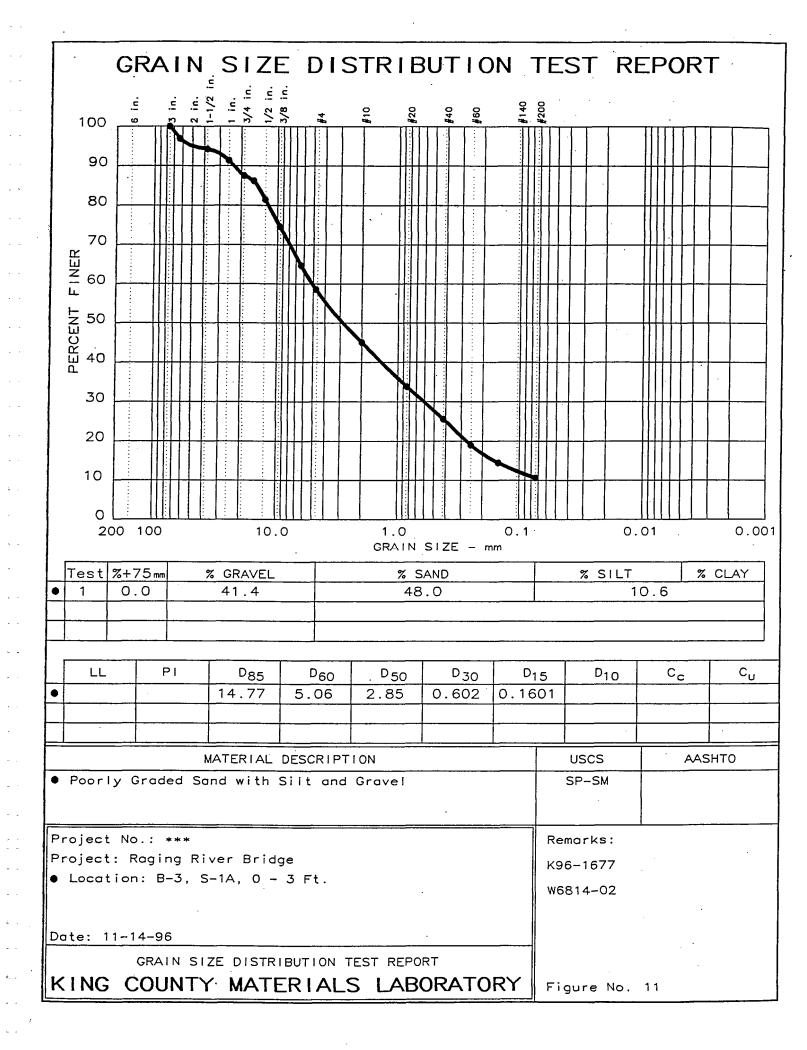
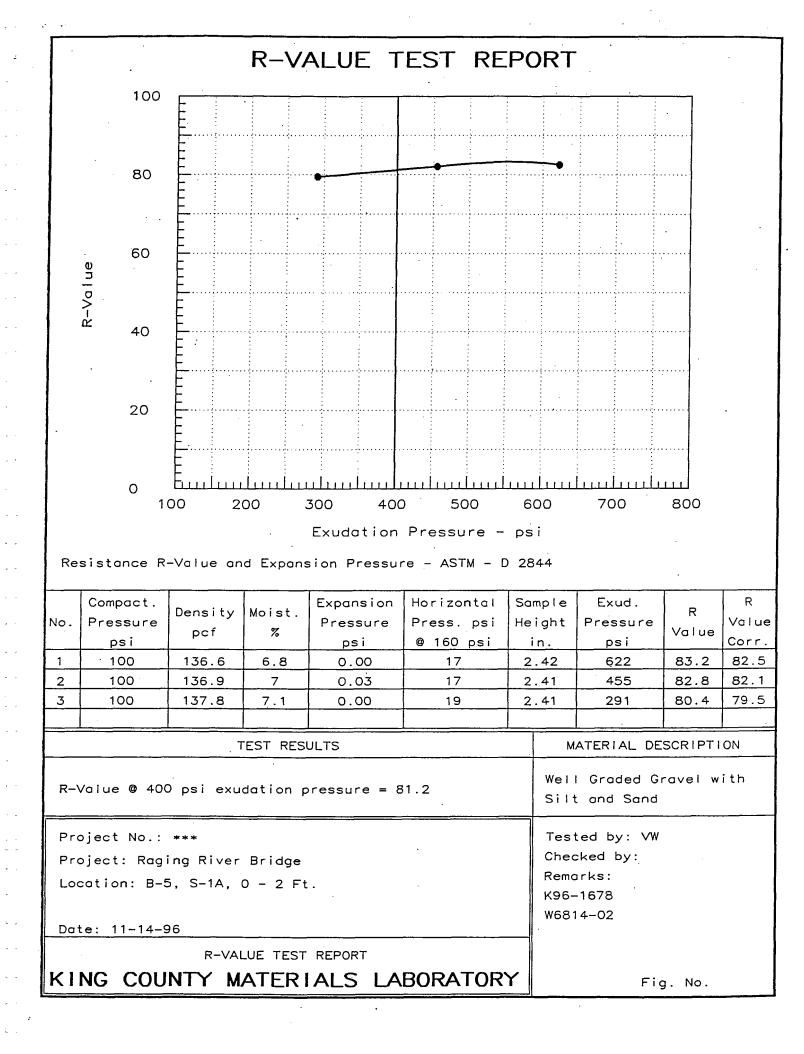
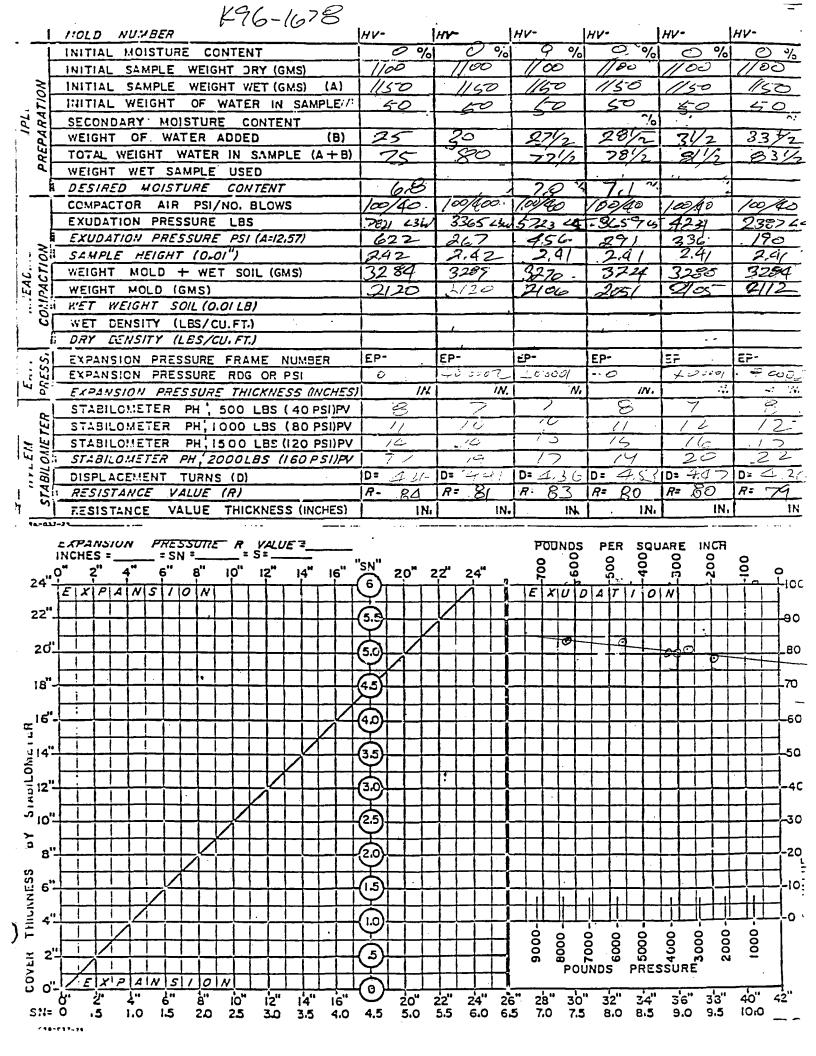
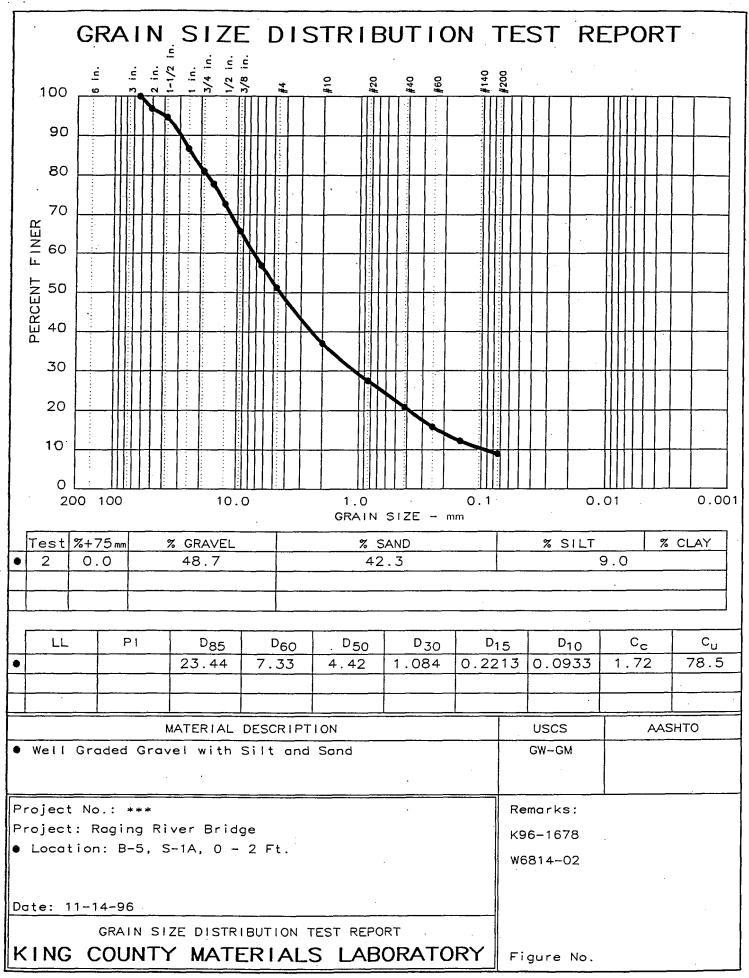



