

REPORT

Downtown Redmond Link Extension Geotechnical Data Report

Submitted to:

Parametrix

719 2nd Avenue, Suite 200 Seattle, WA 98104

Submitted by:

Golder Associates Inc.

18300 NE Union Hill Road, Suite 200 Redmond, Washington, USA 98052

+1 425 883-0777

AE 0045-16

January 16, 2019

Table of Contents

1.0	INTRO		1
	1.1	Project Summary	1
	1.2	Use of Report	1
2.0	GEOT	ECHNICAL EXPLORATION PROGRAM	1
	2.1	Datums	1
	2.2	Existing Information	2
	2.3	Borehole Explorations	2
	2.4	Test Pit Explorations	2
	2.5	Soil Classification	2
	2.6	Test Pits Infiltration Testing	3
	2.7	Suspension Logging	3
	2.8	Pressuremeter Testing	3
	2.9	Groundwater Monitoring	3
	2.10	Slug Well Monitoring	3
3.0	LABO	RATORY TESTING	3
	3.1	Soil Testing (Hayre McElroy and Associates, LLC)	3
	3.2	Soil Testing (HWA Geosciences Inc.)	3
	3.3	Soil Testing (Golder Associates Ltd.)	3
	3.4	Soil Testing – Resistivity and Corrosivity (HMA and Onsite Environmental Inc.)	4
	3.5	Analytical Data (OnSite Environmental Inc.)	4
4.0	SUPPI		4
	4.1	VWP Calibration Sheets	4
	4.2	Drill Rig Hammer Efficiencies	4
5.0	CLOS	NG	4
6.0	REFE	RENCES	6

TABLES

Table 2-1: Summary of Boreholes and Test Pits

Table 2-2: Groundwater Data Summary

FIGURES

Figure 1: Vicinity Map

Figure 2: Site and Exploration Plan

APPENDICES

Appendix A: Record of Boreholes

Appendix B: Record of Test Pits

Appendix C: In Situ Tests – Pilot Infiltration Testing (PIT)

Appendix D: In Situ Tests – Suspension Logging Data

Appendix E: In Situ Tests - Pressuremeter Testing Data

Appendix F: In Situ Tests - Slug Well Data

Appendix G: Laboratory Tests - Soil Testing (Hayre McElroy and Associates, LLC)

Appendix H: Laboratory Tests – Soil Testing (HWA Geosciences Inc.)

Appendix I: Laboratory Tests - Soil Testing (Golder Associates Ltd)

Appendix J: Laboratory Tests - Radiographic Examination (Acuren Group Inc.)

Appendix K: Laboratory Tests - Soil Resistivity and Corrosivity Testing (HMA and OnSite Environmental Inc.)

Appendix L: Laboratory Tests – Analytical Data (OnSite Environmental Inc.)

Appendix M: Supplementary Data – VWP Calibration Sheets

Appendix N: Supplementary Data - Drill Rig Hammer Efficiencies

1.0 INTRODUCTION

Golder Associates Inc. (Golder) prepared this Geotechnical Data Report (GDR) to summarize the geotechnical exploration program performed for the Sound Transit's Downtown Redmond Link Extension (DRLE) project. This GDR includes records of boreholes, results of in-situ and laboratory testing performed, and other supplementary information gathered to date.

1.1 **Project Summary**

The DRLE segment is a proposed 3.4 mile extension of Sound Transit's regional light rail system. Figure 1 shows the approximate vicinity of the project. The alignment begins near NE 40th Street in Redmond, Washington and extends north and east along the eastside of the State Route (SR) - 520 freeway. The alignment then turns east with the freeway, crossing the Sammamish River and descending into Marymoor Park, until reaching the Redmond Way Exit. At the Redmond Way Exit, the light rail alignment turns to the northwest, crosses under SR-520 and over Bear Creek, and then follows the Redmond Central Connector (RCC) alignment into downtown Redmond. The light rail alignment terminates at the proposed Downtown Redmond Station located at the north side of Redmond Town Center.

The current project adds two stations: the Southeast Redmond Station and the Downtown Redmond Station. The current design concept for the DRLE segment consists of a mix of at-grade and elevated track as well as several areas of cuts and fills.

1.2 Use of Report

This GDR presents the data from field explorations and in situ and laboratory testing of subsurface conditions at the specific locations and depths indicated using the means and methods described in this report. No other representation is made. This exploration plan was performed in general accordance with locally accepted geotechnical engineering practice to provide information for the area explored.

Subsurface conditions, such as those that may be interpreted from exploration records and test results included in this report, should not be construed as a guarantee or warranty of any subsurface conditions. Stratigraphic contacts depicted in the exploration records represent approximate boundaries between geologic deposits. There are possible variations in the subsurface conditions between the exploration areas and in groundwater conditions with time.

This report should be made available to prospective contractors for information or factual data only. No implications or recommendations are made in this report. It is the responsibility of the contractor to interpret the data presented in this report. The data are technical in nature and the contractor may wish to seek qualified help to interpret the data.

The scope of our services included limited review of regulatory records and environmental screening of soil samples for the purpose of protecting field personnel and the environment from potential contamination during drilling and for the disposal of investigation-derived waste (IDW). We did not perform detailed environmental assessments or evaluations regarding the presence or absence of hazardous or toxic materials in the soil, surface water, groundwater, or air, on or below the site.

2.0 GEOTECHNICAL EXPLORATION PROGRAM

2.1 Datums

All elevation values presented in this report are provided based on vertical datum NAVD88. Horizontal northing and easting values are presented in the DRLE project datum.

2.2 Existing Information

The records of historical boreholes and test pits shown on Figure 2 were provided in a separate document (Golder 2018).

2.3 Borehole Explorations

Golder boreholes were advanced with either hollow stem auger, mud rotary, or sonic drilling methods, depending on ground conditions. Drilling methods are indicated on the records of boreholes. Explorations in areas with a high density of buried utilities were generally air vacuumed to about 7½ feet below ground surface (bgs) to avoid unmarked utilities before continuing with planned drilling.

Standard penetration testing was conducted in accordance the Standard Penetration Test Method American Society for Testing and Materials (ASTM) D1586-11 using a 140-pound automatic hammer falling freely 30 inches, driving a 2-inch diameter split spoon. Standard penetration tests and sample collections were conducted as appropriate for ground conditions encountered, generally at 2.5-foot intervals until a depth of 15 bgs, then every 5 feet until depths explored. Modified California (3-inch O.D.) samplers were used when no sample recovery was obtained utilizing the standard split spoon sampler or when a larger samples were required (i.e. for archaeological screening). Thin-walled sampling tubes (Shelby tubes) were used selectively when soft-to-firm, fine-grained sediments were encountered. Soil samples were logged on site by either a Golder geotechnical engineer or geologist, then placed in plastic jars for transport to Golder's soil laboratory located in Redmond, Washington for additional review and third-party testing. Boreholes were backfilled with bentonite chips or bentonite grout and capped to match surface conditions in general accordance with Washington State Department of Ecology regulations. Piezometers were installed in selected boreholes. Waste and auger cuttings were drummed and sealed for offsite disposal by Golder's drilling subcontractors.

As part of the DRLE field investigation program from July 2017 to March 2018, a total of 42 exploratory boreholes were completed along the proposed alignment, as shown on Figure 2 and tabulated in Table 2-1. Golder's records of borehole explorations are presented in Appendix A.

2.4 Test Pit Explorations

Golder test pits were excavated in March 2018 with a rubber tracked mini excavator. Soil samples were logged on site by a Golder geologist and placed in plastic bags for transport to Golder's soil laboratory located in Redmond, Washington for additional review and third-party testing. Upon completion, test pits were backfilled with the excavated material and the backfilled material was tamped using the excavation equipment to minimize surface settlement to the extent possible.

As part of the DRLE field investigation program, a total of 5 test pits were completed along the proposed alignment, as shown on Figure 2 and tabulated in Table 2-1. Golder's records of test pits are presented in Appendix B.

2.5 Soil Classification

Soil classification for this project was based on ASTM D 2487-17, Standard Practice for Classification of Soils for Engineering Purposes, Unified Soil Classification System (USCS), and ASTM D 2488-17, Standard Practice for Description and Identification of Soils (Visual-Manual Procedures).

2.6 Test Pits Infiltration Testing

As part of the DRLE field investigation program, four small pilot infiltration tests (PIT) were completed at selected test pit locations. The records of the test pits are presented in Appendix B and PIT data are presented in Appendix C.

2.7 Suspension Logging

Global Geophysics, LLC conducted suspension logging in six boreholes: DRLE-G018, DRLE-G031, DRLE-G033, DRLE-G036, DRLE-G037, and DRLE-G037A along the DRLE alignment. The proposed objective of the geophysical investigation was to determine the shear wave velocity of the soil column below the ground surface. The suspension logging report is presented in Appendix D.

2.8 Pressuremeter Testing

In Situ Engineering conducted pressuremeter tests (PMT) during the advancement of two boreholes: DRLE-G018 and DRLE-G031. The purpose of the PMTs was to evaluate the in situ engineering properties (shear strength, limit pressure, and shear modulus) of materials encountered downhole. The pressuremeter testing report is presented in Appendix E.

2.9 Groundwater Monitoring

Thirteen (13) vibrating wire piezometers (VWP) and 1 standpipe piezometer were installed in selected boreholes and test pits as presented in Table 2-1. Piezometers were installed to monitor variations in groundwater levels during different times of the year along the proposed alignment. Groundwater data summary is presented in Table 2-2.

2.10 Slug Well Monitoring

Three slug wells were installed in selected boreholes (DRLE-G027, DRLE-G034, DRLE-G036) to monitor groundwater levels and to estimate the hydraulic conductivity of the soils near or below the groundwater table. Results from the slug testing are presented in Appendix F.

3.0 LABORATORY TESTING

Various laboratory tests were performed on selected soil samples collected during the DRLE field investigation program were tested at four different laboratories and are described in the following sections.

3.1 Soil Testing (Hayre McElroy and Associates, LLC)

Selected soil samples collected during the field investigation program were sent to Hayre McElroy and Associates, LLC (HMA) for soil testing including moisture content, grain size distribution, Atterberg limit, and organic content tests. Results of the soil testing completed by HMA are presented in Appendix G.

3.2 Soil Testing (HWA Geosciences Inc.)

Selected relatively undisturbed Shelby tube samples collected during the field investigation program were sent to HWA Geosciences Inc. (HWA) for soil testing including unconsolidated undrained triaxial and consolidation tests. Supplementary Atterberg limit tests were also performed. Results of the soil testing completed by HWA are presented in Appendix H.

3.3 Soil Testing (Golder Associates Ltd.)

Selected relatively undisturbed Shelby tube samples collected during the field investigation program were transported to Golder's laboratory in Burnaby, British Columbia for advanced soil testing. Cyclic direct simple

shear (CycDSS), undrained triaxial, consolidation, and other supplementary testing completed at Golder's laboratory are presented in Appendix I.

Prior to CycDSS testing, all Shelby tubes were x-rayed (radiographic examination) by a third party (Acuren Group Inc.) to evaluate the quality of the samples obtained. Results from the X-Rays are presented in Appendix J.

3.4 Soil Testing – Resistivity and Corrosivity (HMA and Onsite Environmental Inc.)

Samples collected during the field investigation program were selected for resistivity and corrosion testing based on the locations of the proposed substations. The tests were conducted by HMA and Onsite Environmental Inc. and included soil resistivity, pH, concentration of chlorides, and redox potential tests. Results are presented in Appendix K.

3.5 Analytical Data (OnSite Environmental Inc.)

Soil cuttings from the upper 5 feet at borehole DRLE-G034 were drummed due to the results of photoionization detector (PID) readings conducted during the field investigation that indicated the potential presence of volatile organic compounds (VOCs). Samples were sent to OnSite Environmental Inc. for analytical testing. Results of the analytical data are presented in Appendix L.

4.0 SUPPLEMENTARY DATA

4.1 VWP Calibration Sheets

VWP calibrations sheets are presented in Appendix M.

4.2 Drill Rig Hammer Efficiencies

Energy calibration reports for the drill rigs used in the DRLE field investigation program are presented in Appendix N. Table N-1 in Appendix N summarizes the borehole, drill rig, hammer efficiency, and corresponding calibration report for reference.

5.0 CLOSING

This Geotechnical Data Report has been prepared for the exclusive use of Sound Transit and Parametrix. Use of this report by others or for another project is at the user's sole risk.

This report should not be construed as a warranty of subsurface conditions. Additional explorations should be completed in support of final design. Within the limitations of scope, schedule, and budget, these services have been executed in accordance with generally accepted practices in the field of geotechnical engineering in this area at this time this report was prepared. No warranty or other conditions, express or implied, should be understood.

Signature Page

Golder Associates Inc.

Carly Schaeffer Staff Geotechnical Engineer

1

M. Birkan Bayrak, PhD, PE Senior Geotechnical Engineer

Dave P Findley, LG, LEG Associate Senior Consultant

CS/MBB/DPF/sb

Golder and the G logo are trademarks of Golder Associates Corporation

6.0 **REFERENCES**

American Society for Testing and Materials. 2011. Standard Test Method for Standard Penetration Test (SPT) and Split-Barrel Sampling of Soils, ASTM D1586-11.

American Society for Testing and Materials. 2017. Standard Practice for Description and Identification of Soils (Visual-Manual Procedures), ASTM D2488-17.

American Society for Testing and Materials. 2017. Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System), ASTM D2487-17.

Golder Associates, Inc. (Golder). 2018. Draft Report. Historical Geotechnical Borehole Records. Submitted to Parametrix. May 25.

https://golderassociates.sharepoint.com/sites/10535g/deliverables/gdr/final/ae 0045-16 v.2-01.3 geotechnical data report final-rev1.docx

TABLES

January 2019

Table 2-1: Summary of Boreholes and Test Pits

Borehole	Investigation Completion Date	Total Investigation Depth (ft)	Ground Surface Elevation (ft) NAVD88	Northing (ft) Project Datum	Easting (ft) Project Datum	Piezometer Installed?	Piezometer Depth (ft)	Well Installed?	Top of Screen (ft, bgs)	Bottom of screen (ft, bgs)	Seismic Casing Installed?	Pressuremeter Test?	Ecology Tag
DRLE-G001	8/29/2017	100.3	360.8	338867.7	1419712.4	х	-	Х	-	-	х	Х	-
DRLE-G002	2/13/2018	71.0	369.0	339256.7	1419540.2	VWP	65.0	Х	-	-	х	Х	BKL443
DRLE-G003	8/30/2017	100.3	371.9	339752.2	1419400.6	х	-	Х	-	-	х	Х	-
DRLE-G004	8/31/2017	76	366.5	340131.1	1419317.6	х	-	х	-	-	х	Х	-
DRLE-G005	9/1/2017	76.3	360.9	340683.8	1419215.4	х	-	Х	-	-	х	Х	-
DRLE-G006	10/27/2017	61.5	370.7	341330.6	1419279.0	VWP	55.0	Х	-	-	х	Х	BKY360
DRLE-G007	10/30/2017	51.5	327.0	341739.0	1419201.8	х	-	Х	-	-	х	Х	-
DRLE-G008	10/31/2017	26.5	282.3	342505.2	1419307.0	х	-	Х	-	-	х	Х	-
DRLE-G010	9/8/2017	41.0	254.4	343344.5	1419663.2	х	-	х	-	-	х	Х	-
DRLE-G011	11/1/2017	41.5	236.8	343826.5	1419758.9	х	-	Х	-	-	х	Х	-
DRLE-G012	11/2/2017	50.4	223.2	344114.5	1419863.5	х	-	Х	-	-	х	Х	-
DRLE-G013	11/3/2017	51.5	205.6	344452.1	1419988.4	VWP	45.0	х	-	-	х	Х	BKY361
DRLE-G014	11/6/2017	51.3	179.6	344876.2	1420171.1	х	-	Х	-	-	х	Х	-
DRLE-G015	11/8/2017	101	110.0	345656.6	1421020.7	х	-	Х	-	-	х	Х	-
DRLE-G016	10/31/2017	101.5	82.7	345795.6	1421474.9	VWP	55.0	Х	-	-	х	Х	BKL754
DRLE-G017	11/3/2017	60.0	40.7	345808.6	1421706.1	х	-	Х	-	-	х	Х	-
DRLE-G017A	12/11/2017	240.1	45.2	345743.6	1421718.6	х	-	Х	-	-	х	Х	-
DRLE-G018	10/30/2017	220.0	40.7	345898.5	1422089.8	VWP	150.0	Х	-	-	2.5" PVC	Yes	BKL759
DRLE-G019	7/25/2017	160.3	32.4	345926.9	1422451.4	х	-	Х	-	-	х	Х	-
DRLE-G020	8/3/2017	201.0	34.6	345946.4	1422844.3	VWP	78.0	Х	-	-	х	Х	No ID
DRLE-G021	7/20/2017	51.5	35.2	345945.6	1423212.7	х	-	х	-	-	х	х	-
DRLE-G022	7/27/2017	51.5	36.3	345935.5	1423624.4	VWP	47.0	х	-	-	х	х	No ID
DRLE-G023	7/19/2017	51.5	37.0	345926.5	1424001.7	х	-	Х	-	-	х	Х	-
DRLE-G023b	7/27/2017	6.5	36.9	345926.7	1423994.7	х	-	Х	-	-	х	Х	-
DRLE-G024	8/11/2017	51.5	40.7	345868.3	1424703.6	VWP	47.0	Х	-	-	х	Х	BKP465
DRLE-G025	8/9/2017	51.5	41.5	345844.1	1425111.6	х	-	х	-	-	х	Х	-
DRLE-G027	9/5/2017	51.5	43.3	346002.0	1425965.7	VWP	48.0	2" PVC	15	25	х	Х	BKX314
DRLE-G028	9/7/2017	51.5	41.9	346124.0	1426321.0	х	-	Х	-	-	х	Х	-
DRLE-G029	1/9/2017	101.5	47.8	346473.1	1426562.2	VWP	80.0	Х	-	-	х	Х	BKC322
DRLE-G031	9/24/2017	196.5	44.0	346834.4	1425996.7	VWP	80.0	Х	-	-	2.5" PVC	Yes	BKP453
DRLE-G032	10/13/2017	236.3	43.8	346976.3	1425590.5	х	-	Х	-	-	х	Х	-
DRLE-G033	11/16/2017	231.5	43.9	347128.5	1425192.6	х	-	Х	-	-	2.5" PVC	Х	-
DRLE-G034	8/22/2017	111.5	44.1	347290.3	1424841.6	VWP	80.0	2" PVC	15	25	х	Х	BKP464
DRLE-G034A	2/8/2018	145.0	44.2	347288.0	1424808.6	х	-	Х	-	-	х	Х	-
DRLE-G035	10/9/2017	205.0	42.9	347450.4	1424316.5	х	-	Х	-	-	х	Х	-
DRLE-G036	8/24/2017	68.0	44.1	347667.2	1423822.7	VWP	66.0	2" PVC	10	15	2.5" PVC	Х	BKP463
DRLE-G036A	10/17/2017	240.5	43.8	347668.2	1423851.3	х	-	Х	-	-	х	Х	-
DRLE-G037	9/22/2017	246.8	43.3	347865.3	1423332.0	х	-	Х	-	-	2.5" PVC	Х	-
DRLE-G037A	2/13/2018	110.5	43.4	347859.3	1423350.0	х	-	Х	-	-	2.5" PVC	Х	-
DRLE-G038	1/11/2018	106.5	48.9	347106.2	1426095.9	х	-	Х	-	-	х	Х	-
DRLE-G044	10/11/2017	225.1	32.8	345911.3	1422286.5	х	-	х	-	-	Х	Х	-
DRLE-G045	10/5/2017	225	32.8	345921.4	1422639.3	x	-	х	-	-	х	x	-
DRLE-TP1	3/20/2018	10.0	43.8	347676.2	1423837.0	х	-	х	-	-	х	х	-
DRLE-TP2	3/22/2018	10.0	41.6	345908.3	1425663.0	x	-	х	-	-	Х	x	-
DRLE-TP3A	3/21/2018	10.0	43.1	345420.4	1425641.3	x	-	х	-	-	х	x	-
DRLE-TP3B	3/23/2018	10.5	43.2	345425.1	1425643.9	SP	_	2" PVC	4	9.25	x	x	BKC148
DRLE-TP4	3/23/2018	10.5	46.8	346342.5	1426994.1	х	-	х	-	-	Х	Х	-

Notes:

1) x indicates "No"

4) Exploration coordinates provided by Parametrix5) Coordinates provided on borehole and test pit logs are rounded

2) VWP indicates Vibrating Wire Piezometer

3) SP indicates Standpipe Piezometer

January 2019

Table 2-2: Groundwater Data Summary

		Piezometer		Well	At Tim	e of Drilling (ATD)
	Date of	Measured/Calculated Ground	Date of	Measured Ground	Date of	Measured Ground
Borehole	Reading	Water Table (ft bos)	Reading	Water Table (ft bos)	Reading	Water Table (ft bos)
DRLE-G001	J		J	3 /	8/29/2017	64.0
	3/4/2018	61.4			2/15/2018	24.4
DRLE-G002	6/2/2018	57.5				
DRLE-G003					8/30/2017	75.0
DRLE-G004					8/31/2017	71.5
DRLE-G005					9/1/2017	63.8
	3/4/2018	43.8				
DRLE-G000	6/2/2018	43.3				
DRLE-G007					10/30/2017	22.3
DRLE-G008					Not observed	
DRLE-G010					Not observed	
DRLE-G011					Not observed	
DRLE-G012					11/2/2017	32.7
	3/4/2018	15.4				
DRLE-G013	6/2/2018	15.5				
DRLE-G014	11/6/2017	24.2				
DRLE-G015					Not observed	
	11/16/2017	41.1				
DRLE-G016	3/4/2018	38.7				
	6/2/2018	41.4				
DRLE-G017					Not observed	
DRLE-G017A					Not observed	
	11/17/2017	86.6			1	
DRLE-G018	3/4/2018	85.8 See Note 1				
	6/2/2018	89.1				
			Г	-	7/24/2017	8.8
DRLE-G019			1		7/25/2017	7.4
					7/26/2017	7.5
	9/28/2017	9.7			7/31/2017	8.2
	11/4/2017	11.7	1		8/1/2017	8.0
DRLE-G020	11/17/2017	9.2	1		8/2/2017	7.1
	3/4/2018	6.9			8/3/2017	9.0
	6/2/2018	7.7				
DRLE-G021					7/21/2017	7.3
	9/28/2017	9.7			7/27/2017	9.3
	11/4/2017	11.7				
DRLE-G022	11/17/2017	11.1				
	3/4/2018	8.4				
	6/2/2018	8.6				
DRLE-G023					7/20/2017	9.8
DRLE-G023b					Not observed	
	10/3/2017	17.7				
	11/4/2017	18.7				
DRLE-G024	11/17/2017	18.1				
	2/4/2019	15.0				
	3/4/2010	10.0				
	6/2/2018	15.2				
DRLE-G025	6/2/2018	15.2			8/9/2017	12.3
DRLE-G025	6/2/2018 9/28/2017	15.2	10/3/2017	14.4	8/9/2017 9/5/2017	12.3 14.2
DRLE-G025	9/28/2017 11/17/2017	15.2 14.9 15.6	10/3/2017 11/17/2017	14.4 14.3	8/9/2017 9/5/2017	12.3 14.2
DRLE-G025 DRLE-G027	9/28/2017 11/17/2017 3/4/2018	15.2 14.9 15.6 12.1	10/3/2017 11/17/2017 3/4/2018	14.4 14.3 10.9	8/9/2017 9/5/2017	12.3 14.2
DRL F-G025 DRLE-G027	9/28/2018 9/28/2017 11/17/2017 3/4/2018 6/2/2018	15.2 14.9 15.6 12.1 13.1	10/3/2017 11/17/2017 3/4/2018 6/2/2018	14.4 14.3 10.9 12.1	8/9/2017 9/5/2017	12.3 14.2
DRLE-G025 DRLE-G027 DRLE-G028	9/28/2017 9/28/2017 11/17/2017 3/4/2018 6/2/2018	15.2 14.9 15.6 12.1 13.1	10/3/2017 11/17/2017 3/4/2018 6/2/2018	14.4 14.3 10.9 12.1	8/9/2017 9/5/2017 9/7/2017	12.3 14.2 13.0
DRLE-G025 DRLE-G027 DRLE-G028 DRLE-G029	9/28/2017 9/28/2017 11/17/2017 3/4/2018 6/2/2018 3/4/2018	15.2 15.2 15.6 12.1 13.1 14.6	10/3/2017 11/17/2017 3/4/2018 6/2/2018	14.4 14.3 10.9 12.1	8/9/2017 9/5/2017 9/7/2017	12 3 14.2 13.0
DRLE-G025 DRLE-G027 DRLE-G028 DRLE-G029	3/4/2018 6/2/2018 9/28/2017 11/17/2017 3/4/2018 6/2/2018 3/4/2018 6/2/2018	15.2 14.9 15.6 12.1 13.1 14.6 16.2	10/3/2017 11/17/2017 3/4/2018 6/2/2018	14.4 14.3 10.9 12.1	8/9/2017 9/5/2017 9/7/2017	12 3 14.2 13.0
DRLE-G025 DRLE-G027 DRLE-G028 DRLE-G029	6/2/2018 6/2/2018 9/28/2017 11/17/2017 3/4/2018 6/2/2018 3/4/2018 6/2/2018 9/28/2017	15.2 14.9 15.6 12.1 13.1 14.6 16.2 15.4	10/3/2017 11/17/2017 3/4/2018 6/2/2018	14.4 14.3 10.9 12.1	8/9/2017 9/5/2017 9/7/2017 9/7/2017 9/20/2017	12.3 14.2 13.0 5.0
DRLE-G025 DRLE-G027 DRLE-G028 DRLE-G029 DRLE-G031	9/28/2017 9/28/2017 11/17/2017 3/4/2018 6/2/2018 9/28/2017 11/16/2017	15.2 14.9 15.6 12.1 13.1 14.6 16.2 15.4 16.8	10/3/2017 11/17/2017 3/4/2018 6/2/2018	14.4 14.3 10.9 12.1	8/9/2017 9/5/2017 9/7/2017 9/20/2017	12.3 14.2 13.0 5.0
DRLE-G025 DRLE-G027 DRLE-G028 DRLE-G029 DRLE-G031	3/4/2018 9/28/2017 11/17/2017 3/4/2018 6/2/2018 3/4/2018 6/2/2018 9/28/2017 11/16/2017 3/4/2018	14.9 15.6 12.1 13.1 14.6 16.2 15.4 15.4 13.2	10/3/2017 11/17/2017 3/4/2018 6/2/2018	14.4 14.3 10.9 12.1	8/9/2017 9/5/2017 9/7/2017 9/20/2017	12 3 14.2 13.0 5.0
DRLE-G025 DRLE-G027 DRLE-G028 DRLE-G029 DRLE-G031	3/4/2018 9/28/2017 11/17/2017 3/4/2018 6/2/2018 6/2/2018 9/28/2017 11/16/2017 3/4/2018 6/2/2018 6/2/2018	15.2 14.9 15.6 12.1 13.1 14.6 16.2 15.4 16.8 13.2 14.4	10/3/2017 11/17/2017 3/4/2018 6/2/2018	14.4 14.3 10.9 12.1	8/9/2017 9/5/2017 9/7/2017 9/20/2017	12 3 14.2 13.0 5.0
DRLE-G025 DRLE-G027 DRLE-G028 DRLE-G029 DRLE-G031 DRLE-G032	9/28/2017 9/28/2017 11/17/2017 11/17/2017 3/4/2018 6/2/2018 9/28/2017 11/16/2017 3/4/2018 6/2/2018	15.2 14.9 15.6 12.1 13.1 14.6 16.2 15.4 16.8 13.2 14.4	10/3/2017 11/17/2017 3/4/2018 6/2/2018	14.4 14.3 10.9 12.1	8/9/2017 9/5/2017 9/7/2017 9/20/2017 10/10/2017	12.3 14.2 13.0 5.0 12.7
DRLE-G025 DRLE-G027 DRLE-G028 DRLE-G029 DRLE-G031 DRLE-G032 DRLE-G033	3/4/2018 9/28/2017 11/17/2017 3/4/2018 6/2/2018 3/4/2018 6/2/2018 9/28/2017 11/16/2017 3/4/2018 6/2/2018	14.9 15.2 14.9 15.6 12.1 13.1 14.6 16.2 15.4 16.8 13.2 14.4	10/3/2017 11/17/2017 3/4/2018 6/2/2018	14.4 14.3 10.9 12.1	8/9/2017 9/5/2017 9/7/2017 9/20/2017 10/10/2017 Not observed	12.3 14.2 13.0 5.0 12.7
DRLE-G025 DRLE-G027 DRLE-G028 DRLE-G029 DRLE-G031 DRLE-G032 DRLE-G033	9/28/2018 9/28/2017 11/17/2017 3/4/2018 6/2/2018 6/2/2018 9/28/2017 11/16/2017 11/16/2017 11/16/2017 11/16/2017 11/16/2018 6/2/2018 9/28/2017	14.9 15.6 12.1 13.1 14.6 16.2 15.4 16.2 13.2 14.4	10/3/2017 11/17/2017 3/4/2018 6/2/2018	14.4 14.3 10.9 12.1 20.5	8/9/2017 9/5/2017 9/7/2017 9/20/2017 9/20/2017 10/10/2017 Not observed 8/18/2017	12 3 14.2 13.0 5.0 12.7 9.0
DRLE-G025 DRLE-G027 DRLE-G028 DRLE-G029 DRLE-G031 DRLE-G032 DRLE-G032 DRLE-G033	9/28/2017 9/28/2017 11/17/2017 3/4/2018 6/2/2018 6/2/2018 9/28/2017 11/16/2017 3/4/2018 6/2/2018 9/28/2017 11/16/2017	15.2 14.9 15.6 12.1 13.1 14.6 16.2 15.4 16.8 13.2 14.4 17.2 20.6	10/3/2017 11/17/2017 3/4/2018 6/2/2018 	14.4 14.3 10.9 12.1 20.5 21.2	8/9/2017 9/5/2017 9/7/2017 9/20/2017 9/20/2017 10/10/2017 Not observed 8/18/2017 8/21/2017	12.3 14.2 13.0 5.0 12.7 9.0 17.7
DRLE-G025 DRLE-G027 DRLE-G028 DRLE-G029 DRLE-G031 DRLE-G032 DRLE-G033 DRLE-G034	9/28/2017 9/28/2017 1/1/7/2017 3/4/2018 6/2/2018 6/2/2018 3/4/2018 6/2/2018 9/28/2017 11/16/2017 3/4/2018 9/28/2017 11/16/2017 3/4/2018	14.9 15.2 14.9 15.6 12.1 13.1 14.6 16.2 15.4 16.8 13.2 14.4 17.2 20.6 17.0	10/3/2017 11/17/2017 3/4/2018 6/2/2018 10/3/2017 11/16/2017 11/16/2017 3/4/2018	14.4 14.3 10.9 12.1 20.5 21.2 17.6	8/9/2017 9/5/2017 9/7/2017 9/20/2017 10/10/2017 Not observed 8/18/2017 8/21/2017	12.3 14.2 13.0 5.0 12.7 9.0 17.7
DRLE-G025 DRLE-G027 DRLE-G028 DRLE-G029 DRLE-G031 DRLE-G032 DRLE-G033 DRLE-G034	9/28/2018 9/28/2017 11/17/2017 3/4/2018 6/2/2018 6/2/2018 6/2/2018 6/2/2018 6/2/2018 6/2/2018 6/2/2018 9/28/2017 11/16/2017 11/16/2017 11/16/2017 11/16/2017 11/16/2017	14.9 15.2 15.6 12.1 13.1 14.6 16.2 15.4 16.8 13.2 14.4 17.2 20.6 17.0 15.9	10/3/2017 11/17/2017 3/4/2018 6/2/2018 10/3/2017 10/3/2017 11/16/2017 3/4/2018 6/2/2018	14.4 14.3 10.9 12.1 20.5 21.2 17.6 17.8	8/9/2017 9/5/2017 9/7/2017 9/20/2017 9/20/2017 10/10/2017 Not observed 8/18/2017 8/21/2017	12 3 14.2 13.0 5.0 12.7 9.0 17.7
DRLE-G025 DRLE-G027 DRLE-G028 DRLE-G029 DRLE-G031 DRLE-G032 DRLE-G033 DRLE-G034	9/28/2017 9/28/2017 11/17/2017 3/4/2018 6/2/2018 6/2/2018 9/28/2017 11/16/2017 3/4/2018 6/2/2018 6/2/2018 9/28/2017 11/16/2017 3/4/2018 6/2/2018 9/28/2017 11/16/2017 3/4/2018 6/2/2018	15.2 14.9 15.6 12.1 13.1 14.6 16.2 15.4 16.8 13.2 14.4 17.2 20.6 17.0 15.9	10/3/2017 11/17/2017 3/4/2018 6/2/2018 10/3/2017 11/16/2017 3/4/2018 6/2/2018	14.4 14.3 10.9 12.1 20.5 21.2 17.6 17.8	8/9/2017 9/5/2017 9/7/2017 9/20/2017 9/20/2017 10/10/2017 Not observed Not observed	12.3 14.2 13.0 5.0 12.7 9.0 17.7
DRLE-G025 DRLE-G027 DRLE-G028 DRLE-G029 DRLE-G031 DRLE-G033 DRLE-G034 DRLE-G034 DRLE-G034A DRLE-G035	9/28/2017 9/28/2017 11/17/2017 3/4/2018 6/2/2018 6/2/2018 9/28/2017 11/16/2017 3/4/2018 6/2/2018 9/28/2017 11/16/2017 3/4/2018 6/2/2018	15.2 14.9 15.6 12.1 13.1 14.6 16.2 15.4 16.8 13.2 14.4 17.2 20.6 17.0 15.9	10/3/2017 11/17/2017 3/4/2018 6/2/2018 10/3/2017 10/3/2017 11/16/2017 3/4/2018 6/2/2018	14.4 14.3 10.9 12.1 20.5 21.2 17.6 17.8	8/9/2017 9/5/2017 9/7/2017 9/20/2017 10/10/2017 Not observed 8/18/2017 8/21/2017 Not observed 10/4/2017	12.3 14.2 13.0 5.0 12.7 9.0 17.7 21.4
DRLE-G025 DRLE-G027 DRLE-G028 DRLE-G029 DRLE-G031 DRLE-G033 DRLE-G033 DRLE-G034 DRLE-G034 DRLE-G035	3/4/2018 9/28/2017 3/4/2018 6/2/2018 3/4/2018 6/2/2018 3/4/2018 6/2/2018 9/28/2017 11/16/2017 3/4/2018 6/2/2018 6/2/2018 9/28/2017 11/16/2017 3/4/2018 6/2/2018	14.9 15.2 14.9 15.6 12.1 13.1 14.6 16.2 15.4 16.8 13.2 14.4 17.2 20.6 17.0 15.9 18.4	10/3/2017 11/17/2017 3/4/2018 6/2/2018 10/3/2017 11/16/2017 11/16/2017 3/4/2018 6/2/2018 10/3/2017	14.4 14.3 10.9 12.1 20.5 21.2 17.6 17.8 Dry	8/9/2017 9/5/2017 9/7/2017 9/20/2017 9/20/2017 Not observed 8/18/2017 8/21/2017 Not observed 10/4/2017 8/24/2017	12.3 14.2 13.0 5.0 12.7 9.0 17.7 21.4 10.0
DRLE-G027 DRLE-G027 DRLE-G028 DRLE-G029 DRLE-G031 DRLE-G032 DRLE-G033 DRLE-G034 DRLE-G034 DRLE-G035 DRLE-G035	9/28/2018 9/28/2017 11/17/2017 3/4/2018 6/2/2018 6/2/2018 6/2/2018 9/28/2017 11/16/2017 3/4/2018 6/2/2018 6/2/2018 6/2/2018 9/28/2017 11/16/2017 11/16/2017	14.9 15.6 12.1 13.1 14.6 16.2 15.4 16.8 17.0 15.9 18.4 21.5	10/3/2017 11/17/2017 3/4/2018 6/2/2018 	14.4 14.3 10.9 12.1 20.5 21.2 17.6 17.8 Dry Dry	8/9/2017 9/5/2017 9/7/2017 9/20/2017 9/20/2017 10/10/2017 Not observed 8/18/2017 8/21/2017 Not observed 10/4/2017 8/24/2017	12.3 14.2 13.0 5.0 12.7 9.0 17.7 21.4 10.0
DRLE-G025 DRLE-G027 DRLE-G028 DRLE-G029 DRLE-G031 DRLE-G032 DRLE-G033 DRLE-G034 DRLE-G035 DRLE-G036	9/28/2017 9/28/2018 9/28/2017 11/17/2017 3/4/2018 6/2/2018 6/2/2018 9/28/2017 11/16/2017 3/4/2018 6/2/2018 9/28/2017 11/16/2017 3/4/2018 9/28/2017 11/16/2017 3/4/2018	15.2 14.9 15.6 12.1 13.1 14.6 16.2 15.4 16.8 13.2 14.4 17.2 20.6 17.0 15.9 18.4 21.5 18.3	10/3/2017 11/17/2017 3/4/2018 6/2/2018 10/3/2018 10/3/2017 11/16/2017 3/4/2018 6/2/2018	14.4 14.3 10.9 12.1 20.5 21.2 17.6 17.8 Dry Dry 11.2	8/9/2017 9/5/2017 9/7/2017 9/20/2017 10/10/2017 Not observed 8/18/2017 8/21/2017 Not observed 10/4/2017 8/24/2017	12.3 14.2 13.0 5.0 12.7 9.0 17.7 21.4 10.0
DRLE-G025 DRLE-G027 DRLE-G028 DRLE-G029 DRLE-G031 DRLE-G032 DRLE-G034 DRLE-G034 DRLE-G035 DRLE-G036	3/4/2018 9/28/2017 11/17/2017 3/4/2018 6/2/2018 3/4/2018 6/2/2018 3/4/2018 6/2/2018 9/28/2017 11/16/2017 3/4/2018 6/2/2018 9/28/2017 11/16/2017 3/4/2018 6/2/2018	14.9 15.2 14.9 15.6 12.1 13.1 14.6 16.2 15.4 16.8 13.2 14.4 17.2 20.6 17.0 15.9 18.4 21.5 18.3 17.5	10/3/2017 11/17/2017 3/4/2018 6/2/2018 10/3/2017 11/16/2017 3/4/2018 6/2/2018 10/3/2017 11/16/2017 3/4/2018	14.4 14.3 10.9 12.1 20.5 21.2 17.6 17.8 Dry Dry Dry 11.2 Dry	8/9/2017 9/5/2017 9/7/2017 9/20/2017 10/10/2017 Not observed 8/18/2017 8/21/2017 Not observed 10/4/2017 8/24/2017	12.3 13.0 5.0 12.7 9.0 17.7 21.4 10.0
DRLE-G027 DRLE-G027 DRLE-G028 DRLE-G029 DRLE-G031 DRLE-G032 DRLE-G033 DRLE-G034 DRLE-G034 DRLE-G035 DRLE-G036	9/28/2017 9/28/2018 9/28/2017 3/4/2018 6/2/2018 6/2/2018 6/2/2018 6/2/2018 6/2/2018 6/2/2018 6/2/2018 6/2/2018 6/2/2018 9/28/2017 11/16/2017 3/4/2018 6/2/2018 9/28/2017 11/16/2017 3/4/2018 6/2/2018	14.9 15.2 15.2 15.6 12.1 13.1 14.6 16.2 15.4 16.8 13.2 14.4 17.2 20.6 17.0 15.9 18.4 21.5 18.3 17.5	10/3/2017 11/17/2017 3/4/2018 6/2/2018 10/3/2017 11/16/2017 3/4/2018 6/2/2018 6/2/2018 6/2/2018	14.4 14.3 10.9 12.1 20.5 21.2 17.6 17.8 Dry Dry Dry 11.2 Dry	8/9/2017 9/5/2017 9/7/2017 9/20/2017 9/20/2017 10/10/2017 Not observed 8/18/2017 8/21/2017 8/21/2017 8/24/2017 8/24/2017	12.3 14.2 13.0 5.0 12.7 9.0 17.7 21.4 10.0 5.9
DRLE-G025 DRLE-G027 DRLE-G028 DRLE-G029 DRLE-G031 DRLE-G032 DRLE-G033 DRLE-G034 DRLE-G035 DRLE-G036	9/28/2017 9/28/2018 9/28/2017 11/17/2017 3/4/2018 6/2/2018 9/28/2017 11/16/2017 3/4/2018 6/2/2018 6/2/2018 9/28/2017 11/16/2017 3/4/2018 6/2/2018 6/2/2018	15.2 14.9 15.6 12.1 13.1 14.6 16.2 15.4 16.8 13.2 14.4 17.2 20.6 17.0 15.9 18.4 18.3 17.5	10/3/2017 11/17/2017 3/4/2018 6/2/2018 10/3/2017 11/16/2017 3/4/2018 6/2/2018 10/3/2017 11/16/2017 3/4/2018 6/2/2018	14.4 14.3 10.9 12.1 20.5 21.2 17.6 17.8 Dry Dry 11.2 Dry 11.2 Dry	8/9/2017 9/5/2017 9/7/2017 9/20/2017 10/10/2017 Not observed 8/21/2017 Not observed 10/4/2017 8/24/2017 10/11/2017 10/11/2017	12.3 14.2 13.0 5.0 12.7 9.0 17.7 21.4 10.0 5.9 4.0
DRLE-G025 DRLE-G027 DRLE-G028 DRLE-G029 DRLE-G031 DRLE-G032 DRLE-G034 DRLE-G035 DRLE-G036 DRLE-G036A	9/28/2017 9/28/2018 9/28/2017 11/17/2017 3/4/2018 6/2/2018 6/2/2018 9/28/2017 11/16/2017 3/4/2018 6/2/2018 6/2/2018 6/2/2018 9/28/2017 11/16/2017 3/4/2018 6/2/2018	14.9 15.2 14.9 15.6 12.1 13.1 14.6 16.2 15.4 16.8 13.2 14.4 17.2 20.6 17.0 15.9 18.4 21.5 18.3 17.5	10/3/2017 11/17/2017 3/4/2018 6/2/2018 10/3/2017 11/16/2017 3/4/2018 6/2/2018 6/2/2018 6/2/2018	14.4 14.3 10.9 12.1 20.5 21.2 17.6 17.8 Dry Dry Dry Dry Dry Dry Dry Dry Dry	8/9/2017 9/5/2017 9/7/2017 9/20/2017 9/20/2017 10/10/2017 Not observed 8/18/2017 8/21/2017 8/24/2017 8/24/2017 10/11/2017 10/13/2017 10/16/2017	12.3 14.2 13.0 5.0 12.7 9.0 17.7 21.4 10.0 5.9 4.0 31.7
DRLE-G025 DRLE-G027 DRLE-G028 DRLE-G029 DRLE-G031 DRLE-G032 DRLE-G033 DRLE-G034 DRLE-G035 DRLE-G036 DRLE-G037	9/28/2017 9/28/2018 9/28/2017 3/4/2018 6/2/2018 6/2/2018 6/2/2018 9/28/2017 11/16/2017 3/4/2018 6/2/2018 9/28/2017 11/16/2017 3/4/2018 6/2/2018 9/28/2017 11/16/2017 3/4/2018 6/2/2018	14.9 15.2 15.2 15.6 12.1 13.1 14.6 16.2 15.4 16.8 13.2 14.4 17.2 20.6 17.0 15.9 18.4 21.5 18.3 17.5	10/3/2017 11/17/2017 3/4/2018 6/2/2018 10/3/2017 11/16/2017 3/4/2018 6/2/2018 6/2/2018 6/2/2018 6/2/2018	14.4 14.3 10.9 12.1 20.5 21.2 17.6 17.8 Dry Dry Dry 11.2 Dry	8/9/2017 9/5/2017 9/7/2017 9/20/2017 9/20/2017 10/10/2017 Not observed 8/18/2017 8/21/2017 8/24/2017 8/24/2017 10/11/2017 10/13/2017 9/13/2017	12.3 14.2 13.0 5.0 12.7 9.0 17.7 21.4 10.0 5.9 4.0 31.7 18.7
DRLE-G025 DRLE-G027 DRLE-G028 DRLE-G029 DRLE-G031 DRLE-G033 DRLE-G034 DRLE-G035 DRLE-G036 DRLE-G037 DRLE-G037	9/28/2017 9/28/2018 9/28/2017 11/17/2017 3/4/2018 6/2/2018 9/28/2017 11/16/2017 3/4/2018 6/2/2018 6/2/2018 9/28/2017 11/16/2017 3/4/2018 6/2/2018 6/2/2018	15.2 14.9 15.6 12.1 13.1 14.6 16.2 15.4 16.8 13.2 14.4 17.2 20.6 17.0 15.9 18.4 18.3 17.5	10/3/2017 11/17/2017 3/4/2018 6/2/2018 10/3/2017 11/16/2017 3/4/2018 6/2/2018 10/3/2017 11/16/2017 3/4/2018 6/2/2018	14.4 14.3 10.9 12.1 20.5 21.2 17.6 17.8 Dry Dry 11.2 Dry 11.2 Dry	8/9/2017 9/5/2017 9/5/2017 9/7/2017 10/10/2017 Not observed 8/21/2017 Not observed 10/4/2017 10/11/2017 10/12/2017 Not observed 10/11/2017 10/13/2017 10/13/2017 Not observed 10/13/2017 Not observed	12.3 14.2 13.0 5.0 12.7 9.0 17.7 21.4 10.0 5.9 4.0 31.7 18.7
DRLE-G025 DRLE-G027 DRLE-G028 DRLE-G029 DRLE-G031 DRLE-G032 DRLE-G033 DRLE-G034 DRLE-G035 DRLE-G036 DRLE-G037A DRLE-G037A DRLE-G037A DRLE-G038	3/4/2018 9/28/2017 11/17/2017 3/4/2018 6/2/2018 3/4/2018 6/2/2018 3/4/2018 6/2/2018 9/28/2017 11/16/2017 3/4/2018 6/2/2018 6/2/2018 9/28/2017 11/16/2017 3/4/2018 6/2/2018 6/2/2018 0/28/2017 11/16/2017 11/16/2017 11/16/2017 13/4/2018 6/2/2018	14.9 15.2 14.9 15.6 12.1 13.1 14.6 16.2 15.4 16.8 13.2 14.4 17.2 20.6 17.0 15.9 18.4 17.5	10/3/2017 11/17/2017 3/4/2018 6/2/2018 10/3/2017 11/16/2017 3/4/2018 6/2/2018 6/2/2018 6/2/2018 6/2/2018	14.4 14.3 10.9 12.1 20.5 21.2 17.6 17.8 Dry Dry 11.2 Dry Dry	8/9/2017 9/5/2017 9/7/2017 9/20/2017 10/10/2017 Not observed 8/18/2017 8/21/2017 8/21/2017 8/24/2017 8/24/2017 10/13/2017 10/13/2017 Not observed 10/12017 10/13/2017	12.3 14.2 13.0 5.0 12.7 9.0 17.7 21.4 10.0 5.9 4.0 31.7 18.7 10.0
DRLE-G025 DRLE-G027 DRLE-G028 DRLE-G029 DRLE-G031 DRLE-G032 DRLE-G033 DRLE-G034 DRLE-G035 DRLE-G036 DRLE-G037 DRLE-G037 DRLE-G037 DRLE-G037 DRLE-G037 DRLE-G038 DRLE-G0344	9/28/2017 9/28/2018 9/28/2017 3/4/2018 6/2/2018 3/4/2018 6/2/2018 9/28/2017 11/16/2017 3/4/2018 6/2/2018 6/2/2018 9/28/2017 11/16/2017 3/4/2018 6/2/2018 6/2/2018 9/28/2017 11/16/2017 3/4/2018 6/2/2018 9/28/2017 11/16/2017 3/4/2018 6/2/2018 9/28/2017 11/16/2017 11/16/2017 3/4/2018 6/2/2018	14.9 15.2 14.9 15.6 12.1 13.1 14.6 16.2 15.4 16.8 13.2 14.4 17.2 20.6 17.0 15.9 18.4 21.5 18.3 17.5	10/3/2017 11/17/2017 3/4/2018 6/2/2018 10/3/2017 11/16/2017 3/4/2018 6/2/2018 10/3/2017 11/16/2017 3/4/2018 6/2/2018	14.4 14.3 10.9 12.1 20.5 21.2 17.6 17.8 Dry Dry Dry 11.2 Dry	8/9/2017 9/5/2017 9/7/2017 9/20/2017 9/20/2017 10/10/2017 Not observed 8/18/2017 8/21/2017 8/24/2017 10/11/2017 10/12/2017 10/12/2017 10/12/2017 10/12/2017 10/12/2017 10/12/2017 Not observed 10/12/2017	12.3 14.2 13.0 5.0 12.7 9.0 17.7 21.4 10.0 31.7 18.7 10.0 11.0
DRLE-G025 DRLE-G027 DRLE-G028 DRLE-G029 DRLE-G031 DRLE-G033 DRLE-G034 DRLE-G035 DRLE-G036 DRLE-G037 DRLE-G037 DRLE-G037 DRLE-G034 DRLE-G035	9/28/2017 9/28/2018 9/28/2017 11/17/2017 3/4/2018 6/2/2018 9/28/2017 11/16/2017 3/4/2018 6/2/2018 6/2/2018 9/28/2017 11/16/2017 3/4/2018 6/2/2018 6/2/2018 9/28/2017 11/16/2017 3/4/2018 6/2/2018	15.2 14.9 15.6 12.1 13.1 14.6 16.2 15.4 16.8 13.2 14.4 17.2 20.6 17.0 15.9 18.4 18.3 17.5	10/3/2017 11/17/2017 3/4/2018 6/2/2018 10/3/2017 11/16/2017 3/4/2018 6/2/2018 10/3/2017 11/16/2017 3/4/2018 6/2/2018	14.4 14.3 10.9 12.1 20.5 21.2 17.6 17.8 Dry Dry 11.2 Dry 11.2 Dry	8/9/2017 9/5/2017 9/5/2017 9/7/2017 9/20/2017 10/10/2017 Not observed 8/18/2017 10/4/2017 8/24/2017 10/13/2017 Not observed 10/1/2017 Not observed 10/1/2017 10/13/2017 Not observed 10/11/2017 10/12/2017 Not observed 10/11/2017 10/12/2017	12.3 14.2 13.0 13.0 5.0 12.7 9.0 17.7 21.4 10.0 31.7 18.7 10.0 11.0 10.0
DRLE-G025 DRLE-G027 DRLE-G028 DRLE-G029 DRLE-G031 DRLE-G032 DRLE-G033 DRLE-G034 DRLE-G035 DRLE-G036 DRLE-G037 DRLE-G038 DRLE-G038 DRLE-G044 DRLE-G045	3/4/2018 9/28/2017 11/17/2017 3/4/2018 6/2/2018 3/4/2018 6/2/2018 3/4/2018 6/2/2018 3/4/2018 6/2/2018 6/2/2018 9/28/2017 11/16/2017 3/4/2018 6/2/2018 6/2/2018 6/2/2018 6/2/2018 11/16/2017 11/16/2017 11/16/2017 11/16/2017 11/16/2017 11/16/2018 6/2/2018 11/17/2017 11/16/2018 11/16/2017 11/16/2017 11/16/2017 11/16/2017 11/16/2018 11/16/2018 11/16/2017 11/16/2018 11/16/2017 11/1	15.2 15.2 15.2 15.4 15.6 12.1 13.1 14.6 16.2 15.4 16.8 13.2 14.4 17.2 20.6 17.0 15.9 18.4 21.5 18.3 17.5	10/3/2017 11/17/2017 3/4/2018 6/2/2018 10/3/2017 11/16/2017 3/4/2018 6/2/2018 6/2/2018 6/2/2018	14.4 14.3 10.9 12.1 20.5 21.2 17.6 17.8 Dry Dry 11.2 Dry Dry	8/9/2017 9/5/2017 9/5/2017 9/7/2017 10/10/2017 Not observed 8/18/2017 8/21/2017 10/10/2017 Not observed 10/4/2017 10/13/2017 10/13/2017 10/13/2017 10/13/2017 10/13/2017 Not observed 10/11/2017 Not observed 10/11/2017 Not observed 10/11/2017 Not observed 10/12/2018 10/13/2017 Not observed 10/12/2018	12.3 13.0 13.0 5.0 12.7 9.0 17.7 21.4 10.0 11.7 18.7 10.0 11.0 10.0
DRLE-G027 DRLE-G028 DRLE-G029 DRLE-G031 DRLE-G032 DRLE-G033 DRLE-G034 DRLE-G035 DRLE-G035 DRLE-G036 DRLE-G036 DRLE-G037 DRLE-G037 DRLE-G037 DRLE-G037 DRLE-G037 DRLE-G037 DRLE-G037 DRLE-G037 DRLE-G038 DRLE-G045 DRLE-TP1 DRLE-TP1 DRLE-TP1 DRLE-TP2	3/4/2018 9/28/2017 3/4/2018 6/2/2018 3/4/2018 6/2/2018 3/4/2018 6/2/2018 3/4/2018 6/2/2018 9/28/2017 11/16/2017 3/4/2018 6/2/2018 6/2/2018 9/28/2017 11/16/2017 3/4/2018 6/2/2018 6/2/2018 9/28/2017 11/16/2017 3/4/2018 6/2/2018 9/28/2017 11/16/2017 3/4/2018 6/2/2018 9/28/2017 11/16/2017 3/4/2018 6/2/2018 9/28/2017 11/16/2017 3/4/2018 6/2/2018 9/28/2017 11/16/2017 3/4/2018 6/2/2018 9/28/2017 11/16/2017 3/4/2018 6/2/2018 9/28/2017 11/16/2017 3/4/2018 6/2/2018 9/28/2017 11/16/2017 3/4/2018 6/2/2018 9/28/2017 11/16/2018 10/2/20	14.9 15.2 14.9 15.6 12.1 13.1 14.6 16.2 15.4 16.8 13.2 14.4 17.2 20.6 17.0 15.9 18.4 21.5 18.3 17.5	10/3/2017 11/17/2017 3/4/2018 6/2/2018 10/3/2017 11/16/2017 11/16/2017 3/4/2018 6/2/2018 6/2/2018 10/3/2017 11/16/2017 3/4/2018 6/2/2018	14.4 14.3 10.9 12.1 20.5 21.2 17.6 17.8 Dry Dry Dry 11.2 Dry	8/9/2017 9/5/2017 9/7/2017 9/20/2017 9/20/2017 10/10/2017 Not observed 8/18/2017 8/21/2017 10/4/2017 10/1/2017 10/1/2017 10/1/2017 10/1/2017 10/1/2017 10/1/2017 10/1/2017 10/1/2017 10/1/2017 10/1/2017 10/1/2017 10/1/2017 10/1/2017 10/1/2017 Not observed 10/1/2017 Not observed 10/1/2017 Not observed 10/1/2017 Not observed Not observed Not observed	12.3 13.0 5.0 12.7 9.0 17.7 21.4 10.0 5.9 4.0 31.7 18.7 10.0 11.0 10.0
DRLE-G025 DRLE-G027 DRLE-G028 DRLE-G029 DRLE-G031 DRLE-G033 DRLE-G034 DRLE-G035 DRLE-G036 DRLE-G037 DRLE-G035	9/28/2017 9/28/2018 9/28/2017 11/17/2017 3/4/2018 6/2/2018 9/28/2017 11/16/2017 3/4/2018 6/2/2018 6/2/2018 9/28/2017 11/16/2017 3/4/2018 6/2/2018 6/2/2018 9/28/2017 11/16/2017 3/4/2018 6/2/2018 6/2/2018	15.2 14.9 15.6 12.1 13.1 14.6 16.2 15.4 16.8 13.2 14.4 17.2 20.6 17.0 15.9 18.4 21.5 18.3 17.5	10/3/2017 11/17/2017 3/4/2018 6/2/2018 10/3/2017 11/16/2017 3/4/2018 6/2/2018 6/2/2018 6/2/2018	14.4 14.3 10.9 12.1 20.5 21.2 17.6 17.8 Dry Dry 11.2 Dry	8/9/2017 9/5/2017 9/5/2017 9/7/2017 9/20/2017 10/10/2017 10/10/2017 8/21/2017 8/21/2017 10/4/2017 8/24/2017 10/11/2017 10/12/2017 10/12/2017 10/12/2017 10/12/2017 Not observed 10/11/2017 10/2018 10/11/2017 Not observed 10/12/2017 Not observed	12.3 14.2 13.0 5.0 12.7 9.0 17.7 21.4 10.0 5.9 4.0 31.7 18.7 10.0 11.0 10.0
DRLE-G025 DRLE-G027 DRLE-G028 DRLE-G029 DRLE-G031 DRLE-G032 DRLE-G033 DRLE-G034 DRLE-G035 DRLE-G036 DRLE-G037 DRLE-G036 DRLE-G037 DRLE-TP1 DRLE-TP2 DRLE-TP3B	9/28/2017 9/28/2018 9/28/2017 11/17/2017 3/4/2018 6/2/2018 9/28/2017 11/16/2017 3/4/2018 6/2/2018 9/28/2017 11/16/2017 3/4/2018 6/2/2018 6/2/2018 9/28/2017 11/16/2017 3/4/2018 6/2/2018 0/2/2018 0/2/2018 0/2/2018 0/2/2018 0/2/2018 0/2/2018 0/2/2018 0/2/2018 0/2/2018 0/2/2018 0/2/2018 0/2/2018 0/2/2017 0/2/2017 0/2/2017 0/2/2017 0/2/2018 0/2/2018 0/2/2018 0/2/2018 0/2/2017 0/2/2018 0/2/2018 0/2/2018 0/2/2018 0/2/2018 0/2/2018 0/2/2018 0/2/2018 0/2/2018 0/2/2017 0/2/2018 0/2/2017 0/2/2018 0/2/2018 0/2/2018 0/2/2018 0/2/2018 0/2/2018 0/2/2018 0/2/2017 0/2/2017 0/2/2017 0/2/2018 0/2/2018 0/2/2018 0/2/2017 0/2/2017 0/2/2018 0/	15.2 14.9 15.6 12.1 13.1 14.6 16.2 15.4 16.8 13.2 14.4 17.2 20.6 17.0 15.9 18.4 21.5 18.3 17.5	10/3/2017 11/17/2017 3/4/2018 6/2/2018 10/3/2017 11/16/2017 3/4/2018 6/2/2018 6/2/2018 6/2/2018	14.4 14.3 10.9 12.1 20.5 21.2 17.6 17.8 Dry Dry 11.2 Dry Dry 11.2 Dry Dry	8/9/2017 9/5/2017 9/5/2017 9/7/2017 9/20/2017 9/20/2017 10/10/2017 Not observed 8/18/2017 8/21/2017 10/11/2017 10/13/2017 10/14/2017 10/13/2017 10/13/2017 Not observed 10/11/2017 10/13/2017 Not observed 10/11/2017 Not observed Not observed	12.3 14.2 13.0 5.0 12.7 9.0 17.7 21.4 10.0 31.7 18.7 10.0 11.0 10.0