FIG. A-8

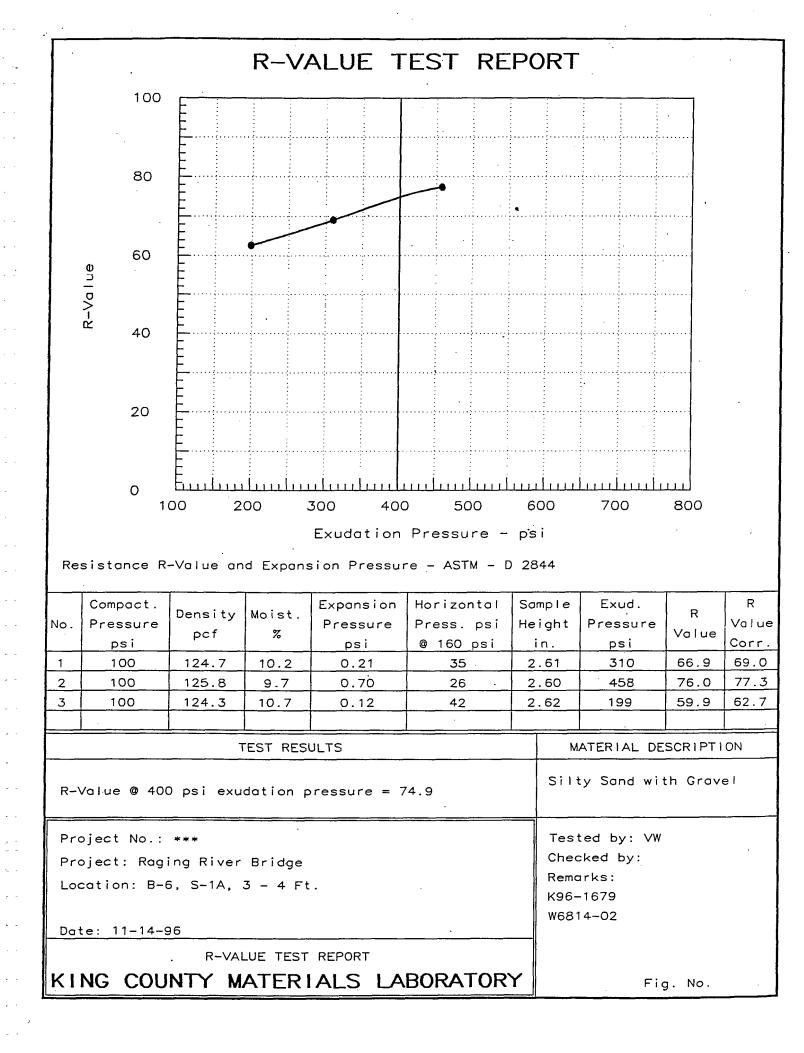





FIG. A-10

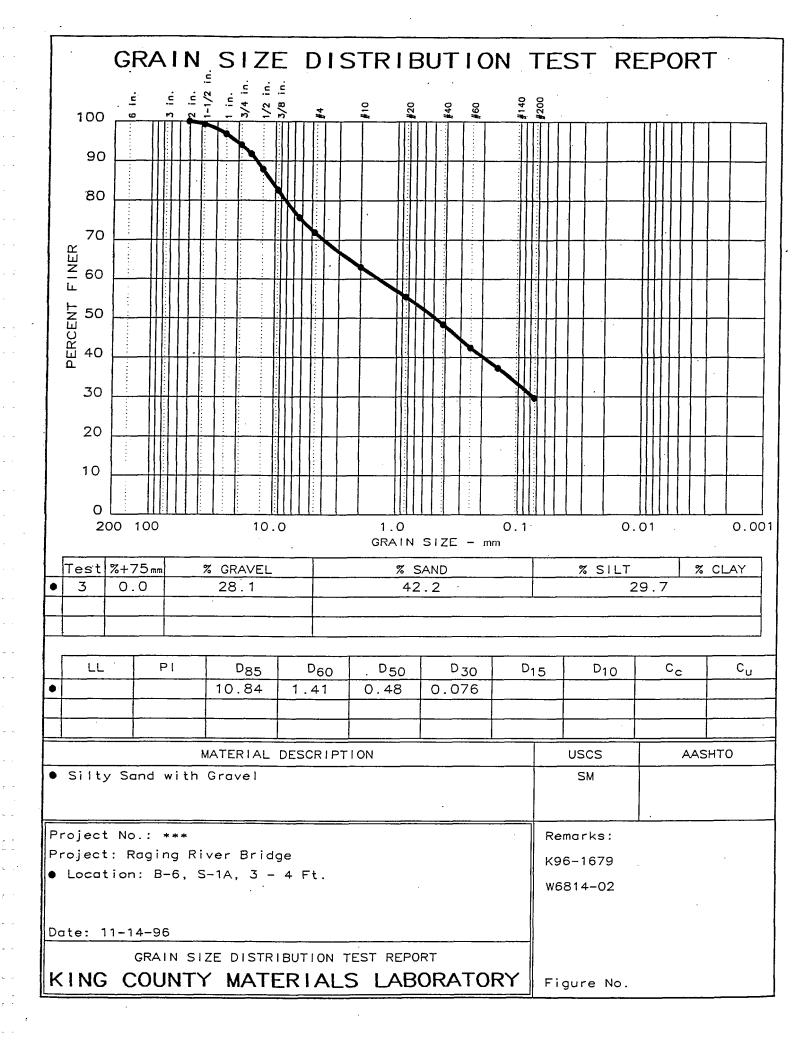



· · ·	•	X	IIS LUHR	7735 LE RELLIONI	lafi t	yay) Hini	1.E.	2				. •				•	•					
		· .					·	•				•									`	
				8 R' V	ALUE	DAT					·					•						
		aging Rive	0																-7	162	77	>
TYPE OF MATERIAL With Silt and Gengvel TO BE USED FOR																						
TYPE	OF MAT	ERIAL USH	5 <u>5</u> <u>5</u> <u>1</u> <u>4</u> <u>a</u> <u>a</u> <u>b</u>	d Leng	vel	TO	æ	USE	D I	OR	·.									-		•
		ETERIAL	, < .						•				·									
										.												
HEMARKS																						
• •			-								_		_						_			
	•	•																•				
PAVEMENT DESIGN SOIL CLASSIFICATION																						
EXUDATION R VALUE 80 SAND EQUIVALENT																						
EXPANSION R VALUE										•												
1	IESIGN R IAX. SWE	LL PRESSURE	80						PLAS PEC													
	RAFFIC	INDEX ROCK EQUIV.							SPEC ASH				•				_					
				-					NIF						3	P-	sn	5				
	·	· .	:		_	•		L					· .	_:			 •					
t 3	G	RADING ANAL	YSIS			T				<u> </u>		1		<u>.</u>			1	-		-		 I
AS R	EC'D		S USED	· <u></u>	1	卫	1		1		1		ŀ								1	Ţ
SIEVE	*	SIZE	. %	WT.	1	+	┼	$\left \cdot \right $	╋	┼┤	+		4	┿	+.			$\left \cdot \right $	$\left - \right $		$\frac{1}{1}$	╀
	1252%				1	4	-	\square		\square	\mp	1					1				1	Ţ
11 =	.95-	1=-5/8=				. +	+		1.	$\left \cdot \right $	+		;	+			┢			+-	+	+
<u></u>	91					+			<u> </u> .		+			+	\square		-				-	+
•		3/4=_3/8=	15	162		土	1		\pm		1			\pm	\square						\pm	t
3/4*	- 33				-	′+			+	$\left \right $		$\left \cdot \right $	_	+-	<u> ·</u>	·	-	$\left \right $			╞	+
1/2*		3/8-44	18	. 194	· .						1-			1			1		1		Ĺ	t
3/8."	. 25	·				+			+	\vdash	┿		+	+	$\left \cdot \right $		+-	$\left - \right $	-		┼╴	+
<u> </u>	59	<i>z</i> , o		1954	• · · -	1				1	+		\downarrow	Ţ	Гļ				_	1	Ţ.	F
#10	.45	#4. – C	67	109			$\frac{1}{1}$		\Box					<u> </u>					1	+	t	t
- <i>]</i> 40	26		100	100]	+	+	-			+		-					\square			-	╞
· †200	1//	TCTAL	100 ·	1085	ŀ.	+			Тİ	1	\downarrow	<u>i</u>	1	1	Ħ				1	1	t	F
		NW	· ·		ل								_!_	1							<u> </u>	L
	يجيبون بأدابة المح	V						-	•													

	K96-1677					·	
° 1	ITOLD NULYBER		HV-	HV-	ни-	HV-	HV-
	INITIAL MOISTURE CONTENT	0%	0 %	0, %	2 %	0 %	0 %
	INITIAL SAMPLE WEIGHT DRY (GMS)	1080	1,030	1080	1030	1080	1080
E FION	INITIAL SAMPLE WEIGHT WET (GMS) (A)	1130	·		-		
14	INITIAL WEIGHT OF WATER IN SAMPLE ?!	50	50	50	50	50	50
PL PL	SECONDARY MOISTURE CONTENT	4.6			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		<u></u>
SANPL	WEIGHT OF WATER ADDED (B)	20	30	35	32/2	28	3/-
PRE	TOTAL WEIGHT WATER IN SAMPLE (A + B)	20 +50	. 80		82/2		
	WEIGHT WET SAMPLE USED					· · · · · · · · · · · · · · · · · · ·	
	A DESIRED MOISTURE CONTENT	100/40	14	17	120	<u>+</u>	<u></u>
i i	COMPACTOR AIR PSI/NO. BLOWS EXUDATION PRESSURE LBS	10000 3L	579615.	212014	1 3 538 91	10250 34	i Ahar El
	EXUDATION PRESSURE PSI (A=12,57)	poo SC	461	273	281	657	350
0N 19		12.46	2,43	241	2.44	2,91	247
KNEADING MIPACTIO	WEIGHT MOLD + WET SOIL (GMS)	3254	3272	3265.	3261	3308	32.22
2AC	WEIGHT MOLD (GMS)	2106	2120	2105	2105	2159	2119
UNN KN		1 10 0					
1 00	WET DENSITY (LBS/CU.FT.)	1	,				
<u> </u>	DRY GENSITY (LES/CU.FT.)	1					
·	EXPANSION PRESSURE FRAME NUMBER	EP-	EP-	ÉP-	EP-	SP	EP-
EXP. PRESS	EXPANSION PRESSURE RDG OR PSI	-0,000/	0,000 2	the second s	-0,0002	0,000/	0,0002
E. P.			/ IN.		<u> </u>	1/2 -	
6	STABILOMETER PH , 500 LBS (40 PSI)PV	B	8	9	9	9	.8
- TER		11	11	13	13	12	
HVEELI BILONE	STABILOMETER PH, 1500 LBS (120 PSI)PV	15	-15	17	18	14	-15
ΒΙΓΟΥ	STABILOMETER PH 2000LBS (IGOPSI)PV	1-18	19	D= 427	D= 4,33	10: 4.00	D= 4,38
LAB.	DISPLACEMENT TURNS (D)	D= 3.73 R- 84	D= 4.10 R= 82	D= 4.22 R: 80	R= 77	R= 23	R: 81
25	RESISTANCE VALUE THICKNESS (INCHES)	1/1- 64 INi		· · · · · · · · · · · · · · · · · · ·	<u> </u>	IN.	IN
7		111	<u>}</u>	1176	· · · · · · · · · · · · · · · · · · ·		
		•••••••••••••••••••••••••••••••••••••••					
	EXPANSION PRESSURE & VALUES			דסתאחסק	PER SOL		
	EXPANSION PRESSURE R VALUE =	"chi ^{ll}		POUNDS		JARE INCR	<u> </u>
24"	INCHES = = SN = = S = ,0" 2" 4" 6" 8" 10" 12" 14" 16"	"SN" 20" 2	22" 24"		PER SQL		00100
24"	INCHES = = S = = S =	"SN" 20" 2	22" 24"		-100		
24" 22"	INCHES = = SN = = S = O'' = 2'' = 4'' = 6'' = 8'' = 10'' = 12'' = 14'' = 16'' $F = X P A N S I O N = 1 = 10''$	"SN" 20" 2	22" 24"	-700 5600	-400	-200	
24	INCHES = = SN = = S = O'' = 2'' = 4'' = 6'' = 8'' = 10'' = 12'' = 14'' = 16'' $F = X P A N S I O N = 1 = 10''$	"SN" 20"	22" 24"	-700 5600	-400	-200	
24	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	XHX		-700 5600	-400		
24 22" 20	INCHES = = SN = = S = O'' = Z'' = 4'' = 6'' = 8'' = 10'' = 12'' = 14'' = 16'' E = X P A N S / O N = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 =	"SN" 20"	22" 24"	-700 5600	-400	-200	
24 22"	INCHES = = SN = = S = O'' = Z'' = 4'' = 6'' = 8'' = 10'' = 12'' = 14'' = 16'' E = X P A N S / O N = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 =	XHX		-700 5600	-400		
24 22" 20 18"	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			-700 5600	-400		80 80 70
24 22" 20 18"	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	XHX		-700 5600	-400		
24 22" 20 18"	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			-700 5600	-400		80 60 60 60 60 60 60 60
24 22" 20 18"	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			-700 5600	-400		
24 22" 20 18"	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			-700 5600	-400		80 80 60 60 50
24 22" 20 18"	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			-700 5600	-400		80 60 60 60 60 60 60 60
TABILOMETER 50 8 00 10 1 8 00	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			-700 5600	-400		80 80 60 60 60 50 50 4(
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			-700 5600	-400		80 80 60 60 50
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			-700 5600	-400		80 80 60 60 60 50 4(
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			-700 5600	-400		
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			-700 5600	-400		
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			-700 5600	-400		+01 +01 +01 +01 +01 +01 +01 +01
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						+00 +00 +00 +00 +00 +00 +00 +00 +00 +00
THIICKNESS BY STABILOMETER	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						101 00 80 70 60 50 4(30 20 10 10 10 10 10 10 10 10 10 1
THIICKNESS BY STABILOMETER	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						+01 +01 +01 +01 +01 +01 +01 +01
VER THICKNESS BY STABILOMETER					-400		+00 +00 +00 +00 +00 +00 +00 +00 +00 +00
THICKNESS BY STABILOMETER	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				004 004 004 004 004 004 004 004	4000	
VER THICKNESS BY STABILOMETER	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				004 004 004 004 004 004 004 004	4000	101 00 80 70 60 50 4(30 20 10 10 10 10 10 10 10 10 10 1


	7735 II HEILON	e Hateriand Klednamm Eart Way Nows D, Kashindmow V 5-1211
	\$ <u>H</u> t 1	VALUE DATA
	en Budge	PROJECT NO LAS TEST NO. K96-1678
- FAS NO.	CONTRACT NO.	DATE TESTEL
TYPE OF MATERIAL with	silt and same	DATE TESTEL $\frac{1/-14-96}{1}$
SOURCE OF MATERIAL	•	STATION
CONTRACTOR		SAMPLE DEPTH 0-2 ft, TEST HOLE NO. 35
REMARKS		
PAVEMENT DES	TON	
		SOIL CLASSIFICATION
EXUDATION R VALUE EXPANSION R VALUE		SAND EQUIVALENT
DESIGN R VALUE MAX. SWELL PHESSURE	3/	PLASTIC INDEX SPEC. GRAV. #4+
TRAFFIC INDEX CRUSHED ROCK EQUIV.		SPEC. GRAV. #4-
CRUSHEB RUCK EQUIV.		AASHO CLASSIF. UNIFIED CLASS. <u>GW-GM</u>
	: 	<u>L</u>
GRADING ANAL	YSIS	
AS REC'D	AS USED	
SIEVE SIZE	% HT.	
AI.SIZE 2 11 1 2/8=		
		<u>_</u> ┨ ── ╎╎╎╎╎╎╎
L* 87 3/4*-3/8*	1- 1	
3/4* 78	15 165	
1/2= 173 3/8=-#4	20- 220	
3/8" 66	20- 220	
14 51	/	
#10 ·37 #1 C	65 715	
140 21	1100	
#200 9 TOTAL	100 1100	
TESTED BY Vu		

.


.