 DRLE-TP3
 D/2/2018
 Dry
 Not of

 DRLE-TP4
 Not of

 1) VWP reading may be representing a different deep aquifer. For shallow groundwater conditions, refer to nearby boreholes
 2) Refer to borehole records for drilling techniques

FIGURES

-

APPENDIX A RECORD OF BOREHOLES

CRITERIA FOR AS	SIGNING GROUP SYMBOL	s	SOIL CLASSIFICATION GENERALIZED GROUP DESCRIPTIONS			
	GRAVELS	CLEAN GRAVELS	GW	WELL-GRADED GRAVELS		
	MORE THAN 50% OF	LESS THAN 5% FINES	GP	POORLY-GRADED GRAVELS		
	RETAINED ON NO. 4	GRAVELS WITH FINES	GM	GRAVEL AND SILT MIXTURES		
COARSE-GRAINED SOILS MORE THAN	SIEVE	MORE THAN 12% FINES	GC	GRAVEL AND CLAY MIXTURES		
50% RETAINED ON NO. 200 SIEVE		CLEAN SANDS	SW	WELL-GRADED SANDS		
	50% OR MORE OF	LESS THAN 5% FINES	SP	NON- AND LOW-POORLY-GRADED SANDS		
	COARSE FRACTION PASSES NO. 4 SIEVE	SANDS WITH FINES	SM	SAND AND SILT MIXTURES		
		MORE THAN 12% FINES	SC	SAND AND CLAY MIXTURES		
			CL	LEAN CLAYS		
	SILTS AND CLAYS	INORGANIC	ML	SILTS AND ELASTIC SILTS		
	THAN 50			LEAN ORGANIC CLAYS		
50% OR MORE		ORGANIC		ORGANIC SILTS AND ELASTIC ORGANIC SILTS		
PASSES THE NO. 200 SIEVE			СН	FAT CLAYS		
	SILTS AND CLAYS	INDICIDANIC	МН	ELASTIC SILTS		
	THAN 50	ORGANIC	OH/OL	ORGANIC CLAYS AND SILTS		
HIGHLY ORGANIC SOILS PRIMARILY ORGANIC MATTER, DARK IN COLOR, AND ORGANIC ODOR				PEAT		

SOIL CONSISTENCY

COHESIONLESS SO	ILS ^(a)		COHESIVE	E SOILS ^(b)
DENSITY	N, blows/ft. ^(c)		CONSISTENCY	N, blows/ft. ^(c)
VERY LOOSE	0 to 4		VERY SOFT	0 to 2
LOOSE	4 to 10		SOFT	2 to 4
	10 to 30		FIRM	4 to 8
	10 10 50		STIFF	8 to 15
DENSE	30 to 50		VERY STIFF	15 to 30
VERY DENSE	over 50		HARD	over 30

(a) SOILS CONSISTING OF GRAVEL, SAND, AND SILT, EITHER SEPARATELY OR IN COMBINATION, POSSESSING NO CHARACTERISTICS OF PLASTICITY, AND EXHIBITING DRAINED BEHAVIOR.

(b) SOILS POSSESSING THE CHARACTERISTICS OF PLASTICITY, AND EXHIBITING UNDRAINED

 BEHAVIOR.
 BEHAVIOR.
 (c) REFER TO TEXT OF ASTM D 1586-84 FOR A DEFINITION OF N; IN NORMALLY CONSOLIDATED COHESIONLESS SOILS. RELATIVE DENSITY TERMS ARE BASED ON N VALUES CORRECTED FOR OVERBURDEN PRESSURES.

(d) UNDRAINED SHEAR STRENGTH = 1/2 UNCONFINED COMPRESSION STRENGTH.

QUALITATIVE DESCRIPTIVE TERMINOLOGY FOR MOISTURE CONTENT

DRY	NO DISCERNIBLE MOISTURE PRESENT
MOIST	WILL MOISTEN THE HAND
WET	VISIBLE WATER PRESENT ON MATERIALS

DESCRIPTIVE TERMINOLOGY DENOTING COMPONENT PROPORTIONS

DESCRIPTIVE TERMS	RANGE OF PROPORTION
TRACE	0-5%
FEW	5-10%
LITTLE	15-25%
SOME	30-45%

COMPONENT DEFINITIONS BY GRADATION

COMPONENT	SIZE RANGE
BOULDERS	ABOVE 300 mm (12 in)
COBBLES	75 mm (3 in) to 300 mm (12 in)
GRAVEL COARSE GRAVEL FINE GRAVEL	4.75 mm (No. 4) to 75 mm (3 in) 19 mm (3/4 in) to 75 mm (3 in) 4.75 mm (No. 4) to 19 mm (3/4 in)
SAND COARSE SAND MEDIUM SAND FINE SAND	0.075mm (No. 200) to 4.75mm (No. 4) 2.0 mm (No. 10) to 4.75 mm (No. 4) 0.42 mm (No. 40) to 2.0 mm (No. 10) 0.075 mm (No. 200) to 0.42 mm (No. 40)
SILT AND CLAY	SMALLER THAN 0.075mm (No. 200)

SILT AND CLAY DESCRIPTIONS

DESCRIPTION	TYPICAL UNIFIED DESIGNATION
SILT	ML (NON-PLASTIC)
CLAYEY SILT	CL-ML (LOW PLASTICITY)
CLAY	CL
FAT CLAY	СН
ELASTIC SILT	МН
ORGANIC SOILS	OL, OH, Pt

SAMPLE TYPES

SYMBOL	DESCRIPTION
SS	2" O.D. SPLIT SPOON
BK	BULK
GB	GRAB SAMPLE
ST	SHELBY TUBE
MC	2 ½" I.D. CAL. MOD. SAMPLER
HQ	DIAMOND ROCK CORE SAMPLE

MISCELLANEOUS LOG SYMBOLS DESCRIPTION

SYMBOL	DESCRIPTION
VWP	VIBRATING WIRE PIEZOMETER
ATD	AT TIME OF DRILLING
PI	PLASTICITY INDEX
Ţ	APPROX. GWT OBSERVED DURING DRILLING
_	APPROX. GWT MEASURED AFTER WELL INSTALLATION

LOG AND SOIL CLASSIFICATION LEGEND

F PRO L	PRO, JEC1 OCA	Ject: [No.: Tion:	Downtown Redmond Link Extension 1657705 Marymoor Park	COR	D O	F B RILLIN DRIL COOF	OREH	OLE DF October 23 October 30 N: 345,899	RLE , 2017), 201 E: 1,	- G018 08:22 7 00:00 422,090	Т	SHEET: 2 of 6 GS ELEV.: 38.4 feet OC ELEV.: na DATUM: NAVD88/Project [Datı
			SOIL PROFILE					SAMPLES		■ PENETRATION RESI	STANCE		ابر
(t) (t) 40	BORING METHOD	Depth 0.04	DESCRIPTION	<u>а</u> Ш -1.6	nscs	GRAPHIC LOG	SAMPLE TYPE & NUMBER	BLOWS per 6 in Automatic 140 lb Hammer, 30 inch drop	REC ATT (in)	10 20 30 WATER CONTENT Wp	40 (%) W _i	NOTES WATER LEVELS	ADDITION
		(; S d ()	SP-SM), POORLY GRADED SAND WITH SILT, medium sand, few nonplastic fines, lark gray; medium dense to dense, wet <i>continued</i>)				S ² -S	12-12-15 (27)	<u>12</u> 18	0 ■			
 45	-				SP-SM		SS 212	14-15-16 (31)	<u>12</u> 18	31	•		
 50		<u>50.0</u>		- <u>11.6</u>							• • • • • • • • • • • • • • • • • • • •		
· _		(i li d c	SM), SILTY SAND, fine to medium sand, ttle nonplastic fines, dark gray, medium lense to very dense, wet, thin seams of lean sand (SP) < 1/4 inch thick										
- 55												53.5: Successful pressuremeter test 55: Successful pressuremeter test	
-	, Line and						S-13 S-13	9-10-12 (22)	<u>4</u> 18	22 ■			
<u>60</u> -	Mud Rota						SS 44	8-10-12 (22)	<u>15</u> 18	22 ○ ■		60: S-14: % Fines = 25	
- 65	-				SM		 No⊡	22-25-23	<u>18</u>		48		
-							<u>ν</u> ν ν ν	(48) 8-14-19	18 18	33	•		
70	-						<u> </u>	(33)	18	-			
- - 75												73: Successful pressuremeter test 74.5: Successful pressuremeter test	
- - 80							SS SS 17	11-12-14 (26)	<u>16</u> 18	○ ■		77.5: S-17: % Fines = 23; Drilling chatter from 77 to 82 ft, Possible gravel and cobbles present	
DRI	LLIN DF DRI	IG CO. RILLER LL RIG	Log continued on next page Holocene Roddy Gilszth CME-850, Track Mount			L CH RE\	 OGGED: ECKED: /IEWED:	Carly Schae Margaret Pr Dave Findle	effer yor		;	Golder	tr

DRLE-G018 2 of 6

			SOIL PROFILE			2001		SAMPLES	,		ATION F	RESISTAN	ICE		T
	NG					<u>∪</u>	ш~с	BLOWS		10	BLOWS	/ft 30 40		NOTES	
СГ (ft	BORI	Depth	DESCRIPTION	Elev	sos	LOG	MPL YPE &	per 6 in Automatic 140 lb	REC ATT	WATE	R CONT	ENT (%)		WATER LEVELS	
80		80.0		-41.6		6	õ⊢ z	Hammer, 30 inch drop	(in)	W _p 20	40 E	i0 80	W		
_			(SM), SILTY SAND, fine to medium sand, little nonplastic fines, dark gray; medium		SM		S-18 S-18	25-30-34 (64)	<u>14</u> 18			· · ·	>>		
_		82 5	clean sand (SP) < 1/4 inch thick	-44 1	SIVI							· · ·			
-		02.5	(CL-ML), SILTY CLAY WITH SAND, low									· · ·			
-			dark gray; very stiff, moist, sand seams up									· · ·			
35							/ "o	7-6-9	18	15		· · ·		85 8 ft 03/04/2018	
-							<u>, , , , , , , , , , , , , , , , , , , </u>	(15)	18)	· · ·	-	▼ VWP reading	
_												· · ·		VWP reading	
-												· · ·		- 89 1 ft 06/02/2018	
90					CL-ML						_	· · ·		VWP reading 90° S-20^{\circ} PI = 6	
_							SS SS	11-7-10 (17)	<u>18</u> 18	1	/: ∎	•			
-															
-												· · ·			
-												· · ·			
95_							105	6-7-9	18	16	3	· · ·			
-		07.0		50.0				(16)	18	• • •).	· · ·			
-		97.0	(ML), SILT, nonplastic fines, trace fine	<u>58.0</u>			4					· · ·			
-	~		gravel, dark gray; very stiff to hard, wet									· · ·			
00	Rotan											· · ·		100: S-22: PI = NP	
	Aud F						SS SS	11-11-12 (23)	<u>18</u> 18	0	:23 ■	· · ·			
-	~						0	(20)				· · ·			
-												· · ·			
-												· · ·			
05_					ML		100	5-9-14	18		23	· · ·			
-							∑ [°] SS	(23)	18	C					
_												· · ·			
-												· · ·			
10															
-							SS SS	9-18-19 (37)	<u>18</u> 18			37: ∎			
_		112 5		74.1				()				· · ·			
-		112.5	(CH), FAT CLAY, high plasticity fines, few	<u>/4</u> .1							:	· · ·			
-			seams <1/4 thick								•	· · ·			
15							(n ho	1-2-4	18	6		· · ·			
-					СН		∑ ³ °	(6)	18		0	· · ·			
-												· · ·			
-							1.1		30			· · ·			
20		120.0		-81.6			o, o		30			· · ·		120: S-26: PI = 13	
			Log continued on next page							:	;				

I PRO L	PRO. JECI OCA	RECO IECT: Downtown Redmond Link Extension NO.: 1657705 FION: Marymoor Park	RD		B B B B B B B B B B B B B B B B B B B	OREH S START: ING END: DINATES:	OLE DF October 23, October 30 N: 345,899	2017 , 2017 E: 1,	-G018 08:22 7 00:00 T 422,090	SHEET: 4 of 6 GS ELEV.: 38.4 feet OC ELEV.: na DATUM: NAVD88/Project Da	atur
		SOIL PROFILE					SAMPLES		PENETRATION RESISTANCE		_ (
HLd30 120	BORING METHOD	5 DESCRIPTION الم	.6	USCS	GRAPHIC LOG	SAMPLE TYPE & NUMBER	BLOWS per 6 in Automatic 140 lb Hammer, 30 inch drop	REC ATT (in)	WATER CONTENT (%) W _p I W 20 40 60 80	NOTES WATER LEVELS	
		(CL), LEAN CLAY, medium plasticity fines, few fine sand, dark gray; very soft to stiff,		CL		ss 5-26	0-0-0 (0)	16 18	0		
		moist <u>122.0</u> (CL-MI) SILTY CLAY low plasticity finas	3.6		A		(-)				
		few fine sand, dark gray; soft, moist				ST ST-2		<u>30</u> 30			
125			C	L-ML		51 SS	1-2-3	1	5		
		127.5 (CL), LEAN CLAY, medium plasticity fines, few fine sand, dark gray; very soft to stiff, moist	9.1			/ \ <u> </u>	(5)	18			
 		indist				SS S-28	4-6-8 (14)	<u>18</u> 18	14 ∎O	130: S-28: PI = 18	
_ <u>135</u> 				CL		ST ST-3		<u>30</u> 30			
 _ 140	Rotary					1			10		
	Mud				\square	SS SS	4-6-4 (10)	<u>1</u> 18			
 _ 145		-104 (SM), SILTY SAND, medium sand, little nonplastic fines, trace subrounded to subangular gravel, dark gray; dense to very dense, wet	.1								
						Ss SS	23-26-25 (51)	<u>12</u> 18			
				SM		Ss S31	15-20-20 (40)	<u>9</u> 18	0 ■	150: S-31: % Fines = 18; VWP installed	
		467.6				SS S-32	26-32-32 (64)	<u>10</u> 18	>>		
 160		(CL), LEAN CLAY, low plasticity fines, some fine to medium sand, dark gray; stiff, moist	<u>. 1</u>	CL						160: S. 33: DI = 19	
DRI		Log continued on next page G CO.: Holocene IILLER: Roddy Gilszth L RIG: CME-850 Track Mount		ľ		OGGED: ECKED: EWED [.]	Carly Schae Margaret Pr Dave Findle	effer yor		Golder Golder Associate	

DRLE-G018 4 of 6

PRO L	PRO. JEC1 OCA	JECT: T NO.: TION:	RE Downtown Redmond Link Extension 1657705 Marymoor Park	COR	DC	DF B DRILLIN DRILL COOR	OREH G START LING END	October 23 October 30 N: 345,899	RLE , 2017), 201 E: 1,4	-G018 08:22 7 00:00 422,090	T	SHEET: 5 of 6 GS ELEV.: 38.4 feet OC ELEV.: na DATUM: NAVD88/Project Datu
			SOIL PROFILE					SAMPLES		PENETRATIO	N RESISTANCE	_ <u>(</u>
HL den (#)	BORING METHOD	Depth	DESCRIPTION	>э Э Э Э	nscs	GRAPHIC LOG	SAMPLE TYPE & NUMBER	BLOWS per 6 in Automatic 140 lb Hammer, 30 inch drop	REC ATT (in)	10 20 WATER CO	30 40 NTENT (%) W 60 80	NOTES VOIL WATER LEVELS
	-	162.5	(CL), LEAN CLAY, low plasticity fines, some fine to medium sand, dark gray; stiff, moist <i>(continued)</i>	-121.0	CL		8.5% X	20-11-8 (19)	<u>18</u> 18	<u>19</u> 19 ∎		
 165	-	102.0	(CH), SANDY FAT CLAY, high plasticity ines, some fine to medium sand, dark gray, laminated; very stiff to hard, moist	-124.1								
	-						ST 4		<u>30</u> 30			
 <u>170</u> 	-						SS 34 SS	16-16-18 (34)	<u>14</u> 18	0	34 ■	170: S-34: % Fines = 53
 <u>175</u>	-						S.35 S.35	10-13-24 (37)	<u>18</u> 18	0	37 ■	175: S-35: PI = 52
 <u>180</u> 	Mud Rotary				СН		S. S. S.	10-14-19 (33)	<u>18</u> 18		33 ■	
 <u>185</u> 	-						SS SS S-37	14-15-27 (42)	<u>16</u> 18	0	42 ■	185: S-37: % Fines = 61
 	-						S SS	15-21-24 (45)	<u>0</u> 18	0	45 ■	190: S-38: PI = 52
	-											
	-	197.5	(SM), SILTY SAND, fine sand, some nonplastic fines, trace fine subrounded gravel, dark gray; very dense, wet	<u>-159</u> .1	SM							
	ILLIN DF DRI	L NG CO RILLEF LL RIG	.: Holocene R: Roddy Gilszth G: CME-850, Track Mount			LC CH REV) DGGED: ECKED: (IEWED:	Carly Schae Margaret Pr Dave Findle	effer yor	<u> : :</u>		Golder

DRLE-G018 5 of 6

I PRO L	PRO. JECI OCA	JECT: Do TNO.: 16 TION: Ma	RE owntown Redmond Link Extension 57705 arymoor Park	COR		OF B RILLIN DRILL COOR	OREH G START: ING END: DINATES:	OLE DF October 23, October 30 N: 345,899	2017 , 201 E: 1,	- G018 ′08:22 7 00:00 т 422,090 т	SHEET: 6 of 6 GS ELEV.: 38.4 feet OC ELEV.: na DATUM: NAVD88/Project Dat
			SOIL PROFILE					SAMPLES		■ PENETRATION RESISTANCE BLOWS / ft	T
(J) HLdad 200	BORING METHOD	Depth Depth 200.0	DESCRIPTION	<u>ੇ ਜੋ</u> ਜ਼	NSCS	GRAPHIC LOG	SAMPLE TYPE & NUMBER	BLOWS per 6 in Automatic 140 lb Hammer, 30 inch drop	REC ATT (in)	10 20 30 40 WATER CONTENT (%) W	NOTES OU WATER LEVELS
 205		(SM non grav (cor), SILTY SAND, fine sand, some plastic fines, trace fine subrounded rel, dark gray; very dense, wet <i>tinued</i>) 				40 SS 53	50/2" (50/2")	22	×	200.1 - 220: S-39: % Fines = 31; Drilling chatter
210	ud Rotary				SM		Ŭ Ó	(50/1")	1		
 215	Ŭ.										
 220		220.0 Bott	om of borehole at 220.0 ft. alled seismic casing and vibrating wire	181.6							
225	-	piez	cometer								
 	-										
 	-										
	•										
	LLIN DF DRI	NG CO.: RILLER: LL RIG:	Holocene Roddy Gilszth CME-850, Track Mount			L(CH REV	DGGED: ECKED: 'IEWED:	Carly Schae Margaret Pr Dave Findle	effer yor y		Golder

PR PROJE LOC	ROJ ECT CAT	REC ECT: Downtown Redmond Link Extension NO.: 1657705 FION: North of Marymoor Park, South of 520	;OR		DRILLIN DRILL COOF	OREH G START: LING END: RDINATES:	OLE DF : July 21, 20 [.] : July 25, : N: 345,927	XLE 17 09: 2017 E: 1,	02 17:1 422,4	00 51			Т	SHEET: 1 of 5 GS ELEV.: 32.4 feet OC ELEV.: na DATUM: NAVD88/Project [Da
		SOIL PROFILE					SAMPLES		■ PE	NETR		RESIST	TANCE		Ļ
O DEPTH (ft) BORING	METHOD		а Е 32.4	NSCS	GRAPHIC LOG	SAMPLE TYPE & NUMBER	BLOWS per 6 in Automatic 140 lb Hammer, 30 inch drop	REC ATT (in)	1 V W _P H		20 R CONT	30 4 TENT (%	40 %) — Wi 80	NOTES WATER LEVELS	
-		(ML), SILT, low plasticity fines, brown and white; stiff, moist to wet, few roots and wood fragments observed 2.0	30.4	ML	1/2 - <u>1/2</u>	S 2-S	2-5-7 (12)	<u>9</u> 18		12 ∎	0	•			
-		(CL), LEAN CLAY, low plasticity fines, few fine sand, gray; soft, moist, few roots		CL		S SS	2-1-1 (2)	<u>6</u> 18	2	•	0	•	•		
5		(PT), PEAT, dark brown; very soft, wet	<u>27.9</u>	 PT	-		0.0.40	0		13	•		•	4.5: Drilling mud loss	
-		5.8 (GP), POORLY GRADED GRAVEL, fine to coarse subrounded to subangular gravel, trace medium to spece and trace	26.7		0°	N.S.S.	0-3-10 (13)	8 18			•		>>	6: Drilling chatter	
_		nonplastic fines, dark gray; medium dense to dense, wet				S S S	30-21-19 (40)	<u>8</u> 18	_	•	•	4	10	∑ 7.5 ft, ATD	
<u>10</u> -						ss SS	24-21-18 (39)	<u>2</u> 18	-	•	•	3 ∎	9		
-						လ လို့	21-17-16 (33)	<u>10</u> 18	0	•	· · · · ·	33 ■	- - - - - - - - - - - - - - - - - - -		
<u>15</u>				GP		SS S-7	8-10-17 (27)	<u>0</u> 18	0	•	27 ■		•	15: S-7: % Fines < 1 16: Drilling chatter	
20 - W - W - 25	Mud Rotary					N 88 88	19-19-19 (38)	<u>8</u> 18	-	· · · · · · · · · · · · · · · · · · ·		38	3		
-						S S S	11-14-14 (28)	<u>0</u> 18		•	28	8			
		27.5 (SP), POORLY GRADED SAND, fine to medium sand, trace subrounded gravel, trace nonplastic fines, dark gray, medium dense to dense, wet	4.9								•				
<u>30</u> -						Ss 10	19-18-14 (32)	<u>9</u> 18	c	>	•	32 ■	• • • • • • •		
-				SP						•	•	· · · · · · ·	· · · · · ·		
<u>35</u>						S.5 S.5 S.5	15-14-16 (30)	<u>14</u> 18	-	•		30 ■	• • • • • • • • • • • • • • • • • • •		
40		37.5 (SM), SILTY SAND, fine to medium sand, little nonplastic fines, dark gray, medium dense to dense, wet	<u>-5.1</u>	 SM		- - - - -					•	- - - - - - - - - - - - - - - - - - -	-	40: S-12: % Eines - 20	
	LIN	G CO.: Holt Services Inc ILLER: Larry Inselmore			LI CH) DGGED: IECKED:	Carly Schae Margaret Pr	effer yor				;		Golder	- -

PRO L	PRO JEC ⁻ OCA	JECT: F NO.: TION:	RE Downtown Redmond Link Extension 1657705 North of Marymoor Park, South of 520	COR	DC	PFB RILLIN DRIL COOF	OREH	OLE DF July 21, 20 July 25, N: 345,927	RLE 17 09: 2017 E: 1,	- G019 02 17:00 422,451	-	SHEET: 2 of 5 GS ELEV.: 32.4 feet FOC ELEV.: na DATUM: NAVD88/Project Da
			SOIL PROFILE					SAMPLES				-
HLdED 40	BORING METHOD	Uepth 40.0	DESCRIPTION (SM), SILTY SAND, fine to medium sand.	а Е -7.6	nscs	GRAPHIC LOG	SAMPLE TYPE & NUMBER	BLOWS per 6 in Automatic 140 lb Hammer, 30 inch drop	REC ATT (in)	10 20 WATER CC W _p 1 20 40 ; 20	30 40 DNTENT (%) ⊕ ^W ↓ W ₁ 60 80 ⋮ ⋮	NOTES OF WATER LEVELS
 45	-		little nonplastic fines, dark gray, medium dense to dense, wet <i>(continued)</i>				S.12	8-9-11 (20)	<u>16</u> 18	○ ■		
 50	-						2 S S S S S S S S S S S S S S S S S S S	3-6-22	<u>10</u> 18 <u>18</u>		28	
 55	-						SS 35 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	(28) 8-9-13	<u>18</u> <u>16</u>	222		
 60	Aud Rotary				SM			(22) 10-11-10 (21)	18 <u>16</u> 18	21		60: S-16: % Fines = 16
 65 							S-17 S	(21) 15-16-19 (35)	<u>16</u> <u>16</u> 18		35 ■	
 - 70 	-	72.5		40.1			S.18 S.18	8-10-18 (28)	<u>15</u> 18	0	28	
	-		(ML), SANDY SILT, nonplastic fines, some fine sand, dark gray; stiff to hard, wet	<u>-40.1</u>	 ML		S S S S	1-3-5 (8)	<u>18</u> 18	8 0		75: S-19: PI = NP
			Log continued on next page									
	LLIN DF DRI	NG CO RILLE LL RI	D.: Holt Services Inc R: Larry Inselmore G: Mobile B-54			L CH REV	OGGED: IECKED: /IEWED:	Carly Schae Margaret Pi Dave Findle	effer ryor ey			Golder

F PRO. L(PRO JECI OCA	RECO IECT: Downtown Redmond Link Extension NO.: 1657705 FION: North of Marymoor Park, South of 520		PFB RILLIN DRIL COOF	OREH	OLE DF July 21, 201 July 25, N: 345,927	RLE 17 09: 2017 E: 1,	- G019 ⁰² 17:00 т 422,451	SHEET: 3 of 5 GS ELEV.: 32.4 feet OC ELEV.: na DATUM: NAVD88/Project I	Datu
		SOIL PROFILE				SAMPLES		■ PENETRATION RESISTANCE		
08 DEPTH (ff)	BORING METHOD	E DESCRIPTION a 80.0 -47.	nscs	GRAPHIC LOG	SAMPLE TYPE & NUMBER	BLOWS per 6 in Automatic 140 lb Hammer, 30 inch drop	REC ATT (in)	BLOWS / π 10 20 30 40 WATER CONTENT (%)	NOTES WATER LEVELS	ADDITIONAL
		(ML), SANDY SILT, nonplastic fines, some fine sand, dark gray; stiff to hard, wet (continued) 84.0 -51.	ML		S.20 S.20 S.20	5-14-17 (31)	<u>14</u> 18	31		
<u>85</u> 		fines, some fine sand, dark gray; medium stiff to very stiff, moist			SS S-21	5-1-6 (7)	<u>18</u> 18	7 ■ 0	85: S-21: PI = 9	
<u>90</u> 					SS SS S-22	7-4-11 (15)	<u>18</u> 18	15		
95	otary		CL		SS SS S-23	0-1-5 (6)	<u>18</u> 18	6	95: S-23: PI = 15	
_ 100 	Mud Ro				SS S24	2-0-6 (6)	<u>18</u> 18	6		
					SS S555	3-1-4 (5)	<u>18</u> 18	5 0	105: S-25: PI = 13	
 		113.0	6		SS S26	4-0-2 (2)	<u>18</u> 18	2		
 		stiff, wet	ML		SS S-27	0-2-5 (7)	<u>18</u> 18	7 ■ 0	115: S-27: PI = NP	
120	-	Log continued on past page								
DRI	LLIN DF DRI	G CO.: Holt Services Inc IILLER: Larry Inselmore IL RIG: Mobile B-54		L CH RE\) DGGED: IECKED: IEWED:	Carly Schae Margaret Pr Dave Findle	effer yor	1 i	Golder	te:

F PRO L	PRO. JECT OCA	REC JECT: Downtown Redmond Link Extension ⁻ NO.: 1657705 TION: North of Marymoor Park, South of 520	OR	D O	FB RILLIN DRIL COOF	OREH	OLE DF July 21, 20 July 25, N: 345,927	RLE 17 09:0 2017 E: 1,4	-G0 02 17:(422,4	19		1	SHEET: 4 of 5 GS ELEV.: 32.4 feet OC ELEV.: na DATUM: NAVD88/Project	Datur
		SOIL PROFILE					SAMPLES		PEI			SISTANCE		ں ب
HLdHQ (H) 120	BORING METHOD	DESCRIPTION	Ар Еle -87.6	NSCS	GRAPHIC LOG	SAMPLE TYPE & NUMBER	BLOWS per 6 in Automatic 140 lb Hammer, 30 inch drop	REC ATT (in)	1 V W _P H	0 2 VATER 0 4		40 NT (%) 80	NOTES WATER LEVELS	ADDITIONA
		(ML), SANDY SILT, nonplastic fines, some fine sand, dark gray; very soft to medium stiff, wet (continued) 122.0	-89.6	ML		SS SS S-28	0-0-1 (1)	<u>18</u> 18	1				121.5: ST-1 Advanced at 400 psi. Dent in	
		(CL), SANDY LEAN CLAY, low plasticity fines, some fine sand, dark gray; medium stiff to hard, moist Decreased sand content				ST ST-1		<u>24</u> 24		• • • •		• • • • •	shelby tube 1 foot from bottom of tube.	
125						Ss Ss	0-3-4 (7)	<u>18</u> 18	7	0			125: S-29: PI = 15	
				CL		ST-2		<u>24</u> 24		•			at 300 psi; ST-2: PI = 21	
130							10 10 17	10			30			
		132.5	-1 <u>00</u> .1			S. S.	(30)	<u>10</u> 18		•				
		(SC), CLAYEY SAND, fine sand, some medium plasticity fines, gray; medium dense, moist										• • • • • •		
				SC		SS S31	4-4-13 (17)	<u>18</u> 18		17 ○ ∎			135: S-31: % Fines = 35	
	~	137.5 (SP-SC), POORLY GRADED SAND WITH CLAY, fine to coarse sand, few medium plasticity fines, gray: dense to very dense.	105.1									•		
140	Aud Rotar	moist				SS X	11-18-28 (46)	<u>12</u> 18	!	þ		46 ■		
	-	Decreased sand content		SP-SC								• • • • • •		
						200	20-28-40	12						
		147.5	. <u>115</u> .1				(68)	18		5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		>>	-	
 150		gray; stiff, moist												
				CL		S SS SS	3-2-8 (10)	<u>18</u> 18	1	0 ■		• • • • •		
		154.0	121.6											
_ <u>155</u>		little nonplastic fines, trace gravel, light gray; very dense, moist				SS S-35	32-38-38 (76)	<u>12</u> 18	0			>>	↓ ┯	
				SM								•		
160		Log continued on next page								•				
DRI	LLIN DF DRII	IG CO.: Holt Services Inc RILLER: Larry Inselmore LL RIG: Mobile B-54			L CH RE\	ogged: Iecked: /Iewed:	Carly Schae Margaret Pr Dave Findle	effer yor y					Golden	r tes

PRO	PRO. JECI	JECT: [[NO.: 2	RI Downtown Redmond Link Extension 1657705	ECOR			OREH G START	OLE DF July 21, 201 July 25,	RLE 17 09: 2017	-G019	SHEET: 5 of 5 GS ELEV.: 32.4 feet OC ELEV.: na	
			SOIL PROFILE		(COOR	DINATES	SAMPLES	E: 1,	,422,451	DATUM: NAVD88/Project	Datur
(ff) (ff)	BORING METHOD	Leo 0	DESCRIPTION	е 	NSCS	GRAPHIC LOG	SAMPLE TYPE & NUMBER	BLOWS per 6 in Automatic 140 lb Hammer, 30 inch drop	REC ATT (in)	BLOWS / ft 10 20 30 40 WATER CONTENT (%) W _p	NOTES WATER LEVELS	ADDITIONAL LAB TESTING
160 - <		160.0 160.3 BC Ba	ottom of borehole at 160.3 ft. ackfilled with bentonite grout.				SS SS	100/4" (100/4")				
DRI DRI	ILLIN DF DRI	NG CO.: RILLER: LL RIG:	Holt Services Inc Larry Inselmore Mobile B-54			L(CH REV	DGGED: ECKED: 'IEWED:	Carly Schae Margaret Pr Dave Findle	effer yor y		Golde	r ites

PR PROJE LO(ROJ ECT CAT	JECT: Downtown Redmond Link Extension F NO.: 1657705 TION: Marymoor Park	RECOR	DOD	RILLIN DRIL COOF	UREN IG START: LING END: RDINATES:	ULE DF July 27, 20 August 3, 2 345,946 E	XLE 17 15: 017 1 : 1,42	35 0:25 2,844)20 N:		1	SHEET: 1 of 6 GS ELEV.: 34.6 feet FOC ELEV.: na DATUM: NAVD88/Project D
		SOIL PROFILE					SAMPLES		■ PE	NETRA BI	TION RE	SISTANCE	
O DEPTH (ft) BORING	METHOD		а Ш 34.6	NSCS	GRAPHIC LOG	SAMPLE TYPE & NUMBER	BLOWS per 6 in Automatic 140 lb Hammer, 30 inch drop	REC ATT (in)	W _p H	10 2 WATER		- 40 NT (%) 	NOTES WATER LEVELS
-		(ML), SILT WITH SAND, nonplastic fine little fine sand, light brown, roots; stiff, moist	es,	ML	<u>x11</u> /2	S S S	3-4-5 (9)	<u>4</u> 18	0	9.			2. Drillian shettar
	-	(GW-GM), WELL GRADED GRAVEL WITH SILT AND SAND, fine to coarse subrounded to subangular gravel, some fine to coarse sand, little low plastic fine gray and brown; medium dense to very	<u>52.0</u> es,		00000 0000	SS SS	7-9-12 (21)	<u>7</u> 18	0	2	21		2. Uniting chatter
-		dense, moist to wet			0000	S S S	19-20-21 (41)	<u>10</u> 18	-			41 ■	6.9.ft 03/04/2018
-					0000	S & S	18-21-18 (39)	<u>6</u> 18	0	•		39 ■	↓ VWP reading ↓ 7.2 ft, ATD ↓ 7.7 ft, 06/02/2018 VWP reading ↓ 9.2 ft 11/17/2017
<u>10</u> -					0000	S S S	12-7-6 (13)	<u>7</u> 18	0	13 ■			VWP reading 9.7 ft, 09/28/2017 VWP reading 10: S-5: % Fines = 5
					0000	s ss S SS	20-16-13 (29)	<u>8</u> 18	-	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	29 ■		VWP reading
<u>15</u>			c	GW-GN	70000	SS SS S2	14-19-21 (40)	<u>8</u> 18	0	•		40 ■	
-	tary				20000					- - - - - - - - - - - - - - - - - - -			
<u>20</u> 2 - 2 - 2	Mud Ro	Color change to gray			0000 0000	S S S	18-44-50 (94)	<u>7</u> 18	-	•		>>	-
25					00000							-	25. Drilling shotter
_					7000 0000	S S S	17-19-34 (53)	<u>7</u> 18	-	- - - - - - - - - - - - - - - - - - -		>>	
		20.0	1.0		000C					- - - - - - - - - - - - - - - - - - -			
-	-	(SM), SILTY SAND, fine to medium san little nonplastic fines, few coarse subrounded to subangular gravel, dark gray; medium dense, wet	<u>4.0</u>			S. 30 S.	10-12-11 (23)	<u>0</u> 18	-	· • • • • • • • •	23 ■		
- 35				см						- - - - - - - - - - - - - - - - - - -			35: S-11: % Fines = 20
						Ss 11-S	13-10-13 (23)	<u>12</u> 18	-	O O	23 ■		
40	-									•			
DRILL	LIN DR	IG CO.: Holt Services RILLER: Larry Inselmore			L CF	i Ogged: Iecked:	Carly Schae Margaret Pr	effer yor	<u> </u>	2		;	Golder

PRO L	PRO. JECT OCA	JECT: Downtown Redmond Link E F NO.: 1657705 TION: Marymoor Park	RECORD	OF B DRILLIN DRILL COOR	OREH G START: ING END: DINATES:	OLE DF July 27, 201 August 3, 2 345,946 E	RLE 7 15:3 017 10 : 1,42	- G020 35 0:25 N: 2,844		Т	SHEET: 2 of 6 GS ELEV.: 34.6 feet OC ELEV.: na DATUM: NAVD88/Project	Datur
		SOIL PR	DFILE			SAMPLES		PENETRA	ATION RESIS	TANCE		ے ب
DEPTH (ft)	BORING METHOD		Elev	GRAPHIC LOG	SAMPLE TYPE & NUMBER	BLOWS per 6 in Automatic 140 lb Hammer, 30 inch drop	REC ATT (in)	10 WATEF W _p I	20 30 R CONTENT	40 (%)	NOTES WATER LEVELS	
	-	(SP-SM), POORLY GRADED SILT, fine to medium sand, fe fines, dark gray; medium den: wet	SAND WITH w nonplastic se to very,		SS S-12	9-14-20 (34)	<u>0</u> 18	<u> </u>	[™] 34 ■			
 	-				SS S-13	9-10-12 (22)	<u>14</u> 18	0	22		45: S-13: % Fines = 12	
 50 	-				SS S-14	10-13-11 (24)	<u>12</u> 18	0	24 ■		50: S-14: % Fines = 14	
 _ <u>55</u> 					SS S-15	9-15-24 (39)	<u>15</u> 18			39 ■		
 	Mud Rotary		SP-i	SM	S-16 SS	9-11-13 (24)	<u>0</u> 18	0	24 ■			
 	-				SS S-17	16-25-28 (53)	<u>0</u> 18			>>		
 	-				SS S-18	16-20-21 (41)	<u>18</u> 18			4 1 ■		
75		77.5	42.0		SS S-19	8-12-15 (27)	<u>14</u> 18	0	27 ■			
80	-	(ML), SANDY SILT, nonplasti fine to medium sand, dark gra hard, wet Log continued on next page	c fines, some y, very stiff to								78: VWP Installed	
DRI	LLIN DF DRII	IG CO.: Holt Services RILLER: Larry Inselmore LL RIG: Mobile B-54		LC CH REV	DGGED: ECKED: 'IEWED:	Carly Schae Margaret Pr Dave Findle	ffer yor y				Golden	r tes

F PRO. L(PRO. JECI DCA	RECO JECT: Downtown Redmond Link Extension T NO.: 1657705 TION: Marymoor Park	OR	DC	DFB RILLIN DRILL COOF	OREH G START: LING END: RDINATES:	OLE DF July 27, 20 August 3, 2 N: 345,946	RLE 17 15: 2017 1 E: 1,	- G020 35 0:25 422,844	SHEET: 3 of 6 GS ELEV: 34.6 feet TOC ELEV: na DATUM: NAVD88/Project Dat
		SOIL PROFILE			_		SAMPLES		PENETRATION RESISTAN	CE
B DEPTH (ft) (ft)	BORING METHOD	DESCRIPTION	°∂ Ш	NSCS	GRAPHIC LOG	SAMPLE TYPE & NUMBER	BLOWS per 6 in Automatic 140 lb Hammer, 30 inch drop	REC ATT (in)	10 20 30 40 WATER CONTENT (%) W W _P → → 20 40 60 80	NOTES OO WATER LEVELS
		(ML), SANDY SILT, nonplastic fines, some fine to medium sand, dark gray; very stiff to hard, wet <i>(continued)</i>				SS S'20	2-8-12 (20)	<u>15</u> 18	20 ○ ■	80: S-20: PI = NP; % Fines = 60
 _ 85 _				ML		260	13-22-28	<u>13</u>		50
		87.0 (CL), SANDY LEAN CLAY, low plasticity fines, some fine to medium sand, dark	- <u>52</u> .4			<u>ທີ່</u> ທີ່ ທີ່	(50)	18		Ţ
 _90		gray; stiff, moist		CL		S-22	5-6-6 (12)	<u>18</u> 18	12 ■ 0	90: S-22: PI = 8
 _ 95		93.0 (ML), SANDY SILT, nonplastic fines, some fine to medium sand, dark gray, very stiff, wet	- <u>58</u> .4						27	
						SS S'23	12-13-14 (27)	<u>15</u> 18		
	l Rotary			IVIL			10.40	10	24	100: S-24: PI = NP; %
	Muq	103.0 -	-68.4			SS S'22	(24)	<u>10</u> 18	0	
		(CL), SANDY LEAN CLAY, low plasticity fines, some fine to medium sand, dark gray, stiff, moist					10.0.7	10	13	105: S-25: PI = 8; %
		108.0 -	-73.4	UL		SS SS S2	(13)	<u>10</u> 18		
 110		(ML), SANDY SILT, low plasticity fines, some fine to medium sand, dark gray; medium stiff, wet		ML		/ <u>"</u> ø	2-1-6	18	7	110: S-26: PI = 4; % Fines = 85
		112.5 (CL), LEAN CLAY, low plasticity fines, few	- <u>77</u> .9				(7)	18	• O	
		mile same, dark gray, medium sum to hard, moist, thin sand seams < 1/4 inch thick						24		
	- -			CL		SS S ⁻ S-27 ST-	0-2-5 (7)	24 <u>18</u> 18	7	
120		Log continued on next page								120: S-28: PI = 17
DRI	LLIN DF DRII	NG CO.: Holt Services RILLER: Larry Inselmore ILL RIG: Mobile B-54			LO CH REV	ogged: Ecked: Iewed:	Carly Schae Margaret Pr Dave Findle	effer 'yor ey		Golder

PRO		RECC JECT: Downtown Redmond Link Extension F NO.: 1657705 TION: Marymoor Park	ORD (OREH	OLE DF July 27, 20' August 3, 2	RLE 17 15: 017 1	-G020 ³⁵ 0:25 T	SHEET: 4 of 6 GS ELEV.: 34.6 feet OC ELEV.: na DATI M: NAVD88/Project Da
		SOIL PROFILE		0001		SAMPLES	L. I,	PENETRATION RESISTANCE	
HL (ij) 120	BORING METHOD	DESCRIPTION	SOSO 35.4	GRAPHIC LOG	SAMPLE TYPE & NUMBER	BLOWS per 6 in Automatic 140 lb Hammer, 30 inch drop	REC ATT (in)	BLOWS / ft 10 20 30 40 WATER CONTENT (%) W _p	NOTES WATER LEVELS
 125		(CL), LEAN CLAY, low plasticity fines, few fine sand, dark gray, medium stiff to hard, moist, thin sand seams < 1/4 inch thick (continued)			S.28 S.28	0-1-5 (6)	<u>18</u> 18		
 130					SS SS SS SS SS SS SS SS SS SS SS SS SS	2-2-5 (7)	<u>18</u> 18	7	
 135			CL		S SS S	11-27-21 (48)	<u>3</u> 18	5	135: S-31: PI = 12
 <u>140</u>	Rotary				S.33	0-0-5 (5)	<u>18</u> 18	■ 0 11	
 145	Mud	Color change to gray			S. S.	(11)	<u>18</u> 18		145: S-33: PI = 14
		147.5 (SM), SILTY SAND, fine to medium sand, some nonplastic fines, dark gray; medium dense, wet	12.9		X S S	0-0-5 (5)	<u>18</u> 18	5	
<u>150</u> 			SM		S. S.	1-3-7 (10)	<u>18</u> 18	10 D	150: S-34: % Fines = 38
 <u>155</u> 		157.5 (SP), POORLY GRADED SAND, fine to	22.9		S. S. S.	8-8-11 (19)	<u>18</u> 18	0 ■	155: S-35: % Fines = 23
160		medium sand, trace nonplastic fines, gray; very dense, wet Log continued on next page	SP						
DRI	LLIN DF DRII	IG CO.: Holt Services RILLER: Larry Inselmore LL RIG: Mobile B-54		LO CH REV	DGGED: ECKED: /IEWED:	Carly Schae Margaret Pr Dave Findle	effer yor y		Golder

F PRO	PRO, JEC1 OCA	RECC JECT: Downtown Redmond Link Extension F NO.: 1657705 TION: Marymoor Park	RD	OF E DRILLI DRI COC	BOREH NG START LLING END RDINATES	IOLE DF : July 27, 20 : August 3, 2 : N: 345,946	RLE 17 15: 017 1 E: 1,4	-G020 35 0:25 422,844	т	SHEET: 5 of 6 GS ELEV.: 34.6 feet OC ELEV.: na DATUM: NAVD88/Projec	t Datur
		SOIL PROFILE				SAMPLES			RESISTANCE		ں ب
HLd DEPTH 160	BORING METHOD	DESCRIPTION	5.4	GRAPHIC	SAMPLE TYPE & NUMBER	BLOWS per 6 in Automatic 140 lb Hammer, 30 inch drop	REC ATT (in)	10 20 WATER CON ₩, I	30 40 ITENT (%) /I W, 60 80	NOTES WATER LEVELS	ADDITIONA I AB TESTIN
		(SP), POORLY GRADED SAND, fine to medium sand, trace nonplastic fines, gray; very dense, wet <i>(continued)</i> 162.512	SI 7.9	D	S-38	29-32-27 (59)	<u>15</u> 18	O	>>		
 165		CL), LEAN CLAY, medium plasticity fines, trace fine sand, gray; stiff to hard, moist						10		165: S-37: PI = 19	
					SS S-37	0-3-9 (12)	<u>18</u> 18	IZ ∎ 0			
170					Sss 38 28 28	34-50/3" (50/3")	<u>8</u> 9		>>	-	
<u>175</u> 	-		с		S.39 S.39	10-14-18 (32)	<u>4</u> 18		32 ■		
 180	Rotary							12		180: S-40: PI = 14	
	Mud				SS S40	0-2-11 (13)	<u>18</u> 18				
 _ 185 _					45 X	4-3-5 (8)	<u>18</u> 18	8			
		187.5 (SM), SILTY SAND, fine to coarse sand, some nonplastic fines, few gravel, dark gray; very dense, wet	2.9		ST-2 S		<u>12</u> 12			186.5 - 188.5: Shelby Tube ST-2 Advanced with 600 psi of pressure.	
<u>190</u>					SS SS SS SS SS	30-48-38 (86)	<u>12</u> 18	0	>>	190: S-40: % Fines = 32	
 <u>195</u> 			SI	N 1	SS SS 43	100/2" (100/2")	2			195 - 200: Drilling chatter	
200		Log continued on next page									
DRI	llin Df Dri	IG CO.: Holt Services RILLER: Larry Inselmore LL.RIG: Mobile B-54		I C RE	Logged: Hecked: Viewed:	Carly Schae Margaret Pr Dave Findle	effer 'yor 'y			Golde	er ites

PRO	PRO. JEC	JECT: I T NO.:	RE Downtown Redmond Link Extension 1657705	ECOR	DO	F B RILLIN DRILI	OREH	OLE DR July 27, 201 August 3, 20	RLE 7 15: 017 1	-G020 ³⁵ 10:25	SHEET: 6 of 6 GS ELEV.: 34.6 feet OC ELEV.: na	
	OCA	TION: I	Marymoor Park			COOF	RDINATES	: N: 345,946	E: 1,		DATUM: NAVD88/Project I	Datu
Ξ	рG		SOIL FROMEL			0		BLOWS		BLOWS / ft	NOTEO	
DEPT (ft)	BORIN	Depth	DESCRIPTION	Elev	nscs	GRAPHIC LOG	SAMPLE TYPE & NUMBEF	per 6 in Automatic 140 lb Hammer, 30 inch	REC ATT	10 20 30 40 WATER CONTENT (%) W, W,	WATER LEVELS	
200	-	200.0		-165.4	SM		×°4	85/5"	<u>(</u> , <u>1</u>	20 40 60 80		
		201.0 Bo	ottom of borehole at 201.0 ft.	-166.4	0		0,	(85/5'')	5		201: Drilling chatter, possible	
		l In:	stalled vibrating wire piezometer								cobbles/boulders.	
	-											
210												
215												
220												
225												
 230												
235												
240	-											
DRI			Holt Services			L(Carly Schae	ffer	1	Colder	•
	DRI	LL RIG:	Larry insemore Mobile B-54			REV	IEUKED:	Dave Findley	yur y		Associat	tes

PRO PROJEC LOCA	JE T N ATIO	RECO CT: Downtown Redmond Link Extension IO: 1657705 ON: Marymoor Park	RD		B B B B B B B B B B B B B B B B B B B	OREH G START: LING END: DINATES:	OLE DF July 20, 20 July 20, N: 345,946	RLE 17 10: 2017 E: 1,	- G(13 16 423,2)21 26 213	т	SHEET: 1 of 2 GS ELEV.: 35.2 feet OC ELEV.: na DATUM: NAVD88/Project	Dat
		SOIL PROFILE					SAMPLES		■ PE	ENETRATION RESIS	TANCE		Ţ
O DEPTH (ft) BORING METHOD	0.0	E DESCRIPTION الم	5.2		GRAPHIC LOG	SAMPLE TYPE & NUMBER	BLOWS per 6 in Automatic 140 lb Hammer, 30 inch drop	REC ATT (in)	W _p I	20 30 WATER CONTENT (40 %) — W, 80	NOTES WATER LEVELS	
_	2.0	(ML), SILT WITH SAND, nonplastic fines, brown and white; medium stiff, wet	N 8.2	1L /	<u></u> <u></u>	S S S	1-3-2 (5)	<u>9</u> 18	5	0			
	3.	(ML), SILT, low plasticity fines, trace fine to medium sand, light gray; soft, wet, trace forots 200 CNA, POOPLY CRAPER CAND WITH		1L		S.2 SS	1-2-2 (4)	<u>9</u> 18	4	Q	•	2.5: S-2: PI = 8	
5	<u>4.</u>	5	0.7 SP. 0.7 SP. 0.2 S	P		X S S	0-6-13	<u>4</u>	-	19	•	∑ 5.0 ft, ATD (estimated based on soil	
	6.	5 medium sand, trace nonplastic fines, dark 28 prown; medium dense, wet, trace roots (PT), SANDY PEAT WITH GRAVEL, nonplastic fines, some fine to medium sand, little coarse subangular gravel, dark	8.7 <u>F</u>	Υ M		X 8 4 8 8 4	(19) 12-16-15 (31)	<u>8</u> 18	0	31 ■	•		
10	<u>9.</u>	brown; stiff, wet - (SM), SILTY SAND WITH GRAVEL, fine to medium sand, some fine to coarse subrounded to subangular gravel, little constanting and some fine to coarse	5. <u>7</u>			N S S	7-21-22	<u>4</u> 18	-		43 ■		
-		(SP-SM), POORLY GRADED SAND WITH SILT AND GRAVEL, medium sand, some fine to coarse subrounded to subangular gravel, few nonplastic fines, dark gray; dense to very dense, wet				လ လို့ လို	(43) 14-11-12 (23)	<u>8</u> 18	0	23 ■	· · · · · ·	12.5: S-6: % Fines = 7	
<u>15</u>		increased sand content (5-6)				SS S-7	13-21-19 (40)	<u>6</u> 18	-		40 ■		
ary			SP	-SM							· · · · ·		
20 01 02 02 02 02 02 02 02 02 02 02 02 02 02						S S S	23-34-35 (69)	<u>4</u> 18	0		>>		
<u>25</u>						X S S	15-20-29 (49)	<u>8</u> 18	-		4 ∎	9	
30	27	7.5 (GM), SILTY GRAVEL, fine to coarse subrounded to subangular gravel, some fine to medium sand, little nonplastic fines, dark gray; dense to very dense, wet	<u>.7</u>										
-						Ss 30	15-17-23 (40)	<u>12</u> 18	0		40 ■		
- - 35 -			G			S-2 21-2	18-21-22 (43)	<u>8</u> 18	-		43 ■		
									-		5 5 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		
40		Log continued on next page		o	ıΨl(40: Difficult drilling	
DRILLIN DF DRI	NG RIL ILL	CO.: Holt Services Inc LER: Larry Inselmore .RIG: Mobile B-54			L(CH REV	DGGED: ECKED: 'IEWED:	Carly Schae Margaret Pr Dave Findle	effer ryor ey				Golder	r .te

PR	PF OJE LO	ROJ ECT ICA	IECT: D NO.: 1 FION: N	REC Downtown Redmond Link Extension 657705 <i>M</i> arymoor Park	COR		DFB RILLIN DRIL COOF	OREH	OLE DI July 20, 20 July 20, N: 345,946	RLE 17 10: 2017 E: 1,	- G021 13 7 16:26 T 423,213	SHEET: 2 of 2 GS ELEV.: 35.2 feet OC ELEV.: na DATUM: NAVD88/Project Datu
				SOIL PROFILE			-		SAMPLES	I	PENETRATION RESISTANCE	۲. ۲
HLH 40		METHOD	Depth 0.04	DESCRIPTION	AElev -4.8	nscs	GRAPHIC LOG	SAMPLE TYPE & NUMBER	BLOWS per 6 in Automatic 140 lb Hammer, 30 inch drop	REC ATT (in)	10 20 30 40 WATER CONTENT (%) W _p +	NOTES WATER LEVELS
-	-		(Gi sul fine dai (cc	M), SILTY GRAVEL, fine to coarse brounded to subangular gravel, some e to medium sand, little nonplastic fines, rk gray; dense to very dense, wet <i>intinued</i>)		GM		SS S-12 SS	17-33-48 (81)	<u>10</u> 18	0 >>	
- - 45 -	5	ld Rotary	44.0 (SI sai ver	P), POORLY GRADED SAND, fine nd, trace low plasticity fines, dark gray; y dense, wet	<u>-8.8</u>			S-13 S-13 S-13	17-30-33 (63)	<u>7</u> 18		
- - 50	- - - -	M				SP						
-			E1 E		16.2			S ² -2 S ² -2	20-27-37 (64)	<u>10</u> 18		•
-	-		Bo Ba	ttom of borehole at 51.5 ft. ckfilled with bentonite grout.	-10.3						, <u>, , ,</u>	
- 55	-											
-	, _											
-	_											
60)											
-	-											
65	5											
-												
70)											
-	_											
06S.GPJ	-											
	<u>}</u>											
	-											
08 GHAEF)											
:\USERS\CS	RIL	LIN DR	G CO.:	Holt Services Inc Larry Inselmore Mobile B-54			L CH RE\	ogged: Iecked: /Iewed:	Carly Schae Margaret Pi Dave Findle	effer ryor		Golder

F PROJ L(PRO. JECT	RE JECT: Downtown Redmond Link Extension T NO.: 1657705 TION: Marymoor Park	COF		FB RILLIN DRILL COOR	OREH G START: LING END: DINATES:	OLE DF July 26, 20 July 27, N: 345,936	PLE 17 11:0 2017 E: 1,	- G022 04 10:00 423,624		Т	SHEET: 1 of 2 GS ELEV.: 36.3 feet OC ELEV.: na DATUM: NAVD88/Project	Datı
		SOIL PROFILE					SAMPLES		■ PENETRAT	ION RESI	STANCE		
O DEPTH (ft)	BORING METHOD	DESCRIPTION	<u>∂а</u> Ш 36.3	nscs	GRAPHIC LOG	SAMPLE TYPE & NUMBER	BLOWS per 6 in Automatic 140 lb Hammer, 30 inch drop	REC ATT (in)	BLC 10 20 WATER C السل	0WS / ft <u>30</u> CONTENT <u>60</u>	40 - (%) - W ₁ 80	NOTES WATER LEVELS	ADDITIONAL
		(ML), SANDY SILT, nonplastic fines, some fine to medium sand, white and light brown, roots; stiff to hard, moist	33.3	ML	$\frac{\sqrt{1}}{\sqrt{1}} \frac{\sqrt{1}}{\sqrt{1}}$	× % %	2-4-6 (10)	<u>7</u> 18	10 ■ 0				
5		(PT), PEAT, low plasticity fines, very dark brown, roots; hard, moist	<u> </u>		Control Contro	ST-1		<u>24</u> 24		•			
			30.3		B	S'SS	9-22-34 (56)	<u>18</u> 18			>>		
		SAND, fine to coarse subrounded to subangular gravel, few fine to coarse sand, trace nonplastic fines, gray; dense, moist to wet				X % %	19-21-20 (41)	<u>9</u> 18			41 ■	8.4 ft, 03/04/2018 WWP reading 8.6 ft, 06/02/2018	
						X	10-18-13 (31)	<u>2</u> 18	0	31 ■		VWP reading 9.3 ft, ATD 9.7 ft, 09/28/2017 VWP reading 10: S-4: % Fines = 3	
 . 15						S SS	22-18-21 (39)	<u>4</u> 18		•	39 ■	11.1 ft, 11/17/2017 VWP reading 11.7 ft, 11/04/2017 VWP reading	
						လ လို့ မို	13-16-17 (33)	<u>8</u> 18	0	33 ■			
20	Rotary			GP									
	Mud					SS SS 7-S	11-18-18 (36)	<u>0</u> 18		3	i6 ∎		
25							15-16-18	9		34			
-						X 8.9	(34)	18	0				
30						ي دي م م	10-16-18 (34)	<u>3</u> 18		34 ■			
		31.5 (SP-SM), POORLY GRADED SAND WITH SILT, fine to medium sand, few nonplastic fines, dark gray; medium dense, wet	<u>4.8</u>							•			
<u>35</u>				SP-SN	1	S-10 SS 10	12-8-15 (23)	<u>14</u> 18	0 1	23 ■		35: S-10: % Fines = 6	
40		Log continued on pert page											
DRI	LLIN DF DRII	NG CO.: Holt Services Inc RILLER: Larry Inselmore LL RIG: Mobile B-54			LC CH REV	DGGED: ECKED: IEWED:	Carly Schae Margaret Pr Dave Findle	effer yor	<u>1 , ,</u>	,		Golder	r te
PR	PF OJE LO	ROJ ECT	IECT: E NO.: 1 TION: M	REC Downtown Redmond Link Extension 657705 Marymoor Park	COF		FB RILLIN DRILI COOF	OREH	OLE DF July 26, 20 July 27, N: 345,936	RLE 17 11: 2017 E: 1,	- G022 04 10:00 т 423,624	SHEET: 2 of 2 GS ELEV.: 36.3 feet OC ELEV.: na DATUM: NAVD88/Project I	Datur
--	-----------------	-------------------	-------------------------------	---	-----------------	-------	-------------------------------	-----------------------------------	--	--------------------------------	--	---	-----------------------
				SOIL PROFILE					SAMPLES		PENETRATION RESISTANCE		٦ç
HLHAD 40		METHOD	Depth 0.04	DESCRIPTION	ле Ш -3.7	nscs	GRAPHIC LOG	SAMPLE TYPE & NUMBER	BLOWS per 6 in Automatic 140 lb Hammer, 30 inch drop	REC ATT (in)	10 20 30 40 WATER CONTENT (%) W W W W 20 40 60 60 80	NOTES WATER LEVELS	ADDITION ²
_	-		(SI SIL fin (cc	P-SM), POORLY GRADED SAND WITH T, fine to medium sand, few nonplastic es, dark gray; medium dense, wet ontinued)		SP-SM		SS S-11	9-11-8 (19)	<u>13</u> 18	. 19		
_ 	-	Mud Rotary	44.0 (SI me sul da	M), SILTY SAND WITH GRAVEL, fine to edium sand, little fine to coarse brounded gravel, little nonplastic fines, rk gray; medium dense, wet	<u>-7.7</u>			S.12 S.12 S.12	8-11-10 (21)	<u>14</u> 18	21 ○ ■	45: S-12: % Fines = 14 47: VWP Installed	
- - 50	-					SM		N SE	9-10-10	<u>14</u>	20		
	$\frac{1}{2}$		51.5 Bo	ttom of borehole at 51.5 ft.	-15.2			v ° v	(20)	18			<u> </u>
- 55 													
HAEFFER/DESK 10P/URLE L(08 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1													
	RIL	LIN DR DRIL	G CO.: IILLER: .L. RIG:	Holt Services Inc Larry Inselmore Mobile B-54			LI CH RE\) OGGED: IECKED: /IEWED:	Carly Schae Margaret Pr Dave Findle	effer yor		Golder	r tes

P PROJI LC	ROJ ECT	IECT: NO. TION:	E Downtown Redmond Link Extension 1657705 Marymoor Park	COF		PFB RILLIN DRIL COOF	OREH	OLE DF July 19, 20 July 19, N: 345,927	RLE 17 10: 2017 E: 1,	-G 45 16 424,0)23 :59)02		т	SHEET: 1 of 2 GS ELEV.: 37.0 feet OC ELEV.: na DATUM: NAVD88/Project I	Dai
			SOIL PROFILE					SAMPLES		■ PI	ENETR/ B	ATION RES	SISTANCE		7
O DEPTH (ft)	BORING METHOD	0.0	DESCRIPTION	а Ш 37.0	nscs	GRAPHIC LOG	SAMPLE TYPE & NUMBER	BLOWS per 6 in Automatic 140 lb Hammer, 30 inch drop	REC ATT (in)	W _p	10 WATEF 20	20 30 R CONTEN	40 T (%) W ₁	NOTES WATER LEVELS	
-			(ML), FILL: SANDY SILT, nonplastic fines, some fine to medium sand, brown to dark brown; very soft to soft, moist to wet		ML					3	•	· · · · · · · · · · · · · · · · · · ·	• • • • • • •	2.5: S-1: PI = NP	
5		4.5	(PT), FILL: PEAT, low plasticity fines, very	<u>32.5</u>			S ss 4	3-2-1 (3)	<u>14</u> 18		0			5: S-2: PI = NP	
-			dark brown, roots; very soft, moist		PT		S SS	0-0-0 (0)	<u>18</u> 18		•	· · · · · · · · · · · · · · · · · · ·	>>(∇ ∇ ∇ 7.0 ft, ATD (estimated	
-		<u>7.5</u> 9.0	(SP-SM), POORLY GRADED SAND WITH SILT AND GRAVEL, fine to medium sand, some fine subrounded to subangular	<u>29.5</u> <u>28.0</u>	SP-SN	1	S S S	10-17-12 (29)	<u>11</u> 18			29 ■		based on soil conditions) 7.5 - 40: Difficult drilling	
<u>10</u> - -			(GP), POORLY GRADED GRAVEL WITH SAND, fine to coarse subrounded to subangular gravel, some fine to coarse sand trace nonplastic fines gray medium				S S A	13-11-21 (32)	<u>4</u> 18			32 ■			
-			dense to very dense, wet				s s	18-16-13 (29)	<u>6</u> 18		•	29 ■	-		
<u>15</u> -							S S S	8-17-15 (32)	<u>7</u> 18	0		32 ■			
-	ary				GP						•	· · · · · · · · · · · · · · · · · · ·	• • • • • •		
20	Mud Rota						SS 2-2	50-47-35 (82)	<u>8</u> 18					20 - 40: Caving gravels	
-											•		- - - - - - - - -		
<u>25</u> -							N N N	30-30-29 (59)	<u>0</u> 18				>>		
- - -		<u>27.5</u>	(SP-SM), POORLY GRADED SAND WITH SILT AND GRAVEL, fine to coarse sand, few fine to coarse subrounded gravel, few nonplastic fines, gray; medium dense. wet	9.5_		00					•	· · · · · · · · · · · · · · · · · · ·			
30			. ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		SP-SN	1	S S S	9-11-13 (24)	<u>9</u> 18	С		24 ∎	•	30: S-9: % Fines = 5	
		<u>32.5</u>	(GP), POORLY GRADED GRAVEL WITH SAND, fine to coarse subrounded to subangular gravel, little fine to coarse sand, trace nonplastic fines, grav. very	<u>4.5</u>											
<u>35</u> -			dense, wet		GP		Ss 10 Ss 10	19-26-47 (73)	<u>4</u> 18				>>		
											•	· · · · · · · · · · · · · · · · · · ·			
40			Log continued on next page			P- ~						· · ·		_	
DRIL r	LIN DR	IG CO RILLE	D.: Holt Services Inc R: Larry Inselmore G: Mobile B-54			L CH RE\	OGGED: IECKED:	Carly Schae Margaret Pr	effer 'yor					Golder	•

F	F PRO L	PRO JECT OCA	Ject: No.: Tion:	REC Downtown Redmond Link Extension 1657705 Marymoor Park	COR	D O	FB RILLIN DRILI	OREH	OLE DF July 19, 20 July 19, N: 345,927	RLE 17 10: 2017 E: 1,	- G023 45 7 16:59 T 424,002	SHEET: 2 of 2 GS ELEV.: 37.0 feet OC ELEV.: na DATUM: NAVD88/Project Da	atur
				SOIL PROFILE					SAMPLES	-	PENETRATION RESISTANCE		ے پار
DEPTH	≝ (≢)] [∰] 40	BORING METHOD	Depth 0.04	DESCRIPTION	А Ш -3.0	nscs	GRAPHIC LOG	SAMPLE TYPE & NUMBER	BLOWS per 6 in Automatic 140 lb Hammer, 30 inch drop	REC ATT (in)	10 20 30 40 WATER CONTENT (%) W W W W 20 40 60 80 80	NOTES CONTROL	
-	-		42.5(5		5.5	GP		S-15 SS	5-25-39 (64)	<u>0</u> 18	>>>		
	- 45 -	ld Rotary	gi	IRAVEL, the to medium sand, little the to barse subrounded to subangular gravel, ray; dense to very dense, wet				Ss Ss X	17-16-17 (33)	<u>9</u> 18	33		
-	-	M				SP							
								<u>13</u> SS 1	17-26-33	<u>2</u> 18			
-	_		51.5 B	ottom of borehole at 51.5 ft.	-14.5			<u>ه ۳ / ۲</u>	(59)	10			
	- 55 - - - 60 - - - - - - - - - - - - - - -												
S.GPJ	- 70 - -												
HAEFFER/DESKTOP/DRLE LOG	- 75 - - 80												
C:\USERS\CSCI	DRI	LLIN DF DRI	LG CO.: RILLER: LL RIG:	Holt Services Inc Larry Inselmore Mobile B-54			LC CH REV	DGGED: ECKED: IEWED:	Carly Schae Margaret Pr Dave Findle	effer ryor	1	Golder	

PF	F ROJ LC	PRO. IECI	Ject: No.: Tion:	REC Downtown Redmond Link Extension 1657705 Marymoor Park	ORI	D OF	F BC RILLIN DRILI	G START	DLE DR July 27, 201 July 27, N: 345,927	LE- 17 00: 2017 E: 1,	-G023B 00 00:00 1 423,995	SHEET: 1 of 1 GS ELEV.: 36.9 feet OC ELEV.: na DATUM: NAVD88/Project	Datur
		_		SOIL PROFILE			1		SAMPLES		PENETRATION RESISTANCE		Å
0 DEPTH	(#)	BORING METHOD	0.0	DESCRIPTION	а Е 36.9	NSCS	GRAPHIC LOG	SAMPLE TYPE & NUMBER	BLOWS per 6 in Automatic Hammer, 30 inch drop	REC ATT (in)	10 20 30 40 WATER CONTENT (%) W	- NOTES	
_	-		(I fi ∨	ML), SANDY SILT, nonplastic fines, some ne to medium sand, brown to dark brown; ery soft to soft, wet								1.5: ST-1: PI = 80	
-	-	Mud Rotary				ML		ST-1		24 24		3.5: Sand at bottom of ST sample	
	;	_	<u>6.5</u>	lattern of barabala at 6.5.4	30.4			ST ST-2		<u>18</u> 24		6: Peat at bottom of ST sample	
-	-		B	Sottom of borehole at 6.5 ft. Backfilled with bentonite grout.									
- 10	0												
-	-												
-	-												
-	-												
F	_												
20	0												
F	_												
2	5												
	-												
-	_												
30	0												
2-	-												
	5												
	-												
	- - 0												
	RIL	LLIN DF DRII	IG CO. RILLER LL RIG	: Holt Services Inc : Larry Inselmore : Mobile B-54			L(CH REV) DGGED: ECKED: IEWED:	Carly Schae Margaret Pr Dave Findle	effer yor	1	Golden	r tes

F PROJ L(PRO IECT DCA	JECT F NO. TION	EC Downtown Redmond Link Extension 1657705 Marymoor Park	JOF		FB RILLIN DRIL COOI	NG START	OLE DI August 10, August 11 N: 345,868	~LE 2017 , 201 E: 1,	-G(08:02 7 11 424,7)24 16 04			G TO	SHEET: 1 of 2 SS ELEV.: 40.7 feet DC ELEV.: na DATUM: NAVD88/Project	Dat
_	<i></i> 0		SOIL PROFILE					SAMPLES		■ PE	NETRA Bl	TION RES OWS / ft	SISTAN	ICE		AL
O DEPTH (ft)	BORING	0.0 Depth	DESCRIPTION	а Ш 40.7	nscs	GRAPHIC LOG	SAMPLE TYPE & NUMBER	BLOWS per 6 in Automatic 140 lb Hammer, 30 inch drop	REC ATT (in)	W _p H	10 2 WATER	0 30 CONTEN	40 JT (%)	W	NOTES WATER LEVELS	ADDITION
		1.5	(SP-SM), POORLY GRADED SAND WITH SILT, fine to medium sand, few nonplastic fines, brown; medium dense, moist, few roots	<u>39</u> .2	SP-SM		S-S	5-9-7 (16)	<u>18</u> 18	_	: 16 ○ ■		•		25 S 2 DI - ND	
-			(ML), SILT WITH SAND, nonplastic fines, little medium sand, brown mottled gray; medium stiff to medium stiff, moist to wet				S SS SS	6-7-6 (13)	<u>8</u> 18	-	13 a∎		•		2.3. 3-2. FI = NF	
5					ML		S.S.S.	3-5-9 (14)	<u>12</u> 18	-	14 ∎		;	>>0		
-		0.5		24.0			S S S	2-2-4 (6)	<u>10</u> 18	6	•	0	•		7.5: S-4: PI = NP	
10		9.5 10.8	(OL), ORGANIC SILT, low plasticity fines, gray; very soft, wet (PT), PEAT, nonplastic fines, dark brown;	29.9	OL PT		S.S.	0-0-0 (0)	<u>18</u> 18	Þ		0	,	>>0	10: S-5A (10-10.75): PI = 16 ∖ 10.75: S-5B (10.75-11.5): PI = NP	
-		12.0	(OH), ORGANIC SILT, high plasticity fines, gray; very soft, wet	<u>28</u> .7	он				<u>24</u>	-	- - - - - - - - - -		•		12.5: S-6: PI = 53	
<u>15</u>		<u>15.0</u>	(SP), POORLY GRADED SAND, fine to medium sand, trace nonplastic fines, dark	_ 25.7			SS ST ST	0-0-3	36 <u>12</u>	3	0				15.0 ft, 03/04/2018 VWP reading 15.2 ft, 06/02/2018	
-			fragments		SP			(3)	18)		•	1	VWP reading 17.7 ft, 10/03/2017 VWP reading 18.1 ft 11/17/2017	
20	Mud Rotary	19.0	(GP), POORLY GRADED GRAVEL WITH SAND, fine to coarse subrounded to subangular gravel, some fine to coarse sand, trace nonplastic fines, dark gray; medium dense to very dense, wet	_ <u>21</u> .7			SS SS S'-S	10-11-16 (27)	<u>9</u> 18	-		27 ∎	-		VWP reading 18.7 ft, 11/04/2017 VWP reading	
-													•			
- 25							S S S	28-30-24 (54)	<u>0</u> 18	-	•		;	>>		
-											•		•			
<u>30</u> -					GP		S S S	16-19-19 (38)	<u>11</u> 18	-	•		38 ■			
-											- - - - - - - - - - - - - - - - - - -		•			
35							ss Ss	13-15-16 (31)	<u>9</u> 18	0	- - - - - - - - - - - - - - - - - - -	31 ∎	•			
-											• • • • • • • • • • • •		•			
40		<u>40.0</u>	Log continued on next page	0.7		00 00	0				•		5 5 5 5 5 5 5 5		<u> </u>	
DRII	LLIN DF	IG CO	D.: Holt Services Inc R: Abe Causland			L Cł	OGGED:	Carly Schae Margaret Pr	effer 'yor						Golde	r

PRO	PRO JEC ⁻ OCA	Ject: f no.: tion:	REC Downtown Redmond Link Extension 1657705 Marymoor Park	COR		FB RILLIN DRILI COOF	OREH G START: LING END: RDINATES:	OLE DF August 10, August 11 N: 345,868	2017 , 2017 E: 1,	- G024 08:02 7 11:16 т 424,704	SHEET: 2 of 2 GS ELEV.: 40.7 feet OC ELEV.: na DATUM: NAVD88/Project	Datui
			SOIL PROFILE			1		SAMPLES		PENETRATION RESISTANCE BLOWS / ft		귀역
(J) (J) 40	BORING METHOD	Depth 0.04	DESCRIPTION	Ael Elec 0.7	NSCS	GRAPHIC LOG	SAMPLE TYPE & NUMBER	BLOWS per 6 in Automatic 140 lb Hammer, 30 inch drop	REC ATT (in)	10 20 30 40 WATER CONTENT (%) W _p → W W 20 40 60 80 W	NOTES WATER LEVELS	
		(S Sa de	SP), POORLY GRADED SAND, medium and, trace nonplastic fines, dark gray; ense to very dense, wet				S-13 S-13	11-20-31 (51)	<u>0</u> 18	>>		
 50	Mud Rotar				SP		SS S'12	17-20-21 (41)	<u>13</u> 18	4 1 ■	47: VWP Installed	
		54.5		10.0			ss Ss	11-18-23 (41)	<u>13</u> 18	41 ■		
			stalled vibrating wire plezometer									
			Holt Services Inc			L() DGGED:	Carly Schae	effer			
	DF DRI	RILLER: LL RIG:	Abe Causland Mobile B-54			CH REV	ECKED:	Margaret Pr Dave Findle	yor ey		Golder	tes

I PRO L	PRO. JECI DCA	RE JECT: Downtown Redmond Link Extension T NO.: 1657705 \TION: Marymoor Park	COR	D C	DFB RILLIN DRIL COOF	OREH	OLE DF August 8, August 9, N: 345,844	2017 2017 2017 E: 1,	-GC 7 08: 7 12: 425,1)25 42 46 12		C TC	SHEET: 1 of 2 GS ELEV.: 41.5 feet DC ELEV.: na DATUM: NAVD88/Project Da	atu
		SOIL PROFILE			i		SAMPLES		■ PE	NETRATION	RESISTAN S / ft	ICE		ے ہے ا
DEPTH (ft)	BORING METHOD			nscs	GRAPHIC LOG	SAMPLE TYPE & NUMBER	BLOWS per 6 in Automatic 140 lb Hammer, 30 inch drop	REC ATT (in)	۷ ا		30 40 ITENT (%)	W,	NOTES WATER LEVELS	
		(ML), FILL: SILT WITH SAND, mostly nonplastic fines, little fine to medium sand, brown; moist	41.5	ML		GS GS SS-1							0 - 5: Hand augered	
	-	4.5 (SP), POORLY GRADED SAND, fine — – sand, trace nonplastic fines, dark gray; loose to medium dense, moist to wet	<u> </u>			S. S. S.	5-7-9 (16)	<u>14</u> 18		16 ○∎				
 		8.5 (OH), ORGANIC SILT, high plasticity fines,	33.0			SS SS	4-2-0 (2)	<u>6</u> 18	2	· · · · · · · · · · · · · · · · · · ·				
10		wood/roots < 1/2 inch thick		ОН		S. S.	1-1-2 (3)	<u>18</u> 18	3	O				
 15		14.0 (PT), PEAT, nonplastic fines, dark brown; very soft, wet	27.5	 PT		ST-1		24 24					12.5: S1-1 @ 12.5': PI = 113 13: ST-1 @ 13.0': PI = 101 13.5: ST-1 @ 13.5': PI = 159	
		15.8 (GP), POORLY GRADED GRAVEL WITH SAND, fine to coarse subrounded to subangular gravel, some medium sand, dark gray; dense to very dense, wet	25.7			\$ % %	0-3-14 (17)	<u>14</u> 18		1/ ■		>>¢	15: S-4: PI = NP 17: Drilling chatter	
	ud Rotary					ې يې ا	12-26-31	<u>6</u>				~~		
 	Z					000	(57)	18		· · · · · · · · · · · · · · · · · · ·				
25				GP		S S S	18-25-22 (47)	<u>9</u> 18	0	· · · · · · · · · · · · · · · · · · ·		47 ■	25: Drilling chatter	
 _ 30										· · · · · · · · · · · · · · · · · · ·		Er	30: Drilling chatter	
						SS SS 7-2	15-20-30 (50)	<u>9</u> 18					í	
 _ <u>35</u>		35.5 (SP), POORLY GRADED SAND, medium	6.0			S S S	15-15-20 (35)	<u>14</u> 18		· · · · · · · · · · · · · · · · · · ·	35 ■			
		dense, wet		SP						· · · · · · · · · · · · · · · · · · ·				
40		Log continued on next page												
DRI	LLIN DF DRI	NG CO.: Holt Services Inc RILLER: Abe Causland ILL RIG: Mobile B-54			L CH RE\	ogged: Iecked: /Iewed:	Carly Schae Margaret Pi Dave Findle	effer yor					Golder	21

PRC	PRO JEC JOCA	JECT: [T NO.: 1 TION: N	REC Downtown Redmond Link Extension 1657705 Marymoor Park	COR		FB RILLIN DRILL COOF	OREH G START: LING END: RDINATES:	OLE DF August 8, August 9, 2 N: 345,844	2017 2017 1 E: 1,	- G025 7 08:42 2:46 т 425,112	SHEET: 2 of 2 GS ELEV.: 41.5 feet OC ELEV.: na DATUM: NAVD88/Project	Datur
			SOIL PROFILE					SAMPLES		PENETRATION RESISTANCE		-14
(t) 40	BORING METHOD	Depth Depth	DESCRIPTION	Ар Ш 1.5	NSCS	GRAPHIC LOG	SAMPLE TYPE & NUMBER	BLOWS per 6 in Automatic 140 lb Hammer, 30 inch drop	REC ATT (in)	10 20 30 40 WATER CONTENT (%) W W W W 20 40 60 80 80	NOTES WATER LEVELS	
_	-	(S sa de	P), POORLY GRADED SAND, medium ind, trace nonplastic fines, dark gray; ense, wet <i>(continued)</i>				8 8 8 8 8	11-17-17 (34)	<u>12</u> 18	. 34 ■		
- _ <u>45</u> _	Mud Rotary				SP		S-20 S-20 S-20	10-18-16 (34)	<u>13</u> 18	34 ■		
- - 50	-						Z o V	14-18-18	13	36		
	-	51.5	attom of borehole at 51 5 ft	-10.0			∖ ∾.?́	(36)	18			
KTOPHDRLE LOGS.GPJ												
NUSERS/CSCHAEFFE		NG CO.: RILLER:	Holt Services Inc Abe Causland Mobile B-54				DGGED: ECKED:	Carly Schae Margaret Pr Dave Findle	effer ryor		Golde	r

RECORD OF TEST PITS

APPENDIX B

Ø		Golder Golder Associates	RECORD OF TEST PIT LOG					TES	T PIT NUMBER DRLE-TP3A
				DA	FE: 3-	-21-18			
		at the second	Y	PRO	OJEC.	T: ST Re	dmond Lin	ık	
		a training and the second	Sector Marco	PRO	OJEC.	T No.: 16	57705		
	-	S. K. Marken		LOC	CATIC)N: Maryı	moor Park	Velodrome,	East
			A Maria	Nor	thing	: 345,420)	Easting	: 1,425,641
	*		- AND - AND -	Dat	um: I	NAVD88/	Project Da	tum	
			-125	Ele	vatio	1 ft: 43.1	feet	Length	k Width ft: 4.0 x 3.5
			7 12	Cor	ntract	or: Kelly's	s Excavatii	ng (Pat Hill)	
			670	Log	ged E	3y: J. Jan	nsgard		
and the second s	(A)			Equ	lipme	nt: TB13	8		
		Ch. Children		Wa Not	obse	rved			
		LET .	Se com	Sur Soc	face (Condition	s:		
		SOIL PROFI	LE				5∝	LAB	INSITU, DRATORY TESTING ¹
HL ()					₽	щщк	1ENC		& NOTES
, DEP	Depth	DESCRIPTION		nscs	GRAPH LOG	SAMPL TYPE	CONSIS- OR DEN	WATER CONTENT (%)	OTHER TESTS & NOTES
- - - - - - - - - - - - - - - - - - -	<u>0.3</u>	Sod (SP), POORLY GRADED SAND, fine to medium s trace fine subrounded gravel, tan-gray, stratified, to 6 inches in diameter; loose, moist; caving obsre the ground surface.	and, trace nonplastic fines, race subrounded cobbles up ved from about 3 feet below	SP		S.G.B. 32	loose	moist	S-1: %Fines = 2 5 - 6: Iron Oxide Staining 7 - 9: Lens of coarse sand and gravel
-	-	Bottom of test pit at 10.0 ft. Backfilled with cuttings and tamped with bucket.							
15									

	Ø	Å	Golder Golder Associates ssociates	RECORD OF TEST PIT LOG					TES	t pit nume Drle-ti	BER P3B
			·		DA	TE: 3	-23-18				
	i fait	and	the second second		PR	OJEC	T : ST Re	dmond Link	K		
		No.	A DE LA DE L		PR	OJEC	T No.: 16	657705			
		T.	E HE E		LO	CATIC	DN: Mary	moor Park '	Velodrome,	East	
	1		A A A A		Noi	thing	j: 345,42	5	Easting	1 ,425,644	
					Dat	um:	NAVD88/	Project Dat	um		
			FU ZIN K		Ele	vatio	n ft: 43.2	feet	Length	Width ft: 4.5 x 3	.5
					Cor	ntract	or: Kelly'	s Excavatin	g (Pat Hill)		
			A Part of the second se		Log	iged I	By: C. Blo	oom			
	53	E.	A WALL OF A SAME AS		Εqι	uipme	nt: TB13	8			
	2		the state of the second		Wa	ter C	onditions	s:			
					Not	obse	rved				
	and a		MARY AND		Sur	face	Conditior	is:			
			The Andrew Book and		Soc	ł					
F			SOIL PROFIL	E							
	TH t)				(0)	₽ ₽	щ∞Щ	TENCΥ ¹ NSITY ²	LABC	©RATORY TESTING ¹ & NOTES	I
	DEF (E DESCRIPTION			nsc	GRAPH LOG	SAMPI TYPE NUMBI	CONSIS OR DEI	WATER CONTENT (%)	OTHER TESTS & NOTES	NELL NSTALL.
⊢	0	0.0	Sod			<u>711</u>					
L		1.0				<u>17 - x1 - 1</u>				1 - 2: Iron Oxide	t 9.5'
			(SP), POORLY GRADED SAND, fine to coarse sat subrounded gravel, light brown to light tan; non-col	nd, trace fine to coarse hesive, medium dense,						Staining	peda
_			moist; sand and gravel content coarsened with dep	oth.							, cap
S.GP	_										4-9.5
LOG											PVC
11 133	· -	-									ed 2"
8 14: RLE	Б										Slott
/18/1	5	1									bgs;
ON FI					SP			compact	moist		0.0
1A.GF											PVG
Ч Ч Ц Ц Ц Ц Ц	· -	-									olid 2
22B 0G P											on: S
		1									tallati
RAPH		-									ell Ins
ST V REG	10										≥⊒
	10	10.5									
2 GIV			Bottom of test pit at 10.5 ft.								
TH P NK11		1	Completed as well. Relet to diagram.								
NDLI NDLI		1									
IT LC											
ITARE	_	1									
K- TE		-									
NDTF	15	1									
03 - GO G:\SOU	Notes	¹ Sec ² Cor	 Legend Sheet for Definition of Terms, Symbols and Abbrevial isistency or Density values are estimated based on excavation issment of samples 	tions resistance and/or visual/manual		ı	1	Checked	I: Margaret	Pryor	

APPENDIX C

IN SITU TESTS – PILOT INFILTRATION TESTING (PIT)

Golder completed the excavation of five test pits at four locations for the purpose of evaluating stormwater infiltration potential. The location of the test pit infiltration sites are shown on Figure 2 and are summarized in Table 2-1. The logs of the test pits are contained in Appendix B. Laboratory tests on test pit samples included grain size analyses, the results of which are contained in Appendix G.

The infiltration tests were completed under the general guidance provided by the Washington State Department of Ecology (WSDOE) guidelines provided in Volume III – Hydrologic Analysis and Flow Control BMPs; Stormwater Management in Western Washington (August 2012)¹. The method utilized was the Small-Scale Pilot Infiltration Test (PIT). The test pits excavated for the PIT were typically 3 feet wide, 4 feet long, and 3 to 4 feet below the existing ground surface. The recommended 6-hour presoak period was abbreviated on three of the four test pits (DRLE-TP1, DRLE-TP3a, and DRLE-TP4) because of very high inflow of water and difficulty in maintaining the 12 inches of presoak head. Typically, inflows for the presoak were on the order of 1,000 gallons in less than an hour. As such, the recommended 6-hour presoak period was terminated early. The actual infiltration testing consisted of a constant head test followed by a falling head test until the test pit was drained. After completion of each infiltration test, the test pit was deepened full depth (10 feet below existing ground) to evaluate the presence or absence of any lower permeable layer that could affect infiltration. The field data analysis results in an uncorrected infiltration rate in inches/hour, summarized in Table C1.

Table C1. Infiltration Rate Correction

	TP-1	TP-2	TP-3A	TP-4
K _{field} (inches/hr)	49	2	74	71

The field data for each PIT is presented below.

¹ Washington State Department of Ecology. 2012. Stormwater Management Manual for Western Washington. Publication Number: 12-10-030. August.

T: +1 425 883-0777 F: +1 425 882-5498

Elapsed Time	Gallons of	Rate (gpm)
(min)	water added	
15	0	0
30	0	0
45	0	0
60	0	0
75	0	0
90	15	1
105	5	0.33
120	5	0.33
135	5	0.33
150	5	0.33
165	10	0.67
180	5	0.33
195	5	0.33
210	5	0.33
225	5	0.33
240	10	0.67
255	5	0.33
270	5	0.33
285	5	0.33
300	5	0.33
315	5	0.33
330	5	0.33
345	5	0.33
360	5	0.33
375	5	0.33
390	5	0.33
405	5	0.33
420	8	0.53

Table C6. DRLE-TP2 Constant Head Test

Table C7. DRLE-TP2 Falling Head Test 1

Elapsed time (hr)	Head (in)	Rate (in/hr)
0	12	-
1	9.75	2.25
2	7.75	2
2.92	6	1.91

	Table C8.	DRLE-TP3A	Constant	Head	Test
--	-----------	-----------	----------	------	------

Elapsed Time	Gallons of	Rate (gpm)
(min)	water added	
15	406	27.1
30	265	17.7
45	217	14.5
60	294	19.6
75	291	19.4
90	242	16.1

Elapsed Time (hr)	Head (in)	Rate (in/hr)
0	12	-
0.03	10	67.0
0.06	8	67.1
0.09	6	58.3
0.12	4	67.7
0.15	2	67.4

Elapsed Time (hr)	Head (in)	Rate (in/hr)
0	12	-
0.03	10	77.7
0.06	8	67.9
0.08	6	72.5
0.11	4	69.0
0.14	2	85.9

Table C10. DRLE-TP3A Falling Head Test 2

Table	C11.	DRLE-	TP3A	Falling	Head	Test	3
TUDIC	U			i uning	ncuu	1000	•

Elapsed Time (hr)	Head (in)	Rate (in/hr)
0	5	-
0.03	3	74.0
0.05	1	75.4

APPENDIX G

LABORATORY TESTS – SOIL TESTING (HAYRE MCELROY AND ASSOCIATES, LLC)

HMA Sample #	Sample #	Depth	Date Received	Date of Test	Tare #	Wt of Tare	Tare+ Wet	Tare+ Dry	Moisture %
054-138	G17-A S39	190'	12/13/2017	12/19/2017	G20	15.80	151.00	120.80	28.8
054-139	G17-A S40	200'	12/13/2017	12/19/2017	G14	15.70	124.90	97.20	34.0
054-140	G17-A S41	210'	12/13/2017	12/19/2017	B25	15.90	107.40	84.00	34.4
054-141	G17-A S42A	220'	12/13/2017	12/19/2017	A29	16.20	212.10	194.00	10.2
054-142	G17-A S43	230'	12/13/2017	12/19/2017	X7	192.90	434.80	409.00	11.9
8003-17	G018 S-1	2.5'-4'	11/3/2017	11/7/2017	G-16	15.8	274.1	189.6	48.6
8003-18	G018 S-2	5'-6.5'	11/3/2017	11/7/2017	B-4	15.9	374.3	265.4	43.6
8003-19	G018 S-3	7.5'-9'	11/3/2017	11/7/2017	F-71	15.9	333.9	251.3	35.1
8003-20	G018 S-4	9'-10.5'	11//3/2017	11/7/2017	G-24	15.9	281.1	177.2	64.4
8003-21	G018 S-5	10.5'-12'	11/3/2017	11/7/2017	G-25	15.7	360.0	257.4	42.4
8003-22	G018 S-6	12'-13.5'	11/3/2017	11/7/2017	G-20	15.8	284.3	215.5	34.5
8003-23	G018 S-7	21'-22.5'	11/3/2017	11/7/2017	AB22	15.7	125.3	122.7	2.4
8003-24	G018 S-11	40-41.5'	11/3/2017	11/7/2017	B-25	15.9	564.7	464.1	22.4
8003-25	G018 S-14	60-61.5	11/3/2017	11/7/2017	A-4	15.8	552.0	428.2	30.0
8003-27	G018 S-17	77.5'-79'	11/3/2017	11/7/2017	G-8	15.8	576.6	445.3	30.6
8003-28	G018 S-19	85'-86.5'	11/3/2017	11/7/2017	G-14	15.9	510.0	383.4	34.4
8003-29	G018 S-20	90'-91.5'	11/3/2017	11/7/2017	G-3	15.6	483.4	372.0	31.3
8003-30	G018 S-21	95'-96.5'	11/3/2017	11/7/2017	G-7	15.9	550.6	409.3	35.9
8003-31	G018 S-22	100'-101.5'	11/3/2017	11/7/2017	B-9	15.9	473.4	372.4	28.3
8003-32	G018 S-23	105'-106.5'	11/3/2017	11/7/2017	ABL3	16.0	564.9	431.8	32.0
8003-33	G018 S-25	115'-116.5'	11/3/2017	11/7/2017	G-1	15.7	452.2	333.6	37.3
8003-34	G018 S-26	120'-121.5'	11/3/2017	11/7/2017	A-21	15.9	392.4	293.1	35.8
8003-35	G018 S-27	125'-126.5'	11/3/2017	11/7/2017	X-7	193.3	246.1	235.4	25.4
8003-36	G018 S-28	130'-131.5'	11/3/2017	11/7/2017	X-8	194.1	621.5	512.8	34.1
8003-37	G018 S-29	140'-141.5'	11/3/2017	11/7/2017	A-44	190.1	223.0	213.6	40.0
8003-38	G018 S-31	150'-151.5'	11/3/2017	11/7/2017	X-6	196.2	695.7	619.2	18.1
8003-39	G018 S-33	160'-161.5'	11/3/2017	11/7/2017	X-9	231.2	624.2	515.9	38.0
8003-40	G018 S-34	170'-171.5'	11/3/2017	11/7/2017	X-5	198.3	581.7	486.7	32.9
8003-41	G018 S-35	175'-176.5'	11/3/2017	11/7/2017	9A	161.9	666.2	532.0	36.3
8003-42	G018 S-37	185'-186.5'	11/3/2017	11/7/2017	AB	157.6	592.9	487.3	32.0
8003-43	G018 S-38	190'-191.5'	11/3/2017	11/7/2017	AJ	164.9	612.2	507.9	30.4
8003-44	G018 S-39	200'-201.5'	11/3/2017	11/7/2017	A-7	16.4	211.1	190.9	11.6

HMA Sample #	Sample #	Depth	Date Received	Date of Test	Tare #	Wt of Tare	Tare+ Wet	Tare+ Dry	Moisture %
7992-1	G019 S-1	0'-1.5'	9/29/2017	10/3/2017	A-15	18.0	134.9	102.5	38.3
7992-2	G019 S-2	2.5'-4'	9/29/2017	10/3/2017	A-16	16.2	138.6	101.1	44.2
7992-3	G019 S-3	5'-6.5'	9/29/2017	10/3/2017	A-22	16.1	181.2	76.6	172.9
7992-4	G019 S-6	12.5'-14'	9/29/2017	10/3/2017	B-14	15.9	288.5	256.7	13.2
7992-5	G019 S-7	15'-16.5'	9/29/2017	10/3/2017	B-21	15.8	130.8	120.4	9.9
7992-6	G019 S-10	30'-31'.5"	9/29/2017	10/3/2017	A-2	16.9	311.6	267.6	17.6
7992-7	G019 S-12	40'-41.5'	9/29/2017	10/3/2017	A-9	16.4	326.1	258.1	28.1
7992-8	G019 S-14	50'-51.5'	9/29/2017	10/3/2017	B-5	16.20	222.10	174.20	30.3
7992-9	G019 S-16	60'-61.5'	9/29/2017	10/3/2017	B-3	16.60	308.80	244.4	28.3
7992-10	G019 S-18	70'-71.5'	9/29/2017	10/3/2017	B-8	16.2	274.50	218.40	27.7
7980-1	G019 S-19a	75'-76.5'	8/10/2017	8/11/2017	A-26	16.4	356.6	275.5	31.3
7980-2	G019 S-19b	75'-76.5'	8/10/2017	8/11/2017	A-191	16.2	371.9	287.5	31.1
7980-3	G019 S-21	85'-86.5'	8/10/2017	8/11/2017	B-4	16.6	445.9	335.6	34.6
7980-4	G019 S-23	95'-96.5'	8/10/2017	8/11/2017	A-19	16.0	470.9	346.2	37.8
7980-5	G019 S-25	105'-106.5'	8/10/2017	8/11/2017	A-13	16.1	421.1	321.6	32.6
7980-6	G019 S-27	115'-116.5'	8/10/2017	8/11/2017	AB23	16.0	461.2	370.3	25.7
7980-7	G019 S-29	125'-126.5'	8/10/2017	8/11/2017	B-9	15.8	480.6	368.6	31.7
7992-11	G019 S-31	135'-136'.5"	9/29/2017	10/3/2017	B-10	16.9	389.1	314.3	25.2
7992-12	G019 S-32	140'-141'.5"	9/29/2017	10/3/2017	For	16.0	387.8	322.10	21.5
7992-13	G019 S-35	155'-156.5'	929/2017	10/3/2017	A-29	16.0	551.8	478.2	15.9
7992-14	G020 S-1	0.0'-1.5'	9/29/2017	10/3/2017	В	16.0	55.7	51.8	10.9
7992-15	G020 S-2	2.5'-4'	9/29/2017	10/3/2017	A-10	16.2	316.0	290.4	9.3
7992-16	G020 S-4	7.5'-9'	9/29/2017	10/3/2017	A-7	16.3	289.6	263.6	10.5
7992-17	G020 S-5	10'-11.5'	9/29/2017	10/3/2017	B-1	15.9	405.5	370.40	9.9
7992-18	G020 S-7	15'-16.5'	9/29/2017	10/3/2017	B-26	15.9	387.9	356.8	9.1
7992-19	G020 S-11	35'-36.5'	9/29/2017	10/3/2017	B-17	16.6	384.6	321.7	20.6
7992-20	G020 S-13	45'-46.5'	9/29/2017	10/3/2017	A-23	16.4	279.2	227.4	24.5
7992-21	G020 S-14	50'-51.5'	9/29/2017	10/3/2017	B-6	16.1	398.1	320.1	25.7
7992-22	G020 S-16	60'-61.5'	9/29/2017	10/3/2017	B-2	16.1	566.5	455.3	25.3
7992-23	G020 S-19	75'-76.5'	9/29/2017	10/3/2017	A-12	16.4	427.6	340.8	26.8
7980-8	G020 S-20	80'-81.5'	8/10/2017	8/11/2017	zz	16.1	488.8	378.6	30.4
7980-8	G020 S-20	80'-81.5'	8/10/2017	8/11/2017	ZZ	16.10	488.80	378.60	30.4
7980-9	G020 S-22	90'-91.5'	8/10/2017	8/11/2017	B-192	15.7	509.7	383.4	34.3

HMA Sample #	Sample #	Depth	Date Received	Date of Test	Tare #	Wt of Tare	Tare+ Wet	Tare+ Dry	Moisture %
7980-9	G020 S-22	90'-91.5'	8/10/2017	8/11/2017	B-192	15.70	509.70	383.4	34.3
7980-10	G020 S-24	100'-101.5'	8/10/2017	8/11/2017	B-2	17.0	545.8	423.0	30.2
7980-10	G020 S-24	100'-101.5'	8/10/2017	8/11/2017	B-2	17.0	545.80	423.00	30.2
7980-11	G020 S-25	105'-106.5	8/10/2017	8/11/2017	B-3	15.8	496.4	378.7	32.4
7980-11	G020 S-25	105'-106.5'	8/10/2017	8/11/2017	B-3	15.8	496.4	378.7	32.4
7980-12	G020 S-26	110'-111.5'	8/10/2017	8/11/2017	A-1	16.1	413.1	312.7	33.9
7980-12	G020 S-26	110'-111.5'	8/10/2017	8/11/2017	A-1	16.1	413.1	312.70	33.9
7980-13	G020 S-28	120'-121.5'	8/10/2017	8/11/2017	A-27	16.0	457.4	344.4	34.4
7980-14	G020 S-31	135'-136.5'	8/10/2017	8/11/2017	B-28	16.6	447.1	344.4	31.3
7980-15	G020 S-33	145'-146.5'	8/10/2017	8/11/2017	A-31	15.8	401.3	315.1	28.8
7995-1	G020 S-34	150'-151.5'	10/17/2017	10/18/2017	B-18	15.8	343.8	285.5	21.6
7992-24	G020 S-35	155'-156.5'	9/29/2017	10/3/2017	B-19	16.1	631.0	522.6	21.4
7992-25	G020 S-36	160'-161.5'	9/29/2017	10/3/2017	A-14	15.8	450.4	383.2	18.3
7980-16	G020 S-37	165'-166.5'	8/10/2017	8/11/2017	A-3	16.1	400.2	307.5	31.8
7980-17	G020 S-40	180'-181.5'	8/10/2017	8/11/2017	B-27	15.7	278.9	223.80	26.5
7992-26	G021 S-1	0'-1.5'	9/29/2017	10/3/2017	A-4	16.4	183.6	136.7	39.0
7992-27	G021 S-2	2.5'-3.5'	9/29/2017	10/3/2017	B-18	15.8	278.1	206.5	37.5
7992-28	G021 S-3	5'-6'	9/29/2017	10/3/2017	A-18	15.9	115.7	88.5	37.5
7992-29	G021 S-4	7.5'-9'	9/29/2017	10/3/2017	A-17	16.0	282.3	258.4	9.9
7992-30	G021 S-6	12.5'-14'	9/29/2017	10/3/2017	B-20	17.60	404.60	364.00	11.7
7992-31	G021 S-8	20'-21.5	9/29/2017	10/3/2017	Ab-22	16.00	113.30	105.9	8.2
7992-32	G021 S-10	30'-31.5'	9/29/2017	10/3/2017	B-25	15.7	535.60	484.50	10.9
7992-33	G021 S-12	40'-41.5	9/29/2017	10/3/2017	C-1	16.0	482.8	438.7	10.4
7992-34	G022 S-1	0'1.5"	9/29/2017	10/3/2017	C-3	15.8	270.0	205.90	33.7
7992-35	G022 S-2	5'-6.5'	929/2017	10/3/2017	C-4	16.0	248.1	107.0	155.1
7992-36	G022 S-4	10'-11.5'	9/29/2017	10/3/2017	C-5	15.7	149.0	143.0	4.7
7992-37	G022 S-6	15'-16.5'	9/29/2017	10/3/2017	C-6	15.9	459.9	418.2	10.4
7992-38	G022 S-8	25'-26.5'	9/29/2017	10/3/2017	C-7	16.0	560.7	516.8	8.8
7992-39	G022 S-10	35'-36.5'	9/29/2017	10/3/2017	C-8	15.8	417.9	347.30	21.3
7992-40	G022 S-12	45'-46.5'	9/29/2017	10/3/2017	C-9	15.8	442.4	363.9	22.6
7992-41	G023 S-1	3.6'-4.0	9/29/2017	10/3/2017	C-10	15.8	232.1	181.3	30.7
7992-42	G023 S-2	5'-6.5'	9/29/2017	10/3/2017	C-11	15.8	329.8	140.5	151.8
7992-43	G023 S-6	15'-17.5'	9/29/2017	10/3/2017	C-12	15.9	488.5	445.9	9.9
7992-44	G023 S-9	30'-31.5'	9/29/2017	10/3/2017	C-13	15.8	385.9	341.9	13.5