NINF KUHTI SUTIS & MATERIALE KADIMATUTI 7725 LEART WAY NORD MILLIOND, WASH INDIDI TU 5-1211

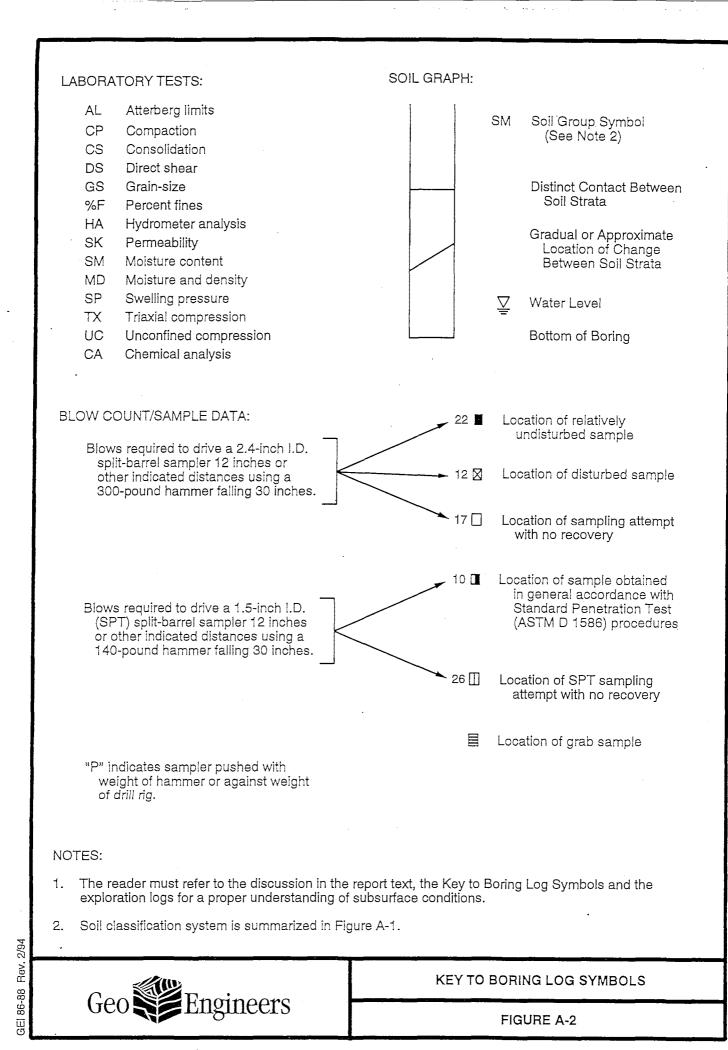
				8 H1 1	VALUE I)ATA								•						
Projes	or <u>K</u>	aging Rive	" Budy	20_1	Projec:	C HO.				_ I.	9	ÆS	T N	0.	K	76 -	/6	29	, ,	
FAS N	0		CONTRACT A	10				DAT	S TE	5 TEI	<u>.</u>	1	-/	4.	<u> </u>	76	<u> </u>			•
TYPE (OF MAT	ERIAL Silty	Sand 1	W/Grg	rol	TO H	2 0:	ED 1	FOR	•			•							•
		ATERIAL N.																-		
																B	6	_ _		
						- 	r In		7 - 1	<u> </u>		nu.	. تكسيل	nu.	-					
REMA R	Ka ——		· · · · · · · · · · · · · · · · · · ·										<u> </u>							
								• •												
							-										•			
	P.	AVEMENT DFS	IGN						SOIL	CL	155	FI	CAT	ION	I					
EX	UDATIO	N R VALUE			,									·						
TES	STGN R	N R VALUE VALUE					PLAS	JID : STIC	INI)EX	•									
TR	AFFIC	LL PRESSURE						SPE	C. G.	RAV.	, #Z	H.,								
CH	JSHED	ROCK EQUIV.						AAST	HO C	LASS	चार									
-			:			•	L]	•		
	G	RADING ANALY	rsis	· · ·]					11		T		1	<u> </u>	1	1	<u> </u>	- <u>î</u>	
AS REC	מים		S USED	<u></u>	1.					$\downarrow \downarrow$	-			上						<u>†</u>
SIEVE		·	%	WT.			\pm			+	<u> </u>			\cdot		\pm	+		<u> </u> .	+
AX.SIZ	<u>в (, ́</u>				-			$\left \cdot \right $	┼┼	$\left\{ \right\}$	-	$\left\{ \cdot \right\}$		+		-	╄┦		+	+
12.	.99	1=3/8=					+		<u>†</u> - <u>†</u> -	$\downarrow \downarrow$	Ť		1	1		1	口	1	1	Ţ,
1.	97		10		· ·		+				<u>†</u> .					\pm	\square	\pm	\pm	t
3/4"	94	3/4=-3/8=	12	130	,	╶┽┽	+	$\left \right $. -	$\left \right $	+	$\left \cdot \right $	+			+	┾┤	+	╀	+-
1/2*	88				1		-			-	+	\square	1			1	\square	7	ŀ	\square
3/8"	83	3/8=_#4	11 -	.117						╞╾╀ ╡╾┦	1						凵	1	1	口
#4	72				-		\pm							\square			\square	\pm	1.	\square
	· 63	<i>#1.</i> – C	77	'837			+-		$\left \right $	$\left \right $	+-		+	$\left \right $		+	$\left\{ \cdot \right\}$	-	╀	\vdash
#40	48				1	+	1				+-		+			1	Į.Į	\mp	Ţ	\Box
#200	30	TCTAL	100	[08]	·		+				1		+			+	╞╪	+	1	口
TESTED		NW			- H						1_									لمسل

	K96-1679						
1 1		ни-	H V-	HV-	ни-/	HV-	HV-
1 1	INITIAL MOISTURE CONTENT	0%	0 %	@ %	0 %	2 %	0 %
1 [INITIAL SAMPLE WEIGHT DRY (GMS)	1080	19.80	1090	(080	1080	1080
1 3	INITIAL SAMPLE WEIGHT WET (GMS) (A)			1.			
LION	INITIAL WEIGHT OF WATER IN SAMPLE /	90	90	90	150	90	90
74	SECONDARY MOISTURE CONTENT	8.3			7.6		<u>^;</u>
	WEIGHT OF WATER ADDED (B)	20	15	10	13 -	8	25
REP.	TOTAL WEIGHT WATER IN SAMPLE (A + B)	110	105	100	103	103	115
۹ مر ا	WEIGHT WET SAMPLE USED	1185			·	· · · · · · · · · · · · · · · · · · ·	
	DESIRED MOISTURE CONTENT	10,2	9.7.				0.7
	COMPACTOR AIR PSI/NO. BLOWS	100/40.	100/40.	100/40	120/40	100/00	10/40
	EXUDATION PRESSURE LBS	3396 630	5756 434	10,000 26		5750 ALL	2500
2	EXUDATION PRESSURE PSI (A=12,57)	3/0	458	296	796	457	199 44 262
VOL		2.61	2,60	257	2.5%	330-	
EAC	WEIGHT MOLD + WET SOIL (GMS)	3238	3234	3293:	3288	2/2/	334 97 334 2160
1 - 2	WEIGHT MOLD (GMS)	1.2105	2051	2105	2112	44	2/60
co:	KET WEIGHT SOIL (0.01 LB)		·	·			
	WET DENSITY (LBS/CU.FT.)	1					
		EP-	EP-	EP-	EP-	157	EP-
	EXPANSION PRESSURE FRAME NUMBER	0,0007	0,0023	0.0026	0,00/6	0,0020	.0,0004
E	EXPANSION PRESSURE THICKNESS INCHES		17.5-IN.		.8 IN.	10 .	3
	STABILOMETER PH , 500 LBS (40 PSI)PV	1 /2	G	10	10	10	14
ER	STABILOMETER PH, 1000 LBS (80 PSI)PV	18	111-	16	15	15	22-
	STABILOMETER PH, 1500 LBS (120 PSI)PV	26	- 19	20	20	2/	31
ELL		1 35	26	26	26	29	42
BILI	and the second	D= 4.42	D= 4.07	D= 3,82	D= 4,08	10= 4,20	D= 4,70
I R	RESISTANCE VALUE (R)	R- 67	R= 74	R: 77	R= 76	R= .7.3	R= 60
<u>}i</u> γ	RESISTANCE VALUE THICKNESS (INCHES)	I IN:	IN.	INK	. IN.	IN.	<u>1N</u>
14-63							
-							
	EXPANSION PRESSURE R VALUE =			POUNDS		JARE INCH	*
	INCHES = = SN = = S =	"SN" -	19 ÅÅ	- 0			0
24"	INCHES = = SN = = S = O ^M 2 ^N 4 ^M 6 ^M 8 ^M 10 ^M 12 ^M 14 ^M 16 ^M	"SN" 20"	22" 24"	-700 5600	-400		000-0-10C
24"	INCHES = = SN = = S =	"SN" 20" 2	22" 24"	- 0	-400	-200	
24" 22"	INCHES = = SN = = S = $O'' 2'' 4'' 6'' 8'' 10'' 12'' 14'' 16'' E X P A N S / O N _ _ _ _ _ _ _ _ $		22" 24"	-700 5600	-400	-200	
· ·	INCHES = = SN = = S = $O'' 2'' 4'' 6'' 8'' 10'' 12'' 14'' 16'' E X P A N S / O N _ _ _ _ _ _ _ _ $	"SN" 20"		-700 5600	-400	-200	
· ·	$\begin{array}{c} \text{INCHES} = \underline{\qquad} = \text{SN} = \underline{\qquad} = \text{SS} = \underline{\qquad} = \underline{\s}				-400	-200	
22"	$\begin{array}{c} \text{INCHES} = \underline{\qquad} = \text{SN} = \underline{\qquad} = \text{SS} = \underline{\qquad} = \underline{\sc} = \s$				6 400 0 400	-200	
22"	$\frac{1}{1} = \frac{1}{1} = \frac{1}$				0 1 7 A00	-200	
22" 20	$\frac{1}{1} = \frac{1}{1} = \frac{1}$				6 400 0 400	-200	00 00 00 00
22" 20 18"	$\begin{array}{c} \text{INCHES} = \underline{\qquad} = \text{SN} = \underline{\qquad} = \text{SE} = \underline{\qquad} = \underline{\} = \text{SE} = \underline{\} =$				6 400 0 400	-200	00 00 00 00
22" 20 18"	$\begin{array}{c} \text{INCHES} = \underline{\qquad} = \text{SN} = \underline{\qquad} = \text{SE} = \underline{\qquad} = \underline{\} = \text{SE} = \underline{\} =$				6 400 0 400	-200	
22" 20 18"	$\begin{array}{c} \text{INCHES} = \underline{\qquad} = \text{SN} = \underline{\qquad} = \text{SE} = \underline{\qquad} = \underline{\} = \text{SE} = \underline{\} =$				6 400 0 400	-200	
22" 20 18"	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				6 400 0 400	-200	
22" 20 18"	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				6 400 0 400	-200	
22" 20 18" 16 14 14 14 14 14	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				6 400 0 400	-200	
22" 20 18" 16" 14" 14" 14" 10" 10"	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				6 400 0 400	-200	90 80 70 60 50
22" 20" 18" 14" 14" 14" 14" 10" 14" 10"	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				6 400 0 400	-200	90 80 70 60 50 4c 30
22" 20 18" 16 14 14 14 14 14	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				6 400 0 400	-200	
22" 20 18" 8" 16 14 14 12 10 10 10 8	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				6 400 0 400	-200	90 80 70 50 50 4C 30 20
22" 20 18" 8" 16 14 14 12 10 10 10 8	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				6 400 0 400	-200	90 80 70 60 50 4c 30
22" 20 18" 8" 16 14 14 12 10 10 10 8	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					-200	90 80 70 50 4C 30
22" 20 18" 8" 16 14 14 12 10 10 10 8	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						90 80 70 60 50 4c 30
22" 20" 111-000 12" 20" 20" 20" 20" 20" 20" 20" 20" 20" 2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						90 80 70 60 50 4c 30
22" 20" 111-000 12" 20" 20" 20" 20" 20" 20" 20" 20" 20" 2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						90 80 70 60 50 4c 30
OVEN THILLINGESS of SIMULOWERER 2. A 9. 8 0. N. P. 9. 8. 0.						2000	90 80 70 50 50 4C 30 20 10: 10: 0 000
22" 20 18" 8" 16 14 14 12 10 10 10 8					004 00009 00009 00009 00009 00009 00009 00009 00009 00009 	2000	90 80 70 50 50 4C 30 20 10: 10: 0 000
OVEN THILLINGESS of SIMULOWERER 2. A 9. 8 0. N. P. 9. 8. 0.	$\begin{array}{c c c c c c c c c c c c c c c c c c c $				000 A T I 0 900 A T I 0 900 000 000 000 000 000 000 0	2000	90 80 70 60 50 40 30 20 10 10 10 10

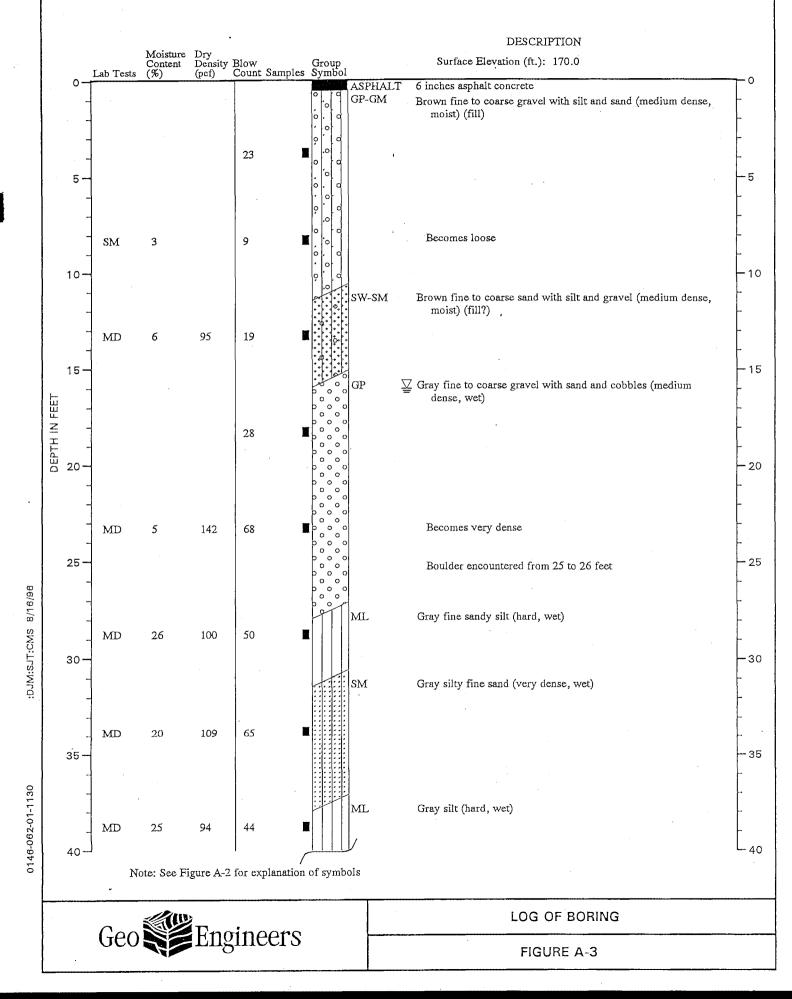
	S	OIL CLASSIFIC	ATION SYST	EM
	MAJOR DIVISIONS		GROUP SYMBOL	GROUP NAME
	GRAVEL	CLEAN	GW	WELL-GRADED GRAVEL, FINE TO COARSE GRAVEL
COARSE GRAINED		GRAVEL	GP	POORLY-GRADED GRAVEL
SOILS	More Than 50% of Coarse Fraction	GRAVEL	GM	SILTY GRAVEL
	Retained on No. 4 Sieve	WITH FINES	GC	CLAYEY GRAVEL
More Than 50% Retained on No. 200 Sieve	SAND	CLEAN SAND	SW	WELL-GRADED SAND, FINE TO COARSE SAND
			SP	POORLY-GRADED SAND
	More Than 50% of Coarse Fraction	SAND WITH FINES	SM	SILTY SAND
	Passes No. 4 Sieve		SC	CLAYEY SAND
FINE GRAINED	SILT AND CLAY	INORGANIC	ML	SILT
SOILS		INORGANIC	CL .	CLAY
	Liquid Limit Less Than 50	ORGANIC	OL	ORGANIC SILT, ORGANIC CLAY
More Than 50%	SILT AND CLAY	INORGANIC	мн	SILT OF HIGH PLASTICITY, ELASTIC SILT
Passes No. 200 Sieve		INORGANIC	СН	CLAY OF HIGH PLASTICITY, FAT CLAY
	Liquid Limit 50 or More	ORGANIC	ОН	ORGANIC CLAY, ORGANIC SILT
	HIGHLY ORGANIC SOILS		PT	PEAT