HMA Sample #	Sample #	Depth	Date Received	Date of Test	Tare #	Wt of Tare	Tare+ Wet	Tare+ Dry	Moisture %
7995-2	G024 S-1	0.0'-1.5'	10/17/2017	10/18/2017	G-1	15.7	331.0	274.7	21.7
7995-3	G024 S-2	2.5'-4'	10/17/2017	10/18/2017	G-2	15.7	293.1	243.4	21.8
7995-4	G024 S-3	5'-6.5'	10/17/2017	10/18/2017	G-3	15.6	313.2	231.0	38.2
7995-5	G024 S-4	7.5'-9'	10/17/2017	10/18/2017	G-4	15.8	332.2	226.8	50.0
7995-6	G024 S-5A	10'-11'.5"	10/17/2017	10/18/2017	G-5	15.7	333.5	221.2	54.6
7995-7	G024 S-5B	10'-11'.5"	10/17/2017	10/18/2017	G-6	15.7	198.0	85.3	161.9
7995-8	G024 S-6	15.5'-17'	10/17/2017	10/18/2017	G-7	15.8	331.90	256.00	31.6
7995-9	G024 S-10	35'-36.5'	10/17/2017	10/18/2017	G-8	15.7	372.60	337.6	10.9
7995-10	G025 S-1	5'-6.5'	10/17/2017	10/18/2017	G-9	15.8	327.00	262.80	26.0
7995-11	G025 S-3	10'-11.5'	10/17/2017	10/18/2017	G-10	15.6	323.5	239.2	37.7
7995-12	G025 S-4A	15'-16.5'	10/17/2017	10/18/2017	G-11	15.6	260.1	93.00	215.9
7995-13	G025 S-6	25'-26.5'	10/17/2017	10/18/2017	G-12	15.7	360.9	329.0	10.2
7995-14	G027 S-1	2.5'-4.0'	10/17/2017	10/18/2017	G-13	15.6	308.5	303.4	1.8
7995-15	G027 S-3	7.5'-9.0'	10/17/2017	10/18/2017	G-14	15.7	349.8	336.4	4.2
7995-16	G027 S-4	10'-11.5'	10/17/2017	10/18/2017	G-15	15.7	561.0	535.4	4.9
7995-17	G027 S-5	12.5'-14.0'	10/17/2017	10/18/2017	G-16	15.6	354.8	332.60	7.0
7995-18	G027 S-6	15'-16.5'	10/17/2017	10/18/2017	G-17	15.8	305.8	276.7	11.2
7995-19	G027 S-7	20'-21.5'	10/17/2017	10/18/2017	G-18	15.8	257.5	220.5	18.1
7995-20	G027 S-9B	30.5'-31.5'	10/17/2017	10/18/2017	G-19	15.8	379.1	339.6	12.2
7995-21	G027 S-13	50'-51.5'	10/17/2017	10/18/2017	G-20	15.8	200.3	166.2	22.7
7995-23	G028 S-2	10'-11.5'	10/17/2017	10/18/2017	G-22	15.8	233.1	215.6	8.8
7995-24	G028 S-4	15'-16.5'	10/17/2017	10/18/2017	G-23	15.8	325.7	225.1	48.1
7995-22	G028 S-1	17.5'-9.0'	10/17/2017	10/18/2017	G-21	15.8	361.8	352.4	2.8
7995-25	G028 S-5	20'-21.5'	10/17/2017	10/18/2017	G-24	15.8	316.3	287.9	10.4
7995-26	G028 S-6	25'-26.5'	10/17/2017	10/18/2017	G-25	15.8	456.8	419.4	9.3
8023-5	G029 S1	5	2/19/2018	2/21/2018	5	16.1	453.3	406.4	12.0
8023-6	G029 S3	12.5	2/19/2018	2/21/2018	6	15.9	155.1	132.8	19.1
8023-7	G029 S5	20	2/19/2018	2/21/2018	7	15.8	243.5	217.7	12.8
8023-8	G029 S6	25	2/19/2018	2/21/2018	8	15.9	611.4	558.9	9.7
8023-9	G029 S8	35	2/19/2018	2/21/2018	9	15.8	93.5	84.2	13.7
8023-10	G029 S10	45	2/19/2018	2/21/2018	10	16.1	273.1	221.2	25.3
8023-11	G029 S11	50	2/19/2018	2/21/2018	11	15.8	481.7	400.0	21.3
8023-12	G029 S12	55	2/19/2018	2/21/2018	12	16.0	279.3	219.6	29.3

	GRAIN SIZE DISTRIBUTION TEST DATA 1												
Client: Golde Project: ST-J Project Num Location: G(Depth: 9'-10. Material Des Date: 11/10/2 USCS Classi	er Associates DRLE ber: 165770 018 S-4 .5' cription: Si 2017 ification: SN	s)5/17-940 Ity Sand A			Sa	mple I	Numbe	ər: 8003-2	0				
Tested by: SR Checked by: JAM													
				S	ieve Test	Data							
Post #200 Wa	Post #200 Wash Test Weights (grams): Dry Sample and Tare = 128.30 Tare Wt. = 15.90 Minus #200 from wash = 30.3%												
Dry Sample and Tare (grams)	Tare (grams)	Sieve Openi Size	e We ng Ret (gr	eight ained \ ams) (i	Sieve Weight grams)	Percent Finer							
177.20	15.90	3/	8"	0.00	0.00	100.0							
			#4	3.10	0.00	98.1							
		#	10	7.60	0.00	93.4							
		#	40	31.80	0.00	73.7							
		#1	00	28.80	0.00	55	.8						
		#2	00	24.60	0.00	40	.5						
				Firacti	tonal Con	npome	nts						
		Gravel				Sand				Fines			
Copples	Coarse	Fine	Total	Coarse	Mediun	n	Fine	Total	Silt	Clay	Total		
0.0	0.0	1.9	1.9	4.7	19.7		33.2	57.6			40.5		
D ₁₀	D ₁₅	D ₂₀	D ₃₀	D	50	D ₆₀		D ₈₀	D ₈₅	D ₉₀	D ₉₅		
				0.1	140	0.1865		0.6485	0.9294	1.4071	2.4963		
Fineness	1			£	I								

Modulus 1.16

Tested By: SR

	GRAIN SIZE DISTRIBUTION TEST DATA 11/14/2													11/14/2017	
Client: Golde Project: ST-E Project Numb	r Associate: DRLE Der: 16577(s)5/17-940													
Location: G018 S-6															
Depth: 12'-13.5' Sample Number: 8003-22															
Material Description: Silty Sand															
Date: 11/10/2017															
USCS Classification: SM															
Tested by: SR Checked by: JAM															
Sieve Test Data															
Post #200 Wash Test Weights (grams): Dry Sample and Tare = 205.90															
Minus #200 from wash = 4.8%															
Dry Sample and Tare (grams)	Tare (grams)	Sie Oper Siz	ve Wo ning Ret ze (gr	eight tained		Sieve Weight (grams)		Percent Finer							
215.50	15.80		1/4"	0.00		0.00	0.00 10		100.0						
			#4	2.00		0.00		99.0							
			#10	9.10		0.00		94.4							
			#40	9.80		0.00) 89.5								
		#	100 1	15.30		0.00)	31.8							
		#	200	13,10		0.00)	25.2					-16 - 18 - 18		
				- li	नत्वल्ला	onalic	omb	onente			1997-199				
Calification		Gravel					Sa	and					· ·	Fines	
Cobles	Coarse	Fine	Total	Coa	arse	Med	ium	Fine	3	Total		Silt		Clay	Total
0.0	0.0	1.0	1.0	4	.6	4.	9	64.3	3	73.8					25.2
Due	D	D						<u>.</u>		Dee				.	D
510	P15	020	530		5	50	ـــا 	² 60		D80		-85	L .	² 90	D95
			0.124	10	0.21	.64	0.2	2538 0.3507		.3507	0,	3852	0.5	5351	2.2569
Fineness Modulus 1.21															

	GRAIN SIZE DISTRIBUTION TEST DATA 1												
Client: Golde Project: ST-L Project Numl Location: G0 Depth: 21'-22	Client: Golder Associates Project: ST-DRLE Project Number: 1657705/17-940 Location: G018 S-7 Depth: 21'-22.5' Sample Number: 8003-23 Material Description: Gravel												
Material Description: Gravel Date: 11/10/2017 USCS Classification: GP													
Tested by: SR Checked by: JAM													
Sieve Test Data													
Post #200 Wash Test Weights (grams): Dry Sample and Tare = 122.50 Tare Wt. = 15.70 Minus #200 from wash = 0.2%													
Dry Sample and Tare (grams)	Tare (grams)	Siev Openi Size	e We ing Ret e (gr	Weight Retained (grams)		e nt s)	t Percent) Finer						
122.70	15.70	11	/4"	0.00	0.	00	0 100.0						
			1"	49.60	0.	00	53.6						
		3	/4 ⁿ	8.40	0.	00	45.8						
		1.	/2"	41.20	0.	00	7.3						
			#4	7.60	0.	00	0.2						
				l)	haellonal	Com	ponents						
		Gravel					Sand				Fines		
Copples	Coarse	Fine	Total	Coa	arse Me	ədium	n Fine	•	Total	Silt	Clay	Total	
0.0	54.2	45.6	99.8	0	.0	0.0			0.0			0.2	
D ₁₀	D ₁₅	D ₂₀	D30		D ₅₀		D ₆₀		D ₈₀	D ₈₅	D ₉₀	D ₉₅	
13.0414	13.6481	14.2513	15.54	30	22.2242	2	6.5663	29	0.2879	29.9045	30.5164	31.1298	
Fineness Modulus	c _u	c _c											
7.48	2.04	0.70											

Tes	ted	By:	SR

GRAIN SIZE DISTRIBUTION TEST DATA 17												
Client: Golde Project: ST-I Project Num Location: G0 Depth: 150'-1 Material Desc Date: 11/10/2 USCS Classi Tested by: SJ	er Associates DRLE ber: 165770 018 S-31 151.5' cription: Sil 2017 fication: SM R	5 5/17-940 ty Sand 4		S	Sieve Te	Samp Chec	ole Num ked by: ata	nber : JA]	: 8003-3 M	8		
Post #200 Was	sh Test Weig	hts (grams):	Dry Sampl Tare Wt. =	e and Tare 196.20	= 549.40	0						
			Minus #20	0 from was	h = 16.5	%						
Dry Sample and Tare (grams)	Tare (grams)	Siev Openi Size	e W ing Ret e (gr	eight ained ams)	Sieve Weight (grams)		Percent Finer					
619.20	196.20	17	/4"	0.00	0.00		100.0					
			#4	2.40	0,00		0 99.4					
		#	410	19.60) 0.00) 94.8					
		#	40 I	89.80	0.00) 49.9					
		#1 #2	.00 1 200	14.00	0.00	0.00 23.0						
		172	.00	T9.50 Firefi	0.00 Dilanoli	, Minde	neilis.					
[]		- ·		1								
Cobbles	Coarse	Gravel Fine	Total	Coarse	Mod	Sa	nd Fin4	-	Total	Silt	Fines	Total
0.0	0.0	0.6	0.6	4.6	44	.9	31.4	5 5	81.0			18.4
									1	I	l	
Dao	Dec	Daa	Day			ח	eo.		Deo	Dor	Dee	Doc
-10	- 19	0.1104	0.21	58 04	1250	0.5	608			1 2486	1 5347	2 0201
Fineness Modulus]		0.21			0.5		1		1,2100	1.00 (7	2.0271

1.97

Tested By: SR

			GRA	IN SIZE [DISTRIE	3UTI	ON TE	ST	DATA			11/14/2017
Client: Golder Associates Project: ST-DRLE Project Number: 1657705/17-940												
Location: G018 S-39 Depth: 200'-201.5' Sample Number: 8003-44												
Material Description: Silty Sand												
Date: 11/10/2017												
USCS Classification: SM												
Tested by: SR Checked by: JAM												
				\$	Sieve Te	stD	ata					
Post #200 Wash Test Weights (grams): Dry Sample and Tare = 147.50 Tare Wt. = 16.40 Minus #200 from wash = 24.9%												
Dry					<u>.</u> .							
and Tare (grams)	Tare (grams)	Sieve Openin Size	g Ret (gr	ained ams)	: Sieve d Weight) (grams)		Percent Finer					
190.90	16.40	1/4	Ħ	0.00	0.00)	100.0					
		#	4	4.20	0.00		97.6					
		#1	0	9.90	0.00	0.00		91.9				
		#4 #10)	35.90	0.00	}	71.3					
		#10 ⁻ #20) ገ	20,20 20,60	0.00	, ,	42.4 30.6					
		1120		20.00 Firetel	tional C	ome	onenia.	4				
[[-					
Cobbles	Coarse	Gravel	Total	Coarea	Modi	Sa	and Eine		Total	Silt	Fines	Total
0.0	0.0	2.4	2.4	5.7	20	.6	40.7	, 1	67.0			30.6
0.0	0.0		2				1017		0	 		50.0
	<u> </u>	-1	Ι								1	
D ₁₀	D ₁₅	D ₂₀	D ₃₀		D ₅₀	D	² 60		D ₈₀	D ₈₅	D ₉₀	D ₉₅
				0.2	2013	0.2	2829	0.6446		0.9088	1.5214	3.2723
Fineness Modulus 1.39]											

			GRAI	N SIZI	E DISTRI	BUT	ION TE	STI	DATA			10/11/2017	
Client: Golder Project: ST-D Project Numb Location: G0 Depth: 15'-16	Associates RLE 9 er: 1657705 19 S-7 .5'	5/17-940				Sam	ple Num	ber	: 7992-5				
Material Desc Date: 10/5/20 USCS Classif	Viaterial Description: Gravel Date: 10/5/2017 USCS Classification: GP												
Tested by: BH Checked by: JAM Sieve Test Data													
Post #200 Wash Test Weights (grams): Dry Sample and Tare = 119.40 Tare Wt. = 15.80 Minus #200 from wash = 1.0%													
Dry Sample and Tare (grams)	Tare (grams)	Sieve Openin Size	We g Reta (gra	eight ained ams)	Sieve Weight (grams)))	Percent Finer						
120.40	15.80	1	н	0.00 0.00		0	100.0						
		3/4	'n	32,00	0.0	0	69.4						
		1/2	н	61.30	.30 0.0		10.8						
		#	4	8.00	0.0		3.2						
		#1	0	1.10	0.0	0	2.1						
		#4	0	1.00 0.		0	1.1						
		#10	0	0.40	0.0	0	0.8						
		#20	U	0.30	0,0 Marchael	U Doumus	0.5						
				101	actionary	south	Million		<u> </u>				
Cobbles		Gravel			· · ·	S	and				Fines		
	Coarse	Fine	Total	Coar	se Meo	dium	Fine	;	Total	Silt	Clay	Total	
0.0	30.6	66.2	96.8	1.1	1	.0	0.6		2.7			0.5	
D ₁₀	D ₁₅	D ₂₀	D ₃₀	I	D ₅₀		D ₆₀		D ₈₀	D ₈₅	D ₉₀	D ₉₅	
11.8065	13.1543	13.6668	14.65	32	16.6786	17	7.8159	20).7803	21.7621	22.8625	24.0803	
Fineness Modulus	с _и	Cc											
7.12	1.51	1.02											

GRAIN SIZE DISTRIBUTION TEST DATA 10/16/2017 **Client:** Golder Associates Project: ST-DRLE Project Number: 1657705/17-940 Location: G020 S-5 Sample Number: 7992-17 Depth: 10'-11.5' Material Description: Gravel With Silt and Sand Date: 10/5/2017 USCS Classification: GW-GM Checked by: JAM Tested by: BH Sieve Test Data Post #200 Wash Test Weights (grams): Dry Sample and Tare = 354.20 Tare Wt. = 15.90 Minus #200 from wash = 4.6% Dry Sieve Weight Sieve Sample Opening Retained Weight Percent and Tare Tare (grams) (grams) Size (grams) (grams) Finer 370.40 15.90 1 1/4" 0.00 0.00100.0 1" 52.50 0.00 85.2 3/4" 35.50 0.00 75.2 1/2" 23.10 0.00 68.7 0.00 #4 66.70 49.8 0.00 #10 58.00 33.5 #40 76.00 0.00 12.0 18.30 0.00 6.9 #100 #200 6.60 0.00 5.0 **Fractional Components** Sand Fines Gravel Cobbles Medium Silt Clay Total Total Coarse Fine Total Coarse Fine 16.3 21.5 7.0 44.8 5.0 0.0 24.8 25.450.2 D85 D90 D95 D₁₀ D₁₅ D₂₀ D₃₀ D50 D₆₀ D80 0.5761 0.8600 1.6354 4.7863 7.7882 22.6107 25.3095 27.5310 29.6234 0.3193

Fineness Modulus	С _и	Cc
5.18	24.39	1.08

			GRA	IN SIZ	E DISTF	RIBUTI	ION TE	STI	DATA			10/16/2017
Client: Golde Project: ST-I	r Associates DRLE	I										
Project Num	ber: 165770	5/17-940										
Location: G0	20 S-11											
Depth: 35'-36	i.5					Sam	ple Num	ıber	: 7992-19)		
Material Des	cription: Sil	ty Sand										
Date: 10/5/20	17											
USCS Classi	fication: SN	1										
Tested by: B	H					Chec	ked by:	: JAI	M			
					Sieve	TestD	ata					
Post #200 Was	sh Test Weig	hts (grams):	Dry Sampl Tare Wt. = Minus #20	le and T 16.60 0 from v	'are = 273 wash = 16	.00 i.0%						
Dry Sample and Tare	Tare	Siev Open	ve W ing Ref	eight tained	Siev Weig	e ht l	Percent					
(grams)	(grams)	Siz	e (gr	rams)	(gram	s)	Finer					
321.70	16.60	-	1" 2740	0.00		.00	100.0					
			0/4" /2"	31.10		00	09.0 89.8					
		• •	#4	0.40	0	.00	89.7					
		:	#10	0.80	0	.00	89.4					
		i	#40	6.60	0	00	87.3					
		#	100 1	40.30	0	.00	41.3					
		#:	200	63,50	0	.00	20.5	-				
				1Fr	rectioned	Comp	onents					
Cabbles		Gravel				S	and				Fines	
Copples	Coarse	Fine	Total	Coar	rse M	edium	Fine	Ð	Total	Silt	Clay	Total
0.0	10.2	0.1	10.3	0.3	3	2.1	66.8	8	69.2			20.5
D ₁₀	D ₁₅	D ₂₀	D ₃₍	D	D ₅₀	1	D ₆₀		D ₈₀	D ₈₅	D ₉₀	D ₉₅
			0.10	81	0.1824	0.	2232	0	.3422	0.3933	19.1790	22.2853
	7	1	I									
Modulus												
1.47												
L	1											

Tested By: BH

			GRA	IN SIZE I	DISTRIE	зитю	ON TE	STI	DATA			10/26/2017
Client: Golde Project: ST-I Project Numl Location: G0	r Associates DRLE ber: 165770 20 S-34	s)5/17-940										
Depth: 150'-1	51.5'				:	Samp	le Nun	nber	: 7995-1			
Material Desc	cription: SI	LTY SAND										
Date: 10/21/2	017 5	x										
Tested by: B	ncation: SN	/1				Chael	od hv	• 141	м			1
Tested by. D	11				Siove Te	Crieci Calab	ved by	. JAI	V1			
Post #200 Wash Test Weights (grams): Dry Sample and Tare = 187.20 Tare Wt. = 15.80 Minus #200 from wash = 36.4%												
Dry Sample and Tare (grams)	Tare (grams)	Siev Open Siz	/e W ing Ret e (gr	eight ained ams)	Sieve Weight (grams)	Ρ	ercent Finer	ercent Finer				
285.50	15.80		#8	0.00	0.00) .	100.0					
		7	#10	0.40	0.00)	99.9					
		1 #·	#40 100 1	31.10	.10 0.00		88.3					
		#: #:	200	34.30	0.00	,)	37.6					
				Frac	tional C	ompo	mente					
Cobbles		Gravel				Sa	nd				Fines	
	Coarse	Fine	Total	Coarse	Medi	ium	Fin	e	Total	Silt	Clay	Total
0.0	0.0	0.0	0.0	0.1	11	.6	50.	7	62.4			37.6
D ₁₀	D ₁₅	D ₂₀	D ₃₀)	D ₅₀	D	60		D ₈₀	D ₈₅	D ₉₀	D ₉₅
				0.	1485	0.1	996	0	.3311	0.3816	0.4843	0.7777
Fineness Modulus 0.83												

~													
			GRAI	N SIZE D	ISTRI	BUTI	ON TE	EST	DATA			10/11/2017	
Client: Gold	er Associates												
Project: ST-	DRLE												
Project Num	ber: 165770:	5/17-940											
Location: G	020 S-42												
Depth: 190'-	191.5'					Samp	le Nur	nbei	r: 7992-4	.5			
Material Des	scription: Silt	ty Sand				•							
Date: 10/5/20	017	-											
USCS Class	ification: SM	[
Tested by: B	BH					Checl	ked by	: JA	М				
				S	lieve To	est Da	ita						
Post #200 Wa	Post #200 Wash Test Weights (grams): Dry Sample and Tare = 249.20 Tare Wt. = 16.70 Minus #200 from wash = 27.5%												
Dry Sample and Tare (grams)	Tare	Sieve Opening Size	Wei g Reta	ight Ined	Sieve Weight	Ρ	ercent						
(grains) 337 50	(grams) 16.70	5126	(ម្នាក "		granis) 0.00	ا ۲							
557.50	10.70	3/4	" 1	5.80	0.00).)	95.1						
		1/2	" 1	3.20	0.00	,)	91.0						
		#4	4 1	8.20	0.00)	85.3						
		#10) 1	2.00	0.00)	81.5						
		#4() 3	1.00	0.00)	71.9						
		#100) 7	9.90	0.00)	47.0						
		#20() 4	9.40	0.00)	31.6					-20-0-000-000-000-000-000-000-000-000-0	
				Fract	ional C	ompo	onents						
Cobbles	Coorno	Gravel	Tatal	C	Mad	Sai	nd		T-4-1	0.116	Fines		
0.0	4.0		14.7		Wed	ium c	- IN 40	e	10tai	Sit	Clay		
0.0	4,9	9.0	14.7	3.0	9.	0	40.	3	53.7			31.0	
D ₁₀	D ₁₅	D ₂₀	D ₃₀	D	50	D	60		D ₈₀	D ₈₅	D ₉₀	D ₉₅	
				0.1	692	0.2	488	1	.0465	4.4857	11.1016	18.9506	
Fineness Modulus	_												
1.80													

GRAIN SIZE DISTRIBUTION TEST DATA 10/16/2017 Client: Golder Associates Project: ST-DRLE Project Number: 1657705/17-940 Location: G021 S-6

Sample Number: 7992-30

USCS Classification: SP-SM Checked by: JAM Tested by: BH Sieve Test Data Post #200 Wash Test Weights (grams): Dry Sample and Tare = 339.90 Tare Wt. = 17.60 Minus #200 from wash = 7.0% Dry Sieve Weight Sieve Sample Percent Opening Retained Weight and Tare Tare (grams) (grams) Size (grams) (grams) Finer 364.00 17.60 1 1/4" 0.00 0.00 100.0 1" 47.60 0.00 86.3 70.9 3/4" 53.30 0.00 1/2" 0.00 69.6 4.40 29.60 0.00 61.1 #4 0.00 #10 18.40 55.7 #40 114.10 0.00 22.8 #100 41.40 0.00 10.9 #200 11.50 0.00 7.5 Fractional Components

		Gravel			Sa	nd	Fines			
Copples	Coarse	Fine	Total	Coarse	Medium	Fìne	Total	Silt	Clay	Total
0.0	29.1	9.8	38.9	5.4	32.9	15.3	53.6			7.5

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D50	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
0.1292	0.2491	0,3625	0.5924	1.3852	4,1483	22.9804	24.8989	26.9668	29.2494

Fineness Modulus	Cu	с _с			
4.39	32.10	0.65			

Depth: 12.5'-14'

Date: 10/5/2017

Material Description: Sand with Silt and Gravel

			GRAI	N SIZE	E DISTRII	3UTI (ON TE	STE	DATA			10/11/2017
Client: Golder Project: ST-D	Associates	5/17 040										
Project Nume	9er: 105770 00 S_4	5/17-940										
Depth: 10-11	22 3-4 5'					Samn	le Num	her'	· 7992-36	5		
Material Desc	rintion' Gr	avel				oamp	ie num			,		
Date: 10/5/20	17											
USCS Classif	ication: GP	ı										
Tested by: BI	Ŧ					Checł	(ed by:	JAN	M			
					Sileve Te	est Da	(fe)					
Post #200 Was	h Test Weigl	nts (grams): [Dry Sample	e and Ta	are = 140.50	0	2012 (2012) (2012)					
		1	′are Wt. = /linus #20(15.70) from w	/ash = 2.0%	6						
Drv						Ţ						
Sample		Sieve	We	ight	Sieve	_						
and Tare (grams)	Tare (grams)	Openir Size	ening Retair Size (gram		Weight (grams)	P	ercent Finer					
143.00	15.70	1 1/4	t"	0.00	0.00)	100.0					
1.0100			[ท	90.90	0.00)	28,6					
		3/4	t"	0.00	0.00)	28.6					
		1/2	2"	9.60	0.00)	21.1					
		ŧ	4	13.20	0.00)	10.7					
		#1	0	3.30	0.00)	8.1					
		#4	-0	4.20	0.00)	4.8					
		#10	10	1.80	0.00)	3.4					
and the second		#20	10	0.00	0,00)	3.4		30.5 2.6 2.6			
					actional C	ompe	ments					
Cabbles		Gravel				Sa	nd				Fines	
Copples	Coarse	Fine	Total	Coar	se Med	ium	Fine	<u>, </u>	Total	Silt	Clay	Total
0.0	71.4	17.9	89.3	2.6	3.	.3	1.4		7.3			3.4
	D				D	n			D	D	D	D
D ₁₀	^D 15	^D 20	D30		D ₅₀	U	60		080	085	D90	D95
3.8446	7.8548	11.7961	25.60	25	27.7101	28.5	5661	30	.1688	30.5617	30.9553	31.3508
Fineness Modulus	Cu	Cc										
7.16	7.43	5.97										
<u>ــــــ</u>	**************************************	• • • • • • • • • • • • • • • • • • •	<u></u>									

GRAIN SIZE DISTRIBUTION TEST DATA

Sample Number: 8041-2

Client: Golder Associates Project: ST-DRLE Project Number: 1657705/17-940 Location: DRLE-TP2 / S1

Depth: 3

Material Description: Silty SAND

Date: 4/4/2018

Tested by: GD Checked by: JAM Sieve Test Data Post #200 Wash Test Weights (grams): Dry Sample and Tare = 328.50 Tare Wt. = 16.14 Minus #200 from wash = 34.5% Dry Cumulative Cumulative Sieve Weight Sample Pan Tare Weight Retained Percent and Tare Tare Opening (grams) (grams) (grams) Size (grams) Finer 492.77 16.14 0.00 1" 0.00 100.0 3/4" 0.00 100.0 3/8# 0.00 100.0 0.00 100.0 #4 #10 0.00 100.0 #40 99.9 0.60 #100 135.60 71.6 #200 312.70 34.4 **Fractional Components**

	Gravel				Sa	ind	Fines			
Copples	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	0.0	0.0	0.0	0.0	0.1	65.5	65.6			34.4

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
	····			0.0985	0.1184	0.1843	0.2127	0.2519	0.3118

Fineness
Modulus
0.34

4/4/2018

GRAIN SIZE DISTRIBUTION TEST DATA 4/4/2018 **Client:** Golder Associates Project: ST-DRLE Project Number: 1657705/17-940 Location: DRLE-TP3A / S1 Sample Number: 8041-3 Depth: 3 Material Description: Poorly Graded SAND Date: 4/4/2018 **USCS Classification: SP** Checked by: JAM Tested by: GD Sieve Test Data Post #200 Wash Test Weights (grams): Dry Sample and Tare = 485.20 Tare Wt. = 15.94 Minus #200 from wash = 2.0% Cumulative Cumulative Dry Sample Pan Sieve Weight Retained Percent and Tare Tare **Tare Weight** Opening Finer (grams) (grams) (grams) Size (grams) 1" 100.0 494.68 15.94 0.00 0.00 3/4" 100.0 0.00 3/8" 0.00 100.0 #4 4.70 99.0 #10 6.30 98.7 #40 297.00 38.0 #100 464.30 3.0 #200 469.00 2.0 Fractional Components Gravel Sand Fines Cobbles Total Coarse Medium Fine Total Silt Clay Total Coarse Fine 1.0 0.3 60.7 36.0 97.0 2.0 0.0 0.0 1.0 D₃₀ D₆₀ D85 D₁₅ D80 D90 D95 D₂₀ D50 D₁₀ 0.2085 0.2445 0.2806 0.3570 0.5458 0.6702 1.0436 1.1873 1.3740 1.6452 Fineness cu Сс Modulus 2.37 3.21 0.91

Tested By: <u>GD</u>

<u></u>			GRA	IN SIZE DI	STRIBUTI	ON TEST I	ΟΑΤΑ			4/4/2018		
Client: Golde Project: ST-I Project Num Location: DF Depth: 3 Material Des Date: 4/4/201 USCS Classi	Filent: Golder Associates Project: ST-DRLE Project Number: 1657705/17-940 .ocation: DRLE-TP4 / S3 Depth: 3 Sample Number: 8041-4 Material Description: Poorly Graded SAND with Gravel Date: 4/4/2018 JSCS Classification: SP rested by: GD Checked by: JAM											
Tested by: G	D				Chec	ked by: JAN	Л			-		
				Si	eve Test Da	nta						
Post #200 Wash Test Weights (grams): Dry Sample and Tare = 1374.10 Tare Wt. = 15.99 Minus #200 from wash = 2.7%												
Dry		Cumulat	ive	Sieve	Cumulative							
and Tare (grams)	Tare (grams)	Pan Tare Wei (grams	ght (Opening Size	Retained (grams)	Percent Finer						
1412.25	15.99	0.0)0	1 1/2"	0.00	100.0						
				1"	43.30	96.9						
				3/4"	67.50	95.2						
				3/8"	196.30	85.9						
				#4	341.50	75.5						
				#10	543.10	61.1						
				#40	1290.70	7.6						
				#100	1344.00	3.7						
				#200	1353.20	3.1						
				Fractio	oqmoO llane	ments						
1		Graval		I	<u> </u>	nd			Finer			
Cobbles	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total		
0.0	4.8	19.7	24.5	14.4	53.5	4.5	72.4			3.1		
······				······	,	•	<u></u>					

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
0.4754	0.5687	0.6605	0.8596	1.4229	1.9221	6.5084	8.9788	12.3468	18.6607

Fineness Modulus	Cu	C _C
4.09	4.04	0.81

			GRAIN	I SIZE DI	STRIBUT	ION TI	EST DA	TA			3/13/2018
Client: Gold Project: ST- Project Nun	er Associate DRLE n ber: 165770	es 05/17-940)								
Location: G Depth: 10' Material Des	1 / S5 scription: Si	ilty SANE)		Sam	ple Nu	mber: 0	54-2			
USCS Class	sification: S	М									
Tested by: (GD				Che	cked by	y: JAM				
Bost #200 W/	ash Tost Woi	abte (gram	s): Dry Sa	Sid Sid	eve Test E	ata					
F051 #200 Wa		gints (gran	Tare W Minus	/t. = 15.70 #200 from	wash = 48.4	5%					
Dry Sample and Tare (grams)	Tare (grams)	Cumul Pa Tare W (grai	lative n /eight ms)	Sieve Opening Size	Cumu Wei g Reta (gra	lative ght ined ms)	Perce	nt			
404.30	(g raine) 15.70	(grai	0.00	1	" "						
				3/4							
				3/8 #2	4						
				#10	0						
				#40	0						
				#10	0			_			
				#200			48.6	5			
				Fractio	onal Comp	onents	5				
Cobbles	Coores	Gravel	Tatal	C	S	and	- 7	-	0:14	Fines	Tatal
	Coarse	Fine	Total	Coarse	weatum	FIN	e	otal	Siit	Clay	10tai
											40.0
D ₁₀	D ₁₅	D ₂₀	D ₃₀) Dį	50 I	D ₆₀	D ₈₀		D ₈₅	D ₉₀	D ₉₅
				_			_				
			Hay	yre McElr	oy & Ass	ociate	es, LLC				

			GRAIN	SIZE DI	STRII	BUTIO	N TESI	Γ DATA			2/22/2018
Client: Golde	er Associates										
Project: ST-I	DRLE										
Project Num	ber: 165770.	5/17-940									
Location: G2	2 S3										
Depth: 7.5'						Sample	Numbe	er: 8023-1			
Material Des	cription: Sil	ty SAND									
Date: 2/22/20)18										
USCS Classi	fication: SM	l									
Tested by: G	D					Checke	d by: J	AM			
				SI	eve To	est Data	1				
Post #200 Wa	sh Test Weigl	nts (grams): C T N	ory Sample ar are Wt. = 16. Ainus #200 fro	id Tare = 01 om wash	190.63 = 43.2	3 !%					
Dry		Cumulative			Cumu	lative					
Sample and Tare	Tare	Pan Tare Weigh	Si t Ope	eve nina	Weig Retai	ght ined	Percen	nt			
(grams)	(grams)	(grams)	Ś	ze	(grai	ms)	Finer				
323.40	16.01	0.00									
				Fracti	onal C	Compon	ents				
· · · · · · · · · · · · · · · · · · ·		Crevel							······································	 	
Cobbles	Coarse	Fine	Total (Coarse	Med	lium	Fine	Total	Silt	Clav	Total
											43.2
L					l				I	I	
·····		·····									
	1 _	1	I _	· -		I _		_	_	1 _ 1	_
D ₁₀	D ₁₅	D ₂₀	D ₃₀	Dg	50	D60)	D ₈₀	D85	D ₉₀	D ₉₅

GRAIN SIZE DISTRIBUTION TEST DATA 3/13/2018 **Client:** Golder Associates Project: ST-DRLE Project Number: 1657705/17-940 Location: G3 / S4 **Depth:** 10' Sample Number: 054-8 Date: 12/22/2017 Tested by: GD Checked by: JAM Sieve Test Data Post #200 Wash Test Weights (grams): Dry Sample and Tare = 173.02 Tare Wt. = 15.80 Minus #200 from wash = 20.7%Dry Cumulative Cumulative Sample Sieve Weight Pan and Tare Tare **Tare Weight** Opening Retained Percent Size (grams) Finer (grams) (grams) (grams) 214.10 15.80 0.00 **Fractional Components** Gravel Fines Sand Cobbles Fine Medium Total Silt Coarse Total Coarse Fine Clay Total 20.7 D₁₀ D₁₅ D₂₀ D₃₀ D50 D60 D80 D85 D90 D95

Hayre McElroy & Associates, LLC _

			GRAIN	N SIZE DI	STRIBUT		EST DATA			3/13/2018		
Client: Gold Project: ST- Project Num Location: G Depth: 12.5' Material Des Date: 12/22/ USCS Class	er Associat DRLE hber: 1657 4 / S6 scription: \$ 2017 ification: \$	es 705/17-94 Silty SANI	0 D		Sam	ple Nu	mber: 054-1	5				
Tested by: (GD				Chec	ked by	: JAM					
				Si	eve Test D	ata						
Post #200 Wa	ash Test We	ights (grar	ns): Dry Sa Tare W Minus	mple and T /t. = 16.10 #200 from	°are = 203.7 wash = 30.2	1 2%						
Dry Sample and Tare (grams)	Tare (grams)	Cumu Pa Tare V (gra	Ilative an Veight ıms)	Sieve Opening Size	Cumu Wei Retai (grai	lative ght ined ms)	Percent Finer					
285.07	16.10)	0.00									
				Fractio	onal Comp	onents	5					
		Gravel			Sa	nd		Fines				
Cobbles	Coarse	Fine	Total	Coarse	Medium	Fin	e Total	Silt	Clay	Total		
										30.2		
	1			1	1		I					
D ₁₀	D ₁₅	D ₂₀	D ₃₀) Dį	50 C	P 60	D ₈₀	D ₈₅	D ₉₀	D ₉₅		

			GRAIN	N SIZE DI	STRIBUT		EST	DATA			3/13/2018
Client: Gold Project: ST- Project Num Location: G Depth: 15' Material Des Date: 12/22/ USCS Class	er Associat DRLE hber: 16577 5 / S7 scription: S 2017 sification: S	es 705/17-940 Silty SANI) D		San	iple Nu	mbe	r: 054-21	I		
Tested by: (GD				Che	cked b	y: JA	Μ			
				Sie	eve Test I	Data	-				
Post #200 Wa	ash Test We	ights (grar	ns): Dry Sa Tare W Minus	mple and T /t. = 16.00 #200 from	are = 251. wash = 25.	78 3%					
Dry Sample and Tare (grams)	Tare (grams)	Cumu Pa Tare V (gra	llative an Veight ms)	Sieve Opening Size	Cumu We g Reta (gra	ulative ight lined lms)	Pe F	rcent iner			
331.65	16.00)	0.00								
				Fractio	onal Com	ponent	S				
Cabbles		Gravel		Sand						Fines	
Copples	Coarse	Fine	Total	Coarse	Medium	Fin	e	Total	Silt	Clay	Total
											25.3
								.			_
D ₁₀	D ₁₅	D ₂₀	D ₃₀) Dį	50	D ₆₀		J ₈₀	D ₈₅	D ₉₀	D ₉₅

			GRAIN	N SIZE DI	STRIBUT	ION T	EST	DATA			3/13/2018
Client: Gold Project: ST- Project Num Location: G Depth: 7.5' Material Des Date: 12/22/	er Associat DRLE hber: 1657' 6 / S1 scription: S 2017	tes 705/17-940 Silty SANI)		San	nple Nu	ımbe	r: 054-2	5A		
USUS Class	Sification: 2	SIVI			Che	ckod b		м			
Tested by.	ענ			Si		CKeu D	y. JA				
Post #200 Wa	ish Test We	eights (grar	ns): Dry Sa Tare W Minus	mple and T /t. = 16.20 #200 from	are = 198. wash = 34.	72 7%					
Dry Sample and Tare (grams)	Tare (grams)	Cumu Pa Tare V (gra	llative an Veight ms)	Sieve Opening Size	Cum We g Reta (gra	ulative ight ained ams)	Pe F	ercent			
295.60	16.20)	0.00								
				Fractio	onal Com	ponent	S				
Cabbles		Gravel		Sand						Fines	
Cobbles	Coarse	Fine	Total	Coarse	Medium	Fin	ne	Total	Silt	Clay	Total
											34.7
i						_				I	
D ₁₀	D ₁₅	D ₂₀	D ₃₀) Dį	50	D ₆₀		D ₈₀	D ₈₅	D ₉₀	D ₉₅

				GRAIN	I SIZE DI	STRIB	UTION TI	EST DATA			3/13/2018
C P P L D M D U T	lient: Gold roject: ST- roject Num ocation: G epth: 5' laterial Des ate: 12/22/ SCS Class ested by: (er Associat DRLE nber: 16577 7 / S2 scription: S 2017 sification: S GD	es 705/17-940 Silty SANI SM)	Si	S C eve Tes	ample Nu hecked b	mber: 054-2 y: JAM	29		
P	ost #200 Wa	ash Test We	ights (grar	ns): Dry Sa Tare W Minus	mple and 1 /t. = 16.00 #200 from	Гare = 13 wash = 1	39.44 28.8%				
	Dry Sample and Tare (grams) 189.27	Tare (grams) 16.00	Cumu Pa Tare V (gra	lative an Veight ms) 0.00	Sieve Openin Size	Cu g R (imulative Weight etained grams)	Percent Finer			
					Fractio	onal Co	omponents	5			
	Cobbles		Gravel		Sand					Fines	
		Coarse	Fine	Total	Coarse	Mediu	um Fin	e Total	Silt	Clay	Total
											20.0
	D ₁₀	D ₁₅	D ₂₀	D ₃₀) Dį	50	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅

			GRAIN	I SIZE DI	STRIBUT	ION TE	EST DATA			3/13/2018
Client: Gold Project: ST- Project Num Location: G Depth: 5' Material Des Date: 12/22/ USCS Class Tested by: (er Associat DRLE Iber: 16577 12 / S2 scription: S 2017 ification: S 3D	es /05/17-940 ilty SANE M)		Sam	nple Nur	nber: 054-4 <i>r</i> : JAM	5		
,	-			Sie	eve Test I	Data				
Post #200 Wa	sh Test We	ights (gran	ns): Dry Sa Tare W Minus	mple and T /t. = 16.10 #200 from •	are = 112.9 wash = 36.	91 8%				
Dry Sample and Tare (grams) 169.20	Tare (grams) 16.10	Cumu Pa Tare W (grai	lative in /eight ms) 0.00	Sieve Opening Size	Cumu We g Reta (gra	ulative ight ained ams)	Percent Finer			
107.20	10.10		0.00	Fractio	onal Com	ponents	5			
Cobbles	Coarso	Gravel	Total	Coarso	Sanc		o Total	Silt	Fines	Total
	Coarse	TINE	Total	Coarse	Wealum			Sint	Ciay	36.8
	I									50.0
D ₁₀	D ₁₅	D ₂₀	D ₃₀) Dį	50	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
]

			GRAIN	SIZE DI	STRIBUT		EST DATA			3/13/2018
Client: Gold Project: ST- Project Num Location: G Depth: 5' Material Des Date: 12/22/ USCS Class	er Associat DRLE Iber: 16577 13 / S2 scription: S 2017 ification: S	es 705/17-940 Silty SANE)		San	nple Nu	mber: 054-5	51		
Tested by: (JD			6		CKea D	JAM			
Post #200 \//a	sh Test We	iahts (aran	s). Dry Sa	Sie mole and T	eve Test are - 01 1	Jata 7				
FUSI #200 Wa		ignis (gran	Tare W	t. = 16.10	ale = 91.1	/				
Dry Sample and Tare (grams)	Tare (grams)	Cumu Pa Tare W (gra	Minus a Iative In /eight ms) 0.00	Sieve Sieve Opening Size	wash = 28 Cum We g Reta (gra	.0% ulative sight ained ams)	Percent Finer			
120.42	10.10		0.00	Fractic	onal Com	nonente	2			
				Tractic		ponenta	,			
Cobbles	-	Gravel		Sand					Fines	
	Coarse	Fine	Total	Coarse	Medium	Fin	e Total	l Silt	Clay	Total
										28.0
D ₁₀	D ₁₅	D ₂₀	D ₃₀	Dę	50	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅

GRAIN SIZE DISTRIBUTION TEST DATA 3/13/2018 **Client:** Golder Associates Project: ST-DRLE Project Number: 1657705/17-940 Location: G14 / S9 **Depth: 30'** Sample Number: 054-57 Date: 12/22/2017 Tested by: GD Checked by: JAM Sieve Test Data Post #200 Wash Test Weights (grams): Dry Sample and Tare = 269.74 **Tare Wt. =** 16.20 Minus #200 from wash = 4.1%Dry Cumulative Cumulative Sample Sieve Weight Pan and Tare Tare **Tare Weight** Opening Retained Percent Size (grams) Finer (grams) (grams) (grams) 280.62 16.20 0.00 **Fractional Components** Gravel Fines Sand Cobbles Fine Medium Total Silt Coarse Total Coarse Fine Clay Total 4.1 D₁₀ D₁₅ D₂₀ D₃₀ D50 D60 D80 D85 D90 D95

GRAIN SIZE DISTRIBUTION TEST DATA 3/13/2018 **Client:** Golder Associates Project: ST-DRLE Project Number: 1657705/17-940 Location: G14 / S11 **Depth:** 40' Sample Number: 054-58 Date: 12/22/2017 Tested by: GD Checked by: JAM Sieve Test Data Post #200 Wash Test Weights (grams): Dry Sample and Tare = 191.12 Tare Wt. = 15.70 Minus #200 from wash = 15.5%Dry Cumulative Cumulative Sample Sieve Weight Pan and Tare Tare **Tare Weight** Opening Retained Percent Size (grams) Finer (grams) (grams) (grams) 223.41 15.70 0.00 **Fractional Components** Gravel Fines Sand Cobbles Fine Medium Total Silt Coarse Total Coarse Fine Clay Total 15.5 D₁₀ D₁₅ D₂₀ D₃₀ D50 D60 D80 D85 D90 D95

Hayre McElroy & Associates, LLC _

GRAIN SIZE DISTRIBUTION TEST DATA 3/13/2018 **Client:** Golder Associates Project: ST-DRLE Project Number: 1657705/17-940 Location: G15 / S7 **Depth: 20'** Sample Number: 054-61 Date: 12/22/2017 Tested by: GD Checked by: JAM Sieve Test Data Post #200 Wash Test Weights (grams): Dry Sample and Tare = 232.39 Tare Wt. = 15.80 Minus #200 from wash = 27.7%Dry Cumulative Cumulative Sample Sieve Weight Pan and Tare Tare **Tare Weight** Opening Retained Percent Size (grams) Finer (grams) (grams) (grams) 315.38 15.80 0.00 **Fractional Components** Gravel Fines Sand Cobbles Fine Medium Total Silt Coarse Total Coarse Fine Clay Total 27.7 D₁₀ D₁₅ D₂₀ D₃₀ D50 D60 D80 D85 D90 D95

GRAIN SIZE DISTRIBUTION TEST DATA 3/13/2018 **Client:** Golder Associates Project: ST-DRLE Project Number: 1657705/17-940 Location: G15 / S8 **Depth: 25'** Sample Number: 054-62 Date: 12/22/2017 Tested by: GD Checked by: JAM Sieve Test Data Post #200 Wash Test Weights (grams): Dry Sample and Tare = 192.44 Tare Wt. = 15.80 Minus #200 from wash = 23.2%Dry Cumulative Cumulative Sample Sieve Weight Pan and Tare Tare **Tare Weight** Opening Retained Percent Size (grams) Finer (grams) (grams) (grams) 245.67 15.80 0.00 **Fractional Components** Gravel Fines Sand Cobbles Fine Medium Total Silt Coarse Total Coarse Fine Clay Total 23.2 D₁₀ D₁₅ D₂₀ D₃₀ D50 D60 D80 D85 D90 D95

GRAIN SIZE DISTRIBUTION TEST DATA 3/13/2018 **Client:** Golder Associates Project: ST-DRLE Project Number: 1657705/17-940 Location: G15 / S10 **Depth: 35'** Sample Number: 054-63 Date: 12/22/2017 Tested by: GD Checked by: JAM Sieve Test Data Post #200 Wash Test Weights (grams): Dry Sample and Tare = 132.32 **Tare Wt. =** 15.90 Minus #200 from wash = 23.8%Dry Cumulative Cumulative Sample Sieve Weight Pan and Tare Tare **Tare Weight** Opening Retained Percent Size (grams) Finer (grams) (grams) (grams) 168.70 15.90 0.00 **Fractional Components** Gravel Fines Sand Cobbles Fine Medium Total Silt Coarse Total Coarse Fine Clay Total 23.8 D₁₀ D₁₅ D₂₀ D₃₀ D50 D60 D80 D85 D90 D95

GRAIN SIZE DISTRIBUTION TEST DATA 3/13/2018 **Client:** Golder Associates Project: ST-DRLE Project Number: 1657705/17-940 Location: G15 / S14 Depth: 55' Sample Number: 054-66 Date: 12/22/2017 Tested by: GD Checked by: JAM Sieve Test Data Post #200 Wash Test Weights (grams): Dry Sample and Tare = 29.94 **Tare Wt. =** 16.00 Minus #200 from wash = 91.2%Dry Cumulative Cumulative Sample Sieve Weight Pan and Tare Tare **Tare Weight** Opening Retained Percent Size (grams) Finer (grams) (grams) (grams) 174.11 16.00 0.00 **Fractional Components** Gravel Fines Sand Cobbles Fine Medium Total Silt Coarse Total Coarse Fine Clay Total 91.2 D₁₀ D₁₅ D₂₀ D₃₀ D50 D60 D80 D85 D90 D95

GRAIN SIZE DISTRIBUTION TEST DATA 3/13/2018 **Client:** Golder Associates Project: ST-DRLE Project Number: 1657705/17-940 Location: G15 / S18 **Depth:** 75' Sample Number: 054-69 Date: 12/22/2017 Tested by: GD Checked by: JAM Sieve Test Data Post #200 Wash Test Weights (grams): Dry Sample and Tare = 68.86 **Tare Wt. =** 15.90 Minus #200 from wash = 54.9%Dry Cumulative Cumulative Sample Sieve Weight Pan and Tare Tare **Tare Weight** Opening Retained Percent Size (grams) Finer (grams) (grams) (grams) 133.42 15.90 0.00 **Fractional Components** Gravel Fines Sand Cobbles Fine Medium Total Silt Coarse Total Coarse Fine Clay Total 54.9 D₁₀ D₁₅ D₂₀ D₃₀ D50 D60 D80 D85 D90 D95

GRAIN SIZE DISTRIBUTION TEST DATA 3/13/2018 **Client:** Golder Associates Project: ST-DRLE Project Number: 1657705/17-940 Location: G016 S-15 Depth: 60'-61.5' Sample Number: 8003-10 Date: 11/08/2017 Tested by: SR Checked by: JAM Sieve Test Data Post #200 Wash Test Weights (grams): Dry Sample and Tare = 285.60 Tare Wt. = 15.70 Minus #200 from wash = 25.0%Dry Sample Sieve Weight Sieve and Tare Tare Opening Retained Weight Percent Size (grams) (grams) Finer (grams) (grams) 375.80 15.70 #200 25.0 **Fractional Components** Gravel Fines Sand Cobbles Fine Medium Total Silt Coarse Total Coarse Fine Clay Total 25.0 D₁₀ D95 D₁₅ D₂₀ D₃₀ D50 D60 D80 D85 D90

GRAIN SIZE DISTRIBUTION TEST DATA 3/13/2018 **Client:** Golder Associates Project: ST-DRLE Project Number: 1657705/17-940 Location: G016 S-17 Depth: 70'-71.5' Sample Number: 8003-12 Date: 11/08/2017 Tested by: SR Checked by: JAM Sieve Test Data Post #200 Wash Test Weights (grams): Dry Sample and Tare = 76.10 Tare Wt. = 15.70 Minus #200 from wash = 74.8%Dry Sample Sieve Weight Sieve and Tare Tare Opening Retained Weight Percent Size (grams) (grams) Finer (grams) (grams) 255.60 15.70 #200 74.8 **Fractional Components** Gravel Fines Sand Cobbles Fine Medium Total Silt Coarse Total Coarse Fine Clay Total 74.8 D₁₀ D95 D₁₅ D₂₀ D₃₀ D50 D60 D80 D85 D90

Hayre McElroy & Associates, LLC _

GRAIN SIZE DISTRIBUTION TEST DATA 3/13/2018 **Client:** Golder Associates Project: ST-DRLE Project Number: 1657705/17-940 **Location:** G016 S-22 Depth: 95'-96.5' Sample Number: 8003-16 Date: 11/08/2017 Tested by: SR Checked by: JAM Sieve Test Data Post #200 Wash Test Weights (grams): Dry Sample and Tare = 151.60 Tare Wt. = 15.70 Minus #200 from wash = 54.5%Dry Sample Sieve Weight Sieve and Tare Tare Opening Retained Weight Percent Size (grams) (grams) Finer (grams) (grams) 314.20 15.70 #200 54.5 **Fractional Components** Gravel Fines Sand Cobbles Fine Medium Total Silt Coarse Total Coarse Fine Clay Total 54.5 D₁₀ D95 D₁₅ D₂₀ D₃₀ D50 D60 D80 D85 D90

GRAIN SIZE DISTRIBUTION TEST DATA											
lient: Gold	er Associate	es									
roject: ST-	DRLE										
roject Nun	n ber: 16577	05/17-940)								
ocation: G	17 / S8										
Depth: 30' Sample Number: 054-110											
ate: 12/22/	2017										
Tested by: GD Checked by: JAM											
				Sie	eve Test D	ata					
Post #200 Wash Test Weights (grams): Dry Sample and Tare = 249.22 Tare Wt. = 15.80 Minus #200 from wash = 0.2%											
Dry Sample and Tare (grams)	Tare (grams)	Cumu Pa Tare V (gra	lative In Veight ms)	Cumulative Sieve Weight Opening Retained Percent Size (grams) Finer							
249.60	15.80		0.00								
				Fractic	onal Comp	onents					
Cobbles	Caaraa	Gravel	Total	Caaraa	Sa	nd Fine	Tatal	0:14	Fines	Total	
	Coarse	Fine	Total	Coarse	weatum	гine	Total	SIIT	Clay		
										0.2	
D ₁₀	D ₁₅	D ₂₀	D ₃₀	D5	io D	60	D ₈₀	D ₈₅	D ₉₀	D ₉₅	

GRAIN SIZE DISTRIBUTION TEST DATA 3/13/2018 **Client:** Golder Associates Project: ST-DRLE Project Number: 1657705/17-940 Location: G17A / S10 **Depth: 35'** Sample Number: 054-119 Date: 12/22/2017 Tested by: GD Checked by: JAM Sieve Test Data Post #200 Wash Test Weights (grams): Dry Sample and Tare = 215.92 Tare Wt. = 15.80 Minus #200 from wash = 2.9%Dry Cumulative Cumulative Sample Sieve Weight Pan and Tare Tare **Tare Weight** Opening Retained Percent Size (grams) Finer (grams) (grams) (grams) 221.89 15.80 0.00 **Fractional Components** Gravel Fines Sand Cobbles Fine Medium Total Silt Coarse Total Coarse Fine Clay Total 2.9 D₁₀ D₁₅ D₂₀ D₃₀ D50 D60 D80 D85 D90 D95

GRAIN SIZE DISTRIBUTION TEST DATA											
lient: Gold	er Associate	es									
roject: ST-	DRLE										
roject Nun	n ber: 16577	05/17-940)								
ocation: G	17A / S13										
Depth: 50' Sample Number: 054-121											
Date: 12/22/2017											
Tested by: GD Checked by: JAM											
				Sie	eve Test D	ata					
Post #200 Wash Test Weights (grams): Dry Sample and Tare = 345.19 Tare Wt. = 15.70 Minus #200 from wash = 3.0%											
Dry Sample and Tare (grams)	Tare (grams)	Cumu Pa Tare W (gra	lative in /eight ms)	Cumulative Sieve Weight Opening Retained Percent Size (grams) Finer		Percent Finer					
355.30	15.70		0.00								
				Fractic	nal Comp	onents					
Cobbles	Coorco	Gravel	Total	Coorco	Sa	nd Fino	Total	Silt	Fines	Total	
	Coarse	Fille	TOLAI	Coarse	Mealum	гше	TOLAI	Siit	Cidy	2.0	
										5.0	
D ₁₀	D ₁₅	D ₂₀	D ₃₀	D5	io D	60	D ₈₀	D ₈₅	D ₉₀	D ₉₅	

GRAIN SIZE DISTRIBUTION TEST DATA 3/13/2018 **Client:** Golder Associates Project: ST-DRLE Project Number: 1657705/17-940 Location: G17A / S18 **Depth:** 75' Sample Number: 054-124 Date: 12/22/2017 Tested by: GD Checked by: JAM Sieve Test Data Post #200 Wash Test Weights (grams): Dry Sample and Tare = 198.82 Tare Wt. = 15.80 Minus #200 from wash = 7.0%Dry Cumulative Cumulative Sample Sieve Weight Pan and Tare Tare **Tare Weight** Opening Retained Percent Size (grams) Finer (grams) (grams) (grams) 212.57 15.80 0.00 **Fractional Components** Gravel Fines Sand Cobbles Fine Medium Total Silt Coarse Total Coarse Fine Clay Total 7.0 D₁₀ D₁₅ D₂₀ D₃₀ D50 D60 D80 D85 D90 D95

GRAIN SIZE DISTRIBUTION TEST DATA

Client: Golder Associates Project: ST-DRLE Project Number: 1657705/17-940 Location: G018 S-11 Depth: 40'-41.5' Date: 11/08/2017 Tested by: SR

Sample Number: 8003-24

Checked by: JAM

Sieve Test Data Post #200 Wash Test Weights (grams): Dry Sample and Tare = 434.70 Tare Wt. = 15.90 Minus #200 from wash = 6.6%

Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer
464.10	15.90	#200			6.6

								1		
Cobbles	Gravel			Sand				Fines		
	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
										6.6

Fractional Components

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅

3/13/2018

GRAIN SIZE DISTRIBUTION TEST DATA 3/13/2018 **Client:** Golder Associates Project: ST-DRLE Project Number: 1657705/17-940 Location: G018 S-14 Depth: 60'-61.5' Sample Number: 8003-25 Date: 11/08/2017 Tested by: SR Checked by: JAM Sieve Test Data Post #200 Wash Test Weights (grams): Dry Sample and Tare = 326.80 Tare Wt. = 15.80 Minus #200 from wash = 24.6%Dry Sample Sieve Weight Sieve and Tare Tare Opening Retained Weight Percent Size (grams) (grams) Finer (grams) (grams) 428.20 15.80 #200 24.6 **Fractional Components** Gravel Fines Sand Cobbles Fine Medium Total Silt Coarse Total Coarse Fine Clay Total 24.6 D₁₀ D95 D₁₅ D₂₀ D₃₀ D50 D60 D80 D85 D90

Client: Golder Associates Project: ST-DRLE Project Number: 1657705/17-940 Location: G018 S-17 Depth: 77.5'-79' Sample Number: 8003-27 Date: 11/8/2017 Tested by: SR Checked by: JAM Sieve Test Data Post #200 Wash Test Weights (grams): Dry Sample and Tare = 348.10 Tare Wt. = 15.80 Minus #200 from wash = 22.6%Dry Sample Sieve Weight Sieve and Tare Tare Opening Retained Weight Percent Size (grams) Finer (grams) (grams) (grams) 445.30 15.80 #200 22.6 **Fractional Components** Gravel Fines Sand Cobbles Fine Medium Total Silt Coarse Total Coarse Fine Clay Total 22.6

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅

GRAIN SIZE DISTRIBUTION TEST DATA

3/13/2018

GRAIN SIZE DISTRIBUTION TEST DATA

Client: Golder Associates Project: ST-DRLE Project Number: 1657705/17-940 Location: G018 S-34 Depth: 170'-171.5' Date: 11/8/2017 Tested by: SR

Sample Number: 8003-40

Tested by: SRChecked by: JAMSieve Test DataPost #200 Wash Test Weights (grams): Dry Sample and Tare = 334.50
Tare Wt. = 198.30

Minus #200 from wash = 52.8%

Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer				
486.70	198.30	#200			52.8				
			Fractional Components						

Cobbles	Gravel			Sand				Fines		
	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
										52.8

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅

3/13/2018

Tested By: SR

GRAIN SIZE DISTRIBUTION TEST DATA 3/13/2018 **Client:** Golder Associates Project: ST-DRLE Project Number: 1657705/17-940 Location: G018 S-37 Depth: 185'-186.5' Sample Number: 8003-42 Date: 11/8/2017 Tested by: SR Checked by: JAM Sieve Test Data Post #200 Wash Test Weights (grams): Dry Sample and Tare = 284.80 Tare Wt. = 157.60 Minus #200 from wash = 61.4%Dry Sample Sieve Weight Sieve and Tare Tare Opening Retained Weight Percent Size (grams) (grams) Finer (grams) (grams) 487.30 157.60 #200 61.4 **Fractional Components** Gravel Fines Sand Cobbles Fine Medium Total Silt Coarse Total Coarse Fine Clay Total 61.4 D₁₀ D95 D₁₅ D₂₀ D₃₀ D50 D60 D80 D85 D90

GRAIN SIZE DISTRIBUTION TEST DATA 3/13/2018 **Client:** Golder Associates Project: ST-DRLE Project Number: 1657705/17-940 **Location:** G019 S-12 Depth: 40'-41.5' Sample Number: 7992-7 Date: 10/5/2017 Tested by: BH Checked by: JAM Sieve Test Data Post #200 Wash Test Weights (grams): Dry Sample and Tare = 185.40**Tare Wt. =** 16.40 Minus #200 from wash = 30.1%Dry Sample Sieve Weight Sieve and Tare Tare Opening Retained Weight Percent Size (grams) (grams) Finer (grams) (grams) 258.10 16.40 #200 30.1 **Fractional Components** Gravel Fines Sand Cobbles Fine Medium Total Silt Coarse Total Coarse Fine Clay Total 30.1 D₁₀ D95 D₁₅ D₂₀ D₃₀ D50 D60 D80 D85 D90

Client: Golder Associates Project: ST-DRLE Project Number: 1657705/17-940 Location: G019 S-16 Sample Number: 7992-9 Depth: 60'-61.5' Date: 10/5/2017 Tested by: BH Checked by: JAM Sieve Test Data Post #200 Wash Test Weights (grams): Dry Sample and Tare = 207.30 Tare Wt. = 16.60 Minus #200 from wash = 16.3%Dry Sample Sieve Weight Sieve and Tare Tare Opening Retained Weight Percent Size (grams) Finer (grams) (grams) (grams)

Gravel Fines Sand Cobbles Fine Medium Total Silt Coarse Total Coarse Fine Clay Total 16.3

Fractional Components

16.3

244.40

16.60

#200

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅

3/13/2018

GRAIN SIZE DISTRIBUTION TEST DATA

GRAIN SIZE DISTRIBUTION TEST DATA												
lient: Gold	er Associat	es										
roject: ST	DRLE											
roject Nun	nber: 16577	705/17-940)									
ocation: G	019 S-31											
epth: 135'	-136.5'				Sam	ple Numb	ber: 7992-1	1				
ate: 10/5/2	2017				•							
ested by:	BH				Chec	ked by: .	JAM					
				Sie	eve Test D	ata						
ost #200 W	ash Test We	ights (gran	is): Dry Sa Taro V	ample and T	are = 209.0	0						
			Minus	#200 from \	wash = 35.4	%						
Dry				14 /-:	0:							
Sample and Tare	Tare	Oi	sieve Senina	Retained	Sieve Weight	Perce	ent					
(grams)	(grams)		Size	(grams)	(grams)	Fine	er					
314.30	16.90	1	#200			35.	.4					
				Fractio	onal Comp	onents						
		Gravel			Sa	nd			Fines			
Cobbles	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total		
										35.4		
Dra	Dre	Dee	Da		та Г		Dee	Dee	Dee	Dee		
D10	D15	D20	53	0 05		60	080	085	090	095		

GRAIN SIZE DISTRIBUTION TEST DATA 3/13/2018 **Client:** Golder Associates Project: ST-DRLE Project Number: 1657705/17-940 Location: G020 S-13 Depth: 45'-46.5 Sample Number: 7992-20 Date: 10/5/2017 Tested by: BH Checked by: JAM Sieve Test Data Post #200 Wash Test Weights (grams): Dry Sample and Tare = 203.00 **Tare Wt. =** 16.40 Minus #200 from wash = 11.6%Dry Sample Sieve Weight Sieve and Tare Tare Opening Retained Weight Percent Size (grams) (grams) Finer (grams) (grams) 227.40 16.40 #200 11.6 **Fractional Components** Gravel Fines Sand Cobbles Fine Medium Total Silt Coarse Total Coarse Fine Clay Total 11.6 D₁₀ D95 D₁₅ D₂₀ D₃₀ D50 D60 D80 D85 D90

	GRAIN SIZE DISTRIBUTION TEST DATA													
Project: ST-I	roject: ST-DRLE													
Project Num	roject Number: 1657705													
Location: G	.ocation: G020 S-20 80'-81.5'													
Sample Num	ber: 7980-8	3												
Date: 08/12/2	2017													
Tested by: B	H				Chec	ked by: JA	М							
				Si	eve Test D	ata		11						
Post #200 Wa	Post #200 Wash Test Weights (grams): Dry Sample and Tare = 114.20 Tare Wt. = 16.10 Minus #200 from wash = 59.7%													
Dry Sample and Tare (grams)	Tare (grams)	Sie Oper Siz	ve Wo ning Ret ze (gr	eight ained V ams) (g	Sieve Veight I grams)	Percent Finer								
259.70	16.10	#	200			59.7								
				Fracti	onell Comp	onents								
		Gravel			S	and	1		Fines					
Cobbles	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total				
										59.7				
L				I		<u> </u>	<u> </u>		I	1				
-									·····					

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅

_____ Checked By: JAM

GRAIN SIZE DISTRIBUTION TEST DATA														
Project: ST-l	roject: ST-DRLE													
Project Num	roject Number: 1657705													
Location: GO	ocation: G020 S-24 100'-101.5'													
Sample Num	iber: 7980-1	.0												
Date: 08/12/2	2017													
Tested by: B	Η				Che	cked by: JA	М							
n. Nevi strateve strate				S	ieve Test I	Data								
Post #200 Was	Post #200 Wash Test Weights (grams): Dry Sample and Tare = 130.90 Tare Wt. = 17.00 Minus #200 from wash = 55.1%													
Dry Sample and Tare (grams)	Tare (grams)	Sie Oper Siz	ve We ning Ret ze (gr	aight ained \ ams) (i	Sieve Weight grams)	Percent Finer								
270.40	17.00	#	200			55.1								
				Fnact	ional Com	ponents								
		~				> 1			F 1					
Cobbles	Coarso	Gravel	Total	Coaree	Medium	Sand	Total	Silt	Fines	Total				
	Coarse	FIIIG	Totai	UUAISE	meanam	1 110	Total	Ont	Olay	55.1				
					<u>]</u>		l		I	55.1				

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅

	GRAIN SIZE DISTRIBUTION TEST DATA 8/												
Project: ST-D	roject: ST-DRLE												
Project Numb	oer: 165770.	5											
Location: G02	20 S-25 105	'-106.5'											
Sample Numl	ber: 7980-1	1											
Date: 08/12/2	017												
Tested by: BI	H			Che	cked by: JAI	М							
				Sieve Test D	Data								
Post #200 Was	h Test Weigl	nts (grams): Dry Tare Mini	Sample and Tare Wt. = 15.80 us #200 from was	e = 81.50 sh = 69.1%									
Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer								
228.10	15.80	#200			69.1								
			Frac	tional Comp	oonents								
		Gravel		S	and			Fines					
Cobbles	Coarse	Fine To	Total	Silt	Clay	Total							
					****				69.1				

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
The second se									

	GRAIN SIZE DISTRIBUTION TEST DATA 8												
Project: ST-DRLE													
Project Num	ber: 16577(05											
Location: G)20 S-26 11	0'-111.5'											
Sample Num	iber: 7980-1	12											
Date: 08/14/2	2017												
Tested by: B	H				Chec	ked by: JA	М						
				S	ieve Test D	ata							
Post #200 Wa	sh Test Weig	ihts (grams)	: Dry Sampl Tare Wt. = Minus #20	e and Tare = 16.10 0 from wash	= 35.20 = 84.9%								
Dry Sample and Tare (grams)	Tare (grams)	Sie Opei Si:	ve Wo ning Ret ze (gr	eight ained V ams) (e	Sieve Veight grams)	Percent Finer							
142.20	16.10	#	200			84.9							
				Firacti	onell Comp	onents							
					_	-							
Cobbles	Coareo	Gravel	Total	Coorco	Sa Modium	and Eine	Total	Q114	Fines	Total			
	Coarse Fine Iotai Coarse Medium Fine Iotai Sint Ciay I												
										84.9			
	T			[1				T				

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅

GRAIN SIZE DISTRIBUTION TEST DATA 3/13/2018 **Client:** Golder Associates Project: ST-DRLE Project Number: 1657705/17-940 Location: G020 S-35 Depth: 155'-156.5' Sample Number: 7992-24 Date: 10/5/2017 Tested by: BH Checked by: JAM Sieve Test Data Post #200 Wash Test Weights (grams): Dry Sample and Tare = 406.00Tare Wt. = 16.10 Minus #200 from wash = 23.0%Dry Sample Sieve Weight Sieve and Tare Tare Opening Retained Weight Percent Size (grams) (grams) Finer (grams) (grams) 522.60 16.10 #200 23.0 **Fractional Components** Gravel Fines Sand Cobbles Fine Medium Total Silt Coarse Total Coarse Fine Clay Total 23.0 D₁₀ D95 D₁₅ D₂₀ D₃₀ D50 D60 D80 D85 D90

GRAIN SIZE DISTRIBUTION TEST DATA

Client: Golder Associates Project: ST-DRLE Project Number: 1657705/17-940 Location: G022 S-10 Depth: 35'-36.5' Date: 10/5/2017 Tested by: BH

Sample Number: 7992-39

Checked by: JAM

Sieve Test Data Post #200 Wash Test Weights (grams): Dry Sample and Tare = 325.90 Tare Wt. = 15.80 Minus #200 from wash = 6.5%

Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer
347.30	15.80	#200			6.5
			Fractic	onal Compo	nents

Cobbles	Gravel				Sa	nd	Fines			
	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
										6.5

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅

3/13/2018

GRAIN SIZE DISTRIBUTION TEST DATA 3/13/2018 **Client:** Golder Associates Project: ST-DRLE Project Number: 1657705/17-940 **Location:** G022 S-12 Depth: 45'-46.5' Sample Number: 7992-40 Date: 10/5/2017 Tested by: BH Checked by: JAM Sieve Test Data Post #200 Wash Test Weights (grams): Dry Sample and Tare = 314.60 Tare Wt. = 15.80 Minus #200 from wash = 14.2%Dry Sample Sieve Weight Sieve and Tare Tare Opening Retained Weight Percent Size (grams) (grams) Finer (grams) (grams) 363.90 15.80 #200 14.2 **Fractional Components** Gravel Fines Sand Cobbles Fine Medium Total Silt Coarse Total Coarse Fine Clay Total 14.2 D₁₀ D95 D₁₅ D₂₀ D₃₀ D50 D60 D80 D85 D90

GRAIN SIZE DISTRIBUTION TEST DATA 3/13/2018 **Client:** Golder Associates Project: ST-DRLE Project Number: 1657705/17-940 Location: G023 S-9 Sample Number: 7992-44 Depth: 30'-31.5' Date: 10/5/2017 Tested by: BH Checked by: JAM Sieve Test Data Post #200 Wash Test Weights (grams): Dry Sample and Tare = 325.30 Tare Wt. = 15.80 Minus #200 from wash = 5.1%Dry Sample Sieve Weight Sieve and Tare Tare Opening Retained Weight Percent Size (grams) (grams) Finer (grams) (grams) 341.90 15.80 #200 5.1 **Fractional Components** Gravel Fines Sand Cobbles Fine Medium Total Silt Coarse Total Coarse Fine Clay Total 5.1 D₁₀ D95 D₁₅ D₂₀ D₃₀ D50 D60 D80 D85 D90

LIQUID AND PLASTIC LIMIT TEST DATA 11/16/2017											
Client: Gol Project: S1 Project Nu Location: 0	lder Associate Γ-DRLE mber: 16577 G018 S-20	es 705/17-9	940								
Depth: 90'-	.91.5'			Sample Number: 8003-29							
USCS: CL-	·ML BH			Checked by IAM							
rested by:	DII		Liquid Limit Data								
Run No	1			2	1	3			4	5	6
Wet+Tare	30.94			29.46		26.83			<u> </u>	.	
Dry+Tare	27.68		2	26.42		24.21					
Tare	13.72]	13.63		13.61					
# Blows	34			28		18					
25.1 24.9 24.7 24.5 24.3 24.3 24.3 23.9 23.7 23.5 23.3 23.1 5		10	Blows	20	25	30	40			Lic Pla Plasti Natural Liqui	quid Limit= <u>24</u> stic Limit= <u>18</u> city Index= <u>6</u> Moisture= <u>31.3</u> dity Index= <u>2.2</u>
Plastic Limit Data											
Wet+Tare	23.00		23.00			23.00			4		
Dry+Tare	re 21.59		2	1.59		21.59					
Tare 13.63 Moisture 17.7		13.63			13.63						
Woisture	17.7			17.7		17.7					
Natural Moisture Data											
Wet+Tare Dry+1			fare Tare			e Moistu		ire			
483.4 372			0 15.6		5.6	31.3					

LIQUID AND PLASTIC LIMIT TEST DATA								
Client: Golde Project: ST-I Project Num Location: GC Depth: 120'-1 USCS: CL Tested by: B	er Associates DRLE ber: 1657705/17 018 S-26 121.5' H	7-940	Samp Chec	ole Number: 8003-3 ked by: JAM	34			
			Liquid Limit D	ata				
Run No. Wet+Tare Dry+Tare	1 21.14 18.16	2 23.32 19.56	3 24.06 20.02	4	5	6		
# Blows Moisture	<u> </u>	11.20 21 45.0	11.21 15 45.9					
46.4 46 45.6 45.2 44.8 44.4 44 43.6 43.2 42.8 42.4 5 6		3 2 2 20 20 20 2 20 2 2 2 2 2 2 2 2 2 2 2 2 2			Liquid Plastic Plasticity Natural Mo Liquidity	I Limit= 44 2 Limit= 22 Index= 22 Disture= 35.8 Index= 0.6		
			Plastic Limit D	lata				
Run No. Wet+Tare Dry+Tare Tare Moisture	1 21.25 19.45 11.18 21.8	2	3	4				
		Hayre	McElroy & Asse	ociates, LLC				

		LIQUID	AND PLASTIC LI	MIT TEST DATA		11/15/2017
Client: Gol Project: ST Project Nu Location: (Depth: 130 USCS: CL Tested by:	der Associates T-DRLE mber: 1657705/17- G018 S-28 '-131.5' BH	940	Sam Chec	ple Number: 8000-36 sked by: JAM	5	
				PEIR		
Run No.	1	2	3	4	5	6
Wet+Tare	23.55	29.06	27.36			
Dry+Tare	20.88	24.75	23.52			
Tare	13.67	13.66	13.79			
# Blows	35	26	23			
Moisture	37.0	38.9	39.5			
40.6 40.2 39.8 39.4 39.4 39.4 39.4 39.4 38.6 38.2 37.8 37.4 37.4 36.6 5		A Constraint of the second sec			Liqui Plasti Plasticit Natural M Liquidit	id Limit= <u>39</u> ic Limit= <u>21</u> y Index= <u>18</u> oisture= <u>34.1</u> y Index= <u>0.7</u>
			Plastic Limit I	Data		
Run No.	1	2	3	4		
Wet+Tare	22.06	22.06	22.06			
Dry+lare	20.59	20.59	20.59			
Moieturo	210.29	210	13.39			m
woisture	21.0	21.0	21.0	I		
			Natural Moistur	e Data		
Wet+	Tare Dry+1	fare Tar	e Moisti	ure		
621	.5 512	.8 194.	.1 34.1			
				·		

Tested By: BH

		LIQUID	AND PLASTIC LI	MIT TEST DATA		11/15/2017
Client: Gold Project: ST- Project Nun Location: G Depth: 160'- USCS: CL Tested by: 1	ler Associates -DRLE nber: 1657705/17-9 018 S-33 -161.5' BH	940	Samı Chec Liquid Limit E	ole Number: 8003-3 ked by: JAM Data	39	
Run No.	1	2	3	4	5	6
Wet+Tare	27.27	28.44	27.27			
Dry+Tare	23.48	24.34	23,59			
Tare	13.77	13.69	13.97			
# Blows	33	25	19			
Moisture	39.0	38.5	38.3			
39.1 39 38.9 38.8 38.7 38.6 38.6 38.5 38.4 38.3 38.2 5 6			1 1 2 30 40		Liqu Plast Plasticit Natural M Liquidit	id Limit= <u>39</u> ic Limit= <u>21</u> cy Index= <u>18</u> loisture= <u>38.0</u> cy Index= <u>0.9</u>
			Plastic Limit I	Data		
Run No.	1	2	3	4		
Wet+Tare	22.08	22.08	22.08			
Dry+Tare	20.65	20.65	20.65			
l are	13.70	13.70	13.70			
woisture	20.0	20.0	20.0	I		
			Natural Moisture	e Data		
Wet+T	are Drv+T	are Tare	e Moistu	ure		
624.	.2 515	.9 231.	2 38.0)		

		LIQUID	AND PLASTIC LI	MIT TEST DATA		11/16/2017
Client: Go Project: S Project Nu Location: Depth: 17: USCS: CH Tested by	lder Associates T-DRLE umber: 1657705/17- G018 S-35 5'-176.5' I BH	940	Samp	ble Number: 8003-4 ked by: JAM	1	
			Liquid Limit B	ater		
Run No.	1	2	3	4	5	6
Wet+Tare	27.49	27.23	28.51			
Dry+Tare	20.70	20.30	20.94			
Tare	11.15	11.26	11.25			
Moisture	711	<u> </u>	78 1			
79 78 77 76 75 74 73 72 71 70 5		20 Blows			Plastic Plasticity Natural Mc Liquidity	2 Limit= 22 1 Index= 52 0 Index= 36.3 1 Index= 0.3
			Plastic Limit D	Daita		
Run No.	1	2	3	4		
Drv+Tare	19.76	19.76	19.76			· · · · ·
Tare	13.71	13.71	13.71			
Moisture	22.5	22.5	22.5			
			Natural Moisture	Data		
Wet+	Tare Dry+1	are Tare	e Moistu	Ire		
66	6.2 532	.0 161.	9 36.3			

_____ Hayre McElroy & Associates, LLC _____

		LIQUID	AND PLASTIC LI	WIT TEST DATA		11/16/2017
Client: Gold Project: ST- Project Num Location: G Depth: 190'- USCS: CH Tested by: E	er Associates DRLE 1 ber: 1657705/17-9 018 S-38 -191.5' 3H	940	Samp Chec	ble Number: 8003-4 ked by: JAM	43	
				ata		
Run No.	1	2	3	4	5	6
Wet+Tare	26.80	27.27	32.55			
Dry+Tare	20.31	20.52	23.47			
Tare	11.21	11.27	11.20			
# Blows	31	28	18		· · · · · · · · · · · · · · · · · · ·	
Moisture	71.3	73.0	74.0			
74.8 74.4 74 73.6 73.2 73.2 72.8 72.4 72.4 72 71.6 71.2 70.8 5 6		20 Blows			Liq Plas Plastic Natural Liquid	uid Limit= <u>73</u> stic Limit= <u>21</u> ity Index= <u>52</u> Moisture= <u>30.4</u> ity Index= <u>0.2</u>
			Plastic Limit D	Data		
Run No.	1	2	3	4		
Wet+Tare	21.48	21.48	21.48			
Dry+Tare	20.13	20.13	20,13			
Tare	13.67	13.67	13.67			
Moisture	20.9	20.9	20.9			
			Natural Moisture	• Data		
Wet+T	are Dry+T	are Tar	e Moistu	ıre		
612.2	2 507	.9 164.	9 30.4			

LIQUID AND PLASTIC LIMIT TEST DATA 8/23/2017 **Client:** Golder Associates Project: ST-DRLE Project Number: 1657705/17-940 Location: G019 S-19a Depth: 75'-76.5' Sample Number: 7980-1 Tested by: BH Checked by: JAM Liquid Limit Data Run No. 1 2 3 4 5 6 Wet+Tare Dry+Tare Tare # Blows Moisture 40 Liquid Limit= <u>NV</u> 36 Plastic Limit= <u>NP</u> NP Plasticity Index= ____ 32 Natural Moisture= 31.3 28 24 Moisture 20 16 12 8 4 0 б 7 8 9 10 20 25 30 40 Blows Plastic Limit Data Run No. 1 2 3 4 Wet+Tare Dry+Tare Tare Moisture Natural Moisture Data Dry+Tare Wet+Tare Tare Moisture 356.6 275.5 16.4 31.3

LIQUID AND PLASTIC LIMIT TEST DATA 8/23/2017 **Client:** Golder Associates Project: ST-DRLE Project Number: 1657705/17-940 Location: G019 S-19b Depth: 75'-76.5 Sample Number: 7980-2 Tested by: BH Checked by: JAM Liquid Limit Data 4 5 6 Run No. 1 2 3 Wet+Tare Dry+Tare Tare # Blows Moisture 40 Liquid Limit= <u>NV</u> 36 Plastic Limit= <u>NP</u> NP Plasticity Index= 32 Natural Moisture= 31.1 28 24 Moisture 20 16 12 8 4 oL 8 9 10 6 7 20 25 30 40 Blows Plastic Limit Data Run No. 1 2 3 4 Wet+Tare Dry+Tare Tare Moisture Natural Moisture Data Dry+Tare Moisture Wet+Tare Tare 371.9 287.5 16.2 31.1

		LIQUID	AND PLASTIC LIN	AIT TEST DATA		8/23/2017
Client: Gold Project: ST Project Nur Location: C Depth: 85'-8 USCS: CL Tested by: 1	der Associates -DRLE nber: 1657705/17-9 6019 S-21 86.5' BH	940	Samp Checl Liquid Limit D	de Number: 7980-3 ked by: JAM ata		
Run No.	1	2	3	4	5	6
Wet+Tare	32.18	29,60	28.44			
Dry+Tare	28.55	26.38	25.31			
lare # Diawa	13.64	13.68	13,58			
# BIOWS	33	21	1/			
woisture	24.3	25,4	20.7			
27.6 27.2 26.8 26.4 26.4 25.6 25.2 24.8 24.4 24.4 24.4 24.4 24.5 5 6		3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	2 1 2 2 30 40		Liqui Plasti Plasticit Natural M Liquidit	Id Limit= 25 ic Limit= 16 y Index= 9 oisture= 34.6 y Index= 2.1
	and a second		Plastic Limit D	lata		
Run No.	1	2	3	4		
Wet+Tare	23.55	23.55	23.55			
Dry+Tare	22.14	22.14	22.14			
Tare	13.54	13.54	13.54			
Moisture	16.4	16.4	16.4			
			Natural Moisture	Data		
Wet+1	lare Dry+1	Tare Tare	e Moistu	ire		
445	.9 335	.6 16.6	5 34.6			

		LIQUID	AND PLASTIC LI	MIT TEST DATA		8/23/2017	
Client: Gold Project: ST Project Nur Location: C Depth: 95'-' USCS: CL Tested by:	der Associates '-DRLE nber: 1657705/17-! 5019 S-23 96.5' BH	940	Samp Chec Liquid Limit P	ble Number: 7980-4 ked by: JAM ata			
Pun No		2	3	4	5	6	
Wet+Tare	28.06	27.76	29.98		5	<u> </u>	
Drv+Tare	24.39	24.08	25.57				
Tare	13.71	13.62	13.64				
# Blows	32	27	21				
Moisture	34.4	35.2	37.0				
37.6 37.2 36.8 36.4 37.4		and a second sec	Plastic Limit E	Data	Liquid Plastic Plasticity Natural Mo Liquidity	d Limit= <u>36</u> c Limit= <u>21</u> / Index= <u>15</u> oisture= <u>37.8</u> / Index= <u>1.1</u>	
Run No.	1	2	3	4			
Wet+Tare	22.80	22.80	22.80				
Dry+Tare	21.22	21.22	21.22				
Tare	13.62	13.62	13.62				
Moisture	20.8	20.8	20.8		ļ	·····	
	Natural Moisture Data						
Wet+	Tare Dry+1	Tare Tar	e Moistu	Ire			
470	.9 346	.2 16.0) 37.8	-			

		LIQUID	AND PLASTIC LI	MIT TEST DATA		8/23/2017
Client: Gold Project: ST Project Nur Location: C Depth: 105 th USCS: CL Tested by: 2	ler Associates -DRLE nber: 1657705/17-9 i019 S-25 -106.5' BH	940	Samı Chec	ple Number: 7980-5 ked by: JAM		
Run No.	1	2	3	4	5	6
Wet+Tare	33.23	31.79	28.79			
Dry+Tare	29.05	27.77	25.22			
Tare	13.52	13.61	13.75			
# Blows	34	29	17			
Moisture	26.9	28.4	31.1			
31.5 31 30.5 30 29.5 29 28.5 28 27.5 27 26.5 5		a a a a a a a a a a a a a a a a a a a			Liquid Limi Plastic Limi Plasticity Inde Natural Moistur Liquidity Inde	$ t = 29 \\ t = 16 \\ x = 13 \\ y = 32.6 \\ x = 1.3 $
			Plastic Limit I	Data		
Run No.	1	2	3	4		
Wet+Tare	22.78	22.78	22.78			
Dry+Tare	21.50	21.50	21.50			
Tare	13.69	13.69	13.69		·····	
Moisture	16.4	16.4	16.4			
Wet+1	are Dry+1	Fare Tar	Natural Moistur	e Data		
421	.1 321	.6 16.1	32.6	<u> </u>		

LIQUID AND PLASTIC LIMIT TEST DATA 8/23/2017 **Client:** Golder Associates Project: ST-DRLE Project Number: 1657705/17-940 Location: G019 S-27 Depth: 115'-116.5' Sample Number: 7980-6 Checked by: JAM Tested by: BH Liquid Limit Data 3 Run No. 2 4 5 6 1 Wet+Tare Dry+Tare Tare # Blows Moisture 40 Liquid Limit= <u>NV</u> 36 Plastic Limit= <u>NP</u> Plasticity Index= <u>NP</u> 32 Natural Moisture= <u>25.7</u> 28 24 Moisture 20 16 12 8 4 0 8 9 10 6 7 20 25 30 40 Blows Plastic Limit Data Run No. 2 3 4 1 Wet+Tare Dry+Tare Tare Moisture Natural Moisture Data Wet+Tare Dry+Tare Tare Moisture 461.2 370.3 16.0 25.7

		LIQUID	AND PLASTIC LII	WIT TEST DATA		8/23/2017
Client: Gold Project: ST	der Associates -DRLE	0.40				
Project Nur	mber: 1657705/17-	-940				
Location: (3019 S-29					
Depth: 125'	-126.5'		Samp	ble Number: 7980-7		
USCS: CL						
Tested by:	BH		Chec Liquid Limit D	ked by: JAM ata		
Dun No.	4	<u>_</u>	3	A 1	5	e
Kun No.	22.20	28.04	25.00	4	U	0
Drut Tare	32.39	20.94	23.09			
Diy+Tale	12.65	12 71	12 71			
# Ployte	15.05	13.71	20			<u>, , , , , , , , , , , , , , , , , </u>
Moioturo	20	24	20			
Woisture	34.4	30.3	57.0			
38 37.6 37.2 36.8 36.4 36.4 36.4 36.4 36.4 36.4 35.6 35.2 34.8 34.4 34.4 34.5		La			Liquic Plastic Plasticity Natural Mo Liquidity	I Limit= <u>36</u> Limit= <u>21</u> Index= <u>15</u> Disture= <u>31.7</u> Index= <u>0.7</u>
			Plastic Limit I	Data		
Run No.	1	2	3	4		
Wet+Tare	23.30	23.30	23.30			
Dry+Tare	21.62	21.62	21.62			
Tare	13.63	13.63	13.63			
Moisture	21.0	21.0	21.0			
			Natural Moistur	e Data		
Wet+	Tare Drv+	Tare Tar	e Moistu	ıre		
480	0.6 36	8.6 15.8	3 31.7	1		

LIQUID AND PLASTIC LIMIT TEST DATA 8/23/2017 **Client:** Golder Associates Project: ST-DRLE Project Number: 1657705/17-940 Location: G020 S-20 Depth: 80'-81.5' Sample Number: 7980-8 Tested by: BH Checked by: JAM Liquid Limit Data 4 5 Run No. 1 2 3 6 Wet+Tare Dry+Tare Tare # Blows Moisture 40 Liquid Limit= <u>NV</u> 36 NP Plastic Limit= __ NP Plasticity Index= _ 32 Natural Moisture= <u>30.4</u> 28 24 Moisture 20 16 12 8 4 0 6 7 8 9 10 20 25 30 40 Blows Plastic Limit Data Run No. 1 2 3 4 Wet+Tare Dry+Tare Tare Moisture Natural Moisture Data Wet+Tare Dry+Tare Tare Moisture 378.6 488.8 16.1 30.4

		LIQUID	AND PLASTIC LI	MIT TEST DATA		8/23/2017
Client: Gold Project: ST Project Nu Location: C Depth: 90'- USCS: CL	der Associates '-DRLE mber: 1657705/17- 3020 S-22 91.5'	940	Sam	ple Number: 7980-9		
Tested by:	BH		Cheo Liquid/Limit/	cked by: JAM Data		
Run No.	1	2	3	4	5	6
Wet+Tare	29.07	30.54	29.09			
Dry+Tare	26.08	27.23	25.96			
Tare	13.61	13.62	13.62			·····
# Blows	33	26	19			
MOISLUIG	24.0	24,3	23,4			
25.7 25.5 25.3 25.1 24.9 24.7 24.5 24.3 24.3 24.1 23.9 23.7 5		3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	25 30 40		Liquid Plastic Plasticity Natural Moi Liquidity	Limit= <u>25</u> Limit= <u>17</u> Index= <u>8</u> sture= <u>34.3</u> Index= <u>2.2</u>
			Plastic Limit	Data		
Kun No. Wef+Tare	1 	2 23 84	23.84	4		
Dry+Tare	22.39	22,39	22,39			
Tare	13.65	13.65	13.65			
Moisture	16.6	16.6	16.6			
			Natural Moistur	e Data		
Wet+	Tare Dry+	Tare Tar	e Moist	ure		
509	., 383	. <u>++ 1</u> 5.	<u>ı 54.</u>	<u>, </u>		

Tested By: BH

LIQUID AND PLASTIC LIMIT TEST DATA

Client: Gol	der Associates					
Project: ST	-DRLE					
Project Nu	mber: 1657705/17-9	940				
Location: (3020 S-25					
Sample Nu	mper: /920-11					
Teefed by	DII		Chao	kad bu i AM		
Tested by:	DH			Keu by: JAW		
				EE		
Run No.	1	2	3	4	5	6
Wet+Tare	34.74	26.60	32.06			
Dry+Tare	30.91	24.15	28.49			
lare	13.58	13.53	13.71			
Moisture	22 1	23 1	24.2			
moistare		2,,1	27.2			
25.2					Liquid	Limit=23
24.8					Plastic	: Limit= <u>15</u>
24.4					Plasticity	Index= 8
∩∦		3			Natural Mo	oisture= <u>32.4</u>
24					Liquidity	Index=2.2
g 23.6						
Ž 22 8						
22.4						
22						
21.6						
21.2						
5	6 7 8 9 10	20	25 30 40			
		Blows				
			Ribertie Lingth			
			MESUCIEMU	/alla	and a start of the second start	
Run No.	1	2	3	4		
Wet+Tare	23.54	23.54	23.54			
Dry+Tare	22.25	22.25	22.25			
Tare	13.69	13,69	13.69			· · · · · · · · · · · · · · · · · · ·
Woisture	15.1	15.1	15.1	<u> </u>		
			Natural Moisture	Data		
Wet+	Tare Dry+1	Tare Tar	e Moistu	ire		
496	.4 378	.7 15.8	32.4			

8/23/2017

		LIQUID	AND PLASTIC LI	WIT TEST DATA		8/23/2017
Client: Gold Project: ST Project Nur Location: C Depth: 110' USCS: ML Tested by:	der Associates -DRLE nber: 1657705/17- 6020 S-26 -111.5' BH	940	Samp Chec Liquid Limit ∎	ble Number: 7980-1: ked by: JAM ata	2	
Dun Na	A		2		r	~
Mot+Taro	20.05	20.24	27.01	4	5	6
Dry+Tare	26.28	25.60	27.91			
Tare	13.60	13.75	13 51			
# Blows	34	26	23			
Moisture	29.7	30.7	31.9			
32.8 32.4 32 31.6 31.2 30.8 30.4 30 29.6 29.2 28.8 5 6		a constraint of the second sec			Liqui Plasti Plasticity Natural M Liquidity	d Limit= <u>31</u> c Limit= <u>27</u> y Index= <u>4</u> oisture= <u>33.9</u> y Index= <u>1.7</u>
			Plastic Limit D	pata		
Run No.	1	2	3	4		
Wet+lare	23.10	23.10	23.10			
Tare	13.65	13.65	13.65			
Moisture	27.4	27.4	27.4		··· ·	
Wet+1 413	T <mark>are Dry+1</mark> .1 312	Tare Tare .7 16.1	Natural Moisture Moistu 33.9	Data Ire		

		LIQUID	AND PLASTIC LIN	/IT TEST DATA		8/23/2017
Client: Gold Project: ST Project Nur Location: C Depth: 120' USCS: CL Tested by:	der Associates -DRLE nber: 1657705/17-9 6020 G-28 -121.5' BH	940	Samp Checl Liquid Limit D	le Number: 7980-1: ked by: JAM ata	3	
Run No	1	2	3	Δ	5	A
Wet+Tare	30.90	27.70	29.62		V	
Drv+Tare	26.32	23.85	25.17			
Tare	13.69	13.63	13.54			
# Blows	31	23	19			
Moisture	36.3	37.7	38.3			
39.4 39 38.6 38.2 37.8 37.8 37.4 37 36.6 36.2 35.8 35.4 5		20 Blows			Liqı Plas Plastic Natural I Liquid	uid Limit= <u>37</u> tic Limit= <u>20</u> ity Index= <u>17</u> Moisture= <u>34,4</u> ity Index= <u>0.8</u>
			Plastic Limit D	ata		
Run No.	1	2	3	4		
Wet+Tare	21.10	21.10	21.10			
Dry+Tare	19.83	19.83	19.83			
Tare	13.59	13.59	13.59			
Moisture	20.4	20.4	20.4			
			Natural Moisture	Data		
Wet+1	Tare Dry+T	are Tare	e Moistu	re		
457	.4 344	.4 16.0) 34.4			

Tested By: BH

__ Checked By: JAM_____

LIQUID AND PLASTIC LIMIT TEST DATA 8/23/201						
Client: Gol Project: ST Project Nu Location: (Depth: 135 USCS: CL Tested by:	der Associates `-DRLE mber: 1657705/17- 3020 S-31 '-136.5' BH	940	Sam Chec Liquid Limit I	ole Number: 7980-14 ked by: JAM Data	4	
Dun Ma	4		3			
Wot+Tare	27.04	21.20	3	4	5	6
Drv+Tare	27.94	26.72	29.90			
Tare	13.58	13.64	13.60			
# Blows	34	22	18			
Moisture	32.8	35.0	36.1			
36.4 36 35.6 35.2 34.8 34.4 34.4 34.4 33.6 33.2 32.8 32.4 5		20 Blows			Liqui Plasti Plasticity Natural Me Liquidity	d Limit= <u>34</u> c Limit= <u>22</u> / Index= <u>12</u> pisture= <u>31.3</u> / Index= <u>0.8</u>
			Plastic Limit I	Data		
Run No.	1	2	3	4		
Wet+Tare	22.02	22.02	22.02			
Dry+Tare	20.52	20.52	20.52			
Mointuro	21.0	13.68	13.68			
wosture	21.7	21.9	21.9	<u> </u>		
an ann ann an			Natural Moisture	A Data		
Wet+3	are Drv+T	are Tare	e Moisti	Ire		
447	.1 344	.4 16.6	31.3	<u></u>		

Tested By: BH

___ Checked By: <u>JAM</u>_____
	LIQUID AND PLASTIC LIMIT TEST DATA 8/23/2017								
Client: Gol Project: ST Project Nut Location: (Depth: 145 USCS: CL Tested by:	der Associates -DRLE mber: 1657705/17- 3020 S-33 '-146.5' BH	940	Sam	ple Number: 7980-1 ked by: JAM	5				
				JEIE .					
Run No.	1	2	3	4	5	6			
Wet+Tare	28.60	31.51	30.26			······································			
Dry+Tare Tare	24.93	26.99	25.89						
# Blows	13.03	13.01	13.5	···· · · ·					
Moisture	32.5	33.8	353						
35.6 35.2 34.8 34.4 34.4 34.4 33.6 33.2 32.8 32.4 32.4 32.5		20 Blows			Liquid Plasti Plasticity Natural Mo Liquidity	d Limit= <u>33</u> c Limit= <u>19</u> / Index= <u>14</u> pisture= <u>28.8</u> / Index= <u>0.7</u>			
			Plastic Limit I	Data					
Run No.	1	2	3	4					
Wet+Tare	22.49	22.49	22.49						
Dry+Tare	21.08	21.08	21.08						
Moisture	19.0	19.0	13.00		· · · ·				
Wet+1	Tare Dry+1	are Tare	Natural Moisture Moistu	e Data					
401	.3 315	.1 15.8	<u> </u>	·					

		LIQUID	AND PLASTIC LIN	NIT TEST DATA		8/23/2017
Client: Gold Project: ST Project Nu Location: C Depth: 165 USCS: CL Tested by:	der Associates Y-DRLE mber: 1657705/17- 3020 S-37 '-166.5' BH	940	Samp Checł Liquid Limit D:	le Number: 7980-16 ted by: JAM ata		
Dun No.	4		0			
Wot+Taro	20.05	20.06	3	4	5	6
DrutTare	28.83	30.90	30.07			
Tare	13 52	13.52	13 70			
# Blows	29	22	18			
Moisture	37.6	38.9	39.3			
39.4 39.2 39 38.8 38.6 38.6 38.4 38.2 38.2 38 37.8 37.6 37.4 5		20 Blows			Liquid Plastic Plasticity Natural Mo Liquidity	d Limit= <u>38</u> c Limit= <u>19</u> / Index= <u>19</u> pisture= <u>31.8</u> / Index= <u>0.7</u>
			Plastic Limit D	ata		
Run No.	1	2	3	4		
Wet+Tare	23.50	23.50	23.50			
Dry+Tare	21.90	21.90	21.90			
Tare	13.67	13.67	13.67			
Moisture	19.4	19.4	19.4			
			Natural Moisture	Data		
Wet+1	Fare Dry+1	are Tare	e Moistu	ſ e		
400	.2 307	.5 16.1	31.8			

Checked By: <u>JAM</u>

		LIQUID	AND PLASTIC LI	MIT TEST DATA		8/23/2017
Client: Gold Project: ST Project Nur Location: C Depth: 180 USCS: CL Tested by:	der Associates -DRLE mber: 1657705/17- 3020 S-40 '-181.5' BH	940	Samı Chec	ole Number: 7980-1 ked by: JAM	7	
and the second			Liquid Limit I	Daita		
Run No.	1	2	3	4	5	6
Wet+Tare	30.37	31.25	27.65			
Dry+Tare	26.43	27.00	24.22			
Tare	13.61	13.70	13.67			
# Blows	34	26	23			
Moisture	30.7	32.0	32,5			
33.6 33.2 32.8 32.4 32 31.6 31.2 30.8 30.4 30 29.6 5		20 Blows			Liquid Plastic Plasticity Natural Mo Liquidity	I Limit= <u>32</u> Limit= <u>18</u> Index= <u>14</u> isture= <u>26.5</u> Index= <u>0.6</u>
			Plastic Limit I	Data		
Run No.	1	2	3	4		
Wet+Tare	22.23	22.23	22.23			
Dry+Tare	20.95	20.95	20.95			
Moieturo	13.65	13.65	13.65			
woisture	17.5	17.3	17.5		1	
			Natural Moisture	e Data		
Wet+1	lare Drv+1	lare Tar	e Moisti			
278	.9 223	.8 15.'	7 26.5			

LIQUID AND PLASTIC LIMIT TEST DATA

10/11/2017

Client: Gol	der Associates					
Project: S1	-DKLE	040				
Project Nu	mber: 1657705/17-	940				
Location: (3021 S-2		-			
Depth: 2.5	-3.5'		Sam	ble Number: 7992-2	27	
USCS: ML						
Tested by:	BH		Chec Liquid Limit I	ked by: JAM lata		
Run No.	1	2	3	4	5	6
Wet+Tare	32.61	36,26	26.79			
Dry+Tare	27.30	29.85	23.03			
Tare	13.65	13.65	13.71			
# Blows	31	22	18			
Moisture	38.9	39.6	40.3			
40.7 40.5 40.3 40.1 39.9 39.7 39.5 39.3 39.1 38.9 38.7 5		3 3 2 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 3 2 3 2 3 2 3 2 3 3 2 3 3 2 3			Liqu Plast Plasticit Natural M Liquidit	id Limit= <u>39</u> ic Limit= <u>31</u> ty Index= <u>8</u> loisture= <u>37.5</u> ty Index= <u>0.8</u>
			Plastic Limit D	Data		
Run No	1)	2	А	Γ	
Wet+Tare	23.08	23.08	23.08	~*		
Drv+Tare	20.83	20.83	20.83			
Tare	13.59	13.59	13.59			
Moisture	31.1	31.1	31.1			
			Natural Moisture	• Data		
Wet+	Tare Dry+	Tare Tar	e Moistu	ire		
278	.1 206	5.5 15.	8 37.5			
		Науі	e McElrov & Ass	ociates, LLC		

Tested By: BH

Tested By: BH

Clien Proje Proje Locat Depth	LIQUID AND PLASTIC LIMIT TEST DATA Client: Golder Associates Project: ST-DRLE Project Number: 1657705/17-940 Location: G024 S-4 Depth: 7.5'-9' Sample Number: 7995-5							3/1	2/2018	3																			
Mater USCS	ial De S: NA	escr	ipti	on	: S1	lt w	'ith	org	;an	ICS								_		_									
leste	a by:	вн												l	_ic	qui	id	Lin	ne nit	Dai	ed by: ta	: JAM							
Rur	n No.			1						2		 					3					4		5			6		_
Wet+	Tare						_					 	F																_
Diy+	Tare											 																	_
# B	lows						_					 	╞																_
400 36 32 28 24 20 16 12 8 4 0	5 6		$\begin{array}{c c c c c c c c c c c c c c c c c c c $								<u>NV</u> 50.0																		
													N	lat	tui	ral	M	lois	stu	ire I	Data								
	Wet+	Tare	e			Dry	y+T	<u>'are</u> 8)	\neg		 _	<u>Га</u> 15	<u>re</u> 8						Moi 5	isture)							
											H:	 		Icl	FI	ro		R 1	A e	500	histor								

LIQUID AND PLASTIC LIMIT TEST DATA 10/26/2017 **Client:** Golder Associates Project: ST-DRLE Project Number: 1657705/17-940 Location: G024 S-5A Depth: 10'-11.5' Sample Number: 7995-6 USCS: OL Tested by: BH Checked by: JAM Liquid Limit Data Run No. 2 3 4 5 6 1 Wet+Tare 32.83 30.32 29.85 Dry+Tare 26.85 25.01 24.64 Tare 13.62 13.53 13.55 # Blows 30 28 22 Moisture 45.2 46.3 47.0 47 46 Liquid Limit= 46.8 30 Plastic Limit= ___ Plasticity Index= ____16 46,6 Natural Moisture= 54.6 46.4 Liquidity Index= 1.5 46.2 Moisture 46 45.8 45.6 45.4 45,2 45 L 7 8 9 10 20 6 30 40 25 Blows Plastic Limit Data Run No. 2 3 4 1 Wet+Tare 21.44 21.44 21.44 Dry+Tare 19.67 19.67 19.67 Tare 13.69 13.69 13.69 Moisture 29.6 29.6 29.6 Natural Moisture Data Wet+Tare Dry+Tare Tare Moisture 333.5 221.2 15.7 54.6

Tested By: BH

		LIQUID	AND PLASTIC LIN	NIT TEST DATA		10/26/2017
Client: Gold Project: ST- Project Nun Location: G Depth: 10'-1	ler Associates -DRLE nber: 1657705/17-5 6025 S-3 11,5'	940	Samp	le Number: 7995-11		
Tested by:]	BH		Checl	ked by: JAM		
			Liquid Limit D	ata		
Run No.	1	2	3	4	5	6
Wet+Tare	33.62	30.55	31.66			
Dry+Tare	28.31	26.00	26.74			
Tare	13.53	13.69	13.66			
# Blows	27	24	18			
Woisture	35.9	37.0	37.0			
37.7 37.5 37.3 37.3 37.1 36.9 36.7 36.5 36.3 36.1 35.9 35.7 5		20 Blows			Liqui Plast Plasticit Natural M Liquidit	id Limit= <u>36</u> ic Limit= <u>26</u> y Index= <u>10</u> loisture= <u>37.7</u> y Index= <u>1.2</u>
			Plastic Limit D	lata		
Run No.	1	2	3	4		
Wet+Tare	20.92	20.92	20.92	: 		
Dry+Tare	19.42	19.42	19.42			
Tare	13.69	13.69	13.69			
Moisture	26.2	26.2	26.2			
			Natural Moisture	Data		
Wet+1	lare Drv+1	Fare Tar	e Moistu	ľe		
323	.5 239	.2 15.0	5 37.7			

Tested By: BH

ORGANIC CONTENT

ASTM D 2974

Project Name	ST-DRLE
Project Number	1657705
Date Tested	3/8/2018
HMA Lab #	G023 S2 5-6.5'
Material Description	Peat

Total Wet Wt + Tare	143.5 grams
Total Oven Dried Wt + Tare	128.4 grams
Wt of Tare	117.7 grams
Moisture Loss	15.1 grams
Moisture Content	140.7 %

BURN No.	Tare + Dry Weight
1	124.47
2	124.03
3	124.03
4	
5	

Percentage Ash Content	68.9 %
Ash Content	4.4 grams
Wt of Tare	117.7 grams
Total Ash/Soil Wt + Tare	124.0 grams
Total Oven Dried Wt + Tare	128.4 grams

APPENDIX H

LABORATORY TESTS – SOIL TESTING (HWA GEOSCIENCES INC.)

November 13, 2017 HWA Project No. 2012-095-23 T1200

Golder Associates Inc. 18300 Union Hill Road, Suite 200 Redmond, Washington 98052

Attention: Mr. Birkan Bayrak, Ph.D., P.E.

Subject: SOIL LABORATORY TESTING REPORT Atterberg Limits, Consolidation and Triaxial Strength Testing Sound Transit Redmond East Link Extension Golder Project No. 1657705

Dear Mr. Bayrak;

As requested, HWA GeoSciences Inc. (HWA) performed laboratory testing for the above referenced project. Herein we present the results of our laboratory analyses, which are summarized on the attached Figures. The laboratory testing program was performed in general accordance with your instructions and appropriate ASTM Standards as outlined below.

SAMPLE DESCRIPTION: The samples were delivered to our laboratory on October 25, 2017 by Golder Associates personnel. The samples were delivered in Shelby tubes designated with exploration ID, sample number and depth of sampling. The Shelby tubes were extruded and tests were ordered by the client based on photographic information. The samples were classified for engineering purposes in general accordance with ASTM D2487. The sample descriptions appear on the attached report Figures.

LIQUID LIMIT, PLASTIC LIMIT, AND PLASTICITY INDEX OF SOILS (ATTERBERG LIMITS): Six selected samples were tested using method ASTM D 4318, multi-point method. The results are reported on the attached Liquid Limit, Plastic Limit, and Plasticity Index report, Figure 1.

UNCONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION OF SOILS: The unconsolidated, undrained strength of the selected samples were tested in general accordance with method ASTM D2850 to determine the strength characteristics of the soil. Each sample was extruded from the sample tube and a representative section was cut from the sample. The sample ends were trimmed to obtain a cylindrical test sample with a length to diameter ratio between 2:1 and 2.5:1. The bulk density of the sample was determined by careful weighing and dimensional measurement of the trimmed sample. The confining stresses used are indicated on the test plots. The results are summarized and plotted graphically on the attached Unconsolidated Undrained Triaxial Compression Test for Cohesive Soils reports, Figures 2-7.