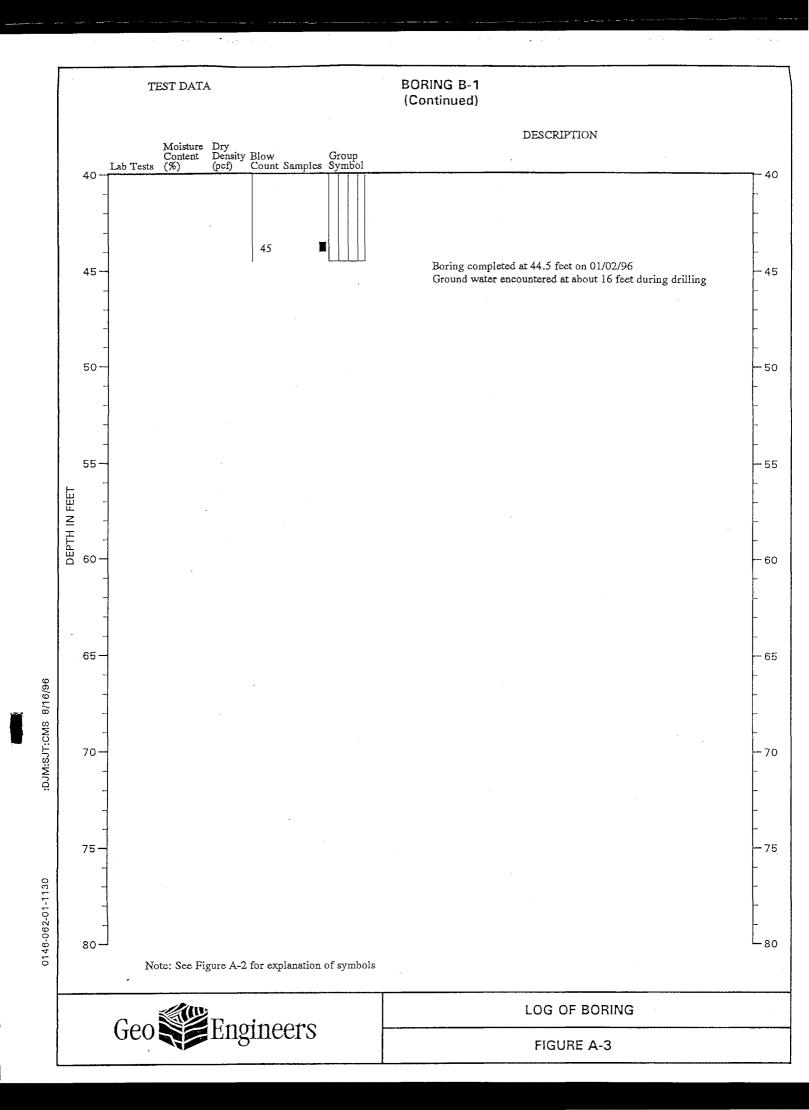
NOTES:

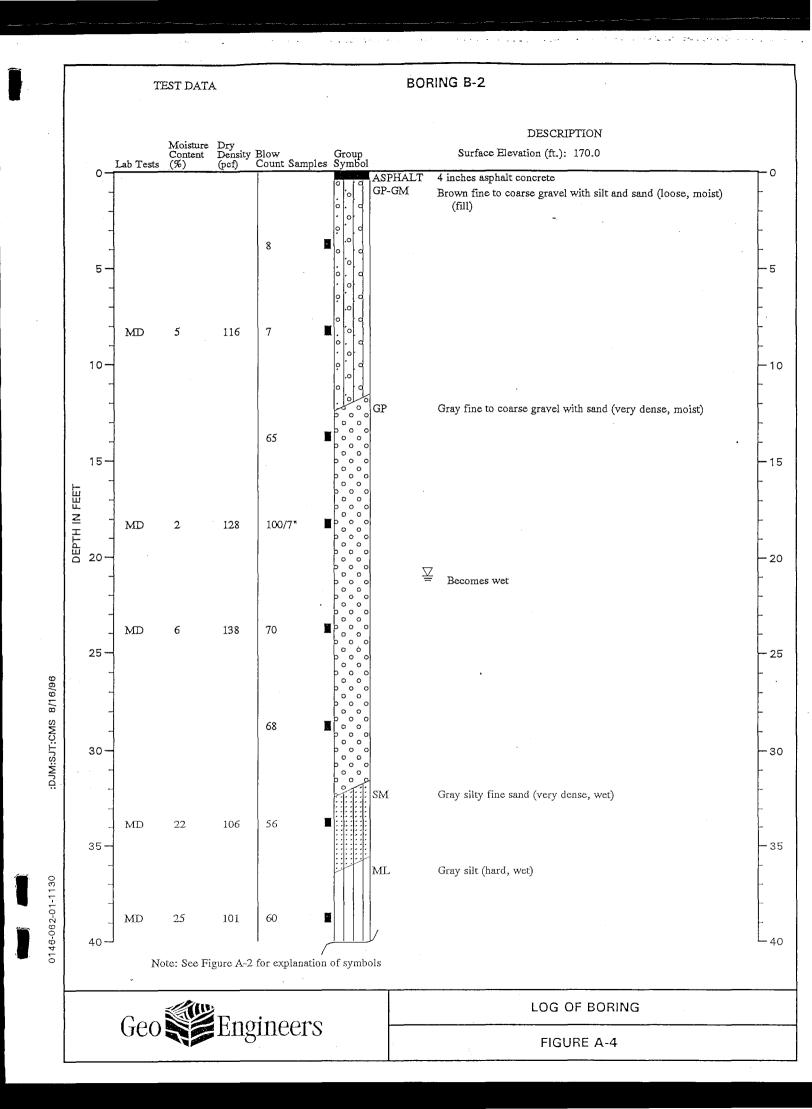
- 1. Field classification is based on visual examination of soil in general accordance with ASTM D2488-90.
- 2. Soil classification using laboratory tests is based on ASTM D2487-90.
- Descriptions of soil density or consistency are based on interpretation of blow count data, visual appearance of soils, and/or test data.

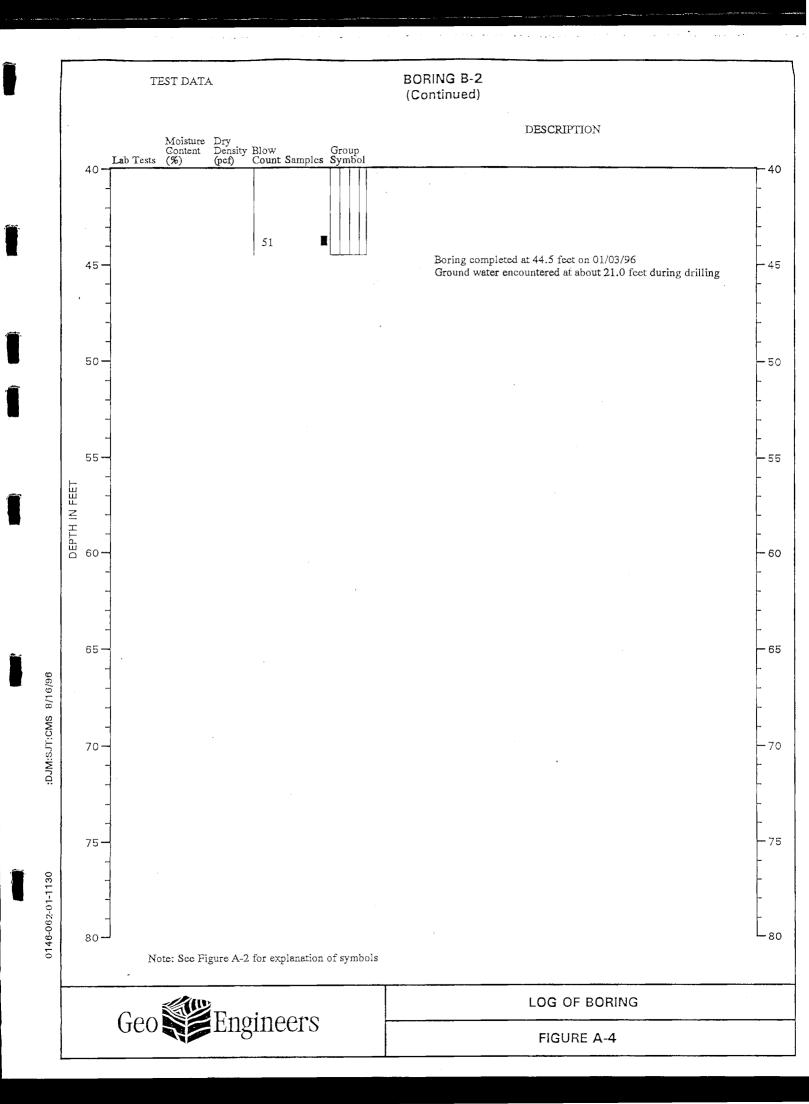

SOIL MOISTURE MODIFIERS:

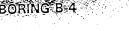
- Dry Absence of moisture, dusty, dry to the touch
- Moist Damp, but no visible water

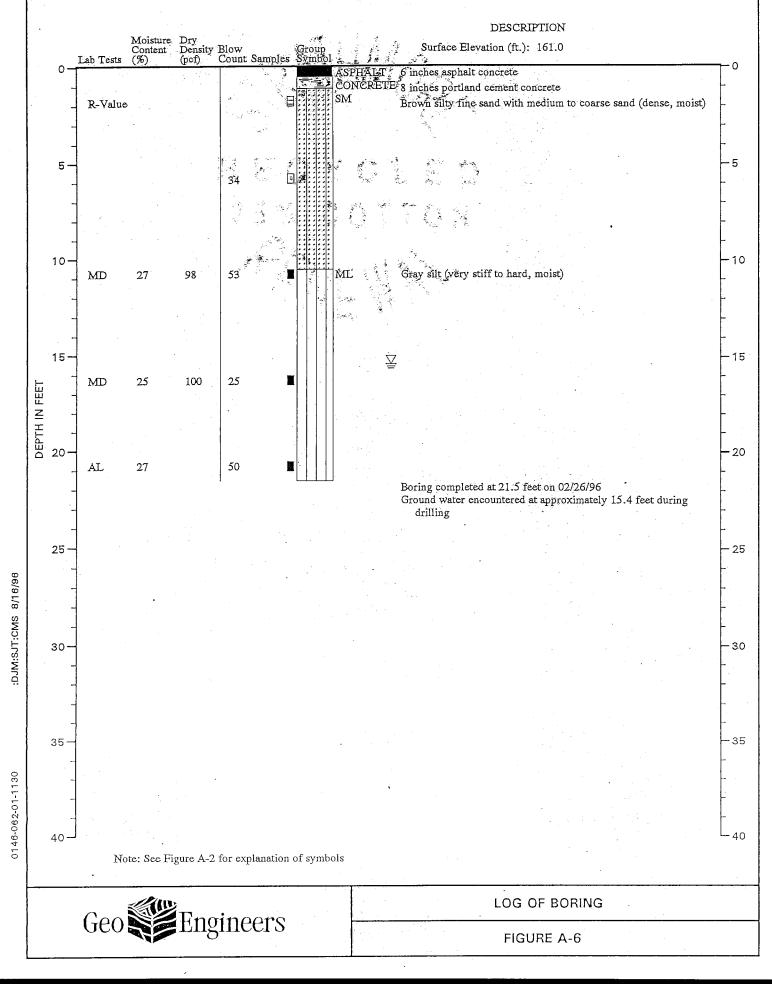

Wet - Visible free water or saturated, usually soil is obtained from below water table



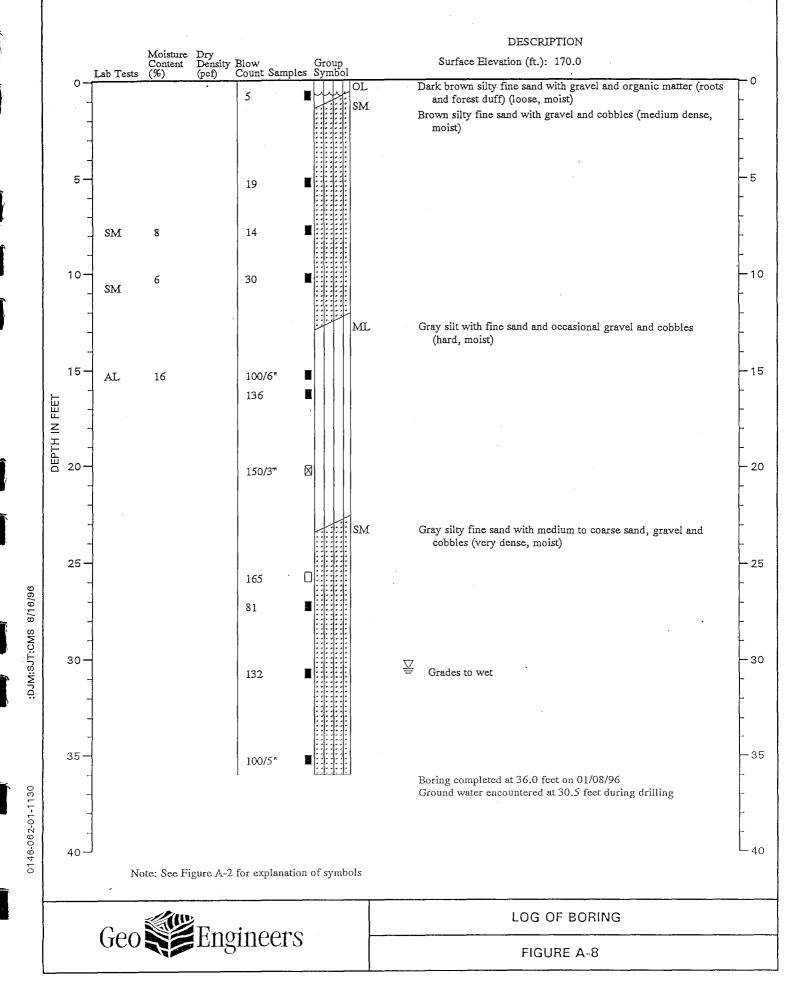

SOIL CLASSIFICATION SYSTEM

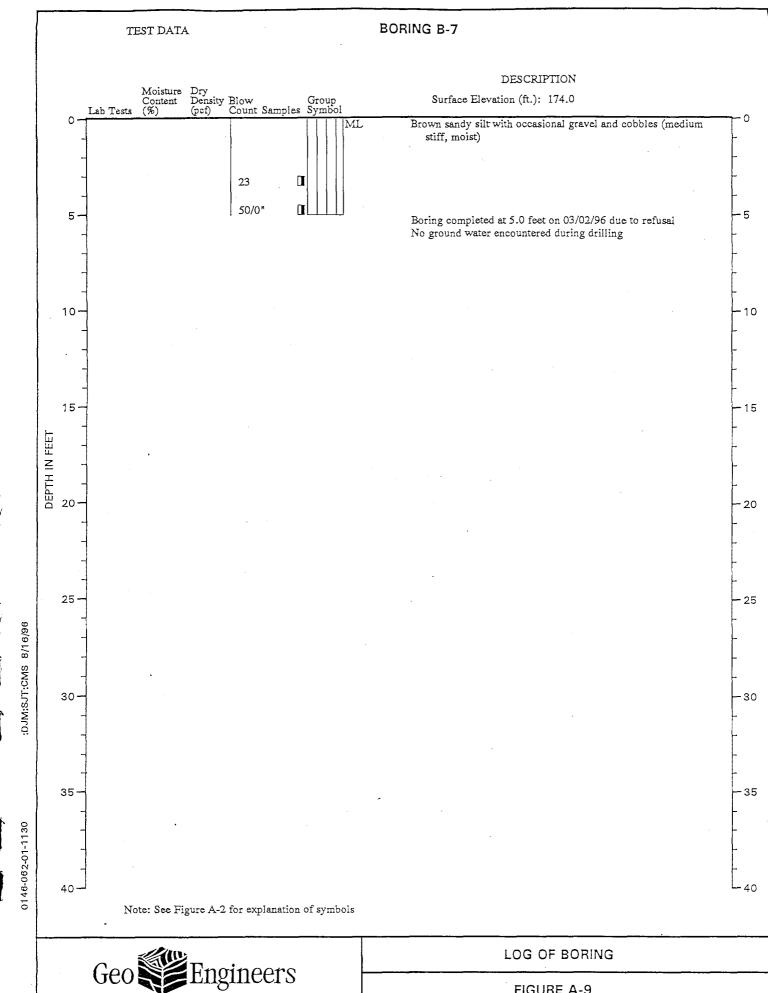


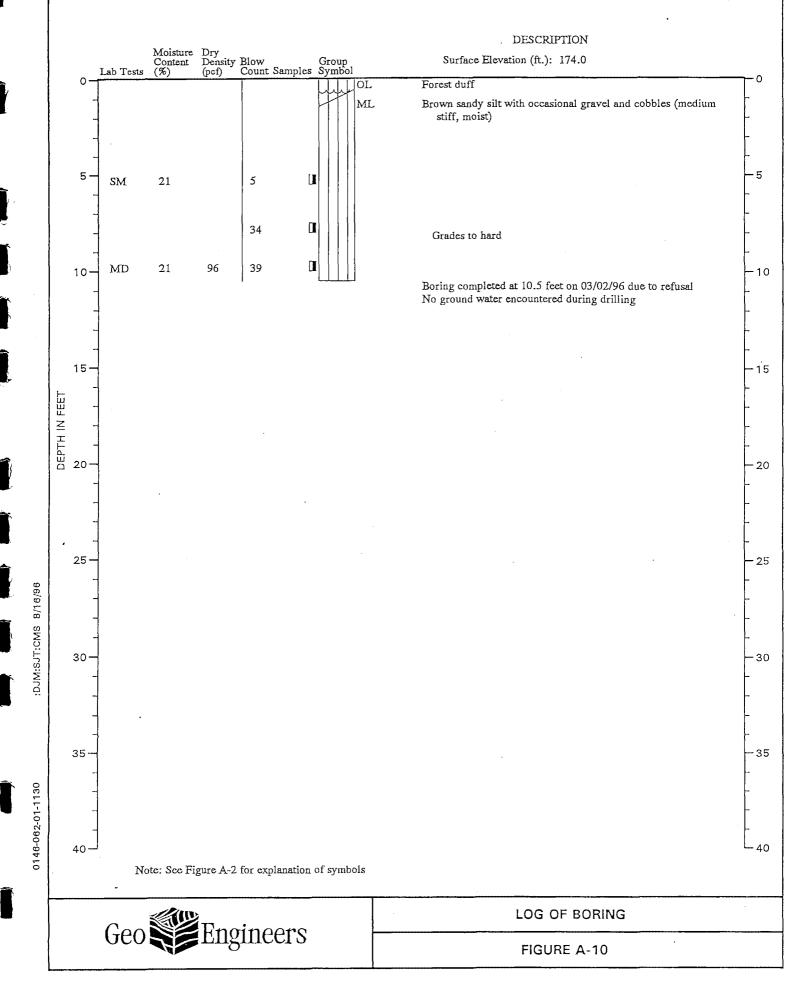

BORING B-1



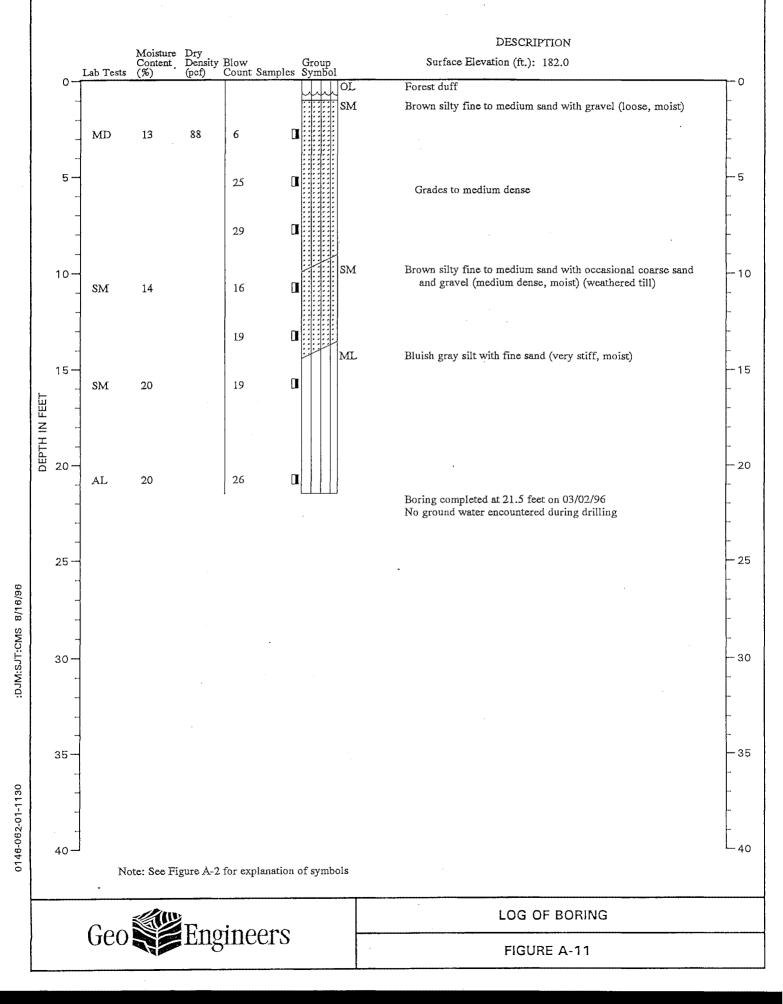








BORING B-6



BORING B-8

BORING B-9

LOG OF HAND BORING

. . . .

DEPTH BELOW GROUND SURFACE (FEET)	SOIL GROUP CLASSIFICATION SYMBOL	DESCRIPTION									
		HAND BORING HB-1									
0.0 - 6.0	ML	Brown sandy silt with gravel (soft to medium stiff, moist) (colluvium)									
		Hand boring completed at 6.0 feet on 01/25/96 due to refusal									
		No ground water seepage observed									
		No caving observed									
		Disturbed soil samples obtained at 1.0 and 3.0 feet									
		HAND BORING HB-2									
0.0 - 3.5	ML	Brown sandy silt with occasional roots (medium stiff, moist)									
		Grades to with gravel at 3.0 feet									
		Hand boring completed at 3.5 feet on 01/25/96									
		No ground water seepage observed									
		No caving observed									
		Disturbed soil sample obtained at 1.0 foot									
		HAND BORING HB-3									
0.0 - 0.5	OL	Topsoil and forest duff									
0.5 - 3.0	SM	Brown silty fine to medium sand with occasional fine gravel and cobbles (loose, moist) (colluvium)									
3.0 - 4.5	SM	Brown silty fine to medium sand with coarse sand and fine gravel (medium dense, moist)									
4.5 - 4.8	SM	Brown fine gravel with silt and fine to coarse sand (medium dense, moist)									
		Hand boring completed at 4.8 feet on 01/25/96									
		No ground water seepage observed									
		No caving observed									

Disturbed soil samples obtained at 2.3 and 3.3 feet

THE DEPTHS ON THE HAND BORING LOGS, ALTHOUGH SHOWN TO 0.1 FOOT, ARE BASED ON AN AVERAGE OF MEASUREMENTS ACROSS THE HAND BORING AND SHOULD BE CONSIDERED ACCURATE TO 0.5 FOOT.

LOG OF HAND BORING

LOG OF HAND BORING

DEPTH BELOW GROUND SURFACE (FEET)	SOIL GROUP CLASSIFICATION SYMBOL	DESCRIPTION
		HAND BORING HB-4
0.0 - 0.6		Topsoil and forest duff
0.6 - 3.6	SM	Brown silty fine to medium sand with coarse sand and occasional fine to coarse gravel (medium dense, moist)
3.6 - 5.6	SP	Brown fine to medium sand with occasional fine gravel and a trace of silt (dense, moist)
5.6 - 5.7		Brown fine to coarse sandy silt with gravel (stiff, moist) Hand boring completed at 5.7 feet on 01/25/96
•		No ground water seepage observed

No caving observed

Disturbed soil samples obtained at 2.0, 4.5 and 5.6 feet

THE DEPTHS ON THE HAND BORING LOGS, ALTHOUGH SHOWN TO 0.1 FOOT, ARE BASED ON AN AVERAGE OF MEASUREMENTS ACROSS THE HAND BORING AND SHOULD BE CONSIDERED ACCURATE TO 0.5 FOOT.

LOG OF HAND BORING

LOG OF TEST PIT

•

•··· •

DEPTH BELOW GROUND SURFACE (FEET)	SOIL GROUP CLASSIFICATION SYMBOL	DESCRIPTION
		TEST PIT TP-1
0.0 - 1.5	SM	Dark brown silty fine to medium sand with coarse gravel, occasional cobbles and grass roots (medium dense, moist) (topsoil)
1.5 - 2.5	ML	Light yellow-brown with orange splotches blocky silt with penetrating grass roots (stiff, moist) (fill)
2.5 - 8.0	SM	Reddish brown silty fine to coarse sand with occasional fine to coarse gravel and shrub roots (medium dense, moist) (fill)
		Become dark brown at 4.0 feet
		Test pit completed at 8.0 feet on 02/23/96
		No ground water seepage observed
		No caving observed
		Disturbed soil sample obtained at 1.5 feet for R-Value Test
		TEST PIT TP-2
0.0 - 0.5	SM	Dark brown silty fine to medium sand with occasional fine to coarse gravel, occasional cobbles and shrub roots (loose to medium dense, moist) (topsoil)
0.5 - 7.0	ML	Light yellow-brown with orange splotches silt with penetrating shrub roots, occasional fine to coarse gravel and occasional cobbles (stiff, moist)
7.0 - 8.0	ML	Dark brown sandy silt (stiff, moist)
		Test pit completed at 8.0 feet on 02/23/96
		No ground water seepage observed

No caving observed

THE DEPTHS ON THE TEST PIT LOGS, ALTHOUGH SHOWN TO 0.1 FOOT, ARE BASED ON AN AVERAGE OF MEASUREMENTS ACROSS THE TEST PIT AND SHOULD BE CONSIDERED ACCURATE TO 0.5 FOOT.

LOG OF TEST PIT

LOG OF TEST PIT

1_11_114.

DEPTH BELOW GROUND SURFACE (FEET)	SOIL GROUP CLASSIFICATION SYMBOL	DESCRIPTION
		TEST PIT TP-3
0.0 - 1.0	GM	Dark brown silty fine to coarse gravel with fine sand, occasional cobbles and roots (medium dense, moist) (topsoil)
1.0 - 2.0	GM	Brown silty fine to coarse gravel with fine to coarse sand, cobbles, boulders, grass and shrub roots (loose to medium dense, moist) (weathered till)
2.0 - 6.0	GW-GM	Grayish brown fine to coarse gravel with silt, fine to coarse sand, cobbles and boulders (loose, moist) (fill)
		Test pit completed at 6.0 feet on 02/23/96
		No ground water seepage observed
		Severe caving observed between 0.0 and 6.0 feet
	на страна страна Спорти и страна с Страна страна	Disturbed soil sample obtained at 3.0 feet
		TEST PIT TP-4
0.0 - 1.0	GM	Dark brown silty fine to coarse gravel with fine to coarse sand, occasional cobbles, grass and shrub roots (medium dense, moist) (topsoil)
1.0 - 8.5	GM	Light brown silty coarse gravel with fine gravel, fine to coarse sand, cobbles and occasional boulders (medium dense, moist)
8.5 - 9.5	ML	Orangish brown to gray silt (medium stiff, moist)
		Test pit completed at 9.5 feet on 02/23/96
	-	No ground water seepage observed
	, ·	Severe caving observed between 0.0 and 7.0 feet
		Disturbed soil samples obtained at 8.5 and 9.0 feet
		• TEST PIT TP-5
0.0 - 0.3	GW	Fine to coarse gravel with sand (medium dense, moist) (fill)
0.3 - 1.5	RX	Boulders and cobbles with brown fine to medium sand (riprap) (fill)
		Test pit completed at 1.5 feet on 02/23/96 due to refusal on riprap boulders
. •		No ground water seepage observed
		No caving observed

THE DEPTHS ON THE TEST PIT LOGS, ALTHOUGH SHOWN TO 0.1 FOOT, ARE BASED ON AN AVERAGE OF MEASUREMENTS ACROSS THE TEST PIT AND SHOULD BE CONSIDERED ACCURATE TO 0.5 FOOT.