21312 30th Drive SE Suite 110 Bothell, WA 98021-7010 Tel: 425.774.0106 Fax: 425.774.2714 www.hwageo.com November 13, 2017 HWA Project No. 2012-095-23 Task 1200

ONE DIMENSIONAL CONSOLIDATION PROPERTIES OF SOIL: The consolidation properties of selected soil samples were measured in general accordance with ASTM D2435. Saturation was maintained by inundation of the sample throughout the test. The samples were subjected to increasing increments of total stress, the duration of which was selected to exceed the time required for completion of primary consolidation as defined in the Standard, Method B. Unloading of the sample was carried out incrementally. According to the client's instructions, the samples were also subjected to a reloading cycle after the initial load-unload cycle. The test results are presented on the attached Figures 8-13.

CLOSURE: Experience has shown that laboratory test values for soil and other natural materials vary with each representative sample. As such, HWA has no knowledge as to the extent and quantity of material the tested sample may represent. HWA also makes no warranty as to how representative either the sample tested or the test results obtained are to actual field conditions. It is a well established fact that sampling methods present varying degrees of disturbance or variance that affect sample representativeness.

0.0

No copy should be made of this report, except in its entirety.

We appreciate the opportunity to provide laboratory testing services on this project. Should you have any questions or comments, or if we may be of further service, please call.

Sincerely,

HWA GEOSCIENCES INC.

Daniel Walton Laboratory Supervisor

Steven E. Greene, L.G., L.E.G. Principal Engineering Geologist Vice President

Attachments:

Figure 1 Figures 2-7 Figures 8-13

Liquid Limit, Plastic Limit and Plasticity Index of Soils Unconsolidated-Undrained Compression Test for Cohesive Soils One Dimensional Consolidation of Soils

MLT for Golder Associates Inc. Redmond East Link Extension LIQUID LIMIT, PLASTIC LIMIT AND PLASTICITY INDEX OF SOILS METHOD ASTM D4318

1

HWAATTB10 (ORGANIC) 2012-095 T1200.GPJ 11/13/17

PROJECT NO.: 2012-095 T1200 FIGURE:

Sample Point: Sample Number: Sample Depth: Confining Stress (ksf): Strain Rate (%\min):

ST-2 (UU-TX1) 5-5.5 feet 0.60

0.85

Initial Moisture Content (%):163.1Wet Unit Weight (pcf):85.7Dry Unit Weight (pcf):32.6Total Peak Stress (ksf):1.038Figure No : 2

Figure No.: 2

Sample Point: Sample Number: Sample Depth: Confining Stress (ksf): Strain Rate (%\min):

G023B

ST-2 (UU-TX2) 5.5-6.0 feet 0.71 0.85

Initial Moisture Content (%): 157.7 Wet Unit Weight (pcf): 77.3 Dry Unit Weight (pcf): 30.0 Total Peak Stress (ksf): 1.237

Figure No.: 3

Sample Number: Sample Depth: Confining Stress (ksf): Strain Rate (%\min): ST-1 (UU-TX3) 12.5-13.0 feet 1.50

0.85

Initial Moisture Content (%):94.6Wet Unit Weight (pcf):79.5Dry Unit Weight (pcf):40.8Total Peak Stress (ksf):1.313Figure No.:4

Sample Number: Sample Depth: Confining Stress (ksf): Strain Rate (%\min):

1.50

0.85

ST-1 (UU-TX4) Initial Moisture Content (%): 189.4 12.5-13.0 feet Wet Unit Weight (pcf): 79.3 Dry Unit Weight (pcf): 27.4 Total Peak Stress (ksf): 1.375 Figure No.: 5

Sample Number: Sample Depth: Confining Stress (ksf): Strain Rate (%\min):

1.60

0.85

ST-1 (UU-TX5) Initial Moisture Content (%): 312.7 13.0-13.5 feet Wet Unit Weight (pcf): 71.0 Dry Unit Weight (pcf): 17.2 Total Peak Stress (ksf): 1.807

Figure No.: 6

Sample Point: Sample Number: Sample Depth: Confining Stress (ksf): Strain Rate (%\min):

1.70

0.85

ST-1 (UU-TX6) Initial Moisture Content (%): 13.5-14.0 feet Wet Unit Weight (pcf): Dry Unit Weight (pcf): Total Peak Stress (ksf):

Figure No.: 7

257.7

70.0

19.6

1.882

FIGURE

January 18, 2018 HWA Project No. 2012-095-23 T1200

Golder Associates Inc. 18300 Union Hill Road, Suite 200 Redmond, Washington 98052

Attention: Mr. Birkan Bayrak, Ph.D., P.E.

Subject: SOIL LABORATORY TESTING REPORT Atterberg Limits, Consolidation and Triaxial Strength Testing Sound Transit Redmond East Link Extension Golder Project No. 1657705

Dear Mr. Bayrak;

As requested, HWA GeoSciences Inc. (HWA) performed laboratory testing for the above referenced project. Herein we present the results of our laboratory analyses, which are summarized on the attached Figures. The laboratory testing program was performed in general accordance with your instructions and appropriate ASTM Standards as outlined below.

SAMPLE DESCRIPTION: The samples were delivered to our laboratory on January 11, 2018 by Golder Associates personnel. The samples were delivered in Shelby tubes designated with exploration ID, sample number and depth of sampling. The Shelby tubes were extruded and tests were ordered by the client based on photographic information. The samples were classified for engineering purposes in general accordance with ASTM D2487. The sample descriptions appear on the attached report Figures.

LIQUID LIMIT, PLASTIC LIMIT, AND PLASTICITY INDEX OF SOILS (ATTERBERG LIMITS): Two selected samples were tested in general accordance with ASTM D 4318, multi-point method. The results are reported on the attached Liquid Limit, Plastic Limit, and Plasticity Index report, Figure 1.

ONE DIMENSIONAL CONSOLIDATION PROPERTIES OF SOIL: The consolidation properties of selected soil samples were measured in general accordance with ASTM D2435. Saturation was maintained by inundation of the sample throughout the test. The samples were subjected to increasing increments of total stress, the duration of which was selected to exceed the time required for completion of primary consolidation as defined in the Standard, Method B. In accordance with the client's instructions, incremental unloading of the samples was not carried out. The test results are presented on the attached Figures 2-5.

21312 30th Drive SE Suite 110 Bothell, WA 98021-7010 Tel: 425.774.0106 Fax: 425.774.2714 www.hwageo.com January 18, 2018 HWA Project No. 2012-095-23 Task 1200

UNCONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION OF SOILS: The unconsolidated, undrained strength of the selected samples was tested in general accordance with method ASTM D2850 to determine the strength characteristics of the soil. Each sample was extruded from the sample tube and a representative section was cut from the sample. The sample ends were trimmed to obtain a cylindrical test sample with a length to diameter ratio between 2:1 and 2.5:1. The bulk density of the sample was determined by careful weighing and dimensional measurement of the trimmed sample. The confining stresses used are indicated on the test plots. The results are summarized and plotted graphically on the attached Unconsolidated Undrained Triaxial Compression Test for Cohesive Soils reports, Figures 6-9.

CLOSURE: Experience has shown that laboratory test values for soil and other natural materials vary with each representative sample. As such, HWA has no knowledge as to the extent and quantity of material the tested sample may represent. HWA also makes no warranty as to how representative either the sample tested or the test results obtained are to actual field conditions. It is a well established fact that sampling methods present varying degrees of disturbance or variance that affect sample representativeness.

-0.0-

No copy should be made of this report, except in its entirety.

We appreciate the opportunity to provide laboratory testing services on this project. Should you have any questions or comments, or if we may be of further service, please call.

Sincerely,

HWA GEOSCIENCES INC.

Daniel Walton Laboratory Supervisor

Steven E. Greene, L.G., L.E.G. Principal Engineering Geologist Vice President

Attachments:

Figure 1Liquid Limit, Plastic Limit and Plasticity Index of SoilsFigures 2-5One Dimensional Consolidation of SoilsFigures 6-9Unconsolidated-Undrained Compression Test for Cohesive Soils

Confining Stress (ksf): Strain Rate (%\min):

15.50 1.00

Figure No.: 6

0.767

Total Peak Stress (ksf):

- Strain Rate (%\min):
- 1.00

Figure No.: 7

1.382

Total Peak Stress (ksf):

APPENDIX M

SUPPLEMENTARY DATA – VWP CALIBRATION SHEETS

VW Piezometer Calibration Certificate

Serial #: 1701362	Part #: 52611036
Range: 700 kPa	Cable Part # : 50613524
Cable Length: 90 m	Calibrated by: AM
Date of Calibration: 4/21/2017	Note:
ABC Calibration Factors	

	А	В	С
kPa	-1.628864E-4	1.666454E-2	1,367978E+3
psi	-2.362468E-5	2.416987E-3	1.984084E+2

Pressure in kPa/psi = $(A \times Hz^2) + (B \times Hz) + C$, where Hz is frequency in Hertz.

TI Calibration Factors

	CO	C1	C2	C3	C4	C5	
kPa	1.367340E+3	1.505272E-2	1.647148E-1	-1.626258E-4	2.801698E-5	-2.058106E-3	
psi	1.983089E+2	2.183136E-3	2.388902E-2	-2.358605E-5	4.063376E-6	-2.984925E-4	
Pressure in kPa/psi = C0 + (C1 x Hz) + (C2 x T) + (C3 x Hz ²) + (C4 x Hz x T) + (C5 x T ²)							

Where Hz is the frequency reading in Hertz and T is the Thermistor reading in degrees C.

TI factors are calculated from temperatures at 5.0, 15.0 and 25.0 degrees C.

Applied pressure and temperature are NIST traceable.

Summary of Test Results at 15°C

Thermistor reading is 14.8 °C.

Applied Pressure is referenced to 1 atm. Calculated Pressure uses ABC Calibration factors.

Applied	Equiv	valent	Frequen	су	Ca	lculated		Error
(kPa)	(F	osi)	(Hz	:)	(kPa)	()	psi)	(%FS)
0.0	0	00	2949.1	7	-0.1	-0	.01	0.01
70.0	10.	15	2874.3	3	70.2	10	.18	-0.02
140.0	20.	31	2797.3	3	140.0	20	.31	0.00
210.0	30.	46	2718.0	כ	209.9	30	.45	0.01
280.0	40.	61	2636.2	2	279.9	40	.60	0.01
350.0	50.	76	2551.7	7	349.9	50	.75	0.01
420.0	60.	92	2464.1	1	420.0	60	.92	0.00
490.0	71.	07	2373.2	2	490.1	71	.09	-0.02
560,0	81.	22	2278.8	3	560.1	81	.24	-0.01
630.0	91.	37	2180.3	3	630.0	91	.37	0.00
700.0	101.	53	2077.0)	699.9	101	.51	0.01

GEOKON 48 Spencer St. Lebanon, NH 03766 USA							
	<u>Vib</u>	rating Wire	Pressure Tr	ansducer Cal	libration R	eport	
N	Model Number: 4500S-700 kPa Date of Calibration: July 10, 2017 This calibration has been verified/validated as of 07/17/2017						
5	Serial Number: _	1724158		Tempa	erature:2	23.30 °C	
Calibrati	ion Instruction:	VW Pressure Tran	sducers	Barometric Pr	essure: 99	3.8 mbar	
	Cable Length:	110 feet	·····	Tech	nician: Kafil	Rogers.	2
Applied Pressure (kPa)	Gage Reading 1st Cycle	Gage Reading 2nd Cycle	Average Gage Reading	Calculated Pressure (Linear)	Error Linear (%FS)	Calculated Pressure (Polynomial)	Error Polynomial (%FS)
0.0 140.0 280.0 420.0 560.0 700.0	8702 7901 7101 6298 5494 4693	8702 7902 7101 6298 5495 4693	8702 7902 7101 6298 5495 4693	0.175 139.9 279.7 419.9 560.1 700.1	0.03 -0.01 -0.05 -0.02 0.01 0.01	0.041 140.0 279.8 420.0 560.2 699.9	0.01 0.00 -0.02 0.00 0.02 -0.01
(kPa) Linear Gage Factor (G): <u>-0.1746</u> (kPa/ digit) Polynomial Gage factors: A: <u>-8.063E-08</u> B: <u>-0.1735</u> C: Thermal Factor (K): <u>-0.03237</u> (kPa/ °C) Calculate C by setting P=0 and R, = initial field zero reading into the polynomial equation							
(psi) Linear (Polynomia	(psi) Linear Gage Factor (G): (psi/ digit) Polynomial Gage Factors: A: B: B: C:						
Thermal Factor (K): <u>-0.004695</u> (psi/ °C) Calculate C by setting P=0 and R ₁ = initial field zero reading into the polynomial equation							
Calculated	Pressures:		Linear, P = G(I	$R_1 - R_0 + K(T_1 - T_0)$)-(S ₁ -S ₀)*		
	- 1- ف و مع مرود ال	Property and and and a	Polynomial, P =	$AR_1^2 + BR_1 + C$	+ K(T ₁ -T ₀)-(S ₁	-S ₀)*	
Factory Zero	Barometric pressures expressed in kPa or psi. Barometric compensation is not required with vented transducers. Factory Zero Reading:						
	The above	The above named instrument has been o	re instrument was found to be alibrated by comparison with	in tolerance is all operating ran, standards traceable to the NIST.	ges in compliance with ANSI (2540-1	
This report shall not be reproduced except in full without written permussion of Geokon (nc							

GEOKON 48 Spencer SL Lebenon, NI 03766 USA							
	Vib	rating Wire	Pressure Tr	ansducer Cal	libration Re	e <u>port</u>	
Model Number: 4500S-350 kPa Date of Calibration: July 10, 2017							
Serial Number: 1724351 Temperature: 23.20 °C							
Calibration Instruction: VW Pressure Transducers Barometric Pressure: 993.8 mbar							
	Cable Length:	60 feet	·	Tech	nician: K	y Rogers	
Applied Pressure (kPa)	Gage Reading 1st Cycle	Gage Reading 2nd Cycle	A verage Gage Reading	Calculated Pressure (Linear)	Error Linear (%FS)	Calculated Pressure (Polynomial)	Error Polynomial (%FS)
0.0 70.0 140.0 210.0 280.0 350.0	8837 8200 7567 6933 6299 5663	8838 8200 7567 6933 6299 5663	8838 8200 7567 6933 6299 5663	-0.165 70.15 140.0 209.9 279.8 350.0	-0.05 0.04 -0.01 -0.03 -0.05 0.01	-0.117 70.20 140.0 210.0 279.9 350.0	-0.03 0.06 0.00 -0.02 -0.03 0.02
(kPa) Linear Gage Factor (G): <u>-0.1103</u> (kPa/ digit) Polynomial Gage factors: A: <u>1.759E-09</u> B: <u>-0.1103</u> C: Thermal Factor (K): <u>-0.03869</u> (kPa/ °C) Calculate C by setting P=0 and R. = initial field zero reading into the polynomial equation							
(psi) Linear Gage Factor (G):(psi/ digit) Polynomial Gage Factors: A: 2.552E-10 B: Thermal Factor (K): -0.005612 (psi/ °C)							
	Calculate	C by setting P=0	and $\mathbf{R}_{\mathbf{I}} = \mathbf{initial}$	field zero reading i	nto the polynor	nial equation	
Calculated	Pressures:	, , , <u>, , , , , , , , , , , , , , , , </u>	Linear, P = G(l	$R_1 - R_0 + K(T_1 - T_0)$)-(S ₁ -S ₀)*		
			Polynomial, P =	$AR_1^2 + BR_1 + C$	+ K(T ₁ -T ₀)-(S	₁ -S ₀)*	
	*Barometric	pressures expressed in	n kPa or psi. Barometri	ic compensation is not re	quired with vented to	ansducers.	
Factory Zero	Reading:	8835	Femperature:	<u>21.9</u> °C	Baromet	er: <u>997.2</u> m	bar
	The abov	The abo e named instrument has been	ve instrument was found to be calibrated by comparison with	e in tolerance in all operating ran a standards traceable to the NIST	ges. , in compliance with ANSI	2540-1	
This report shall not be reproduced except in full without written permission of Geokon Inc.							

Geok	GEOKON 48 Spencer St Letanon, NH 01766 USA						
	Vib	rating Wire	Pressure Tr	ansducer Cal	libration Re	<u>eport</u>	
м	Model Number: 4500S-350 kPa Date of Calibration: July 10, 2017 This calibration has been verified/validated as of 07/17/2017						
s	erial Number:	1724352		Tempe	erature: 2	23.20 °C	i
Calibratio	on Instruction:	VW Pressure Tran	sducers	Barometric Pr	essure: 99	3.8 mbar	
	Cable Length:	60 feet		Tech	nician: Karl	Rogers-	
Applied Pressure (kPa)	Gage Reading 1st Cycle	Gage Reading 2nd Cycle	A verage Gage Reading	Calculated Pressure (Linear)	Error Linear (%FS)	Calculated Pressure (Polynomial)	Error Polynomial (%FS)
0.0 70.0 140.0 210.0 280.0 350.0	8904 8250 7601 6951 6298 5643	8905 8250 7601 6951 6298 5643	8905 8250 7601 6951 6298 5643	-0.054 70.23 139.9 209.7 279.8 350.2	-0.01 0.06 -0.03 -0.08 -0.05 0.06	-0.168 70.28 140.1 209.9 279.9 350.1	-0.05 0.08 0.01 -0.04 -0.03 0.03
(kPa) Linear Gage Factor (G): -0.1074 (kPa/ digit) Polynomial Gage factors: A: -9.792E-08 B: -0.1060 C: Thermal Factor (K): -0.06684 (kPa/ °C) Calculate C by setting P=0 and R, = initial field zero reading into the polynomial equation							
(psi) Linear C Polynomia	(psi) Linear Gage Factor (G):0.01558 (psi/ digit) Polynomial Gage Factors: A: B: B: C:						
	Thermal Factor (K): <u>-0.009694</u> (psi/ °C) Calculate C by setting P=0 and R ₁ = initial field zero reading into the polynomial equation						
Calculated Pressures: Linear, $P = G(R_1 - R_0) + K(T_1 - T_0) - (S_1 - S_0)^*$ Polynomial $P = AR^2 + BR + C + K(T_1 - T_1) - (S_1 - S_1)^*$							
	*Barometric	pressures expressed in	kPa or psi. Barometri	c compensation is not re-	quired with vented tr	ansducers.	
Factory Zero	Factory Zero Reading:8900 Temperature:21.1 °C Barometer:997.2 mbar						
	The above	The abor named instrument has been o	re instrument was found to be alibrated by comparison with	in tolerance in all operating rang standards traceable to the NIST,	ges in compliance with ANSI	7.540-1	
		This report shall e	not be reproduced except in fu	ll without written permission of	Genkon Inc		

APPENDIX N

SUPPLEMENTARY DATA – DRILL RIG HAMMER EFFICIENCIES

Borehole	Subcontractor	Rig Type	Rig Model	ETR	Reference
DRLE-G001	HOLT	Truck	CME-85	90	Report 3, pg 2
DRLE-G002	HOLT	Truck	Mobile B-58	83	Report 4, pg 2
DRLE-G003	HOLT	Truck	CME-85	90	Report 3, pg 2
DRLE-G004	HOLT	Truck	CME-85	90	Report 3, pg 2
DRLE-G005	HOLT	Truck	CME-85	90	Report 3, pg 2
DRLE-G006	HOLT	Truck	Mobile B-58	83	Report 4, pg 2
DRLE-G007	HOLT	Truck	Mobile B-58	83	Report 4, pg 2
DRLE-G008	HOLT	Truck	Mobile B-58	83	Report 4, pg 2
DRLE-G010	HOLT	Truck	Mobile B-59	98	Report 5, pg 3
DRLE-G011	HOLT	Truck	Mobile B-58	83	Report 4, pg 2
DRLE-G012	HOLT	Truck	Mobile B-58	83	Report 4, pg 2
DRLE-G013	HOLT	Truck	Mobile B-58	83	Report 4, pg 2
DRLE-G014	HOLT	Truck	Mobile B-58	83	Report 4, pg 2
DRLE-G015	HOLT	Truck	Mobile B-58	83	Report 4, pg 2
DRLE-G016	Holocene	Truck	CME-850	86.1	Report 1, pg 4
DRLE-G017	Holocene	Track	CME-850	86.1	Report 1, pg 4
DRLE-G017A	Holocene	Truck	Mobile B-58	89.7	Report 2, pg 2
DRLE-G018	Holocene	Track	CME-850	86.1	Report 1, pg 4
DRLE-G019	HOLT	Track	Mobile B-54	88.2	Report 6, pg4
DRLE-G020	HOLT	Track	Mobile B-54	88.2	Report 6, pg4
DRLE-G021	HOLT	Track	Mobile B-54	88.2	Report 6, pg4
DRLE-G022	HOLT	Track	Mobile B-54	88.2	Report 6, pg4
DRLE-G023	HOLT	Track	Mobile B-54	88.2	Report 6, pg4
DRLE-G023b	HOLT	Track	Mobile B-54	88.2	Report 6, pg4
DRLE-G024	HOLT	Track	Mobile B-54	88.2	Report 6, pg4
DRLE-G025	HOLT	Track	Mobile B-54	88.2	Report 6, pg4
DRLE-G027	HOLT	Truck	CME-85	90	Report 3, pg 2
DRLE-G028	HOLT	Truck	Mobile B-59	98	Report 5, pg 3
DRLE-G029	Holocene	Truck	Mobile B-58	89.7	Report 2, pg 2
DRLE-G031	HOLT	Truck	Mobile B-58	83	Report 4, pg 2
DRLE-G032	HOLT	Truck	CME-85	90	Report 3, pg 2
DRLE-G033	Holocene	Truck	Mobile B-58	89.7	Report 2, pg 2
DRLE-G034	HOLT	Track	Mobile B-54	88.2	Report 6, pg4
DRLE-G034A	Holocene	Truck	Mobile B-58	89.7	Report 2, pg 2
DRLE-G035	Holocene	Truck	Mobile B-58	89.7	Report 2, pg 2
DRLE-G036	HOLT	Track	Mobile B-54	88.2	Report 6, pg4
DRLE-G036A	Holocene	Truck	Mobile B-58	89.7	Report 2, pg 2
DRLE-G037	HOLT	Sonic	Terra Sonic CC 150	95	Report 5, pg 5
DRLE-G037A	Holocene	Truck	Mobile B-58	89.7	Report 2, pg 2
DRLE-G038	Holocene	Truck	Mobile B-58	89.7	Report 2, pg 2
DRLE-G044	Holocene	Track	CME-850	86.1	Report 1, pg 4
DRLE-G045	Holocene	Track	CME-850	86.1	Report 1, pg 4

Job No. 176009-1 Report on: SPT Energy Calibration

Prepared for: Holocene Drilling, Inc.

By: Marty Bixler, P.E. Anna Klesney

April 20, 2017

www.GRLengineers.com

info@GRLengineers.com

April 20, 2017

Jon M. Root Holocene Drilling, Inc. 11412 62nd Ave E. Puyallup, WA 98373

Re: Energy Measurement for Dynamic Penetrometers Standard Penetration Tests (SPT) Various locations, Washington

GRL Job No. 176009-1

Dear Mr. Root:

This report transmits our findings from energy measurements and related data analysis conducted by GRL Engineers, Inc. (GRL) for your two drill rigs operating in Kent and Shelton, Washington. Two automatic hammer and penetrometer systems were monitored during Standard Penetration Tests. Dynamic testing summarized in this report was conducted on April 14 and 17, 2017.

A Pile Driving Analyzer® Model 8G recorded, processed and displayed the dynamic data to meet the objectives of the hammer system calibration. Discussions on the test methods, limitations and implementation are provided in Appendix A. The energy measurement results are summarized in the appended tables with the average and standard deviation provided in Appendix B together with representative plots of force and normalized velocity.

EQUIPMENT

Hammer and Penetrometer System

Energy measurements were recorded during standard penetration tests conducted for two automatic hammers and the following drill rig types and numbers.

Drill Rig Type	Drill Rig Number
Mobile B-59 (truck rig)	Holocene Rig #74
CME 850 (track rig)	Holocene Rig #31

Measurements were recorded for one boring location for each of the two drill rigs. Holocene Drilling, Inc. advanced the penetrometer to depths of approximately 10 and 15 feet, respectively, prior to energy measurements for the above tabulated rigs. The instrumented subassembly was connected to the top of the drill rod string and measurements recorded at intervals for several depths of data. Selected data is presented in this report.

Measurements were recorded for every blow required to advance the sampler typically 18 inches. Results are provided for the final 12 inches or less of the sampler advancement alone (i.e., excluding the initial 6 inches of advancement). Please refer to ASTM D4633 regarding recommendations on blow counts and instrumented drill rod lengths, as well as other details of the test method.

Drill Rod Area	Outside Diameter	Inside Diameter
sq. inch	Inch	inch
1.44	2.63	2.25
Depth of Penetrometer	Drill Rod Section	Transducer to
	Lengths	Penetrometer Length
feet	feet	feet
A	A	A
10.0	13	15
20.0	23	25
35.0	38	40
В	В	В
15.0	16	18
45.0	46	48
50.0	51	53
55.0	56	58
60.0	61	63
70.0	71	73

The following drill rod dimensions, of rod size NWJ, were employed during testing.

* A (Mobile B-59 Number 74); B (CME 850 Number 31).

Instrumentation

A Pile Driving Analyzer was employed for recording, processing, and displaying the dynamic data. An instrumented subassembly, inserted at the top of the drill rod string below the hammer and anvil system and above the drill rods, was used to record force and acceleration data. The subassembly was instrumented with two foil strain gages in a full bridge circuit and two piezoresistive accelerometers attached on diametrically opposite sides of the subassembly. Data sampling frequency was 50.0 kHz.

The 8G utilizes a digital system, and with the employed sampling frequency of 50.0 kHz, the signal conditioning conforms to ASTM D4633. Results for the maximum hammer operating rate,

rod top force and velocity, and transferred energy are provided in Appendix B and summarized in the appended tables. Discussions on the test method and its limitations can be found in Appendix A.

MEASUREMENTS AND CALCULATIONS

The primary objective of testing was the measurement of the energy transmitted from the hammer impact through the anvil into the instrumented subassembly and drill rods. Strain transducers and accelerometers were employed for the calculation of the transferred energy using force, F(t) and velocity v(t), records as follows:

$$EMX = \int_{h}^{a} F(t)v(t)dt$$

where time "b" is to the beginning of the energy transfer and time "a" is to the time at which the energy transfer reaches a maximum. Force is calculated as the product of the measured strain, elastic modulus and cross-sectional area, and measured acceleration is integrated to velocity.

Integrated over the complete impact event and calculated from measured force and velocity, the energy transferred to the top of the drill rod was calculated as a function of time. The maximum transferred energy (i.e., EFV or also referred to as EMX) is used as an indicator of the energy content of the event. The described method is the only theoretically correct method of measuring energy transfer and automatically corrects for rod non-uniformities such as connector masses or loose joints.

TEST RESULTS

Result Discussion

Dynamic data was evaluated for the hammer operating rate, rod top force and velocity, and transferred energy. Appendix B provides the evaluated quantities for blows making up the SPT N-value, with their averages and standard deviation, plotted and printed as a function of depth for the monitored sequences of the standard penetration tests. Measurements collected for relevant samples are presented herein.

The tables in Appendix B include:

- FMX the maximum measured rod top force
- VMX the maximum measured rod top velocity
- BPM the hammer operating rate in blows per minute
- EFV the maximum calculated energy (EMX) transferred to the rod top
- ETR ratio of transferred energy (EFV) to the maximum theoretical potential energy

The maximum theoretical potential energy is the product of the standard 140 lb hammer impact mass dropped the standard 30 inches.

A representative plot of force and normalized velocity versus time for a typical blow from each data set is provided in Appendix B to demonstrate the data quality.

Summary of Results

I. Two automatic hammers were monitored during standard penetration tests conducted on April 14 and 17, 2017. The average energy transfer ratio calculated with the EFV method for the monitored sequences for the drill rigs are tabulated below together with the corresponding, average hammer operating rates.

Drill Rig	Energy Transfer Ratio	Operating Rate
	percent	bpm
Mobile B-59 (Rig #74)	89.5	45.2
CME 850 (Rig #31)	<mark>86.1</mark>	42.8

- II. The uncorrected N-values encountered during the sequences ranged from 28 blows to refusal conditions.
- III. To convert the uncorrected N-values for the employed hammer and penetrometer system and operators, the Schmertman correction for adjustment to 60 percent transfer efficiency is

$$\mathbf{N}_{60} = \left(\frac{\mathbf{e}_{\mathrm{m}}}{60}\right) \mathbf{N}_{\mathrm{m}}$$

where N_{60} is the corrected hammer N-value, e_m is the percent energy transfer efficiency (i.e., $e_m = 100^{*}ETR$) and N_m is the measured SPT N-value. N_{60} values for the measurements and monitored depths meeting ASTM requirements are presented in the appended tables. The measured overall energy transfer ratios tabulated above for the respective drill rigs produce a respective N_{60} equivalent of roughly 1.49N_m and 1.43N_m. Further corrections due to overburden stresses in the soil may be made prior to use of the N-values for design purposes.

Holocene Drilling, Inc. Energy Measurement for Dynamic Penetrometers GRL Job No. 176009-1 April 20, 2017

We appreciate the opportunity to be of assistance to you on this project. Please contact our offices should you have any questions regarding the contents of this report, or if we may be of further service.

Respectfully, GRL ENGINEERS, INC.

Marty G. Bixler, P.E. (Washington #51806) Senior Engineer

Unnol Klemin

Anna M. Klesney, MSCE, E.I.T. Project Engineer

APPENDIX A AN INTRODUCTION INTO SPT DYNAMIC PILE TESTING

The following has been written by GRL Engineers, Inc. and may only be copied with its written permission.

1. BACKGROUND

The Standard Penetration Test is frequently conducted as an in-situ assessment of soil strength. This test requires that a 140 lb weight is dropped 30 inches onto a drive rod at whose bottom a sampler is usually installed. The sampler is driven for 18 inches; the number of blows required for the last 12 inches of driving is the so-called N-value. The N-value may be used as a strength indicator for foundation design or as a means of assessing the liquefaction potential of soils.

Obviously, the SPT hammer efficiency is an important consideration when using the N-values for design purposes. Measurements have indicated that the energy in the drive rod is sometimes only 30% and and may reach 90% of the potential or rated energy of the SPT hammer (E-rated = 0.35 kip-ft or 0.475 kJ). The type of hammer used to drive the rod is the main reason for these variations. On the average, the energy in the drive rod is 60% of the standard rated energy.

Because of the variability of energy, methods based on N-values are considered unreliable. However, measurements during SPT testing using the Case Method can be done on a routine basis and these measurements yield the transferred energy values. With measured energy, EMX, known, an adjustment of the measured N-value, N_m , can be made as follows.

$$N_{60} = N_m [E_m / (0.6E_r)]$$
(1)

Thus, if the measured energy value is equal to the normally expected transferred energy of 60% of E-rated then the adjusted and measured N-values are identical. On the other hand, if the measured energy is only 30% then the adjusted blow count will be reduced by 50%.

2. DYNAMIC TESTING AND ANALYSIS METHODS APPLIED TO SPT

The Case Method of dynamic pile testing, named after the Case Institute of Technology where it was developed between 1964 and 1975, requires that a substantial ram mass (e.g. a pile driving hammer) impacts the pile top such that the pile undergoes at least a small permanent set. Thus, the method is also referred to as a "High Strain Method". The Case Method requires dynamic measurements on the pile or shaft under the ram impact and then a calculation of various quantities. Conveniently, for SPT applications, the measurements and analyses are done by a single piece of equipment: the SPT Analyzer. The Pile Driving Analyzer® (PDA) is also suitable to perform these measurements and data processing.

A related analysis method is the "Wave Equation Analysis" which calculates a relationship between bearing capacity, pile stresses, transferred energy and field blow count. The GRLWEAP[™] program performs this analysis and provides a complete set of helpful information and input data. This program can be used very effectively to simulate the SPT driving process.

3. MEASUREMENTS

GRL uses equipment manufactured by Pile Dynamics, Inc. The system includes either an SPT-Analyzer[™] (SPTA) or a Pile Driving Analyzer® (PDA), an instrumented rod section and two accelerometers. SPT energy testing is very closely related to and borrows procedures from dynamic pile testing. Those interested in the basis of the SPT energy testing method may obtain extensive literature on dynamic pile testing from GRL Engineers, Inc.

3.1 SPT Analyzer or Pile Driving Analyzer

The basis for the results calculated by the SPTA or PDA are strain and acceleration measured in an instrumented rod section. These signals are converted to rod top force, F(t), and rod top velocity, v(t). The SPTA or PDA conditions, calibrates and displays these signals and immediately computes average pile force and velocity thereby eliminating bending effects. The product of these two measurements is then integrated over time which yields the energy transferred to the instrumented section as a function of time (see Section 4.1).

For convenience and accuracy, strain measurements are usually taken on an instrumented section of SPT drive rod. Ideally, the section properties of the instrumented rod and those of the drive rod are the same, however, using subs, other sections can also be utilized.

For the instrumented section, PDI provides a force calibration in such a way that the output of the instrumented rod is directly calculated without the need for an accurate elastic modulus or cross sectional area of the rod section.

The acceleration measurements are often demanding in the SPT environment, because of high frequency and high acceleration motion components. An experienced measurement engineer, therefore, has to evaluate the quality of this data before final conclusions are drawn from the numerical results calculated by SPTA or PDA.

SPTA or PDA records are taken while the standard Nvalue is acquired in the conventional manner. This then allows a direct correlation between N-value and average transferred energy.

3.2 HPA

The SPT hammer's ram velocity may be directly obtained using radar technology in the Hammer Performance Analyzer[™]. The impact velocity results can be automatically processed with a PC or recorded on a strip chart. HPA measurements yield a hammer kinetic energy, but not the energy transferred to the drive rod.

4 RECORD EVALUATION BY SPTA OR PDA

4.1 HAMMER PERFORMANCE

The PDA calculates the energy transferred to the pile top from:

$$E(t) = {}_{o} \int^{t} F(\tau) v(\tau) d\tau$$
(2)

The maximum of the E(t) curve is often called **ENTHRU or EMX**; it is the most important quantity for an overall evaluation of the performance of a hammer

and driving system. **EMX** allows for a classification of the hammer's performance when presented as, e_{T} , the rated transfer efficiency, also called energy transfer ratio (**ETR**) or global efficiency.

$$e_{\rm T} = {\rm EMX/E_{\rm R}} \tag{3}$$

where E_R is the hammer manufacturer's rated energy value or 0.35 kip-ft (0.475 kJ) in the case of the SPT hammer.

Often in the SPT literature one finds also reference to the EF2 energy. This evaluation is based on assumed proportionality between force and velocity (see also Section 5):

$$v(t) = F(t) / Z \tag{4}$$

where Z = EA/c is the pile impedance, E is the elastic modulus, A is the cross sectional area and c is the speed of the stress wave in the pile material.

Combining equations 2 and 4 leads to

$$\mathsf{EF}(\mathsf{t}) = {}_{\mathsf{O}} {\int^{\mathsf{t}} \mathsf{F}(\mathsf{T})^2 / \mathsf{Z} \, \mathsf{d}\mathsf{T}}$$
(5)

The EF2 transferred energy value is the EF-value at the time t = 2L/c, where L is the drive rod length and c is the stress wave speed in steel (16,800 ft/s or 5,124 m/s). Since the force is easier to measure than both force and velocity, Equation 5 is preferred by some test engineers. However, the EF method is fraught with errors and certain correction factors have to be applied to make it approximately correct. Among the error sources are the following:

- Proportionality is often violated prior to time 2L/c. The proportionality between force and velocity in a downward traveling wave only holds if the wave does not encounter a disturbance prior to reflecting off the pile toe. Such disturbances include a change in cross sectional area, an open or loose splice or joint, or resistance along the shaft.
- Using only one force measurement precludes a data quality check based on the proportionality between force and velocity. Thus, a force measurement that is for some reason in error may not be detectable, which will lead to errors in the EF2 value. Data quality checks will be discussed further in Section 5.

The use if EF2 is therefore not recommended but it is often included in result presentations for the sake of completeness.

4.2 STRESSES

During SPT monitoring, it is also of interest to monitor compressive stresses at both the top of the drive rod and at its bottom.

At the pile top (location of sensors) the maximum compression stress averaged over the rod's cross section, **CSX**, is directly obtained from the measurements. Note that this stress value refers to the instrumented section. If the rod has a different cross sectional area then the stress in the rod will be different from CSX.

The SPTA or PDA can also calculate, in an approximate manner, the force at the rod bottom, **CFB**. To obtain the corresponding stress, this force value should be divided by the appropriate cross sectional area, e.g. by the rod area just above the sampler or by the sampler area itself. Of course, non-uniform stress components as they might occur at the sampler tip due to a sloping rock are not considered in this calculation.

5. DATA QUALITY CHECKS

Quality data is the first and foremost requirement for accurate dynamic testing results. It is therefore important that the measurement engineer performing SPTA or PDA tests has the experience necessary to recognize measurement problems and take appropriate corrective action should problems develop. Fortunately, dynamic pile testing allows for certain data quality checks because two independent measurements are taken that have to conform to the so-called proportionality relationship.

As long as there is only a wave traveling in one direction, as is the case during impact when only a downward traveling wave exists in the rod, force and velocity measured at its top are proportional

$$F = v Z \tag{5}$$

where Z is again the pile impedance, Z = EA/c. This relationship can also be expressed in terms of stress

$$\sigma = F/A = v (E/c) \tag{6}$$

or strain

$$\varepsilon = \sigma/E = v / c$$
 (7)

This means that the early portion of strain times wave speed must be equal to the velocity unless the proportionality is affected by high friction near the pile top or by a pile cross sectional change not far below the sensors. Checking the proportionality is an excellent means of assuring meaningful measurements but is only truly meaningful for perfectly uniform rods. Open or loose splices, for example, will lead to a non-proportionality. For SPT rods it is fortunate that usually no soil resistance acts along the shaft and for that reason, proportionality can exist until the stress wave returns from sampler top or rod bottom unless connectors are not sufficiently tightened or have a significant mass.

Velocity data quality can also be checked by looking at the final displacement, DFN, which is calculated from the acceleration by double integration. If the calculated final displacement is much higher or lower than indicated by the N-value, the accelerometer attachment may be loose or the sensor may be faulty. If major drift in the velocity is observed, the EMX value may be in error, even though proportionality from impact to time 2L/c exists. In this case, it may be useful to evaluate the energy transferred to the drill rod at time 2L/c, which is calculated by the PDA or SPTA as the E2E quantity.

> © 2003 GRL Engineers, Inc. App-A-SPT-12-03

Appendix B

Results of SPT Rig Calibration

Page 1 of 13 PDA-S Ver. 2016.16 - Printed: 4/18/2017

CME 850 #31	15
GRL-MGB	Test date: 4/17/2017
AR: 1.44 in^2	SP: 0.492 k/ft3
LE: 18.00 ft	EM: 30000 ksi
WS: 16807.9 ft/s	

FMX: Maximum Force

VMX: Maximum Velocity BPM: Blows/Minute

EFV: Maximum Energy ETR: Energy Transfer Ratio - Rated

BL#	BC	LP	FMX	VMX	BPM	EFV	ETR
	/6"	ft	kips	ft/s	bpm	ft-lb	(%)
1	9	15.06	36	14.4	6.9	276.5	79.0
2	9	15.11	38	16.2	37.5	297.4	85.0
3	9	15.17	36	15.3	38.2	288.3	82.4
4	9	15.22	38	15.9	38.4	297.5	85.0
5	9	15.28	39	16.3	38.3	306.7	87.6
6	9	15.33	38	15.8	38.5	298.2	85.2
7	9	15.39	37	15.1	38.6	289.3	82.7
8	9	15.44	38	16.4	38.8	299.3	85.5
9	9	15.50	38	16.3	38.7	301.1	86.0
10	13	15.54	36	15.5	38.7	294.1	84.0
11	13	15.58	38	16.2	38.8	300.6	85.9
12	13	15.62	36	15.3	38.8	290.4	83.0
13	13	15.65	36	15.4	39.0	291.7	83.3
14	13	15.69	38	16.1	38.9	303.5	86.7
15	13	15.73	39	16.2	39.0	305.4	87.3
16	13	15.77	39	16.3	39.0	302.4	86.4
17	13	15.81	37	15.6	38.9	296.6	84.7
18	13	15.85	38	15.9	39.0	302.4	86.4
19	13	15.88	39	16.1	39.2	306.9	87.7
20	13	15.92	38	15.7	39.0	297.1	84.9
21	13	15.96	37	15.6	39.2	296.3	84.7
22	13	16.00	37	15.5	39.0	299.4	85.5
23	24	16.02	36	16.0	39.0	295.8	84.5
24	24	16.04	37	15.4	39.1	300.7	85.9
25	24	16.06	38	16.2	39.0	305.8	87.4
26	24	16.08	37	15.9	39.2	300.3	85.8
27	24	16.10	37	15.6	39.1	300.3	85.8
28	24	16.13	37	15.6	39.3	296.8	84.8
29	24	16.15	38	15.7	39.2	302.9	86.5
30	24	16.17	36	15.9	39.1	301.0	86.0
31	24	16.19	37	15.9	39.2	302.6	86.5
32	24	16.21	37	15.8	39.1	305.4	87.2
33	24	16.23	38	15.7	39.1	300.9	86.0

Page 2 of 13 PDA-S Ver. 2016.16 - Printed: 4/18/2017

34	24	16.25	38	15.7	39.1	302.4	86.4
35	24	16.27	37	15.6	39.4	299.9	85.7
36	24	16.29	39	16.0	38.9	301.2	86.0
37	24	16.31	39	16.1	39.0	305.6	87.3
38	24	16.33	36	15.1	39.1	297.8	85.1
39	24	16.35	37	15.4	39.0	298.3	85.2
40	24	16.38	37	15.6	38.9	303.3	86.7
41	24	16.40	37	15.5	38.9	303.1	86.6
42	24	16.42	37	15.4	39.0	302.6	86.4
43	24	16.44	39	16.3	38.9	306.2	87.5
44	24	16.46	36	15.4	38.9	300.6	85.9
45	24	16.48	36	15.0	39.1	291.2	83.2
46	24	16.50	38	15.9	38.9	304.8	87.1
		Average	37	15.7	39.0	300.4	85.8
		Std Dev	1	0.3	0.1	4.2	1.2
		Maximum	39	16.3	39.4	306.9	87.7
		Minimum	36	15.0	38.7	290.4	83.0
			N-value: 37				

...........

Sample Interval Time: 69.42 seconds.

Page 3 of 13 PDA-S Ver. 2016.16 - Printed: 4/18/2017

CME 850 #31	15
GRL-MGB	Test date: 4/17/2017
AR: 1.44 in^2	SP: 0.492 k/ft3
LE: 48.00 ft	EM: 30000 ksi
WS: 16807.9 ft/s	

49	16	45.09	35	14.6	41.2	299.1	85.5
50	16	45.13	37	14.8	41.6	301.7	86.2
51	16	45.16	37	14.5	41.6	300.6	85.9
52	16	45.19	38	15.0	41.6	298.6	85.3
53	16	45.22	37	14.4	41.8	289.4	82.7
54	16	45.25	39	14.9	41.8	300.4	85.8
55	16	45.28	37	14.5	42.0	287.1	82.0
56	16	45.31	37	15.0	41.8	294.0	84.0
57	16	45.34	38	14.6	41.9	287.8	82.2
58	16	45.38	38	14.6	41.8	293.0	83.7
59	16	45.41	36	14.3	41.9	279.6	79.9
60	16	45.44	37	14.2	42.0	281.8	80.5
61	16	45.47	38	14.4	41.7	289.5	82.7
62	16	45.50	39	14.7	42.0	291.4	83.2
 63	33	45.52	37	14.1	41.6	293.0	83.7
64	33	45.53	37	14.0	41.9	285.4	81.5
65	33	45.55	39	14.6	41.9	300.1	85.7
66	33	45.56	38	14.4	41.8	288.3	82.4
67	33	45.58	36	13.9	42.0	280.8	80.2
68	33	45.59	36	14.5	41.7	302.4	86.4
69	33	45.61	36	14.0	41.9	288.0	82.3
70	33	45.62	38	14.5	41.9	296.9	84.8
71	33	45.64	38	14.6	41.7	296.8	84.8
72	33	45.65	37	14.7	41.9	294.3	84.1
73	33	45.67	36	14.3	41.7	287.6	82.2
74	33	45.68	36	14.1	42.0	283.3	81.0
75	33	45.70	36	14.2	41.9	289.4	82.7
76	33	45.71	36	14.2	42.0	287.5	82.1
77	33	45.73	38	14.8	41.7	307.6	87.9
78	33	45.74	37	14.4	41.9	292.0	83.4
79	33	45.76	36	14.1	42.1	285.4	81.6
80	33	45.77	35	14.1	41.9	286.1	81.8
81	33	45.79	35	13.8	42.0	282.3	80.7
82	33	45.80	37	14.0	41.7	287.2	82.1

83	33	45.82	37	14.0	42.1	285.6	81.6
84	33	45.83	35	13.8	41.9	287.1	82.0
85	33	45.85	37	14.1	42.0	289.5	82.7
86	33	45.86	36	14.1	41.9	289.8	82.8
87	33	45.88	39	14.8	41.7	298.8	85.4
88	33	45.89	36	13.7	42.2	284 7	81.3
89	33	45.91	35	13.7	417	288.5	82.4
90	33	45.92	37	14.2	42.1	292.8	83.6
01	33	45.02	37	14.2	42.1	202.0	83.3
92	33	45.04	36	14.2	41 9	201.0	83.8
03	33	45.00	35	13.0	41.5	286.1	81.7
93 94	33	45.97	34	13.8	42.1	286.1	81.7
95	33	46.00	34	13.7	42.1	200.1	80.6
90	36	46.00	37	15.7	42.0	202.2	95.1
90	36	40.01	34	13.0	42.0	297.0	80.7
97	30	40.03	34	13.5	42.0	202.0	00.7
90	30	40.04	30	13.0	42.1	203.9	01.1
99	30	40.00	37	14.0	42.0	295.1	04.3
100	30	46.07	30	14.0	42.0	287.7	82.2
101	36	46.08	36	14.1	42.2	291.0	83.2
102	36	46.10	37	14.2	42.0	295.1	84.3
103	36	46.11	37	14.3	42.0	290.0	82.9
104	36	46.13	36	14.2	41.7	291.4	83.2
105	36	46.14	37	15.0	41.8	300.6	85.9
106	36	46.15	35	13.8	42.0	281.7	80.5
107	36	46.17	37	14.6	42.1	296.7	84.8
108	36	46.18	35	13.8	41.9	286.5	81.9
109	36	46.19	36	14.0	42.0	288.9	82.5
110	36	46.21	36	13.8	42.0	286.1	81.7
111	36	46.22	38	14.7	41.9	297.1	84.9
112	36	46.24	36	13.7	42.0	285.2	81.5
113	36	46.25	35	13.5	42.0	284.7	81.3
114	36	46.26	36	14.0	42.0	288.1	82.3
115	36	46.28	36	13.7	41.8	283.1	80.9
116	36	46.29	38	14.6	41.9	297.0	84.9
117	36	46.31	35	13.7	42.1	284.3	81.2
118	36	46.32	37	14.4	41.9	294.9	84.3
119	36	46.33	36	13.9	42.0	286.7	81.9
120	36	46.35	36	14.1	41.9	289.0	82.6
121	36	46.36	35	13.9	42.1	287.1	82.0
122	36	46.38	35	13.8	42.1	283.9	81.1
123	36	46.39	35	13.6	41.9	282.1	80.6
124	36	46.40	35	14.1	42.0	290.6	83.0
125	36	46.42	35	14.1	42.0	291.4	83.3
126	36	46.43	36	14.0	42.0	291.5	83.3
127	36	46.44	35	13.9	42.0	289.9	82.8
128	36	46.46	35	13.8	42.0	288.2	82.3
129	36	46.47	39	15.5	42.2	314.0	89.7
130	36	46.49	37	16.5	42.0	310.3	88.7
131	36	46.50	36	15.9	41.9	310.9	88.8
		Average	36	14.2	41.9	290.7	83.0
		Std Dev	1	0.5	0.1	7.1	2.0
		Maximum	39	16.5	42.2	314.0	89.7
		Minimum	34	13.5	41.6	280.8	80.2

N-value: 69

Sample Interval Time: 120.31 seconds.

Page 5 of 13 PDA-S Ver. 2016.16 - Printed: 4/18/2017

CME 850 #31	15
GRL-MGB	Test date: 4/17/2017
AR: 1.44 in^2	SP: 0.492 k/ft3
LE: 53.00 ft	EM: 30000 ksi
WS: 16807.9 ft/s	

Page 6 of 13 PDA-S Ver. 2016.16 - Printed: 4/18/2017

			NI				
		Minimum	35	14.5	45.3	288.5	82.4
		Maximum	39	16.2	45.9	315.1	90.0
		Std Dev	1	0.3	0.1	4.9	1.4
		Average	37	15.2	45.7	303.9	86.8
171	17	51.50	38	16.2	45.9	312.4	89.3
170	17	51.47	35	15.4	45.8	304.7	87.1
169	17	51.44	37	14.9	45.8	300.2	85.8
168	17	51.41	37	15.3	45.7	304.9	87.1

N-value: 28

Sample Interval Time: 51.39 seconds.

Page 7 of 13 PDA-S Ver. 2016.16 - Printed: 4/18/2017

CME 850 #31	15
GRL-MGB	Test date: 4/17/2017
AR: 1.44 in^2	SP: 0.492 k/ft3
LE: 58.00 ft	EM: 30000 ksi
WS: 16807.9 ft/s	

BL#	BC	LP	FMX	VMX	BPM	EFV	ETR
	/6"	ft	kips	ft/s	bpm	ft-lb	(%)
172	14	55.04	38	15.0	1.9	304.5	87.0
173	14	55.07	39	14.7	42.1	298.1	85.2
174	14	55.11	39	14.8	42.3	304.1	86.9
175	14	55.14	39	15.1	42.9	308.8	88.2
176	14	55.18	39	15.1	42.9	305.5	87.3
177	14	55.21	38	14.2	42.9	301.8	86.2
178	14	55.25	39	14.9	42.9	305.5	87.3
179	14	55.29	39	14.4	42.8	301.6	86.2
180	14	55.32	41	15.3	43.0	314.3	89.8
181	14	55.36	39	15.1	42.9	308.9	88.2
182	14	55.39	40	15.0	42.9	311.0	88.9
183	14	55.43	40	15.2	42.9	315.3	90.1
184	14	55.46	40	15.2	42.9	308.9	88.3
185	14	55.50	40	15.3	43.1	310.5	88.7
186	16	55.53	39	15.0	42.9	308.9	88.2
187	16	55.56	38	14.5	43.0	305.8	87.4
188	16	55.59	40	15.3	42.9	308.3	88.1
189	16	55.63	41	15.2	43.0	309.2	88.4
190	16	55.66	39	14.5	43.0	306.4	87.5
191	16	55.69	38	14.2	43.1	302.5	86.4
192	16	55.72	37	13.8	42.9	304.7	87.1
193	16	55.75	37	14.0	43.2	299.8	85.7
194	16	55.78	38	14.5	43.1	304.7	87.1
195	16	55.81	36	13.1	43.2	289.3	82.7
196	16	55.84	36	13.8	43.2	300.3	85.8
197	16	55.88	37	14.0	43.1	300.7	85.9
198	16	55.91	39	14.6	43.2	304.7	87.1
199	16	55.94	37	14.2	43.3	306.5	87.6
200	16	55.97	35	13.2	43.4	291.6	83.3
201	16	56.00	37	14.4	42.9	306.5	87.6
202	24	56.02	37	14.2	43.4	305.2	87.2
203	24	56.04	36	13.2	43.4	299.7	85.6
204	24	56.06	38	13.9	43.2	300.1	85.7
205	24	56.08	38	14.0	43.1	300.8	86.0
206	24	56.10	39	14.5	43.2	307.0	87.7
207	24	56.13	40	15.0	43.0	311.6	89.0

```
Page 8 of 13
PDA-S Ver. 2016.16 - Printed: 4/18/2017
```

		Std Dev Maximum	1 41	0.5 15.3	0.1 43.4	6.7 322.5	1.9 92.1
		Average	38	14.3	43.1	305.2	87.2
225	24	56.50	40	14.8	42.9	322.5	92.1
224	24	56.48	40	14.4	43.2	315.9	90.3
223	24	56.46	40	14.4	43.2	316.4	90.4
222	24	56.44	41	14.4	43.1	319.4	91.2
221	24	56.42	37	14.5	43.2	305.1	87.2
220	24	56.40	39	14.6	43.0	310.3	88.7
219	24	56.38	40	14.8	43.2	311.4	89.0
218	24	56.35	38	14.0	43.1	301.8	86.2
217	24	56.33	37	14.1	43.1	304.0	86.9
216	24	56.31	38	14.3	42.9	307.0	87.7
215	24	56.29	34	13.3	43.1	296.1	84.6
214	24	56.27	39	14.7	43.0	311.5	89.0
213	24	56.25	38	13.8	43.3	295.7	84.5
212	24	56.23	38	14.7	43.2	302.3	86.4
211	24	56.21	40	14.8	43.1	310.3	88.7
210	24	56.19	40	14.6	43.1	304.2	86.9
209	24	56.17	38	14.6	43.1	303.1	86.6
208	24	56.15	38	14.0	43.4	297.9	85.1

Sample Interval Time: 73.87 seconds.