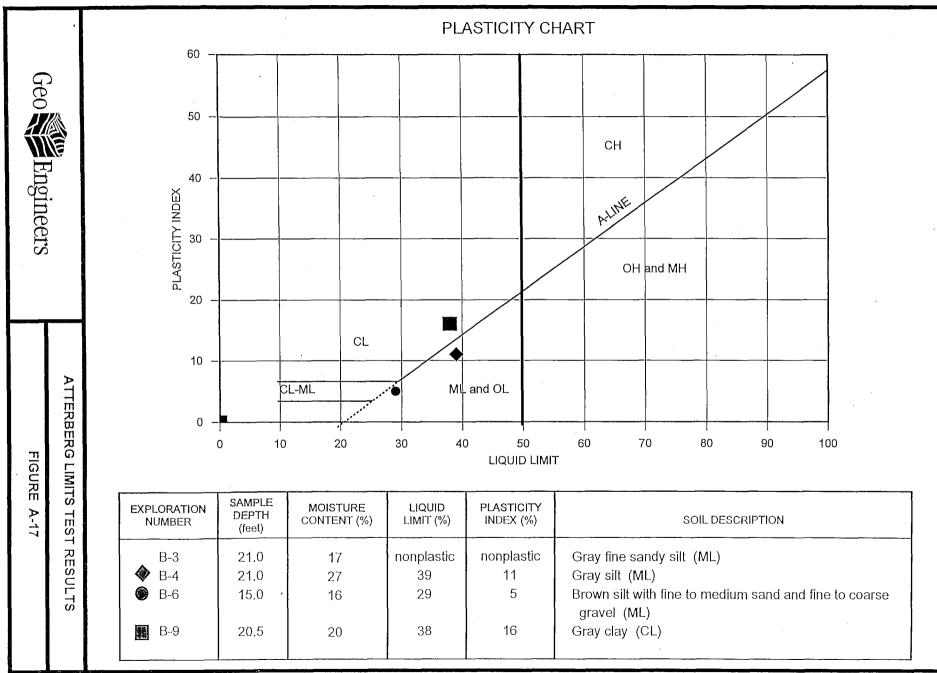
LOG OF TEST PIT

LOG OF TEST PIT

and the second
· · ·

and the second second

DEPTH BELOW GROUND SURFACE (FEET)	SOIL GROUP CLASSIFICATION SYMBOL	DESCRIPTION						
		TEST PIT TP-6						
0.0 - 0.3	GW	Fine to coarse gravel with sand (medium dense, moist) (fill)						
0.3 - 2.0	RX	Cobbles and boulders with dark brown fine to medium sand (fill)						
		Test pit completed at 2.0 feet on 02/23/96						
		No ground water seepage observed						
	,	No caving observed						


THE DEPTHS ON THE TEST PIT LOGS, ALTHOUGH SHOWN TO 0.1 FOOT, ARE BASED ON AN AVERAGE OF MEASUREMENTS ACROSS THE TEST PIT AND SHOULD BE CONSIDERED ACCURATE TO 0.5 FOOT.

LOG OF TEST PIT

FIGURE A-16

0146-062-01 JJM:JKT:cms 06/04/96 (14662B3.PRE)

÷

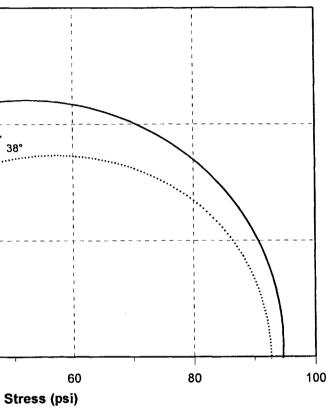
۲

Normal

40

SYMBOL	EXPLORATION NUMBER	SAMPLE DEPTH (FEET)	SOIL CLASSIFICATION	MOISTURE CONTENT (%)	DRY DENSITY (PCF)
	B-3	21	Gray silt (ML)	17	117
	B-4	16	Gray silt (ML)	25	100

0


20

0146-062-01 JJM:KK 06/05/36

Axial Strain (%)

.

.

CONSOLIDATED DRAINED TRIAXIAL TEST RESULT

FIGURE A-18

Appendix C Geotechnical Laboratory Test Results

CONTENTS

HWA GeoSciences Inc. Materials Laboratory Report (11 sheets)

July 20, 2021 HWA Project No. 2011-048-23 Task 900

Shannon & Wilson

400 North 34th Street, Suite 100 Seattle WA, 98103

Attn: Mr. Oliver Hoopes, P.E.

Subject: MATERIALS LABORATORY REPORT Lower Raging River – King County Levee Project Client Project No.: 103692-303

Dear Mr. Hoopes;

In accordance with your request, HWA GeoSciences Inc. (HWA) performed laboratory testing for the above referenced project. Herein we present the results of our laboratory analyses, which are summarized on the attached Figures. The laboratory testing program was performed in general accordance with your instructions and appropriate ASTM Standards as outlined below.

SAMPLE DESCRIPTION: The subject samples were delivered to our laboratory on July 6, 2021 by Shannon & Wilson personnel. The samples were delivered in large plastic bags and were designated with exploration ID, sample number, and depth of sampling. The soil samples were classified using visual-manual methods. The descriptions may be found on the attached Summary of Material Properties, Figures 1 through 2.

PERCENTAGE FINER THAN #200 SIEVE: The percentage of material finer than the #200 sieve was determined for each specified sample in general accordance with ASTM D1140. The soil was oven dried and washed over a #200 sieve to determine the percentage of fines. The results are plotted on the attached Particle Size Analysis of Soils Report, Figures 3 through 8, which also indicate the moisture content of the soil samples at the time of testing.

PARTICLE SIZE ANALYSIS OF SOILS: The particle size distribution of each specified sample was determined in general accordance with ASTM D6913 and ASTM D7928. The results are plotted on the attached Particle Size Analysis of Soils Report, Figures 3 through 8, which also indicate the moisture content of the soil samples at the time of testing.

July 20, 2021 HWA Project No. 2011-048-23 Task 900

LIQUID LIMIT, PLASTIC LIMIT, AND PLASTICITY INDEX OF SOILS (ATTERBERG LIMITS): The plasticity index of each specified sample was tested using method ASTM D4318, multi-point method. The results are reported on the attached Liquid Limit, Plastic Limit, and Plasticity Index Report, Figure 9.

CLOSURE: Experience has shown that test values on soil and other natural materials vary with each representative sample. As such, HWA has no knowledge as to the extent and quantity of material the tested samples may represent. HWA also makes no warranty as to how representative either the samples tested or the test results obtained are to actual field conditions. It is a well-established fact that sampling methods present varying degrees of disturbance that affect sample representativeness.

No copy should be made of this report except in its entirety.

We appreciate the opportunity to provide laboratory testing services on this project. Should you have any questions or comments, or if we may be of further service, please call.

Sincerely,

HWA GEOSCIENCES INC.

Kristin Nolan Materials Laboratory Manager

Steven E. Greene, L.G., L.E.G. Principal Engineering Geologist Vice President

Attachments:

Figures 1-2 Figures 3-8 Figure 9

Summary of Material Properties Particle Size Analysis of Soils Report Liquid Limit, Plastic Limit and Plasticity Index of Soils

			×TIV	ATTERBERG LIMITS (%)					NO				
EXPLORATION DESIGNATION	TOP DEPTH (feet)	BOTTOM DEPTH (feet)	MOISTURE CONTENT (%)	ORGANIC CONTENT (%)	SPECIFIC GRAVITY	LL	PL	PI	% GRAVEL	% SAND	% FINES	ASTM SOIL CLASSIFICATION	SAMPLE DESCRIPTION
B-RR-1,R-3	10.0	15.0	6.6						65.5	22.8	5.2	GP-GM	Olive-brown, poorly graded GRAVEL with silt, sand, and cobbles
B-RR-1,R-4	16.5	20.0	7.3						76.7	19.8	3.5	GP	Olive-brown, poorly graded GRAVEL with sand
B-RR-1,R-6	25.0	26.5	24.4						2.1	74.0	23.9	SM	Olive-brown, silty SAND
B-RR-1,R-7	31.5	33.0	29.4			34	26	8		19.6	80.4	ML	Grayish-brown, SILT with sand
B-RR-2,R-4	17.0	20.0	4.3						59.1	33.2	7.7	GW-GM	Olive-brown, well-graded GRAVEL with silt and sand
B-RR-2,R-5	20.0	22.0	10.9						47.3	38.3	6.8	GP-GM	Olive-brown, poorly graded GRAVEL with silt, sand, and cobbles
B-RR-2,R-5	23.0	25.0	10.6						66.2	32.5	1.3	GW	Yellowish-brown, well-graded GRAVEL with sand
B-RR-2,R-6	25.0	27.0	10.4						48.0	44.9	7.1	GW-GM	Olive-brown, well-graded GRAVEL with silt and sand
B-RR-2,R-7	30.0	31.5	29.6			26	23	3				ML	Olive-brown, SILT with sand
B-RR-3,R-2	5.0	7.5	2.4						62.3	32.0	5.8	GW-GM	Grayish-brown, well-graded GRAVEL with silt and sand
B-RR-3,R-4	15.0	17.5	3.5						51.3	17.8	6.7	GP-GM	Grayish-brown, poorly graded GRAVEL with silt, sand, and cobbles
B-RR-3,R-6	25.0	27.0	60.8			50	37	13				OL	Dark brown, organic SILT with sand
B-RR-3,R-7	30.0	32.5	20.2						0.8	79.2	19.9	SM	Dark gray, silty SAND
B-RR-3,R-8	35.0	36.5	22.8								3.9	SP	Grayish-brown, poorly graded SAND
B-RR-4,R-4	15.0	20.0	8.0						73.7	22.3	4.0	GP	Olive, poorly graded GRAVEL with sand
B-RR-4,R-5	20.0	21.5	31.4			40	25	15				CL	Dark grayish-brown, lean CLAY
B-RR-4,R-6	25.0	26.0	26.5			32	24	8				ML	Olive-brown, SILT
TP-RR-1,S-2	4.0	6.0	15.1						10.4	59.4	30.2	SM	Olive-brown, silty SAND
TP-RR-1,S-3	6.0	7.0	4.3						47.0	49.0	4.0	SP	Olive-brown, poorly graded SAND with gravel
TP-RR-5,S-2	1.0	2.0	12.3						48.7	23.1	28.1	GM	Olive-brown, silty GRAVEL with sand

Notes:

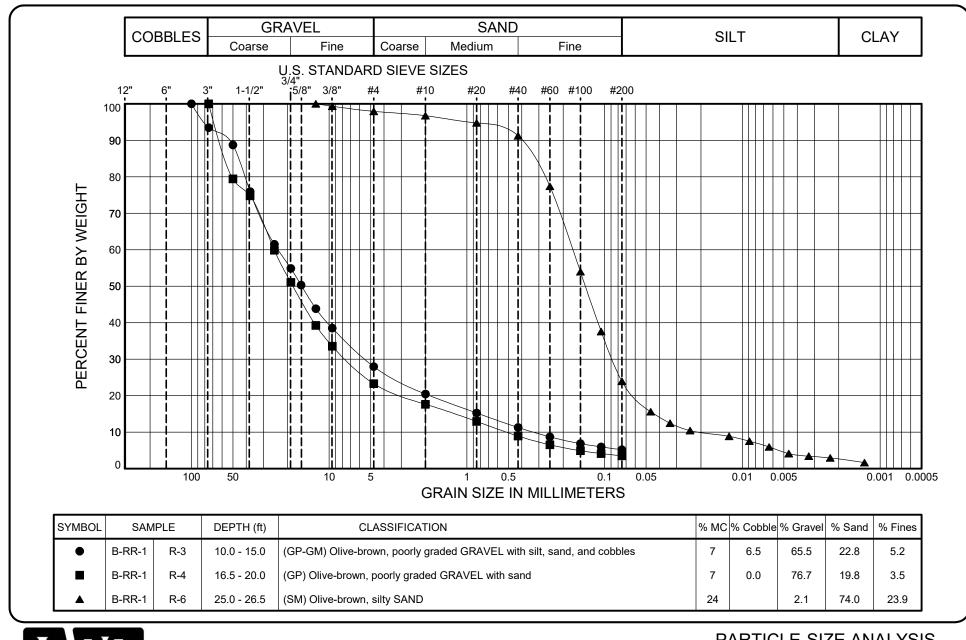
This table summarizes information presented elsewhere in the report and should be used in conjunction with the report test, other graphs and tables, and the exploration logs.
 The soil classifications in this table are based on ASTM D2487 and D2488 as applicable.

Laboratory Testing for Shannon & Wilson Lower Raging River - King County Levee Project Client Project No.: 103692-303

SUMMARY OF MATERIAL PROPERTIES

PAGE: 1 of 2

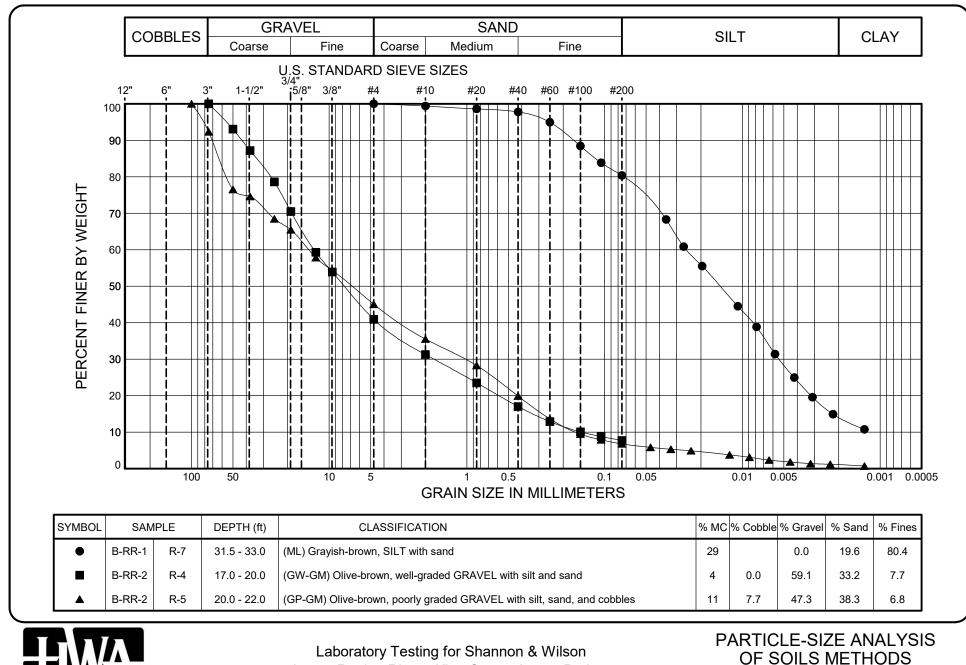
	E			AVITY		ATTERBE LIMITS ('	RG %)				NOI	
EXPLORATION DESIGNATION TOP DEPTH (feet)	BOTTOM DEPTH (feet)	MOISTURE CONTENT (%)	ORGANIC CONTENT (%)	SPECIFIC GRAVITY	LL	PL	PI	% GRAVEL	% SAND	% FINES	ASTM SOIL CLASSIFICATION	SAMPLE DESCRIPTION
TP-RR-6,S-1 4.0		4.0						59.6	36.2	4.2	GP	Olive-brown, poorly graded GRAVEL with sand
TP-RR-8,S-1 4.0	6.0	2.5						47.8	18.8	2.0	GP	Olive-brown, poorly graded GRAVEL with sand and cobbles
Notes: 1. This table : 2. The soil cla								ction with the	report test, c	other graphs	and tables,	and the exploration logs.