Page 9 of 13 PDA-S Ver. 2016.16 - Printed: 4/18/2017

CME 850 #31	15
GRL-MGB	Test date: 4/17/2017
AR: 1.44 in^2	SP: 0.492 k/ft3
LE: 63.00 ft	EM: 30000 ksi
WS: 16807.9 ft/s	

BL#	BC	LP	FMX	VMX	BPM	EFV	ETR
	/6"	ft	kips	ft/s	bpm	ft-lb	(%)
226	31	60.02	36	14.8	1.9	305.8	87.4
227	31	60.03	39	14.5	48.7	319.3	91.2
228	31	60.05	37	14.4	49.8	301.6	86.2
229	31	60.06	38	14.4	44.3	305.1	87.2
230	31	60.08	38	14.6	44.1	303.9	86.8
231	31	60.10	37	14.6	44.1	300.2	85.8
232	31	60.11	38	14.8	44.1	311.3	89.0
233	31	60.13	36	14.4	44.2	298.0	85.1
234	31	60.15	37	14.6	44.3	302.3	86.4
235	31	60.16	38	14.7	44.3	310.9	88.8
236	31	60.18	36	15.3	44.1	311.5	89.0
237	31	60.19	38	16.2	44.2	313.6	89.6
238	31	60.21	39	15.1	44.3	310.0	88.6
239	31	60.23	35	16.5	44.2	307.6	87.9
240	31	60.24	36	15.9	44.3	311.7	89.1
241	31	60.26	36	15.7	44.3	307.9	88.0
242	31	60.27	35	15.7	44.5	310.1	88.6
243	31	60.29	35	16.1	44.2	309.1	88.3
244	31	60.31	36	15.7	44.4	302.7	86.5
245	31	60.32	35	15.6	44.6	304.1	86.9
246	31	60.34	33	15.7	44.6	303.4	86.7
247	31	60.35	34	15.6	44.6	303.9	86.8
248	31	60.37	32	15.5	44.5	295.0	84.3
249	31	60.39	32	14.4	44.7	290.3	83.0
250	31	60.40	30	15.3	44.3	296.0	84.6
251	31	60.42	34	15.6	44.8	307.1	87.7
252	31	60.44	36	14.8	44.5	300.6	85.9
253	31	60.45	34	15.5	44.6	301.2	86.0
254	31	60.47	34	15.2	44.5	299.6	85.6
255	31	60.48	30	15.1	44.7	296.5	84.7
256	31	60.50	34	15.8	44.3	303.1	86.6
257	23	60.52	35	14.6	44.7	298.0	85.2
258	23	60.54	38	14.7	44.6	303.6	86.7
259	23	60.57	37	13.5	44.6	298.0	85.1
260	23	60.59	35	13.9	44.6	298.1	85.2
261	23	60.61	35	13.5	44.7	299.1	85.5

GRL Engi	neers, Inc.	
SPT Analyze	r Results	

262	23	60.63	39	14.3	44.7	312.7	89.3
263	23	60.65	38	14.3	44.5	305.2	87.2
264	23	60.67	40	14.4	44.6	310.8	88.8
265	23	60.70	39	14.5	44.6	309.9	88.5
266	23	60.72	39	14.5	44.6	308.1	88.0
267	23	60.74	39	14.5	44.5	310.5	88.7
268	23	60.76	36	13.6	44.5	301.1	86.0
269	23	60.78	39	14.3	44.4	306.1	87.5
270	23	60.80	37	13.8	44.5	305.6	87.3
271	23	60.83	36	14.0	44.3	304.0	86.8
272	23	60.85	39	14.5	44.4	308.5	88.2
273	23	60.87	38	14.2	44.5	305.5	87.3
274	23	60.89	36	13.4	44.6	300.4	85.8
275	23	60.91	38	14.1	44.3	305.6	87.3
276	23	60.93	38	14.1	44.5	307.6	87.9
277	23	60.96	39	14.4	44.5	314.9	90.0
278	23	60.98	38	14.1	44.5	305.1	87.2
279	23	61.00	38	14.1	44.4	308.4	88.1
280	18	61.03	36	13.7	44.4	301.4	86.1
281	18	61.06	39	14.4	44.6	308.1	88.0
282	18	61.08	38	14.1	44.5	305.6	87.3
283	18	61.11	38	14.1	44.5	307.9	88.0
284	18	61.14	39	14.5	44.6	308.1	88.0
285	18	61.17	37	14.0	44.6	304.2	86.9
286	18	61.19	38	14.0	44.5	304.6	87.0
287	18	61.22	36	13.4	44.6	298.7	85.4
288	18	61.25	37	14.0	44.3	306.4	87.5
289	18	61.28	37	13.8	44.5	305.6	87.3
290	18	61.31	36	13.4	44.5	298.0	85.2
291	18	61.33	40	14.3	44.5	308.4	88.1
292	18	61.36	37	13.8	44.6	304.4	87.0
293	18	61.39	36	13.2	44.3	299.9	85.7
294	18	61.42	37	13.4	44.7	300.7	85.9
295	18	61.44	37	13.7	44.5	301.6	86.2
296	18	61.47	37	12.8	44.4	293.3	83.8
297	18	61.50	39	14.7	44.5	322.2	92.1
		Average	38	14.0	44.5	305.0	87.1
		Std Dev	1	0.4	0.1	5.3	1.5
		Maximum	40	14.7	44.7	322.2	92.1
		Minimum	35	12.8	44.3	293.3	83.8

N-value: 41

Sample Interval Time: 95.50 seconds.
GRL Engineers, Inc. SPT Analyzer Results Page 11 of 13 PDA-S Ver. 2016.16 - Printed: 4/18/2017

CME 850 #31	15
GRL-MGB	Test date: 4/17/2017
AR: 1.44 in^2	SP: 0.492 k/ft3
LE: 73.00 ft	EM: 30000 ksi
WS: 16807.9 ft/s	

		Depth: (70	.00 - 71.50 ft], di	splaying BN: 367			
F@73.00 ft (60 kips) V@73.00 ft (23.3 ft/s)		· 、	-				A1,4 F2,3
	particles	Aprode	·····			han	
BL#	BC	LP	FMX	VMX	BPM	EFV	ETR
20.9	/6"	ft	kips	ft/s	bpm	ft-lb	(%)
290	10	70.03	36	15.9	1.9	319.0	91.4
299	16	70.00	37	16.0	49.7	317.6	09.9

298	16	70.03	37	15.9	1.9	319.8	91.4
299	16	70.06	36	15.6	47.6	314.8	89.9
300	16	70.09	37	16.0	48.7	317.6	90.7
301	16	70.13	37	16.3	44.6	314.3	89.8
302	16	70.16	36	15.8	43.4	312.6	89.3
303	16	70.19	36	16.6	43.3	313.9	89.7
304	16	70.22	36	15.7	43.4	311.3	88.9
305	16	70.25	36	16.1	43.4	309.5	88.4
306	16	70.28	36	16.4	43.4	312.3	89.2
307	16	70.31	36	16.0	43.4	312.3	89.2
308	16	70.34	35	15.7	43.5	308.5	88.1
309	16	70.38	36	16.6	43.4	315.1	90.0
310	16	70.41	36	16.4	43.5	317.6	90.7
311	16	70.44	36	16.6	43.5	319.9	91.4
312	16	70.47	36	16.4	43.4	316.3	90.4
313	16	70.50	36	16.0	43.4	314.8	89.9
 314	24	70.52	35	16.0	43.5	315.0	90.0
315	24	70.54	36	16.8	43.6	320.2	91.5
316	24	70.56	36	16.4	43.4	320.5	91.6
317	24	70.58	36	16.4	43.6	317.5	90.7
318	24	70.60	36	16.5	43.4	318.7	91.0
319	24	70.63	37	16.7	43.4	315.6	90.2
320	24	70.65	36	16.3	43.4	317.9	90.8
321	24	70.67	37	16.7	43.4	321.0	91.7
322	24	70.69	35	15.9	43.6	313.8	89.7
323	24	70.71	35	15.8	43.6	307.5	87.8
324	24	70.73	35	15.5	43.5	313.4	89.5
325	24	70.75	35	15.3	43.5	307.1	87.7
326	24	70.77	34	15.2	43.7	301.9	86.3
327	24	70.79	35	15.3	43.6	307.0	87.7
328	24	70.81	34	14.5	43.7	301.3	86.1
329	24	70.83	34	15.2	43.4	305.5	87.3
330	24	70.85	34	14.8	43.5	303.6	86.8
331	24	70.88	34	15.5	43.4	307.6	87.9
332	24	70.90	35	15.6	43.6	307.0	87.7
333	24	70.92	35	15.1	43.6	307.5	87.9

334	24	70.94	35	15.5	43.4	308.9	88.3
335	24	70.96	33	15.3	43.7	307.9	88.0
336	24	70.98	35	15.9	43.6	314.1	89.7
337	24	71.00	34	15.1	43.7	309.3	88.4
338	32	71.02	33	14.8	43.6	309.3	88.4
339	32	71.03	34	14.6	43.6	310.2	88.6
340	32	71.05	35	14.6	43.7	306.2	87.5
341	32	71.06	34	15.1	43.7	307.8	87.9
342	32	71.08	35	14.7	43.5	308.1	88.0
343	32	71.09	36	15.1	43.8	311.3	88.9
344	32	71.11	36	14.1	43.6	305.4	87.2
345	32	71.13	36	15.7	43.7	312.7	89.3
346	32	71.14	35	14.6	43.5	308.0	88.0
347	32	71.16	35	14.5	43.8	306.8	87.7
348	32	71.17	37	15.1	43.7	311.1	88.9
349	32	71.19	34	14.2	43.8	304.9	87.1
350	32	71.20	34	14.2	43.9	300.0	85.7
351	32	71.22	36	14.1	43.6	306.2	87.5
352	32	71.23	35	14.2	43.8	304.5	87.0
353	32	71.25	35	12.6	43.7	289.4	82.7
354	32	71.27	35	14.2	43.5	309.6	88.5
355	32	71.28	35	14.2	43.7	307.0	87.7
356	32	71.30	36	14.0	43.5	304.7	87.0
357	32	71.31	36	13.3	43.6	299.1	85.4
358	32	71.33	36	14.1	43.5	306.0	87.4
359	32	71.34	36	13.1	43.8	298.6	85.3
360	32	71.36	36	13.4	43.8	307.5	87.9
361	32	71.38	35	13.2	43.5	306.5	87.6
362	32	71.39	36	13.1	43.5	297.3	84.9
363	32	71.41	35	14.1	43.5	304.5	87.0
364	32	71.42	36	14.3	43.6	311.3	88.9
365	32	71.44	38	14.5	43.7	308.8	88.2
366	32	71.45	39	15.0	43.3	318.9	91.1
367	32	71.47	38	14.4	43.7	310.2	88.6
368	32	71.48	38	15.8	43.8	321.0	91.7
369	32	71.50	36	15.6	43.5	315.9	90.3
		Average	35	14.9	43.6	308.9	88.3
		Std Dev	1	1.0	0.1	6.3	1.8
		Maximum	39	16.8	43.9	321.0	91.7
		Minimum	33	12.6	43.3	289.4	82.7
			N-value: 56				

Sample Interval Time: 97.50 seconds.

GRL Engineers, Inc. SPT Analyzer Results

Page 13 of 13 PDA-S Ver. 2016.16 - Printed: 4/18/2017

Summary of SPT Test Results

Project: CME 850 #	31, Test Date: 4/17	7/2017								
FMX: Maximum For	се							EFV: M	aximum Energy	
VMX: Maximum Vel	ocity							ETR: E	nergy Transfer R	atio - Rated
BPM: Blows/Minute										
Instr.	Blows	Start	Final	N	N60	Average	Average	Average	Average	Average
Length	Applied	Depth	Depth	Value	Value	FMX	VMX	BPM	EFV	ETR
ft	/6"	ft	ft			kips	ft/s	bpm	ft-lb	(%)
18.00	9-13-24	15.00	16.50	37	53	37	15.7	39.0	300.4	85.8
48.00	16-33-36	45.00	46.50	69	99	36	14.2	41.9	290.7	83.0
53.00	12-11-17	50.00	51.50	28	40	37	15.2	45.7	303.9	86.8
58.00	14-16-24	55.00	56.50	40	57	38	14.3	43.1	305.2	87.2
63.00	31-23-18	60.00	61.50	41	58	38	14.0	44.5	305.0	87.1
73.00	16-24-32	70.00	71.50	56	80	35	14.9	43.6	308.9	88.3
				Overall Avera	age Values:	37	14.6	42.8	301.5	86.1
				Standard	Deviation:	2	0.8	1.9	9.1	2.6
				Overall Maxi	num Value:	41	16.8	45.9	322.5	92.1
				Overall Minir	num Value:	33	12.6	38.7	280.8	80.2

Dynamic Measurements and Analyses for Deep Fou Holocene Mobile B58

August 31, 2017

Report

Re: Penetration Test Energy Measurements Foremost Mobile B58, Mobil Autohammer Borehole HPG09, July 14, 2017 Bellevue, Washington

RMDT Job No. 17F37

This letter presents energy transfer measurements made during Penetration Tests for the drill holes and drill rig referenced above. Robert Miner Dynamic Testing, Inc. (RMDT) made dynamic measurements with a Pile Driving Analyzer[®] as a hammer advanced the NW rod during sampling with a split spoon sampler.

The purpose of RMDT's testing was the measurement of energy transferred to the drill rods. Measurements were made on a section of NW gauge rod at the top of the drill rod. Strain gages and accelerometers on the rod were connected to a Pile Driving Analyzer[®] (PDA) which generally processed acceleration and strain measurements from each hammer blow and stored both the measurements and computed results. Measurements and data processing generally followed the ASTM D 4633-16 standard. Energy transfer past the gage location, EFV, was computed by the PDA using force and velocity records as follows:

 $EFV = \int_{a}^{b} F(t) v(t) dt$

The value "a" corresponds to the start of the record which is when the energy transfer begins and "b" is the time at which energy transferred to the rod reaches a maximum value. Appendix A contains more information on our measurement equipment and methods of analysis. The EFV energy calculation is identical to the EMX energy result discussed in Appendix A. The EFV and EMX values apply to the sensor location near the top of the rod.

TEST DETAILS

On the morning of July 14, 2017, a boring was advances at your project site referenced above. The drill rig was a truck mounted B58 unit manufactured by Foremost Mobile; this rig was identified as Truck #92 with Washington State Licence number C93096E. The Penetration Test hammer was a Mobile chain-drive automatic hammer equipped with a 140 lb ram. Sampling rods were NW gage with J threads. We collected data for sample starting depths of 40, 45, 50, 55 and 60 ft. Penetration Test Energy Measurements, RMDT Job No. 17F37

RESULTS

Sampling at each depth ended with penetration rates exceeding 50 blows for 6 inches and in some cases this occurred within the first of the standard three 6-inch intervals. For this circumstance we judged that the transfer energy may be characterized best by considering results for all hammer blows. One attached figure presents a graphical summary of pertinent results, and Appendix B contains the results for each hammer blow. The results for each hammer blow include the measured energy transfer, EFV, the computed transfer efficiency, ETR, and the hammer blow rate, BPM.

Energy measurements must be divided by the theoretical free fall energy of the hammer to obtain an efficiency. A 140 lb ram raised 30 inches above an impact surface has 350 lb-ft of potential energy. Thus, the transfer energy results for sampling with the 140 lb ram may be divided by 350 lb-ft to yield the ratio of the delivered energy to the nominal potential energy. This efficiency ratio, ETR, is plotted on the attached graphical summary and given numerically for each blows in Appendix 8. Within the five sample intervals we monitored the ETR result was relatively consistent and the overall average was 89.7 percent.

It was a pleasure to assist you and to participate on this project. Please do not hesitate to contact us if you or other project participants have any questions about this report.

Sincerely,

Robert Miner, P.E. Robert Miner Dynamic Testing, Inc.

August 31, 2017

Robert Miner Dynamic Testing, Inc. - PDIPLOT2 Ver 2016.1.56.3 - Case Method & iCAP® Results Printed: 31-August-2017

Test started: 14-July-2017

APPENDIX A AN INTRODUCTION INTO DYNAMIC PILE TESTING METHODS

The following has been written by Goble Rausche Likins and Associates, Inc. and may only be copied with its written permission.

BACKGROUND

Modern procedures of design and construction control require verification of bearing capacity and integrity of deep foundations during preconstruction test programs and also production installation. Dynamic pile testing methods meet this need economically and reliably, and therefore, form an important part of a quality assurance program when deep foundations are executed. Several dynamic pile testing methods exist; they have different benefits and limitations and different requirements for proper execution.

The Case Method of dynamic pile testing, named after the Case Institute of Technology where it was developed between 1964 and 1975, requires that a substantial ram mass (such as that of a pile driving hammer) impacts the pile top such that the pile undergoes at least a small permanent set. The method is therefore also referred to as a "High Strain The Case Method requires dynamic Method". measurements on the pile or shaft under the ram impact and then an evaluation of various quantities based on closed form solutions of the wave equation, a partial differential equation describing the motion of a rod under the effect of an impact. Conveniently, measurements and analyses are done by a single piece of equipment: the Pile Driving Analyzer® (PDA). However, for bearing capacity evaluations an important additional method is CAPWAP® which performs a much more rigorous analysis of the dynamic records than the simpler Case Method.

A related analysis method is the "Wave Equation Analysis" which calculates a relationship between bearing capacity and pile stress and field blow count. The GRLWEAP[™] program performs this analysis and provides a complete set of helpful information and input data.

The following description deals primarily with the Case Method or "High Strain Test" Method of pile testing, however, for the sake of completeness, the "Low Strain Test" performed with the Pile Integrity Test™ (PIT), mainly for pile integrity evaluation, will also be described.

RESULTS FROM DYNAMIC TESTING

There are two main objectives of high strain dynamic pile testing:

- Dynamic Pile Monitoring and
- Dynamic Load Testing.

Dynamic pile monitoring is conducted during the installation of impact driven piles to achieve a safe and economical pile installation. Dynamic load testing, on the other hand, has as its primary goal the assessment of pile bearing capacity. It is applicable to both cast *insitu* piles or drilled shafts and impact driven piles during restrike.

Dynamic Pile Monitoring

During pile installation, the sensors attached to the pile measure pile top force and velocity. A PDA conditions and processes these signals and calculates or evaluates:

- <u>Bearing capacity</u> at the time of testing, including an assessment of shaft resistance development and driving resistance. This information supports formulation of a driving criterion.
- <u>Dynamic pile stresses</u>, axial and averaged over the pile cross section, both tensile and compressive, during pile driving to limit the potential of damage either near the pile top or along its length. Bending stresses can be evaluated at the point of sensor attachment.
- <u>Pile integrity</u> assessment by the PDA is based on the recognition of certain wave reflections from along the pile. If detected early enough, a pile may be saved from complete destruction. On the other hand, once damage is recognized measures can be taken to prevent reoccurrence.
- <u>Hammer performance</u> parameters including the energy transferred to the pile, the hammer speed in blows per minute and the stroke of open ended diesel hammers.

Dynamic Pile Load Testing

Bearing capacity testing of either driven piles or drilled shafts applies the same basic measurement approach of dynamic pile monitoring. However, the test is done independent of the pile installation process and therefore a pile driving hammer or other dynamic loading device may not be available. If a special ram has to be mobilized then its weight should be between 0.8 and 2% of the test load (e.g. between 4 and 10 tons for a 500 ton test load) to assure sufficient soil resistance activation.

For a successful test, it most important that the test is conducted after a <u>sufficient waiting time</u> following pile installation for soil properties approaching their long term condition or concrete to properly set. During testing, PDA results of pile/shaft stresses and transferred energy are used to maintain safe stresses and assure sufficient resistance activation. For safe and sufficient testing of drilled shafts, ram energies are often increased from blow to blow until the test capacity has been activated. On the other hand, restrike tests on driven piles may require a warm hammer so that the very first blow produces a complete resistance activation. Data must be evaluated by CAPWAP for bearing capacity.

After the dynamic load test has been conducted with sufficient energy and safe stresses, the CAPWAP analysis provides the following results:

- <u>Bearing capacity</u> i.e. the mobilized capacity present at the time of testing
- <u>Resistance distribution</u> including shaft resistance and end bearing components
- <u>Stresses in pile or shaft</u> calculated for both the static load application and the dynamic test. These stresses are averages over the cross section and do not include bending effects or nonuniform contact stresses, e.g. when the pile toe is on uneven rock.
- <u>Shaft impedance</u> vs depth; this is an estimate of the shaft shape if it differs substantially from the planned profile
- <u>Dynamic soil parameters</u> for shaft and toe, i.e. damping factors and quakes (related to the dynamic

stiffness of the resistance at the pile/soil interface.)

MEASUREMENTS

PDA

The basis for the results calculated by the PDA are pile top strain and acceleration measurements which are converted to force and velocity records, respectively. The PDA conditions, calibrates and displays these signals and immediately computes average pile force and velocity thereby eliminating bending effects. Using closed form Case Method solutions, based on the one-dimensional linear wave equation, the PDA calculates the results described in the analytical solutions section below.

HPA

The ram velocity may be directly obtained using radar technology in the Hammer Performance Analyzer[™]. For this unit to be applicable, the ram must be visible. The impact velocity results can be automatically processed with a PC or recorded on a strip chart.

Saximeter™

For open end diesel hammers, the time between two impacts indicates the magnitude of the ram fall height or stroke. This information is not only measured and calculated by the PDA but also by the convenient, hand-held Saximeter.

PIT

The Pile Integrity Tester[™] (PIT) can be used to evaluate defects in concrete piles or shafts which may have occurred during driving or casting. Also timber piles of limited length can be tested in that manner. This so-called "Low Strain Method" or "Pulse-Echo Method" of integrity testing requires only the measurement of acceleration at the pile top. The stress wave producing impact is then generated by a small hand-held hammer and the records interpreted in the time domain. PIT also supports the so-called "Transient Response Method" which requires the additional measurement of the hammer force and an analysis in the frequency domain. This method may also be used to evaluate the unknown length of deep foundations under existing structures.

ANALYTICAL SOLUTIONS BEARING CAPACITY

Wave Equation

GRL has written the GRLWEAP[™] program which calculates a relationship between bearing capacity, pile stress and blow count. This relationship is often called the "bearing graph." Once the blow count is known from pile installation logs, the bearing graph yields the bearing capacity. This approach requires no measurements and therefore can be performed during the design stage of a project, for example for the selection of hammer, cushion and pile size.

After dynamic pile monitoring and/or dynamic load testing has been performed, the "Refined Wave Equation Analysis" or RWEA (see schematic below) is often performed by inputting the PDA and CAPWAP calculated parameters. Then the bearing graph from the RWEA is the basis for a safe and sufficient driving criteria.

Case Method

The Case Method is a closed form solution based on a few simplifying assumptions such as ideal plastic soil behavior and an ideally elastic and uniform pile. Given the measured pile top force F(t) and pile top velocity v(t), the total soil resistance is

$$R(t) = \frac{1}{2} \{ [F(t) + F(t_2)] + Z[v(t) - v(t_2)] \}$$
(1)

where

 $t_2 = time t + 2L/c$

- L = pile length below gages
- $c = (E/\rho)^{1/4}$ is the speed of the stress wave
- ρ = pile mass density
- Z = EA/c is the pile impedance
- E = elastic modulus of the pile (p c²)
- A = pile cross sectional area

The total soil resistance consists of a dynamic (R_d) and a static (R_s) component. The static component is therefore

$$R_{s}(t) = R(t) - R_{d}(t)$$
⁽²⁾

The dynamic component may be computed from a soil damping factor, J, and a pile toe velocity, $v_t(t)$ which is conveniently calculated for the pile toe. Using wave considerations, this approach leads immediately to the dynamic resistance

$$R_{d}(t) = J[F(t) + Zv(t) - R(t)]$$
(3)

and finally to the static resistance by means of Equation 2.

There are a number of ways in which Eq. 1 through 3 can be evaluated. Most commonly, t_2 is set to that time at which the static resistance becomes maximum. The result is the so-called **RMX** capacity. Damping factors for RMX typically range between 0.5 for coarse grained materials to 1.0 for clays. The **RSP** capacity (this method is most commonly referred to in the literature, yet it is not very frequently used) requires damping factors between 0.1 for sand and 1.0 for clay. Another capacity, **RA2**, determines the capacity at a time when the pile is essentially at rest and thus damping is small; RA2

therefore requires no damping parameter. In any event, the proper Case Method and its associated damping parameter is most conveniently found after a CAPWAP analysis has been performed.

The static resistance calculated by Case Method or CAPWAP is the mobilized resistance at the time of testing. Consideration therefore has to be given to soil setup or relaxation effects and whether or not a sufficient set has been achieved under the test loading that would correspond to a full activation of the ultimate soil resistance.

The PDA also calculates an estimate of shaft resistance as the difference between force and velocity times impedance at the time immediately prior to the return of the stress wave from the pile toe. This shaft resistance is not reduced by damping effects and is therefore called the total shaft resistance **SFT**. A correction for damping effects produces the static shaft resistance estimate, **SFR**.

The Case Method solution is simple enough to be evaluated "in real time," i.e. between hammer blows, using the PDA. It is therefore possible to calculate all relevant results for all hammer blows and plot these results as a function of depth or blow number. This is done in the PDAPLOT program.

CAPWAP

The CAse Pile Wave Analysis Program combines the wave equation pile and soil model with the Case Method measurements. Thus, the solution includes not only the total and static bearing capacity values but also the shaft resistance, end bearing, damping factors and soil stiffnesses. The method iteratively calculates a number of unknowns by signal matching. While it is necessary to make hammer performance assumptions for a GRLWEAP analysis, the CAPWAP program works with the pile top measurements. Furthermore, while GRLWEAP and Case Method require certain assumptions regarding the soil behavior, CAPWAP calculates these soil parameters.

STRESSES

During pile monitoring, it is important that compressive stress maxima at pile top and toe and tensile stress maxima somewhere along the pile be calculated for each hammer blow. At the pile top (location of sensors) both the maximum compression stress, **CSX**, and the maximum stress from individual strain transducers, **CSI**, are directly obtained from the measurements. Note that CSI is greater than or equal to CSX and the difference between CSI and CSX is a measure of bending in the plane of the strain transducers. Note also that all stresses calculated for locations below the sensors are averaged over the pile cross section and therefore do not include components from either bending or eccentric soil resistance effects.

The PDA calculates the compressive stress at the pile bottom, **CSB**, assuming (a) a uniform pile and (b) that the pile toe force is the maximum value of the total resistance R(t) minus the total shaft resistance, SFT. Again, for this stress estimation uniform resistance force are assumed (e.g. not a sloping rock.)

For concrete piles, the maximum tension stress, **TSX**, is also of great importance. It occurs at some point below the pile top. The maximum tension stress can be computed from the pile top measurements by finding the maximum tension wave (either traveling upward, $W_{\rm u}$, or downward, $W_{\rm d}$) and reducing it by the minimum compressive wave traveling in opposite direction.

$$W_{u} = \frac{1}{2}[F(t) - Zv(t)]$$
 (4)

$$W_d = \frac{1}{2}[F(t) + Zv(t)]$$
 (5)

CAPWAP also calculates tensile and compressive stresses along the pile and, in general, more accurately than the PDA. In fact, for non-uniform piles or piles with joints, cracks or other discontinuities, the closed form solutions from the PDA may be in error.

PILE INTEGRITY

High Strain Tests (PDA)

Stress waves in a pile are reflected wherever the pile impedance, $Z = EA/c = \rho cA = A \sqrt{(E \rho)}$, changes. Therefore, the pile impedance is a measure of the quality of the pile material (E, ρ , c) and the size of its cross section (A). The reflected waves arrive at the pile top at a time which is greater the farther away from the pile top the reflection occurs. The

magnitude of the change of the upward traveling wave (calculated from the measured force and velocity, Eq. 4) indicates the extent of the cross sectional change. Thus, with β_i (**BTA**) being a relative integrity factor which is unity for no impedance change and zero for the pile end, the following is calculated by the PDA.

$$\beta_i = (1 - \alpha_i)/(1 + \alpha_i) \tag{6}$$

with

$$\alpha_{i} = \frac{1}{2} (W_{UR} - W_{UD}) / (W_{Di} - W_{UR})$$
(7)

where

- W_{UR} is the upward traveling wave at the onset of the reflected wave. It is caused by resistance.
- W_{UD} is the upwards traveling wave due to the damage reflection.
- W_{Di} is the maximum downward traveling wave due to impact.

It can be shown that this formulation is quite accurate as long as individual reflections from different pile impedance changes have no overlapping effects on the stress wave reflections.

Without rigorous derivation, it has been proposed to consider as slight damage when β is above 0.8 and a serious damage when β is less than 0.6.

Low Strain Tests (PIT)

The pile top is struck with a held hand hammer and the resulting pile top velocity is measured, displayed and interpreted for signs of wave reflections. In general, a comparison of the reflected acceleration leads to a relative measure of extent of damage, again the location of the problem is indicated by the arrival time of the reflection. PIT records can also be interpreted by the β -Method. However, low strain tests do not activate much resistance which simplifies Eq. 7 since W_{UR} is then equal to zero.

For drilled shafts and PIT records that clearly show a toe reflection, an approximate shaft profile can be calculated from low strain records using the PITSTOP program's PROFILE routine.

HAMMER PERFORMANCE

The PDA calculates the energy transferred to the pile top from:

$$\mathsf{E}(\mathsf{t}) = \int_{0}^{\mathsf{t}} \mathsf{F}(\mathsf{t})\mathsf{v}(\mathsf{t}) \,\mathsf{d}\mathsf{t} \tag{8a}$$

The maximum of the E(t) curve is the most important information for an overall evaluation of the performance of a hammer and driving system. This EMX value allows for a classification of the hammer's performance when presented as the rated transfer efficiency, also called energy transfer ratio (ETR) or global efficiency

$$e_{\tau} = EMX/E_{R}$$
(8b)

where

 E_R is the manufacturer's rated energy value.

Both Saximeter and PDA calculate the stroke (STK) of an open end diesel hammer using

$$STK = (g/8) T_B^2 - h_L$$
 (9)

where

- $g_{\rm B}$ is the earth's gravitational acceleration, $T_{\rm B}$ is the time between two hammer blows,
- h, is a stroke loss value due to gas compression and time losses during impact (usually 0.3 ft or 0.1 m).

DETERMINATION OF WAVE SPEED

An important facet of dynamic pile testing is an assessment of pile material properties. Since in general force is determined from strain by multiplication with elastic modulus, E, and cross sectional area, A, the dynamic elastic modulus has to be determined for pile materials other than steel. In general, the records measured by the PDA clearly indicate a pile toe reflection as long as pile penetration per blow is greater than 1 mm or .04 inches. The time between the onset of the force and velocity records at impact and the onset of the reflection from the toe (usually apparent by a local maximum of the wave up curve) is the so-called wave travel time, T. Dividing 2L (L is here the length of the pile below sensors) by T leads to the stress wave speed in the pile:

c = 2L/T(10) The elastic modulus of the pile material is related to the wave speed according to the linear elastic wave equation theory by

$$E = c^2 \rho \tag{11}$$

Since the mass density of the pile material, ρ , is usually well known (an exception is timber for which samples should be weighed), the elastic modulus is easily found from the wave speed. Note, however, that this is a dynamic modulus which is generally higher than the static one and that the wave speed depends to some degree on the strain level of the stress wave. For example, experience shows that the wave speed from PIT is roughly 5% higher than the wave speed observed during a high strain test.

Other Notes:

- If the pile material is nonuniform then the wave speed c, according to Eq. 10, is an average wave speed and does not necessarily reflect the pile material properties of the location where the strain sensors are attached to the pile top. For example, pile driving often causes fine tension cracks some distance below the top of concrete piles. Then the average c is slower than that at the pile top. It is therefore recommended to determine E in the beginning of pile driving and not adjust it when the average c changes.
- If the pile has such a high resistance that there is no clear indication of a toe reflection then the wave speed of the pile material must be determined either by assumption or by taking a sample of the concrete and measuring its wave speed in a simple free column test. Another possibility is to use the proportionality relationship, discussed under "DATA QUALITY CHECKS" to find c as the ratio between the measured velocity and measured strain.

DATA QUALITY CHECKS

Quality data is the first and foremost requirement for accurate dynamic testing results. It is therefore important that the measurement engineer performing PDA or PIT tests has the experience necessary to recognize measurement problems and take appropriate corrective action should problems develop. Fortunately, dynamic pile testing allows for certain data quality checks because two independent measurements are taken that have to conform to certain relationships.

Proportionality

As long as there is only a wave traveling in one direction, as is the case during impact when only a downward traveling wave exists in the pile, force and velocity measured at the pile top are proportional

$$F = v Z = v (EA/c)$$
(12a)

This relationship can also be expressed in terms of stress

$$\sigma = v (E/c) \tag{12b}$$

or strain

$$\epsilon = v / c$$
 (12c)

This means that the early portion of strain times wave speed must be equal to the velocity unless the proportionality is affected by high friction near the pile top or by a pile cross sectional change not far below the sensors. Checking the proportionality is an excellent means of assuring meaningful measurements.

Measurements are always taken at opposite sides of the pile as a means of calculating the average force and velocity in the pile. The velocity on the two sides of the pile is very similar even when high bending exists. Thus, an independent check of the velocity measurements is easy and simple.

Strain measurements may differ greatly between the two sides of the pile when bending exists. It is even possible that tension is measured on one side while very high compression exists on the other side of the pile. In extreme cases, bending might be so high that it leads to a nonlinear stress distribution. The averaging of the two strain signals does then not lead to the average pile force and proportionality will not be achieved.

When testing drilled shafts, measurements of strain may also be affected by local concrete quality variations. It is then often necessary to use four strain transducers spaced at 90 degrees around the pile for an improved strain data quality. The use of four transducers is also recommended for large pile diameters, particularly when it is difficult to mount the sensors at least two pile widths or diameters below the pile top.

LIMITATIONS, ADDITIONAL CONSIDERATIONS

Mobilization of capacity

Estimates of pile capacity from dynamic testing indicate the **mobilized pile capacity at the time of testing**. At very high blow counts (low set per blow), dynamic test methods tend to produce lower bound capacity estimates as not all resistance (particularly at and near the toe) is fully activated.

Time dependent soil resistance effects

Static pile capacity from dynamic method calculations provide an estimate of the axial pile capacity. Increases and decreases in the pile capacity with time typically occur (soil setup/relaxation). Therefore, <u>restrike testing</u> usually yields a better indication of long term pile capacity than a test at the end of pile driving. Often a wait period of one or two days between end of driving and restrike is satisfactory for a realistic prediction of pile capacity but this waiting time depends, among other factors, on the permeability of the soil.

(A) Soil setup

Because excess positive pore pressures often develop during pile driving in fine grained soil (clays, silts or even fine sands), the capacity of a pile at the time of driving may often be less than the long term pile capacity. These pore pressures reduce the effective stress acting on the pile thereby reducing the soil resistance to pile penetration, and thus the pile capacity at the time of driving. As these pore pressures dissipate, the soil resistance acting on the pile increases as does the axial pile capacity. This phenomena is routinely called soil setup or soil freeze.

(B) Relaxation

Relaxation (capacity reduction with time) has been observed for piles driven into weathered shale, and may take several days to fully develop. Pile capacity estimates based upon initial driving or short term restrike tests can significantly overpredict long term pile capacity. Therefore, piles driven into shale should be tested after a minimum one week wait either statically or dynamically (with particular emphasis than on the first few blows). Relaxation has also been observed for displacement piles driven into dense saturated silts or fine sands due to a negative pore pressure effect at the pile toe. Again, restrike tests should be used, with great emphasis on early blows.

Capacity results for open pile profiles

Larger diameter open ended pipe piles (or H-piles which do not bear on rock) may behave differently under dynamic and static loading conditions. Under dynamic loads the soil inside the pile or between its flanges may slip and produce internal friction while under static loads the plug may move with the pile, thereby creating end bearing over the full pile cross section. As a result both friction and end bearing components may be different under static and dynamic conditions.

CAPWAP Analysis Results

A portion of the soil resistance calculated on an individual soil segment in a CAPWAP analysis can usually be shifted up or down the shaft one soil segment without significantly altering the match quality. Therefore, use of the CAPWAP resistance distribution for uplift, downdrag, scour, or other geotechnical considerations should be made with an understanding of these analysis limitations.

Stresses

PDA and CAPWAP calculated stresses are average values over the cross section. Additional allowance has to be made for bending or non-uniform contact stresses. To prevent damage it is therefore important to maintain good hammer-pile alignment and to protect the pile toes using appropriate devices or an increased cross sectional area.

In the United States is has become generally acceptable to limit the dynamic installation stresses of driven piles to the following levels:

90% of yield strength for steel piles

85% of the concrete compressive strength - after subtraction of the effective prestress - for concrete piles in compression

- 100% of effective prestress plus ½ of the concrete's tension strength for prestressed piles in tension
- 70% of the reinforcement strength for regularly reinforced concrete piles in tension
- 300% of the static design allowable stress for timber

Note that the dynamic stresses may either be directly measured at the pile top by the PDA or calculated by the PDA for other locations along the pile based on the pile top measurements.

Additional design considerations

Numerous factors have to be considered in pile foundation design. Some of these considerations include

- additional pile loading from downdrag or negative skin friction,
- · lateral and uplift loading requirements
- effective stress changes (due to changes in water table, excavations, fills or other changes in overburden),
- long term settlements in general and settlement from underlying weaker layers and/or pile group effects,

These factors have not been evaluated by GRL and have not been considered in the interpretation of the dynamic testing results. The foundation designer should determine if these or any other considerations are applicable to this project and the foundation design.

Wave equation analysis results

The results calculated by the wave equation analysis program depend on a variety of hammer, pile and soil input parameters. Although attempts have been made to base the analysis on the best available information, actual field conditions may vary and therefore stresses and blow counts may differ from the predictions reported. Capacity predictions derived from wave equation analyses should use restrike information. However, because of the uncertainties associated with restrike blow counts and restrike hammer energies, correlations of such results with static test capacities with have often displayed considerable scatter.

As for PDA and CAPWAP, the theory on which GRLWEAP is based is the one-dimensional wave equation. For that reason, stress predictions by the wave equation analysis can only be averages over the pile cross section. Thus, bending stresses or stress concentrations due to non-uniform impact or uneven soil or rock resistance are not considered in these results. Stress maxima calculated by the wave equation are usually subjected to the same limits as those measured directly or calculated from measurements by the PDA.

Appendix B

.

Summary of Case Method Field Results

Robert Miner Dynamic Testing, Inc.

.

PDIPLOT2 2016.1.56.3 - Printed 31-August-2017

						NW-J, AUTO	HAMMER
<u>OP: F</u>	<u>RMDT</u>		-			Date: 14	-July-2017
AR:	1.42 in ²					SP:	0.492 k/ft ³
LE:	48.40 ft					EM: 3	30,000 ksi
WS:	16,807.9 f/s					JC:	0.35
FIMX:	Maximum Force				EIR: Energ	ly I ransfer Rat	io - Rated
	Maximum velocity				BPIVI: BIOWS	s per ivilnute	on
				EEV			
DL#		kine	viviA f/e	∟rv k_ft	(%)	bom	
1	۵\/1	43	127	0.31	89.6	1 9	2 4 0 9
2	AV1	39	12.7	0.30	86.7	27.4	2,400
3	AV1	35	11.7	0.28	78.6	27.3	2,206
4	AV1	41	13.2	0.31	88.2	27.5	2,582
5	AV1	38	12.1	0.29	82.0	27.4	2,330
6	AV1	40	12.4	0.31	89.0	27.5	2,410
7	AV1	41	12.9	0.31	89.4	27.4	2,493
8	AV1	38	11.9	0.28	81.3	27.5	2,269
9	AV1	40	12.3	0.31	88.0	27.4	2,391
10	AV1	39	11.7	0.28	80.8	27.4	2,298
11	AV1	44	13.2	0.32	91.4	27.5	2,567
12	AV1	41	12.5	0.31	88.4	27.5	2,429
13	AV1	40	12.7	0.29	82.2	27.5	2,577
14	AV1	41	12.6	0.31	88.3	27.4	2,395
15	AV1	36	11.9	0.29	81.8	27.5	2,056
16	AV1	36	11.3	0.29	83.9	27.4	2,184
17	AV1	39	12.3	0.31	87.5	27.5	2,220
18	AV1	35	11.5	0.27	76.2	27.3	2,132
19	AV1	43	13.1	0.32	90.6	27.6	2,568
20	AV1	30	11.0	0.26	75.1	27.4	2,054
21	AV I AV/1	30 24	11.0	0.20	70.7 76.1	27.0	2,223
22	AV I A\/1	36	11.5	0.27	70.1	27.0	1,974
23	Δ\/1	36	11.0	0.20	79.0 85.1	27.5	2,100
25	Δ\/1	37	11.0	0.30	85.1	27.5	2,337
26	Δ\/1	37	11.0	0.30	85.0	27.5	2,200
27	AV/1	37	12.0	0.00	76.4	27.4	2,202
28	AV1	41	12.8	0.30	86.7	27.7	2,583
29	AV1	36	11.8	0.29	82.2	27.5	2,226
30	AV1	37	12.2	0.29	83.9	27.5	2.275
31	AV1	34	11.3	0.26	74.8	27.5	1,943
32	AV1	39	12.2	0.30	84.8	27.5	2,373
33	AV1	35	12.0	0.28	78.7	27.6	2,131
34	AV1	37	12.1	0.28	80.1	27.5	2,299
35	AV1	35	11.7	0.28	80.4	27.5	2,333
36	AV1	40	12.8	0.30	87.0	27.6	2,560
37	AV1	41	12.7	0.30	86.6	27.5	2,630
38	AV1	40	12.9	0.31	87.8	27.5	2,541
39	AV1	38	12.4	0.28	80.5	27.3	2,410
40	AV1	42	13.0	0.31	88.3	27.6	2,553
41	AV1	43	13.3	0.31	89.8	27.5	2,683
42	AV1	39	13.2	0.30	86.8	27.5	2,709
43	AV1	42	13.2	0.31	88.4	27.5	2,588
44	AV1	43	13.3	0.32	91.0	21.5	2,853
40 16	AV I AV/4	39	12.3	0.31	0/./ 06 7	21.5	2,507
40 17	Δ\/1	40 21	13.0	0.30	00.1 72.2	21.0 27 1	2,000
44 I		0 4	11.7	0.20	10.0	27.4	2,104

٠

Page 1

Case Method & iCAP® Results

AV1

45

43

45

43

46

45

41

45

41

43

43

40

41

41

13.3

13.4

13.7

13.1

13.7

13.8

12.7

14.1

12.6

13.6

13.5

12.6

13.2

13.7

0.32

0.32

0.34

0.31

0.34

0.34

0.30

0.34

0.30

0.34

0.32

0.30

0.30

0.32

91.1

92.6

97.6

89.2

98.6

97.6

84.8

96.0

84.4

95.9

91.5

85.2

86.4

91.3

46.4

46.6

46.6

46.5

46.3

46.5

46.4

46.5

46.4

46.5

46.5

46.6

46.2

46.4

2,552

2,660

2,685

2,432

2,863

2,891

2,520

2,945

2,232

2,945

2,606

2,194

2,525

2,644

87

88

89

90

91

92

93

94

95

96

97

98

99

100

	Page 2
PDIPLOT2 2016.1.56.3 -	Printed 31-August-2017

						NW-J, AUTO I	HAMMER
OP: RMDT						Date: 14-	July-2017
BL#	TYPE	FMX	VMX	EFV	ETR	BPM	AMX
		kips	f/s	k-ft	(%)	bpm	g's
48	AV1	34	11.6	0.26	75.1	27.5	1,994
49	AV1	37	11.9	0.29	83.7	27.6	2,246
50	AV1	37	12.1	0.28	80.4	27.5	2,256
51	AV1	40	12.5	0.30	85.9	27.4	2,537
52	AV1	36	12.3	0.27	77.5	27.5	2,539
53	AV1	37	12.1	0.30	86.7	27.5	2,416
54	AV1	41	13.3	0.31	88.4	27.6	2,725
55	AV1	37	12.3	0.29	84.1	27.5	2,421
56	AV1	39	12.4	0.29	82.6	27.6	2,477
57	AV1	43	13.1	0.31	88.7	27.5	2.713
58	AV1	40	12.8	0.30	84.5	27.5	2,837
59	AV1	37	.12.3	0.30	85.0	27.5	2.330
60	AV1	39	12.7	0.30	85.1	27.6	2,584
61	AV1	38	12.4	0.29	84.0	27.5	2,470
62	AV1	41	13.0	0.30	87.0	27.6	2,769
63	AV1	42	13.7	0.32	90.3	27.5	2,951
64	AV1	41	13.2	0.32	90.9	27.6	2,891
65	AV1	40	12.9	0.29	83.0	27.5	2.666
66	AV1	38	12.5	0.29	83.3	27.6	2.424
67	AV1	35	11.9	0.27	76.1	27.4	2,138
68	AV1	35	12.0	0.27	77.0	27.5	2.228
69	AV1	39	12.4	0.28	79.9	27.5	2,502
70	AV1	36	12.3	0.28	79.5	27.6	2,278
71	AV1	36	11.8	0.27	77.6	27.5	2,523
72	AV1	39	12.3	0.31	88.0	1.9	2.271
73	AV1	40	13.0	0.30	86.6	46.5	2.542
74	AV1	43	13.3	0.32	91.9	45.9	2.762
75	AV1	42	13.4	0.32	92.0	46.8	2.860
76	AV1	40	13.3	0.32	90.6	46.4	2,706
77	AV1	39	12.8	0.30	85.3	46.2	2.591
78	AV1	44	13.7	0.35	100.0	46.9	3.020
79	AV1	40	12.7	0.30	86.4	46.0	2.529
80	AV1	41	13.2	0.31	88.6	46.2	2,729
81	AV1	45	13.8	0.34	96.9	46.4	3.035
82	AV1	45	13.7	0.34	97.9	46.6	2.835
83	AV1	45	14.1	0.34	98.3	46.4	2,586
84	AV1	45	13.7	0.34	96.6	46.4	2,608
85	AV1	44	13.6	0.33	95.3	46.5	2,638
86	AV1	45	13.9	0.34	98.6	46.3	2,907

Robert Miner Dynamic Testing, Inc.