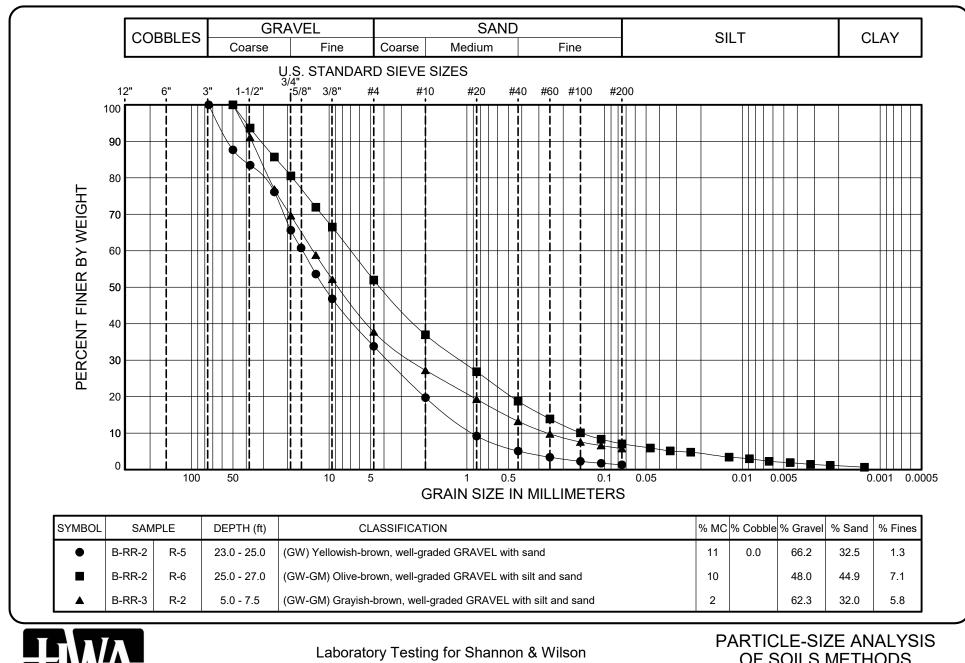
SUMMARY OF MATERIAL PROPERTIES

PAGE: 2 of 2

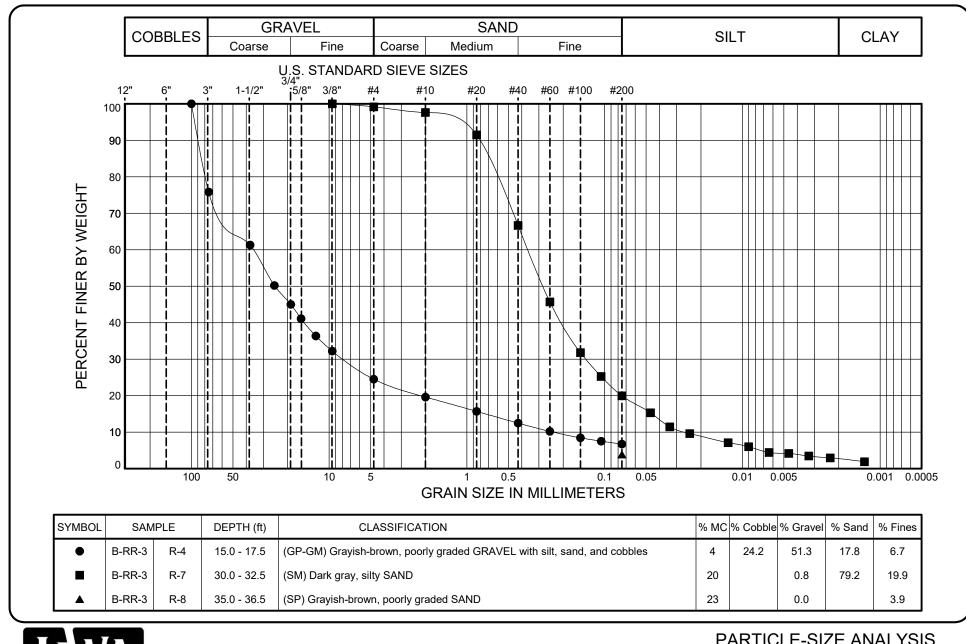
PROJECT NO.: 2011-048 T900 FIGURE: 2


INDEX MATSUM 3 (LONG DESCRIPTIONS) 2011-048 T900.GPJ 7/21/21

PARTICLE-SIZE ANALYSIS OF SOILS METHODS ASTM D6913/D7928

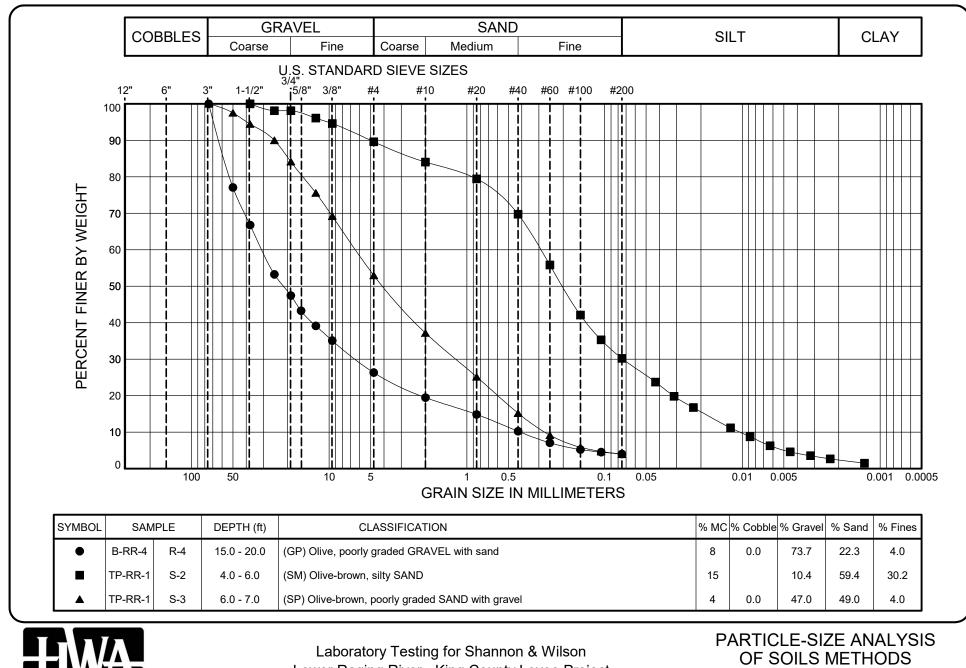

HWAGRSZ3_COMBINED 2011-048 T900.GPJ 7/21/21

GEOSCIENCES INC.


Lower Raging River - King County Levee Project Client Project No.: 103692-303 ASTM D6913/D7928

GEOSCIENCES INC.

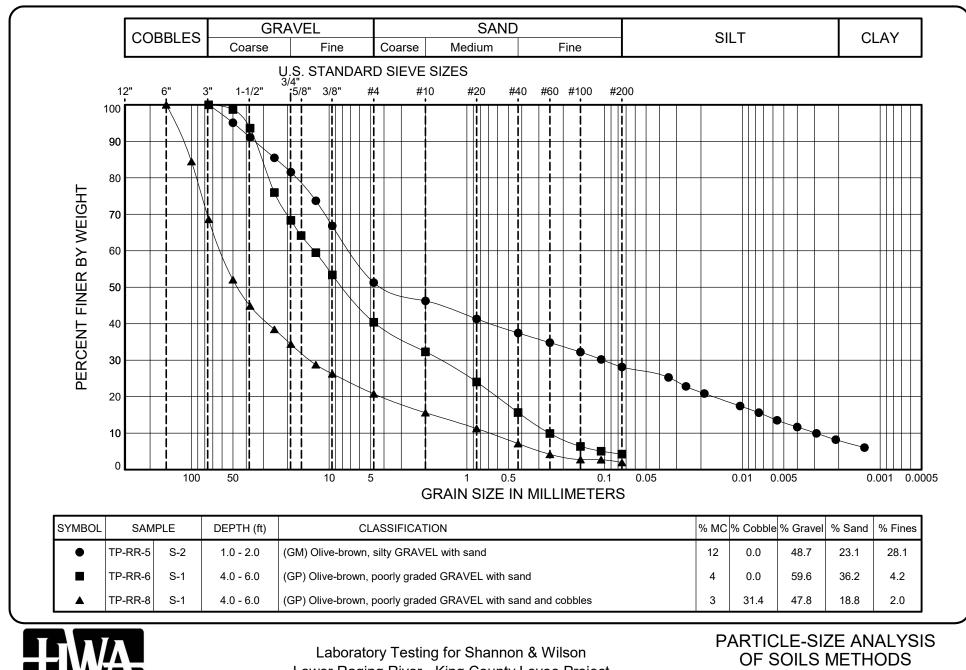
OF SOILS METHODS ASTM D6913/D7928


GEOSCIENCES INC.

PARTICLE-SIZE ANALYSIS OF SOILS METHODS ASTM D6913/D7928

HWAGRSZ3_COMBINED 2011-048 T900.GPJ 7/21/21

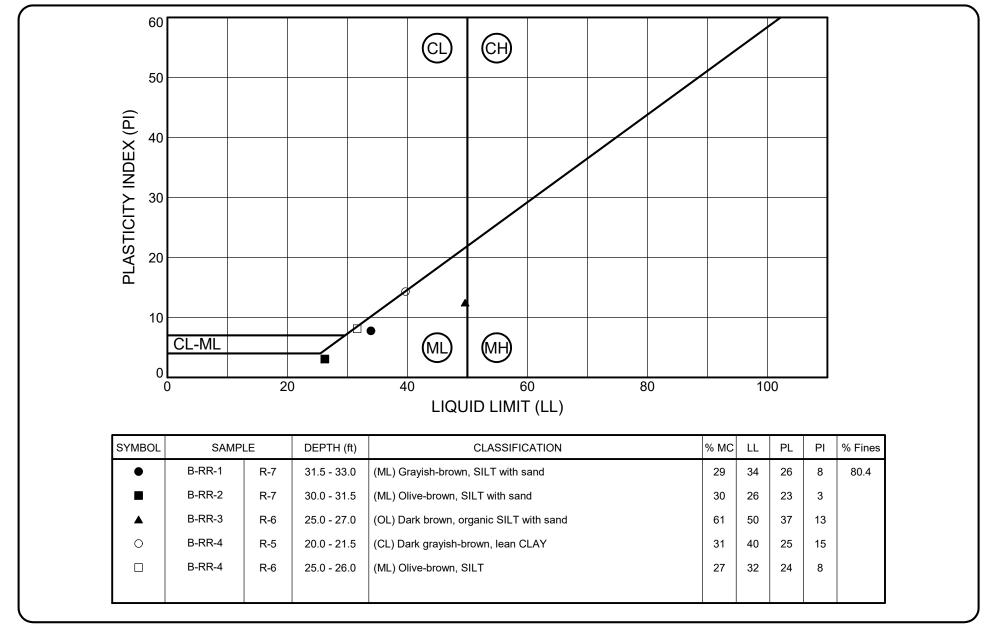
GEOSCIENCES INC.


Lower Raging River - King County Levee Project Client Project No.: 103692-303

PROJECT NO.: 2011-048 T900 FIGURE: 7

ASTM D6913/D7928

HWAGRSZ3_COMBINED 2011-048 T900.GPJ 7/21/21

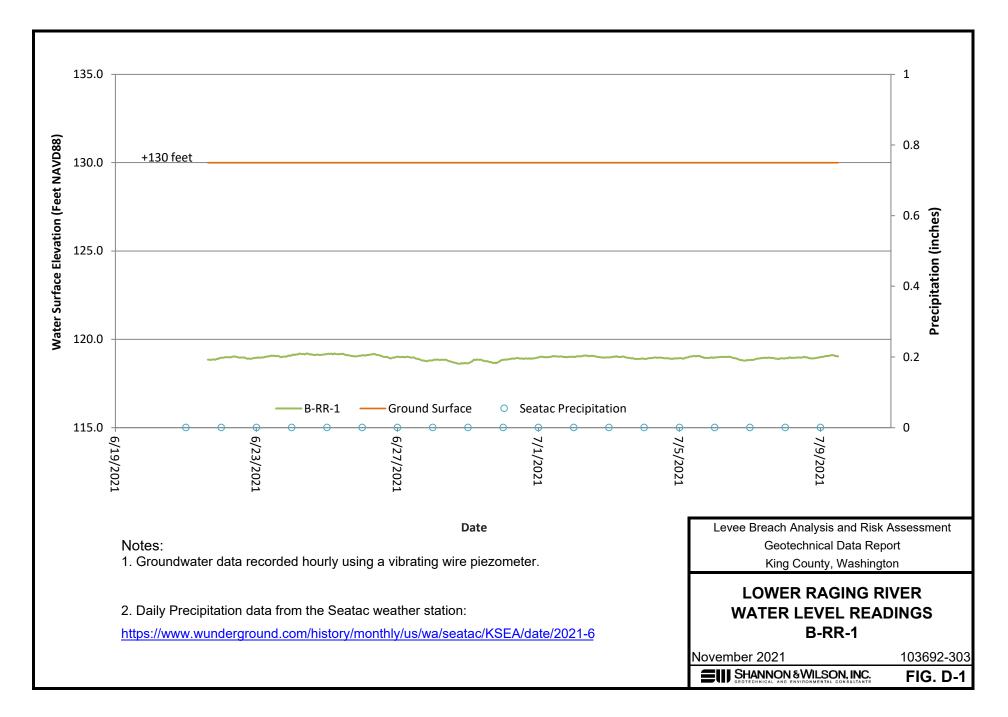

GEOSCIENCES INC.

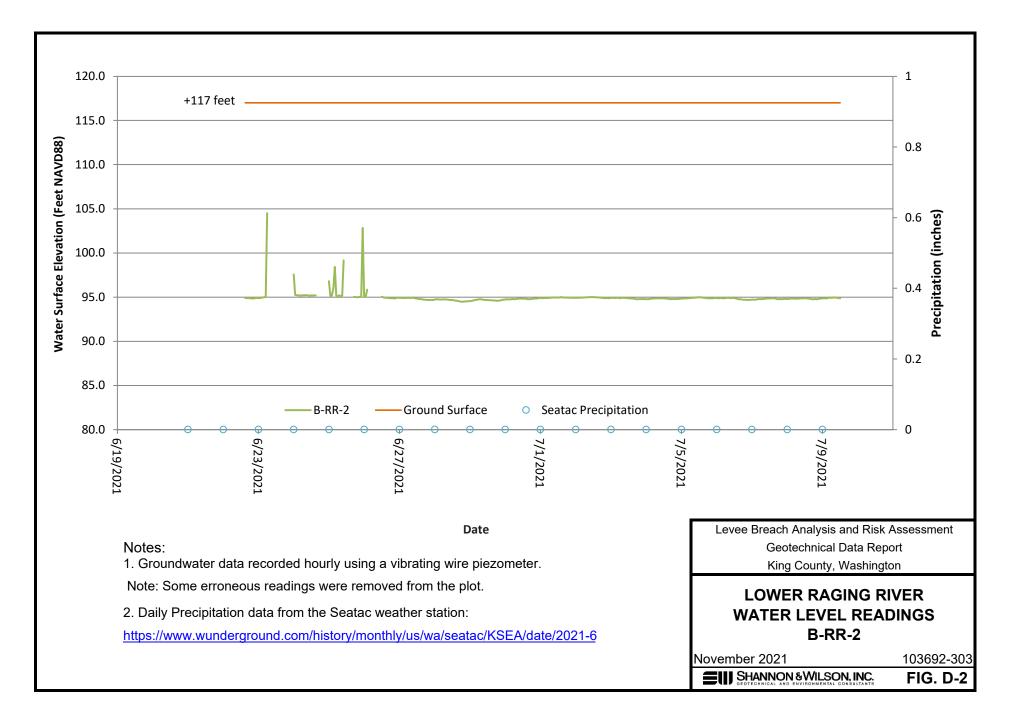
Lower Raging River - King County Levee Project Client Project No.: 103692-303

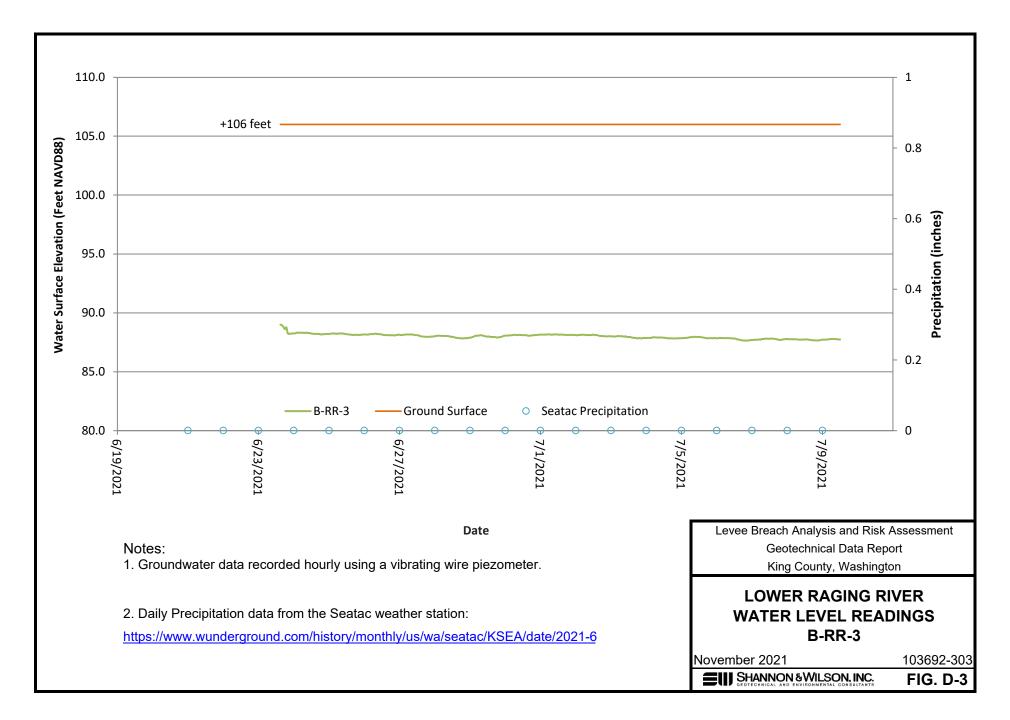
ASTM D6913/D7928

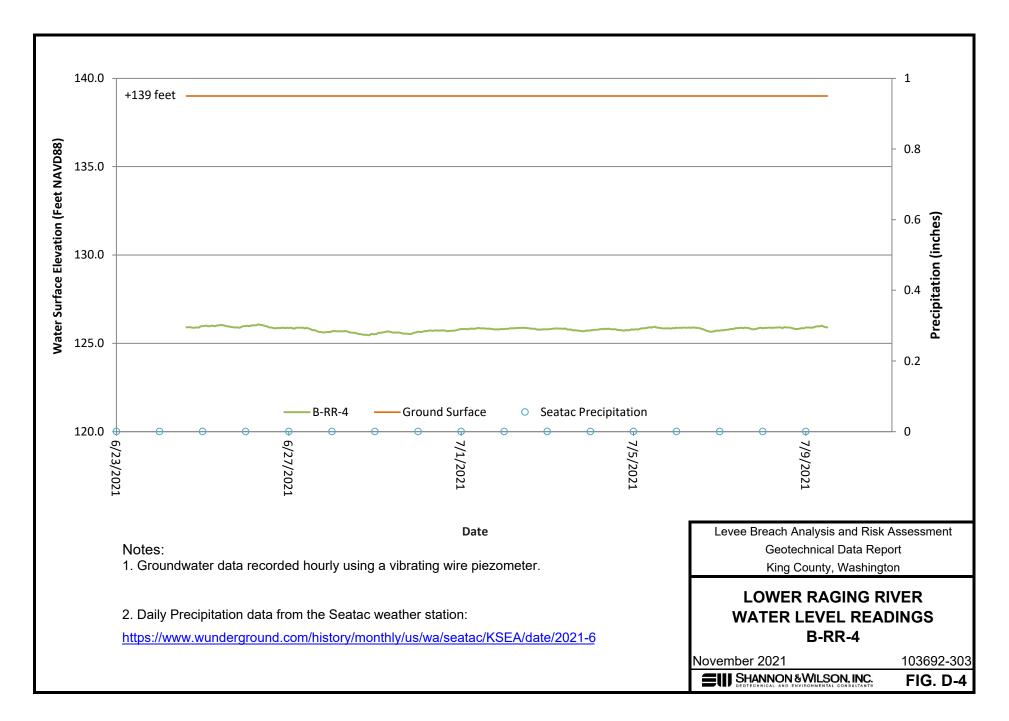
GEOSCIENCES INC.

LIQUID LIMIT, PLASTIC LIMIT AND PLASTICITY INDEX OF SOILS METHOD ASTM D4318


PROJECT NO.: 2011-048 T900 FIGURE: 9


HWAATTB EXPANDED SAMPLE COLUMN 2011-048 T900.GPJ 7/21/21


Appendix D Hydrogeologic Data Results


CONTENTS

- Figure D-1 B-RR-1 VWP Water Level Readings
- Figure D-2 B-RR-2 VWP Water Level Readings
- Figure D-3 B-RR-3 VWP Water Level Readings
- Figure D-4 B-RR-4 VWP Water Level Readings

Important Information About Your Geotechnical Report

CONSULTING SERVICES ARE PERFORMED FOR SPECIFIC PURPOSES AND FOR SPECIFIC CLIENTS.

Consultants prepare reports to meet the specific needs of specific individuals. A report prepared for a civil engineer may not be adequate for a construction contractor or even another civil engineer. Unless indicated otherwise, your consultant prepared your report expressly for you and expressly for the purposes you indicated. No one other than you should apply this report for its intended purpose without first conferring with the consultant. No party should apply this report for any purpose other than that originally contemplated without first conferring with the consultant.

THE CONSULTANT'S REPORT IS BASED ON PROJECT-SPECIFIC FACTORS.

A geotechnical/environmental report is based on a subsurface exploration plan designed to consider a unique set of project-specific factors. Depending on the project, these may include the general nature of the structure and property involved; its size and configuration; its historical use and practice; the location of the structure on the site and its orientation; other improvements such as access roads, parking lots, and underground utilities; and the additional risk created by scope-of-service limitations imposed by the client. To help avoid costly problems, ask the consultant to evaluate how any factors that change subsequent to the date of the report may affect the recommendations. Unless your consultant indicates otherwise, your report should not be used (1) when the nature of the proposed project is changed (for example, if an office building will be erected instead of a parking garage, or if a refrigerated warehouse will be built instead of an unrefrigerated one, or chemicals are discovered on or near the site); (2) when the size, elevation, or configuration of the proposed project is altered; (3) when the location or orientation of the proposed project is modified; (4) when there is a change of ownership; or (5) for application to an adjacent site. Consultants cannot accept responsibility for problems that may occur if they are not consulted after factors that were considered in the development of the report have changed.

SUBSURFACE CONDITIONS CAN CHANGE.

Subsurface conditions may be affected as a result of natural processes or human activity. Because a geotechnical/environmental report is based on conditions that existed at the time of subsurface exploration, construction decisions should not be based on a report whose adequacy may have been affected by time. Ask the consultant to advise if additional tests are desirable before construction starts; for example, groundwater conditions commonly vary seasonally.

Construction operations at or adjacent to the site and natural events such as floods, earthquakes, or groundwater fluctuations may also affect subsurface conditions and, thus, the continuing adequacy of a geotechnical/environmental report. The consultant should be kept apprised of any such events and should be consulted to determine if additional tests are necessary.

MOST RECOMMENDATIONS ARE PROFESSIONAL JUDGMENTS.

Site exploration and testing identifies actual surface and subsurface conditions only at those points where samples are taken. The data were extrapolated by your consultant, who then applied judgment to render an opinion about overall subsurface conditions. The actual interface between materials may be far more gradual or abrupt than your report indicates. Actual conditions in areas

not sampled may differ from those predicted in your report. While nothing can be done to prevent such situations, you and your consultant can work together to help reduce their impacts. Retaining your consultant to observe subsurface construction operations can be particularly beneficial in this respect.

A REPORT'S CONCLUSIONS ARE PRELIMINARY.

The conclusions contained in your consultant's report are preliminary, because they must be based on the assumption that conditions revealed through selective exploratory sampling are indicative of actual conditions throughout a site. Actual subsurface conditions can be discerned only during earthwork; therefore, you should retain your consultant to observe actual conditions and to provide conclusions. Only the consultant who prepared the report is fully familiar with the background information needed to determine whether or not the report's recommendations based on those conclusions are valid and whether or not the contractor is abiding by applicable recommendations. The consultant who developed your report cannot assume responsibility or liability for the adequacy of the report's recommendations if another party is retained to observe construction.

THE CONSULTANT'S REPORT IS SUBJECT TO MISINTERPRETATION.

Costly problems can occur when other design professionals develop their plans based on misinterpretation of a geotechnical/environmental report. To help avoid these problems, the consultant should be retained to work with other project design professionals to explain relevant geotechnical, geological, hydrogeological, and environmental findings, and to review the adequacy of their plans and specifications relative to these issues.

BORING LOGS AND/OR MONITORING WELL DATA SHOULD NOT BE SEPARATED FROM THE REPORT.

Final boring logs developed by the consultant are based upon interpretation of field logs (assembled by site personnel), field test results, and laboratory and/or office evaluation of field samples and data. Only final boring logs and data are customarily included in geotechnical/environmental reports. These final logs should not, under any circumstances, be redrawn for inclusion in architectural or other design drawings, because drafters may commit errors or omissions in the transfer process.

To reduce the likelihood of boring log or monitoring well misinterpretation, contractors should be given ready access to the complete geotechnical engineering/environmental report prepared or authorized for their use. If access is provided only to the report prepared for you, you should advise contractors of the report's limitations, assuming that a contractor was not one of the specific persons for whom the report was prepared, and that developing construction cost estimates was not one of the specific purposes for which it was prepared. While a contractor may gain important knowledge from a report prepared for another party, the contractor should discuss the report with your consultant and perform the additional or alternative work believed necessary to obtain the data specifically appropriate for construction cost estimating purposes. Some clients hold the mistaken impression that simply disclaiming responsibility for the accuracy of subsurface information always insulates them from attendant liability. Providing the best available information to contractors helps prevent costly construction problems and the adversarial attitudes that aggravate them to a disproportionate scale.

READ RESPONSIBILITY CLAUSES CLOSELY.

Because geotechnical/environmental engineering is based extensively on judgment and opinion, it is far less exact than other design disciplines. This situation has resulted in wholly unwarranted claims being lodged against consultants. To help prevent this problem, consultants have developed a number of clauses for use in their contracts, reports, and other documents. These responsibility clauses are not exculpatory clauses designed to transfer the consultant's liabilities to other parties; rather, they are definitive clauses that identify where the consultant's responsibilities begin and end. Their use helps all parties involved recognize their individual responsibilities and take appropriate action. Some of these definitive clauses are likely to appear in your report, and you are encouraged to read them closely. Your consultant will be pleased to give full and frank answers to your questions.

The preceding paragraphs are based on information provided by the ASFE/Association of Engineering Firms Practicing in the Geosciences, Silver Spring, Maryland