	Page 3
PDIPLOT2 2016.1.56.3 - F	Printed 31-August-2017

						NW-J, AUTO	HAMMER
OP: RMI	ЭТ					Date: 14-	July-2017
BL#	TYPE	FMX	VMX	EFV	ETR	BPM	AMX
		kips	f/s	k-ft	(%)	bpm	g's
101	AV1	44	14.3	0.34	96.4	46.4	2,954
102	AV1	44	14.1	0.35	98.9	46.4	2,914
103	AV1	40	13.2	0.32	90.4	46.5	2,483
104	AV1	42	13.7	0.33	94.8	46.2	2,672
105	AV1	42	13.8	0.32	92.8	47.0	2,478
106	AV1	41	13.2	0.31	87.9	46.3	2,588
107	AV1	42	14.1	0.33	95.5	46.3	2,963
108	AV1	42	13.8	0.33	93.4	46.4	2,630
109	AV1	39	13.2	0.30	85.6	46.2	2,481
110	AV1	41	14.1	0.31	89.5	46.7	2,514
111	AV1	44	14.4	0.34	96.5	46.7	2,837
112	AV1	42	13.9	0.32	90.4	46.6	2,654
113	AV1	42	14.6	0.33	94.0	46.2	2,903
114	AV1	42	13.9	0.31	88.6	46.5	2,441
115	AV1	41	14.4	0.32	91.2	46.5	2,625
116	AV1	41	14.1	0.32	90.1	46.4	2,587
117	AV1	42	14.5	0.32	92.0	46.5	2,593
118	AV1	42	14.8	0.33	93.5	46.3	2,833
119	AV1	40	13.3	0.30	86.3	46.5	2,237
120	AV1	38	13.2	0.30	84.7	46.3	2,530
121	AV1	42	14.4	0.32	91.6	46.7	2,738
400	A \ / A	40	1 / 1	0.24	00.6	10	2 7 6 9

`

103	AV1	40	13.2	0.32	90.4	46.5	2,483
104	AV1	42	13.7	0.33	94.8	46.2	2.672
105	AV1	42	13.8	0.32	92.8	47.0	2,478
106	AV1	41	13.2	0.31	87.9	46.3	2,588
107	AV1	42	14 1	0.33	95.5	46.3	2,963
108	AV1	42	13.8	0.33	93.4	46.4	2,630
100	AV1	39	13.2	0.30	85.6	46.2	2,481
110	Δ\/1	41	14.1	0.31	89.5	46.7	2 514
111	Δ\/1	41	14.4	0.34	96.5	46.7	2 837
112	Δ\/1	12	13.9	0.32	90.0	46.6	2,654
112	Δ\/1	42	14.6	0.33	94.0	46.2	2,903
11/	Δ\/1	42	13.0	0.00	88.6	46.5	2,000
115	Δ.//1	42	14.4	0.37	Q1 2	46.5	2,441
110		41	14.4	0.32	91.2	46.0	2,020
110		41	14.1	0.32	90.1	40.4	2,507
117	AV 1	42	14.0	0.32	92.0 03.5	46.3	2,000
110	AV 1	42	14.0	0.33	90.0	40.5	2,000
119		40	12.0	0.30	94 7	40.0	2,237
120		30	13.2	0.30	04.7	40.5	2,000
121	AV1	42	14.4	0.32	91.0	40.7	2,700
122	AV I	43	14.1	0.31	09.0	1,9	2,700
123	AV1	42	13.8	0.31	00.1	30.3	2,070
124	AV1	43	14.1	0.32	92.2	30.0	2,000
125	AV1	44	14.3	0.33	94.9	38.7	2,101
126	AV1	44	14.2	0.33	93.0	38.0	2,915
127	AV1	42	14.0	0.33	94.7	38.8	2,915
128	AV1	43	15.1	0.35	98.8	38.8	3,114
129	AV1	42	14.9	0.33	95.7	38.6	3,043
130	AV1	42	14.0	0.32	91.8	38.6	3,034
131	AV1	41	13.9	0.32	92.4	38.7	2,782
132	AV1	41	14.2	0.32	92.3	38.6	2,788
133	AV1	43	14.1	0.33	95.2	38.7	2,759
134	AV1	44	14.6	0.34	96.1	38.7	2,902
135	AV1	43	13.8	0.33	93.2	38.6	2,893
136	AV1	42	14.0	0.33	94.3	38.8	3,008
137	AV1	43	14.3	0.33	95.5	38.6	3,310
138	AV1	43	14.1	0.33	95.5	38.7	2,771
139	AV1	43	13.8	0.33	94.0	38.6	2,915
140	AV1	40	13.7	0.32	92.1	38.7	2,789
141	AV1	40	13.6	0.31	88.4	38.7	2,742
142	AV1	41	13.4	0.33	93.4	38.7	2,808
143	AV1	39	13.7	0.32	91.3	38.5	2,987
144	AV1	42	13.7	0.33	94.7	38.8	2,699
145	AV1	37	13.2	0.31	88.1	38.6	2,518
146	AV1	36	13.5	0.32	90.9	38.7	2,626
147	AV1	40	13.4	0.33	95.4	38.6	2,700
148	AV1	44	13.6	0.32	92.8	38.6	3,163
149	AV1	43	13.6	0.33	95.1	38.7	3,120
150	AV1	42	13.7	0.33	95.6	38.7	2,920
151	AV1	42	13.5	0.33	93.9	38.7	2,971
152	AV1	40	13.6	0.34	95.9	38.6	2,771
153	AV1	38	12.9	0.30	85.9	38.7	2,265

	Page 4
PDIPLOT2 2016.1.56.3 -	Printed 31-August-2017

						NW-J, AUTO	HAMMER
OP: RMI	Т					Date: 14-	July-2017
BL#	TYPE	FMX	VMX	EFV	ETR	BPM	AMX
		kips	f/s	k-ft	(%)	bpm	g's
154	AV1	40	13.1	0.33	93.4	38.6	2,858
155	AV1	38	13.2	0.31	88.9	38.7	2.386
156	AV1	38	13.4	0.33	94.0	38.6	2,772
157	Δ\/1	37	13.6	0 33	93.1	38.6	2 740
150	AV/1	20	12.0	0.00	01.2	22 6	2,740
100		30	10.0	0.52	91.Z	30.0	2,000
159	AV1	30	13.1	0.29	83.7	38.0	2,425
160	AV1	38	13.0	0.31	89.2	38.7	2,507
161	AV1	38	13.3	0.32	90.4	38.6	2,871
162	AV1	40	14.0	0.33	94.8	38.8	2,917
163	AV1	35	13.5	0.32	91.0	38.7	2,280
164	AV1	35	13.5	0.31	89.8	38.6	2,651
165	AV1	38	13.8	0.32	92.2	38.7	2,780
166	AV1	41	13.8	0.33	93.2	38.6	2,921
167	A\/1	40	13.4	0.32	92.4	38.7	2,913
168	Δ\/1	/1	13.7	0.32	94.6	38.8	2 909
160	AV/1	41	14.0	0.00	04.0	20.0	2,000
109	AVI	43	14.0	0.33	94.9	30.7	3,003
170	AV1	43	14.9	0.34	96.8	1.9	2,823
171	AV1	44	14.8	0.34	96.9	41.0	2,767
172	AV1	42	14.2	0.33	93.2	41.1	2,453
173	AV1	43	15.0	0.34	97.6	41.0	2,875
174	AV1	41	14.1	0.33	93.8	41.0	2,466
175	AV1	39	13.8	0.32	90.6	41.4	2,433
176	AV/1	40	14.8	0.33	94.6	41.0	2,968
177	Δ\/1	39	14.6	0.32	91.4	41.0	2 781
178	Δ\/1	40	15.3	0.02	97.5	413	2,701
170	AV/4	40	15.5	0.04	02.9	41.0	2,011
179		41	10.0	0.33	93.0	41.1	2,041
180	AV1	39	10.0	0.33	95.1	41.0	2,913
181	AV1	38	14.8	0.33	92.9	41.4	2,992
182	AV1	39	15.5	0.33	95.1	41.0	2,888
183	AV1	38	15.0	0.32	91.4	41.1	2,929
184	AV1	36	14.2	0.32	90.4	41.2	2,666
185	AV1	38	15.0	0.33	94.3	41.3	2,796
186	AV1	40	15.2	0.34	97.0	41 .1	2,915
187	AV1	36	14.5	0.31	87.8	40.9	2.669
188	AV1	38	14.5	0.32	91.1	41.4	2,734
189	Δ\/1	38	14.5	0.32	92.2	41.2	2 842
100	Δ\/1	38	1/ 1	0.02	90.5	10.0	2,012
101	AV/4	25	12.1	0.02	02.6	41.2	2,001
191	AV 1	30	13.2	0.32	92.0	41.5	2,010
192	AV I	39	14.0	0.33	93.1	41.1	3,037
193	AV1	37	14.0	0.32	90.3	41.1	2,642
194	AV1	39	14.2	0.33	92.9	41.2	2,676
195	AV1	37	13.5	0.32	90.4	41.2	2,576
196	AV1	34	13.4	0.30	85.1	41.1	2,500
197	AV1	34	13.4	0.30	86.7	40.9	2,485
198	AV1	37	13.6	0.31	87.7	41.1	2.613
199	AV/1	34	13.3	0.30	85.9	41.2	2 4 1 4
200	Δ\/1	36	13.9	0.31	89.8	41.0	2 688
200	Δ.1	27	14.7	0.01	80.0	11.0	2,000
201		36	17.1	0.01	00.0 05.0	44.0	2,114
202	AV I	30	13.0	0.30	00.0	41.2	2,319
203	AV1	36	13.5	0.31	89.4	41.3	2,566
204	AV1	34	13.0	0.31	87.8	41.0	2,422
205	AV1	37	13.9	0.33	94.5	41.3	2,619
206	AV1	35	13.4	0.31	88.4	41.0	2,491

Page 4

	Page 5
PDIPLOT2 2016.1.56.3 - I	Printed 31-August-2017

NW-J, AUTO HAMMER

OP: RM	DT					Date: 14-	July-2017
BL#	TYPE	FMX	VMX	EFV	ETR	BPM	AMX
		kips	f/s	k-ft	(%)	bpm	g's
207	AV1	35	12.7	0.30	86.3	41.0	2,538
208	AV1	33	13.0	0.29	83.1	41.1	2,416
209	AV1	35	13.7	0.31	88.0	41.2	2,509
210	AV1	37	14.3	0.32	90.5	41.1	2,646
211	A\/1	38	14.8	0.33	93.0	41.2	2 846
212	A\/1	37	14.6	0.32	92.7	41 1	2 678
212	Δ\/1	35	14.1	0.02	85.0	41.2	2,540
210	Δ\/1	33	13.0	0.00	81.6	10.0	2,040
214	Δ\/1	34	13.6	0.20	86.1	40.0	2,004
210	AV/1	35	13.0	0.30	89.5	41.1	2,502
210	AV/4		10.2	0.01	03.0	41.0	2,300
217		30	14.1	0.32	92.3	41.2	2,740
210		34	10.0	0.31	00.1	41.0	2,020
219	AV1	34	12.5	0.30	80.7	41.4	2,348
220	AV1	33	13.0	0.30	85.4	40.9	2,464
221	AV1	30	11.6	0.30	86.0	41.1	2,058
222	AV1	30	11.7	0.29	81.6	41.0	2,082
223	AV1	31	12.1	0.30	86.8	41.3	2,160
224	AV1	34	12.9	0.30	87.0	41.0	2,454
225	AV1	31	12.3	0.28	81.2	41.3	2,146
226	AV1	34	12.9	0.30	84.3	41.3	2,261
227	AV1	33	12.2	0.29	83.5	40.7	2,204
228	AV1	37	13.3	0.32	90.6	41.3	2,568
229	AV1	32	13.2	0.30	84.3	41.2	2,175
230	AV1	35	12.9	0.30	84.7	41.1	2,444
231	AV1	35	13.3	0.31	89.7	41.1	2,595
232	AV1	34	13.4	0.30	85.6	41.1	2,499
233	AV1	31	12.3	0.29	81.5	41.1	2,088
234	AV1	34	13.0	0.30	86.6	41.0	2,418
235	AV1	34	13.1	0.31	87.8	41.3	2,495
236	AV1	36	13.6	0.31	89.0	41.0	2,635
237	AV1	36	13.7	0.31	89.7	41.1	2,679
238	AV1	34	13.0	0.30	85.3	41.2	2,440
239	AV1	34	13.3	0.30	84.4	41.1	2,484
240	AV1	34	12.9	0.29	83.8	41.0	2,229
241	AV1	34	13.2	0.31	87.8	40.9	2.494
242	AV1	33	13.3	0.30	85.9	41.0	2.431
243	AV1	35	13.0	0.31	87.7	41.2	2,499
244	AV1	35	13.7	0.32	90.2	41.2	2.683
245	AV1	35	13.8	0.31	88.1	41.0	2,687
246	AV1	35	13.8	0.32	91.4	41.0	2,659
247	A\/1	34	13.8	0.32	91.1	41 1	2,582
248	Δ\/1	36	13.7	0.32	91.6	41 1	2,002
240	Δ\/1	36	14.0	0.32	Q() 3	41.1	2 785
240	Δ\/1	34	13.0	0.02	83.3	11.2	2,700
250	Δ\/1	20	11.0	0.20	82.2	40.8	2,000
251	AV1	23	12.0	0.29	83.8	40.0	2,173
252	ΔV I Δ\/1	22	12.4	0.29	85.0 85.5		2 1 2 2
200		00 01	10.0	0.30	00.0	40.0 11 0	2,400
204		0 4 25	10.1	0.00	00.0	41.Z 44.0	2,401
200		30	12.7	0.31	09.Z	41.U 40.7	2,342
200	AV1	30	13.3	0.31	01.4	40.7	2,047
207	AV1	34	13.2	0.31	00.3	41.2	2,044
258	AV1	35	13.4	0.31	88.6	41.1	2,591
259	AV1	34	13.3	0.31	89.3	41.1	2.496

	Page 6
PDIPLOT2 2016.1.56.3 -	Printed 31-August-2017

	-					NW-J, AUTO I	
OP: RML)					Date: 14-	July-2017
BL#	TYPE	FMX	VMX	EFV	ETR	BPM	AMX
		kips	f/s	k-ft	(%)	bpm	g's
260	AV1	35	13.3	0.31	88.2	41.0	2,404
261	AV1	33	13.0	0.31	89.5	41.0	2,457
262	AV1	33	13.4	0.31	87.4	41.0	2.572
263	Δ\/1	41	13.7	0.32	91.9	19	2,661
200	AV/1	42	14.2	0.02	Q/ /	37.6	2,007
204	AV 1	42	19.6	0.00	01.0	27.0	2,007
200	AV 1	42	13.0	0.32	91.9	37.0	2,300
266	AV1	43	15.2	0.34	97.0	37.9	3,113
267	AV1	40	13.8	0.32	91.5	37.7	2,004
268	AV1	40	14.0	0.32	90.8	37.7	2,901
269	AV1	41	14.0	0.33	93.2	37.7	2,733
270	AV1	41	14.2	0.33	93.5	37.8	2,726
271	AV1	40	14.1	0.33	93.1	38.0	2,880
272	AV1	42	14.2	0.33	94.2	37.6	2,990
273	AV1	39	13.9	0.31	89.6	37.6	2,987
274	AV1	41	13.8	0.31	89,4	37.8	2,978
275	AV1	42	14.8	0.34	97.9	37.9	3,136
276	Δ\/1	38	13.5	0.31	89.1	37.7	2,962
270	AV/1	42	13.0	0.33	93.5	37.7	3 139
271		4 2 20	10.9	0.00	01.9	27.0	2 781
270	AVI	30	13.0	0.32	91.0	37.8	2,701
279	AV1	39	13.8	0.32	92.0	37.0	3,131
280	AV1	34	13.8	0.32	90.6	37.8	2,085
281	AV1	36	13.3	0.31	88.5	37.7	2,772
282	AV1	35	13.5	0.32	90.3	37.7	2,746
283	AV1	36	13.8	0.32	91.4	37.8	2,732
284	AV1	35	13.4	0.32	92.7	37.8	2,614
285	AV1	37	13.6	0.33	93.7	37.8	2,797
286	AV1	36	14.2	0.32	92.2	37.7	2,708
287	AV1	35	14.1	0.32	90.9	37.8	2,591
288	AV1	38	14.4	0.33	94.0	37.7	2.784
289	A\/1	37	14.5	0.33	93.1	37.8	2,875
200	Δ\/1	38	14.3	0.33	95.1	37.7	2,978
201	۸\/1	37	14.0	0.00	94.8	37.8	3 215
201	AV1	20	14.5	0.33	06.4	37.7	3 056
292		30	14.4	0.34	90.4	277	2,000
293	AV I	30	14.2	0.32	90.9	37.7	2,712
294	AV1	38	14.4	0.33	95.5	37.8	2,970
295	AV1	38	14.8	0.33	95.1	37.7	3,050
296	AV1	38	14.6	0.32	90.8	37.7	2,976
297	AV1	38	14.4	0.33	93.1	37.8	3,155
298	AV1	37	14.5	0.32	90.1	37.7	2,722
299	AV1	36	14.7	0.32	91.8	37.7	2,780
300	AV1	38	14.5	0.33	94.2	37.8	2,737
301	AV1	38	14.8	0.34	97.1	37.8	3,176
302	AV1	36	14.4	0.34	95.9	37.7	3.066
303	AV1	35	14.4	0.32	90.1	37.7	2.751
304	Δ\/1	35	14.3	0.33	95.3	37.8	3 002
305	۸\/1	35	14.0	0.31	88.8	37.7	2 816
300 000	AV1	27	15.0	0.01	01 5	37 8	2,0,0
207		01 06	14.7	0.52	01 5	27.0	2,113
307	AVI	30	14.7	0.32	91.J	ו.וט דדר	2,104
308	AV1	30	14.0	0.31	09.1	31.1	2,9/4
309	AV1	37	15.2	0.33	94.8	37.8	2,830
310	AV1	37	15.0	0.32	92.5	37.7	3,076
311	AV1	39	15.6	0.34	98.2	37.9	3,150
312	AV1	38	14.9	0.32	90.8	37.6	3,000

	Page 7
PDIPLOT2 2016.1.56.3 -	Printed 31-August-2017

						NW-J, AUTO I	HAMMER
OP: RMD1	Γ					Date: 14-	July-2017
BL#	TYPE	FMX	VMX	EFV	ETR	BPM	AMX
		kips	f/s	k-ft	(%)	bpm	g's
313	AV1	38	15.2	0.33	93.7	37.7	2,952
314	AV1	38	14.9	0.32	91.2	37.8	2,874
315	AV1	38	15.2	0.33	94.2	37.7	3,079
316	AV1	38	15.2	0.33	93.6	37.8	2,932
317	AV1	40	16.2	0.34	98.5	37.7	3,064
318	AV1	37	15.1	0.32	90.6	37.8	2,789
319	AV1	39	15.5	0.34	97.7	37.8	3,245
320	AV1	39	15.4	0.34	96.0	37.7	2,854
321	AV1	40	15.4	0.34	97.1	37.7	3,188
322	AV1	38	15.2	0.34	96.2	37.7	3,262
323	AV1	38	14.7	0.33	93.9	37.7	3,117
324	AV1	39	15.1	0.33	95.6	37.7	3,090
325	AV1	39	15.1	0.34	96.1	37.7	3,215
326	AV1	33	14.1	0.31	88.7	37.8	2,614
327	AV1	39	14.6	0.33	94.8	37.7	3,026
328	AV1	35	13.8	0.31	87.7	37.7	2,489
329	AV1	36	14.3	0.31	89.8	37.7	2,667
330	AV1	36	14.5	0.33	95.1	37.8	3,049
331	AV1	36	14.5	0.32	91.8	37.7	2,658
332	AV1	35	12.9	0.32	92.3	37.9	2,467
333	AV1	35	14.1	0.32	92.2	37.7	2,516
334	AV1	36	14.3	0.32	91.7	37.7	2,816
335	AV1	37	14.8	0.33	94.6	37.8	2,844
336	AV1	34	13.7	0.30	86.3	37.7	2,505
337	AV1	34	14.0	0.32	90.2	37.6	2,462
338	AV1	35	13.9	0.33	93.0	37.9	2,474
339	AV1	32	13.4	0.30	84.3	37.7	2,301
Average		38	13.5	0.31	89.7	37.4	2,651

Total number of blows analyzed: 339

BL# Comments

1 Begin Sample at 40 ft.

72 Begin Sample at 45 ft.

122 Begin Sample at 50 ft.

170 Begin Sample at 55 ft.

- 263 Begin Sample at 60 ft.
- 339 End of testing.

Time Summary

 Drive
 2 minutes 32 seconds
 9:25 AM - 9:28 AM (7/14/2017) BN 1 - 71

 Stop
 21 minutes 44 seconds
 9:28 AM - 9:49 AM

 Drive
 1 minute 3 seconds
 9:49 AM - 9:51 AM BN 72 - 121

 Stop
 14 minutes 1 second
 9:51 AM - 10:05 AM

 Drive
 1 minute 55 seconds
 10:05 AM - 10:20 AM

 Drive
 1 minutes 55 seconds
 10:06 AM - 10:22 AM

 Drive
 2 minutes 14 seconds
 10:22 AM - 10:24 AM BN 170 - 262

 Stop
 15 minutes 44 seconds
 10:24 AM - 10:40 AM

 Drive
 2 minutes 0 second
 10:40 AM - 10:42 AM BN 263 - 339

Total time [01:16:28] = (Driving [00:09:03] + Stop [01:07:25])

Rep <u>Robert Miner Dynamic Testing, In</u> Holt CN

Dynamic Measurements and Analyses for Deep Foundations

July 2, 2013

Mr. Dale Abernathy Holt Services, Inc. 13000 Lakeholme Road Sw Lakewood, WA 98498

Re: Penetration Test Energy Measurements Bore Hole: E340-B-07A, July 1, 2013 Truck Mounted CME Rig No. 7, 140lb ram, NW-J Rod Bellevue, Washington

RMDT Job No. 13F36

Dear Mr. Abernathy,

This letter presents energy transfer measurements made during Standard Penetration Tests for the drill hole and drill rig referenced above. Robert Miner Dynamic Testing, Inc. (RMDT) made dynamic measurements with a Pile Driving Analyzer® as a hammer advanced the NW rod during sampling with a split spoon sampler.

The purpose of RMDT's testing was the measurement of energy transferred to the drill rods. Measurements were made on a section of NW gauge rod at the top of the drill rod. Strain gages and accelerometers on the rod were connected to a Pile Driving Analyzer[®] (PDA) which generally processed acceleration and strain measurements from each hammer blow and stored both the measurements and computed results. Measurements and data processing generally followed the ASTM D 4633-10 standard. Energy transfer past the gage location, EFV, was computed by the PDA using force and velocity records as follows:

 $EFV = \int_{a}^{b} F(t) v(t) dt$

The value "a" corresponds to the start of the record which is when the energy transfer begins and "b" is the time at which energy transferred to the rod reaches a maximum value. Appendix A contains more information on our measurement equipment and methods of analysis. The EFV energy calculation is identical to the EMX energy result discussed in Appendix A. The EFV and EMX values apply to the sensor location near the top of the rod.

TEST DETAILS

Testing occurred on July 1, 2013. Boring E340-B-07A was advanced in the maintenance yard for the Microsoft Connector Buses in Bellevue, Washington. NW size rod was used to advance a split spoon sampler. The automatic hammer in use during our testing was manufactured by Central Mine Equipment (CME) and was reported to use a 140 lb ram. The drill rig was a truckmounted CME-85 and referred to as Rig No. 7 by the operator.

RESULTS

A summary of testing and monitoring results is given in Table 1. The tabulated results include the starting sample depth, the penetration resistance, the number of hammers blows in our data set, measured energy transfer, EFV, the computed transfer efficiency, ETR, and the hammer blow rate, BPM. Appendix B contains detailed numeric results for each individual test.

Energy measurements must be divided by the theoretical free fall energy of the hammer to obtain an efficiency. A 140 lb ram raised 30 inches above an impact surface has 350 lb-ft of potential energy. Thus, the transfer energy results for sampling with the 140 ram may be divided by 350 lb-ft to yield the ratio of the delivered energy to the nominal potential energy. This efficiency ratio, ETR, is given for each sample interval as a percent efficiency.

Table 1. Summary of Test Details and Results for the 140-lb ram and Split Spoon Sampler							
Sample Name and Sample Start	Penetration Resistance	Number of Blows in Data Set	Average Transfer Energy EFV	Average Transfer Efficiency ETR	Average Hammer Blow Rate BPM		
Depth	(Blow/Set)		(lb-ft)	(percent)	(blow/min)		
Sample 1, 15ft	48/1ft	48	298	85	46		
Sample 2, 20ft	58/1ft	58	306	87	46		
Sample 3, 30ft	89/1ft	89	317	91	47		
Sample 4, 40ft	81/1ft	81	316	90	47		
Sample 5, 50ft	50/6in	49	325	93	45		
Sample 6, 60ft	57/6in	321	92	46			
Avera	ge for Split Spo	on samples:	314	<mark>90</mark>	46		

Six sample returns were monitored while the 140 lb ram and standard split spoon sampler were in use. The overall average ETR and hammer blow rate was 90 percent and 46 blows per minute, respectively.

SPT Energy Measurements, Holt Services, Bellevue, WA RMDT Job No. 13F36

July 2, 2013 Page 3

It was a pleasure to assist you and to participate on this project with the staff of Holt Services, Inc. Please do not hesitate to contact us if you or your client have any questions about this report.

Sincerely,

Andrew Banas Staff Engineer Robert Miner Dynamic Testing, Inc.

APPENDIX A AN INTRODUCTION INTO DYNAMIC PILE TESTING METHODS

The following has been written by Goble Rausche Likins and Associates, Inc. and may only be copied with its written permission.

BACKGROUND

Modern procedures of design and construction control require verification of bearing capacity and integrity of deep foundations during preconstruction test programs and also production installation. Dynamic pile testing methods meet this need economically and reliably, and therefore, form an important part of a quality assurance program when deep foundations are executed. Several dynamic pile testing methods exist; they have different benefits and limitations and different requirements for proper execution.

The Case Method of dynamic pile testing, named after the Case Institute of Technology where it was developed between 1964 and 1975, requires that a substantial ram mass (such as that of a pile driving hammer) impacts the pile top such that the pile undergoes at least a small permanent set. The method is therefore also referred to as a "High Strain The Case Method requires dynamic Method". measurements on the pile or shaft under the ram impact and then an evaluation of various quantities based on closed form solutions of the wave equation, a partial differential equation describing the motion of a rod under the effect of an impact. Conveniently, measurements and analyses are done by a single piece of equipment: the Pile Driving Analyzer® (PDA). However, for bearing capacity evaluations an important additional method is CAPWAP® which performs a much more rigorous analysis of the dynamic records than the simpler Case Method.

A related analysis method is the "Wave Equation Analysis" which calculates a relationship between bearing capacity and pile stress and field blow count. The GRLWEAP™ program performs this analysis and provides a complete set of helpful information and input data.

The following description deals primarily with the Case Method or "High Strain Test" Method of pile testing, however, for the sake of completeness, the "Low Strain Test" performed with the Pile Integrity Test™ (PIT), mainly for pile integrity evaluation, will also be described.

RESULTS FROM DYNAMIC TESTING

There are two main objectives of high strain dynamic pile testing:

- Dynamic Pile Monitoring and
- Dynamic Load Testing.

Dynamic pile monitoring is conducted during the installation of impact driven piles to achieve a safe and economical pile installation. Dynamic load testing, on the other hand, has as its primary goal the assessment of pile bearing capacity. It is applicable to both cast *insitu* piles or drilled shafts and impact driven piles during restrike.

Dynamic Pile Monitoring

During pile installation, the sensors attached to the pile measure pile top force and velocity. A PDA conditions and processes these signals and calculates or evaluates:

- <u>Bearing capacity</u> at the time of testing, including an assessment of shaft resistance development and driving resistance. This information supports formulation of a driving criterion.
- <u>Dynamic pile stresses</u>, axial and averaged over the pile cross section, both tensile and compressive, during pile driving to limit the potential of damage either near the pile top or along its length. Bending stresses can be evaluated at the point of sensor attachment.
- <u>Pile integrity</u> assessment by the PDA is based on the recognition of certain wave reflections from along the pile. If detected early enough, a pile may be saved from complete destruction. On the other hand, once damage is recognized measures can be taken to prevent reoccurrence.
- <u>Hammer performance</u> parameters including the energy transferred to the pile, the hammer speed in blows per minute and the stroke of open ended diesel hammers.

Dynamic Pile Load Testing

Bearing capacity testing of either driven piles or drilled shafts applies the same basic measurement approach of dynamic pile monitoring. However, the test is done independent of the pile installation process and therefore a pile driving hammer or other dynamic loading device may not be available. If a special ram has to be mobilized then its weight should be between 0.8 and 2% of the test load (e.g. between 4 and 10 tons for a 500 ton test load) to assure sufficient soil resistance activation.

For a successful test, it most important that the test is conducted after a <u>sufficient waiting time</u> following pile installation for soil properties approaching their long term condition or concrete to properly set. During testing, PDA results of pile/shaft stresses and transferred energy are used to maintain safe stresses and assure sufficient resistance activation. For safe and sufficient testing of drilled shafts, ram energies are often increased from blow to blow until the test capacity has been activated. On the other hand, restrike tests on driven piles may require a warm hammer so that the very first blow produces a complete resistance activation. Data must be evaluated by CAPWAP for bearing capacity.

After the dynamic load test has been conducted with sufficient energy and safe stresses, the CAPWAP analysis provides the following results:

- <u>Bearing capacity</u> i.e. the mobilized capacity present at the time of testing
- <u>Resistance distribution</u> including shaft resistance and end bearing components
- <u>Stresses in pile or shaft</u> calculated for both the static load application and the dynamic test. These stresses are averages over the cross section and do not include bending effects or nonuniform contact stresses, e.g. when the pile toe is on uneven rock.
- <u>Shaft impedance</u> vs depth; this is an estimate of the shaft shape if it differs substantially from the planned profile
- <u>Dynamic soil parameters</u> for shaft and toe, i.e. damping factors and quakes (related to the dynamic

stiffness of the resistance at the pile/soil interface.)

MEASUREMENTS

PDA

The basis for the results calculated by the PDA are pile top strain and acceleration measurements which are converted to force and velocity records, respectively. The PDA conditions, calibrates and displays these signals and immediately computes average pile force and velocity thereby eliminating bending effects. Using closed form Case Method solutions, based on the one-dimensional linear wave equation, the PDA calculates the results described in the analytical solutions section below.

HPA

The ram velocity may be directly obtained using radar technology in the Hammer Performance AnalyzerTM. For this unit to be applicable, the ram must be visible. The impact velocity results can be automatically processed with a PC or recorded on a strip chart.

Saximeter™

For open end diesel hammers, the time between two impacts indicates the magnitude of the ram fall height or stroke. This information is not only measured and calculated by the PDA but also by the convenient, hand-held Saximeter.

ΡΙΤ

The Pile Integrity Tester[™] (PIT) can be used to evaluate defects in concrete piles or shafts which may have occurred during driving or casting. Also timber piles of limited length can be tested in that manner. This so-called "Low Strain Method" or "Pulse-Echo Method" of integrity testing requires only the measurement of acceleration at the pile top. The stress wave producing impact is then generated by a small hand-held hammer and the records interpreted in the time domain. PIT also supports the so-called "Transient Response Method" which requires the additional measurement of the hammer force and an analysis in the frequency domain. This method may also be used to evaluate the unknown length of deep foundations under existing structures.

ANALYTICAL SOLUTIONS BEARING CAPACITY

Wave Equation

GRL has written the GRLWEAP[™] program which calculates a relationship between bearing capacity, pile stress and blow count. This relationship is often called the "bearing graph." Once the blow count is known from pile installation logs, the bearing graph yields the bearing capacity. This approach requires no measurements and therefore can be performed during the design stage of a project, for example for the selection of hammer, cushion and pile size.

After dynamic pile monitoring and/or dynamic load testing has been performed, the "Refined Wave Equation Analysis" or RWEA (see schematic below) is often performed by inputting the PDA and CAPWAP calculated parameters. Then the bearing graph from the RWEA is the basis for a safe and sufficient driving criteria.

Case Method

The Case Method is a closed form solution based on a few simplifying assumptions such as ideal plastic soil behavior and an ideally elastic and uniform pile. Given the measured pile top force F(t) and pile top velocity v(t), the total soil resistance is

$$R(t) = \frac{1}{2} \{ [F(t) + F(t_2)] + Z[v(t) - v(t_2)] \}$$
(1)

where

- t = a point in time after impact
- t_2 = time t + 2L/c
- L = pile length below gages
- c = $(E/\rho)^{\frac{1}{2}}$ is the speed of the stress wave
- ρ = pile mass density
- Z = EA/c is the pile impedance
- E = elastic modulus of the pile (ρc^2)
- A = pile cross sectional area

The total soil resistance consists of a dynamic $(\rm R_{d})$ and a static $(\rm R_{s})$ component. The static component is therefore

$$R_{s}(t) = R(t) - R_{d}(t)$$
(2)

The dynamic component may be computed from a soil damping factor, J, and a pile toe velocity, $v_t(t)$ which is conveniently calculated for the pile toe. Using wave considerations, this approach leads immediately to the dynamic resistance

$$R_{d}(t) = J[F(t) + Zv(t) - R(t)]$$
(3)

and finally to the static resistance by means of Equation 2.

There are a number of ways in which Eq. 1 through 3 can be evaluated. Most commonly, t_2 is set to that time at which the static resistance becomes maximum. The result is the so-called **RMX** capacity. Damping factors for RMX typically range between 0.5 for coarse grained materials to 1.0 for clays. The **RSP** capacity (this method is most commonly referred to in the literature, yet it is not very frequently used) requires damping factors between 0.1 for sand and 1.0 for clay. Another capacity, **RA2**, determines the capacity at a time when the pile is essentially at rest and thus damping is small; RA2

therefore requires no damping parameter. In any event, the proper Case Method and its associated damping parameter is most conveniently found after a CAPWAP analysis has been performed.

The static resistance calculated by Case Method or CAPWAP is the mobilized resistance at the time of testing. Consideration therefore has to be given to soil setup or relaxation effects and whether or not a sufficient set has been achieved under the test loading that would correspond to a full activation of the ultimate soil resistance.

The PDA also calculates an estimate of shaft resistance as the difference between force and velocity times impedance at the time immediately prior to the return of the stress wave from the pile toe. This shaft resistance is not reduced by damping effects and is therefore called the total shaft resistance **SFT**. A correction for damping effects produces the static shaft resistance estimate, **SFR**.

The Case Method solution is simple enough to be evaluated "in real time," i.e. between hammer blows, using the PDA. It is therefore possible to calculate all relevant results for all hammer blows and plot these results as a function of depth or blow number. This is done in the PDAPLOT program.

CAPWAP

The CAse Pile Wave Analysis Program combines the wave equation pile and soil model with the Case Method measurements. Thus, the solution includes not only the total and static bearing capacity values but also the shaft resistance, end bearing, damping factors and soil stiffnesses. The method iteratively calculates a number of unknowns by signal matching. While it is necessary to make hammer performance assumptions for a GRLWEAP analysis, the CAPWAP program works with the pile top measurements. Furthermore, while GRLWEAP and Case Method require certain assumptions regarding the soil behavior, CAPWAP calculates these soil parameters.

STRESSES

During pile monitoring, it is important that compressive stress maxima at pile top and toe and tensile stress maxima somewhere along the pile be calculated for each hammer blow. At the pile top (location of sensors) both the maximum compression stress, **CSX**, and the maximum stress from individual strain transducers, **CSI**, are directly obtained from the measurements. Note that CSI is greater than or equal to CSX and the difference between CSI and CSX is a measure of bending in the plane of the strain transducers. Note also that all stresses calculated for locations below the sensors are averaged over the pile cross section and therefore do not include components from either bending or eccentric soil resistance effects.

The PDA calculates the compressive stress at the pile bottom, **CSB**, assuming (a) a uniform pile and (b) that the pile toe force is the maximum value of the total resistance R(t) minus the total shaft resistance, SFT. Again, for this stress estimation uniform resistance force are assumed (e.g. not a sloping rock.)

For concrete piles, the maximum tension stress, **TSX**, is also of great importance. It occurs at some point below the pile top. The maximum tension stress can be computed from the pile top measurements by finding the maximum tension wave (either traveling upward, $W_{\rm u}$, or downward, $W_{\rm d}$) and reducing it by the minimum compressive wave traveling in opposite direction.

$$W_{\mu} = \frac{1}{2} [F(t) - Zv(t)]$$
(4)

$$W_{d} = \frac{1}{2}[F(t) + Zv(t)]$$
 (5)

CAPWAP also calculates tensile and compressive stresses along the pile and, in general, more accurately than the PDA. In fact, for non-uniform piles or piles with joints, cracks or other discontinuities, the closed form solutions from the PDA may be in error.

PILE INTEGRITY

High Strain Tests (PDA)

Stress waves in a pile are reflected wherever the pile impedance, $Z = EA/c = \rho cA = A \sqrt{(E \rho)}$, changes. Therefore, the pile impedance is a measure of the quality of the pile material (E, ρ , c) and the size of its cross section (A). The reflected waves arrive at the pile top at a time which is greater the farther away from the pile top the reflection occurs. The magnitude of the change of the upward traveling wave (calculated from the measured force and velocity, Eq. 4) indicates the extent of the cross sectional change. Thus, with β_i (**BTA**) being a relative integrity factor which is unity for no impedance change and zero for the pile end, the following is calculated by the PDA.

$$\beta_i = (1 - \alpha_i)/(1 + \alpha_i) \tag{6}$$

with

$$\alpha_{i} = \frac{1}{2} (W_{UR} - W_{UD}) / (W_{Di} - W_{UR})$$
(7)

where

- W_{UR} is the upward traveling wave at the onset of the reflected wave. It is caused by resistance.
- W_{UD} is the upwards traveling wave due to the damage reflection.
- $W_{\mbox{\scriptsize Di}}$ is the maximum downward traveling wave due to impact.

It can be shown that this formulation is quite accurate as long as individual reflections from different pile impedance changes have no overlapping effects on the stress wave reflections.

Without rigorous derivation, it has been proposed to consider as slight damage when β is above 0.8 and a serious damage when β is less than 0.6.

Low Strain Tests (PIT)

The pile top is struck with a held hand hammer and the resulting pile top velocity is measured, displayed and interpreted for signs of wave reflections. In general, a comparison of the reflected acceleration leads to a relative measure of extent of damage, again the location of the problem is indicated by the arrival time of the reflection. PIT records can also be interpreted by the β -Method. However, low strain tests do not activate much resistance which simplifies Eq. 7 since W_{UR} is then equal to zero.

For drilled shafts and PIT records that clearly show a toe reflection, an approximate shaft profile can be calculated from low strain records using the PITSTOP program's PROFILE routine.

HAMMER PERFORMANCE

The PDA calculates the energy transferred to the pile top from:

$$\mathsf{E}(\mathsf{t}) = {}_{\mathsf{o}} \int^{\mathsf{t}} \mathsf{F}(\mathsf{t}) \mathsf{v}(\mathsf{t}) \, \mathsf{d}\mathsf{t} \tag{8a}$$

The maximum of the E(t) curve is the most important information for an overall evaluation of the performance of a hammer and driving system. This **EMX** value allows for a classification of the hammer's performance when presented as the rated transfer efficiency, also called energy transfer ratio (**ETR**) or global efficiency

$$e_{T} = EMX/E_{R}$$
 (8b)

where

 E_{R} is the manufacturer's rated energy value.

Both Saximeter and PDA calculate the stroke (**STK**) of an open end diesel hammer using

$$STK = (g/8) T_B^2 - h_L$$
 (9)

where

- g is the earth's gravitational acceleration,
- \tilde{T}_{B} is the time between two hammer blows,
- h_L is a stroke loss value due to gas compression and time losses during impact (usually 0.3 ft or 0.1 m).

DETERMINATION OF WAVE SPEED

An important facet of dynamic pile testing is an assessment of pile material properties. Since in general force is determined from strain by multiplication with elastic modulus, E, and cross sectional area, A, the dynamic elastic modulus has to be determined for pile materials other than steel. In general, the records measured by the PDA clearly indicate a pile toe reflection as long as pile penetration per blow is greater than 1 mm or .04 inches. The time between the onset of the force and velocity records at impact and the onset of the reflection from the toe (usually apparent by a local maximum of the wave up curve) is the so-called wave travel time, T. Dividing 2L (L is here the length of the pile below sensors) by T leads to the stress wave speed in the pile:

 $c = 2L/T \tag{10}$

The elastic modulus of the pile material is related to the wave speed according to the linear elastic wave equation theory by

$$E = c^2 \rho \tag{11}$$

Since the mass density of the pile material, ρ , is usually well known (an exception is timber for which samples should be weighed), the elastic modulus is easily found from the wave speed. Note, however, that this is a dynamic modulus which is generally higher than the static one and that the wave speed depends to some degree on the strain level of the stress wave. For example, experience shows that the wave speed from PIT is roughly 5% higher than the wave speed observed during a high strain test.

Other Notes:

- If the pile material is nonuniform then the wave speed c, according to Eq. 10, is an average wave speed and does not necessarily reflect the pile material properties of the location where the strain sensors are attached to the pile top. For example, pile driving often causes fine tension cracks some distance below the top of concrete piles. Then the average c is slower than that at the pile top. It is therefore recommended to determine E in the beginning of pile driving and not adjust it when the average c changes.
- If the pile has such a high resistance that there is no clear indication of a toe reflection then the wave speed of the pile material must be determined either by assumption or by taking a sample of the concrete and measuring its wave speed in a simple free column test. Another possibility is to use the proportionality relationship, discussed under "DATA QUALITY CHECKS" to find c as the ratio between the measured velocity and measured strain.

DATA QUALITY CHECKS

Quality data is the first and foremost requirement for accurate dynamic testing results. It is therefore important that the measurement engineer performing PDA or PIT tests has the experience necessary to recognize measurement problems and take appropriate corrective action should problems develop. Fortunately, dynamic pile testing allows for certain data quality checks because two independent measurements are taken that have to conform to certain relationships.

Proportionality

As long as there is only a wave traveling in one direction, as is the case during impact when only a downward traveling wave exists in the pile, force and velocity measured at the pile top are proportional

$$F = v Z = v (EA/c)$$
(12a)

This relationship can also be expressed in terms of stress

$$\sigma = v (E/c) \tag{12b}$$

or strain

$$\epsilon = v / c$$
 (12c)

This means that the early portion of strain times wave speed must be equal to the velocity unless the proportionality is affected by high friction near the pile top or by a pile cross sectional change not far below the sensors. Checking the proportionality is an excellent means of assuring meaningful measurements.

Measurements are always taken at opposite sides of the pile as a means of calculating the average force and velocity in the pile. The velocity on the two sides of the pile is very similar even when high bending exists. Thus, an independent check of the velocity measurements is easy and simple.

Strain measurements may differ greatly between the two sides of the pile when bending exists. It is even possible that tension is measured on one side while very high compression exists on the other side of the pile. In extreme cases, bending might be so high that it leads to a nonlinear stress distribution. The averaging of the two strain signals does then not lead to the average pile force and proportionality will not be achieved.

When testing drilled shafts, measurements of strain may also be affected by local concrete quality variations. It is then often necessary to use four strain transducers spaced at 90 degrees around the pile for an improved strain data quality. The use of four transducers is also recommended for large pile diameters, particularly when it is difficult to mount the sensors at least two pile widths or diameters below the pile top.

LIMITATIONS, ADDITIONAL CONSIDERATIONS

Mobilization of capacity

Estimates of pile capacity from dynamic testing indicate the **mobilized pile capacity at the time of testing**. At very high blow counts (low set per blow), dynamic test methods tend to produce lower bound capacity estimates as not all resistance (particularly at and near the toe) is fully activated.

Time dependent soil resistance effects

Static pile capacity from dynamic method calculations provide an estimate of the axial pile capacity. Increases and decreases in the pile capacity with time typically occur (soil setup/relaxation). Therefore, <u>restrike testing</u> usually yields a better indication of long term pile capacity than a test at the end of pile driving. Often a wait period of one or two days between end of driving and restrike is satisfactory for a realistic prediction of pile capacity but this waiting time depends, among other factors, on the permeability of the soil.

(A) Soil setup

Because excess positive pore pressures often develop during pile driving in fine grained soil (clays, silts or even fine sands), the capacity of a pile at the time of driving may often be less than the long term pile capacity. These pore pressures reduce the effective stress acting on the pile thereby reducing the soil resistance to pile penetration, and thus the pile capacity at the time of driving. As these pore pressures dissipate, the soil resistance acting on the pile increases as does the axial pile capacity. This phenomena is routinely called soil setup or soil freeze.

(B) Relaxation

Relaxation (capacity reduction with time) has been observed for piles driven into weathered shale, and may take several days to fully develop. Pile capacity estimates based upon initial driving or short term restrike tests can significantly overpredict long term pile capacity. Therefore, piles driven into shale should be tested after a minimum one week wait either statically or dynamically (with particular emphasis than on the first few blows). Relaxation has also been observed for displacement piles driven into dense saturated silts or fine sands due to a negative pore pressure effect at the pile toe. Again, restrike tests should be used, with great emphasis on early blows.

Capacity results for open pile profiles

Larger diameter open ended pipe piles (or H-piles which do not bear on rock) may behave differently under dynamic and static loading conditions. Under dynamic loads the soil inside the pile or between its flanges may slip and produce internal friction while under static loads the plug may move with the pile, thereby creating end bearing over the full pile cross section. As a result both friction and end bearing components may be different under static and dynamic conditions.

CAPWAP Analysis Results

A portion of the soil resistance calculated on an individual soil segment in a CAPWAP analysis can usually be shifted up or down the shaft one soil segment without significantly altering the match quality. Therefore, use of the CAPWAP resistance distribution for uplift, downdrag, scour, or other geotechnical considerations should be made with an understanding of these analysis limitations.

Stresses

PDA and CAPWAP calculated stresses are average values over the cross section. Additional allowance has to be made for bending or non-uniform contact stresses. To prevent damage it is therefore important to maintain good hammer-pile alignment and to protect the pile toes using appropriate devices or an increased cross sectional area.

In the United States is has become generally acceptable to limit the dynamic installation stresses of driven piles to the following levels:

90% of yield strength for steel piles

85% of the concrete compressive strength - after subtraction of the effective prestress - for concrete piles in compression

- 100% of effective prestress plus $\frac{1}{2}$ of the concrete's tension strength for prestressed piles in tension
- 70% of the reinforcement strength for regularly reinforced concrete piles in tension
- 300% of the static design allowable stress for timber

Note that the dynamic stresses may either be directly measured at the pile top by the PDA or calculated by the PDA for other locations along the pile based on the pile top measurements.

Additional design considerations

Numerous factors have to be considered in pile foundation design. Some of these considerations include

- additional pile loading from downdrag or negative skin friction,
- lateral and uplift loading requirements
- effective stress changes (due to changes in water table, excavations, fills or other changes in overburden),
- long term settlements in general and settlement from underlying weaker layers and/or pile group effects,

These factors have not been evaluated by GRL and have not been considered in the interpretation of the dynamic testing results. The foundation designer should determine if these or any other considerations are applicable to this project and the foundation design.

Wave equation analysis results

The results calculated by the wave equation analysis program depend on a variety of hammer, pile and soil input parameters. Although attempts have been made to base the analysis on the best available information, actual field conditions may vary and therefore stresses and blow counts may differ from the predictions reported. Capacity predictions derived from wave equation analyses should use restrike information. However, because of the uncertainties associated with restrike blow counts and restrike hammer energies, correlations of such results with static test capacities with have often displayed considerable scatter.

As for PDA and CAPWAP, the theory on which GRLWEAP is based is the one-dimensional wave equation. For that reason, stress predictions by the wave equation analysis can only be averages over the pile cross section. Thus, bending stresses or stress concentrations due to non-uniform impact or uneven soil or rock resistance are not considered in these results. Stress maxima calculated by the wave equation are usually subjected to the same limits as those measured directly or calculated from measurements by the PDA.

Appendix B

Summary of Case Method Field Results

PDIPLOT Ver. 2012.2 - Printed: 2-Jul-2013

HOLT, SPT RIG 7 - SAMPLE 1, 15 FT -BH E340-B-07A

1 - Start of test on 7/1/2013 at 10:58:11 AM

2 - End of test on 7/1/2013 at 10:59:30 AM

Test date: 1-Jul-2013

Rober Case	t Miner Dynami Method & iCAP	c Testing, Inc. ® Results					PDIPLC	DT Ver. 2012.	P 2 - Printed: 2	age 1 of 1 2-Jul-2013
HOLT, OP: R	SPT RIG 7 - SA MDT	AMPLE 1, 15	FT						BH E3 Test date: 7	340-B-07A 1-Jul-2013
AR:	1.42 in^2								SP: (0.492 k/ft3
LE: WS·1	19.00 ft 6 807 9 f/s								EM: 3	0,000 ksi
<u>003. 1</u> CSI:	Max F1 or F2 (Compr. Stress					FMX	· Maximum	Force	0.55
CSX:	Max Measured	Compr. Stres	s				VM	K: Maximum	Velocity	
EFV:	Energy of FV	·					RAT	SPT Leng	h Ratio	
ETR:	Energy Transfe	er Ratio					RAL	J: Auto Capa	city End Bea	aring Piles
BPM:	Blows per Minu		001/		ETD				DAT	
BL#	BLC	CSI	CSX			BPIN **	FIMX	VIVIX f/c		RAU
14	.34	29.0	28.4	0 284	81 1	45.6	40	13.8	12	
15	34	29.4	28.8	0.296	84.7	45.7	40	15.1	1.2	4
16	34	29.2	28.7	0.295	84.2	45.6	41	14.6	1.2	0
17	34	28.4	28.0	0.276	78.8	45.8	40	13.7	1.2	5
18	34	29.4	28.8	0.295	84.2	45.6	41	14.6	1.2	4
19	34	29.0	28.2	0.290	82.9	45.7	40	13.7	1.2	4
20	34	28.8	28.3	0.293	83.6	45.8	40	14.0	1.2	3
21	34	29.2	28.5	0.300	85.8	45.6	40	14.7	1.2	0
22	34	29.0	28.2	0.295	84.4 96 5	45.8	40	14.5	1.2	0
23	34 34	29.0	20.9	0.303	8/1	45.0	41	10.4	1.2	4
24	34	29.1	28.5	0.294	84.0	45.0	40	14.5	1.2	5
26	34	29.2	28.5	0.299	85.4	45.6	40	15.0	1.2	1
27	34	28.1	27.6	0.290	82.9	45.8	39	14.2	1.4	4
28	34	28.8	27.9	0.291	83.0	45.7	40	13.4	2.7	0
29	34	29.1	28.4	0.304	86.7	45.8	40	15.9	2.7	4
30	34	28.8	28.1	0.290	83.0	45.6	40	14.2	2.7	6
31	62	29.3	28.4	0.291	83.3	45.8	40	13.9	2.7	0
32	62	28.5	27.9	0.299	85.4	45.5	40	15.2	2.7	5
33	62	29.0	28.2	0.291	83.3	45.8	40	13.9	2.7	5
34	62	29.3	28.2	0.300	85.7	45.7	40	14.1	2.7	8
35	62	29.3	28.5	0.305	87.1	45.5	40	15.0	2.7	8
30	62	29.0	20.1	0.303	87.0	45.0	40	14.5	2.7	4 7
38	62	28.5	20.5	0.303	83.5	45.7	30	13.8	2.7	3
39	62	29.5	28.7	0.309	88.3	45.8	41	15.8	2.7	5
40	62	29.0	28.1	0.300	85.6	45.5	40	14.3	2.7	8
41	62	28.9	28.1	0.298	85.1	45.6	40	15.2	2.7	8
42	62	31.5	29.9	0.303	86.5	45.8	42	15.0	2.7	3
43	62	28.2	27.7	0.297	84.9	45.8	39	14.6	2.7	7
44	62	29.4	28.3	0.299	85.3	45.6	40	13.9	2.7	7
45	62	29.0	28.0	0.301	86.1	45.8	40	14.4	2.7	8
40	62	28.9	28.3	0.321	91.6	45.7	40	16.1	2.7	5
47	62	29.5	29.2	0.292	03.4 86 1	45.6 45.6	41	14.1	2.7	10
49	62	29.1	28.3	0.304	86.8	45.7	40	15.2	2.7	4
50	62	28.4	27.9	0.299	85.5	45.6	40	14.6	2.7	9
51	62	30.3	28.6	0.294	84.0	45.6	41	14.6	2.7	7
52	62	28.9	28.2	0.299	85.4	45.8	40	15.3	2.7	7
53	62	29.0	27.9	0.283	80.9	45.6	40	12.8	2.7	7
54	62	30.0	28.8	0.308	87.9	45.7	41	15.7	2.7	8
55	62	29.2	27.8	0.295	84.3	45.8	39	13.5	2.7	3
56	62	29.1	28.0	0.302	86.4	45.6	40	14.2	2.7	6
5/ E0	62	∠ŏ.4 20.0	∠1.8 29.1	0.304	87.U 22 0	45.6 45.6	40	15.5	2.7	/ 7
50	02 62	29.0 20 1	20.1 28.6	0.290	o∠.o 88.8	40.0 45.8	40 11	13.0	2.1 2.7	1
60	62	29.4	28.3	0.306	87.5	45 7	40	14 7	2.7	6
61	62	29.0	27.9	0.305	87.0	45.7	40	14.3	2.7	7
Avera	ae	29.1	28.3	0.298	85.1	45.7	40	14.5	2.2	
Std. D	ev.	0.6	0.4	0.008	2.2	0.1	1	0.7	0.7	3
Maxim	num	31.5	29.9	0.321	91.6	45.8	42	16.1	2.7	10

Total number of blows analyzed: 48

BL# Comments

Start of test on 7/1/2013 at 10:58:11 AM End of test on 7/1/2013 at 10:59:30 AM 1

61

Time Summary

Drive 1 minute 19 seconds 10:58:11 AM - 10:59:30 AM (7/1/2013) BN 1 - 61

A
Robert Miner Dynamic Testing, Inc. - Case Method & iCAP® Results

PDIPLOT Ver. 2012.2 - Printed: 2-Jul-2013

HOLT, SPT RIG 7 - SAMPLE 2, 20 FT -BH E340-B-07A

1 - Start of test on 7/1/2013 at 11:09:34 AM

2 - End of test on 7/1/2013 at 11:11:03 AM

Robert Miner Dynamic Testing, Inc. Page 1 c Case Method & iCAP® Results PDIPLOT Ver. 2012.2 - Printed: 2-Jul-20										
HOLT OP: R	, SPT RIG 7 - S MDT	AMPLE 2, 20	FT						BH E34 Test date: 1	40-B-07A -Jul-2013
AR: LE: WS: 1	1.42 in^2 24.00 ft 6.807.9 f/s								SP: 0 EM: 30 JC:	.492 k/ft3 ,000 ksi 0.35
CSI: CSX:	Max F1 or F2 Max Measured	Compr. Stress d Compr. Stres	SS				FMX VMX PAT	(: Maximum (: Maximum	Force Velocity	
ETR: BPM:	Energy Transfe Blows per Min	er Ratio ute					RAL	J: Auto Capa	city End Bea	ring Piles
BL#	BLC	CSI	CSX	EFV	ETR	BPM	FMX	VMX	RAT	RAU
	bl/ft	ksi	ksi	k-ft	(%)	**	kips	f/s	[]	kips
12	40	31.6	29.9	0.314	89.8	46.1	42	15.2	1.1	0
13	40	30.9	29.6	0.307	87.7	45.9	42	14.3	1.1	0
14	40	29.7	28.0 29.7	0.300	85.8	46.0	41	14.7	1.1	3
16	40 40	29.0	20.7	0.308	83.6	45.9	41	14.0	1.1	0
17	40	31.7	30.3	0.312	89.0	45.9	43	15.0	1.1	Ő
18	40	29.9	28.7	0.303	86.6	45.9	41	13.6	1.1	0
19	40	30.3	29.1	0.318	90.9	46.0	41	15.5	1.1	0
20	40	28.6	27.6	0.282	80.5	46.0	39	12.4	1.1	0
21	40	30.1	29.0	0.302	86.3	45.9	41	14.5	1.1	0
22	40	30.9	29.7	0.311	88.8	46.0	42	14.7	1.1	0
23	40	31.2	29.6	0.325	92.7	45.9	42	16.2	1.1	1
24	40	29.9	28.7	0.290	83.0	45.9	41	12.7	1.1	1
25	40	28.9	27.9	0.301	86.1	46.0	40	14.7	1.2	1
20	40	20.5	20.9	0.305	07.1 90.7	46.0	41	14.3	1.1	3
28	40	29.5	20.5	0.296	84 5	46.0	40	13.5	1.2	1
29	40	30.0	28.9	0.325	92.9	45.9	40	15.7	1.1	3
30	40	30.2	29.1	0.303	86.5	45.9	41	14.3	1.1	3
31	40	30.2	29.0	0.297	84.9	46.1	41	14.2	1.1	6
32	76	29.3	28.3	0.300	85.6	45.9	40	14.7	1.2	4
33	76	30.5	29.4	0.308	88.1	46.0	42	14.8	1.1	4
34	76	30.4	29.4	0.305	87.2	45.9	42	14.6	1.1	13
35	76	30.3	29.1	0.308	88.0	45.9	41	15.0	1.2	5
36	76	30.1	29.0	0.319	91.1	46.1	41	15.5	1.1	/
20	76	30.0	29.0	0.299	00.0 80.5	45.9	41	13.0	1.1	э 7
30	76	20.7	27.0	0.202	00.5	40.1	42	12.5	1.2	7
40	76	30.2	29.1	0.291	83.1	45.9	41	13.1	1.1	7
41	76	31.8	30.1	0.320	91.6	46.2	43	16.2	1.1	12
42	76	30.7	29.2	0.298	85.2	45.8	41	14.0	1.2	14
43	76	31.1	29.5	0.302	86.2	46.1	42	14.5	1.1	12
44	76	28.9	28.0	0.293	83.7	45.8	40	13.4	1.2	10
45	76	30.8	29.4	0.313	89.5	46.0	42	15.6	1.1	8
46	76	28.8	27.8	0.285	81.5	45.8	39	13.0	1.2	10
47	/6 76	30.3	29.3	0.324	92.6	46.0	42	16.3	1.1	15
40 ⊿0	76	29.9	20.9	0.293	03.7 90.8	45.9	41	15.0	1.1	9 10
50	76	29.5	28.5	0.313	89.5	46.0	40	15.0	1.1	10
51	76	30.6	29.4	0.303	86.4	45.9	42	13.3	1.1	
52	76	29.7	28.7	0.325	92.7	45.9	41	16.2	1.2	11
53	76	29.5	28.5	0.291	83.1	45.9	40	12.4	1.2	8
54	76	30.8	29.7	0.321	91.6	45.9	42	15.2	1.1	9
55	76	30.4	29.3	0.314	89.7	46.0	42	15.1	1.1	10
56	/6	29.3	28.2	0.301	85.9	45.9	40	13.8	1.2	12
57	76 76	29.4	28.5 29.1	0.310	88.0	46.0	40	14.4	1.2	9
59	76	20.0	20.1	0.294	88.4	40.0	40	14.1	1.2	11
60	76	30.1	29.1	0.312	89.2	46.0	41	14.3	1.1	11
61	76	30.4	29.4	0.335	95.6	45.8	42	16.5	1.1	15
62	76	29.9	28.7	0.296	84.6	46.0	41	12.7	1.1	11
63	76	31.3	29.8	0.325	92.9	46.0	42	15.6	1.1	12
64	76	28.9	28.0	0.301	86.1	46.0	40	13.5	1.1	9
65	76	28.6	28.0	0.288	82.4	45.9	40	14.1	1.2	12
66	76	29.6	28.7	0.301	86.0	46.1	41	14.2	1.2	14
6/	/6 76	30.4	29.5	0.321	91.7	45.9	42	14.9	1.1	14
80 03	/0 76	30.7 28 7	29.0 28.0	0.310	00.0 81 5	40.U 46.0	42 40	14.4 13 3	1.1	13
	10	20.7	20.0	0.200	01.5	<u>40.0</u>		1/ 5	1.2	
Std D	90 Jev	0.8	20.9 0 6	0.000	36	-+0.0 0 1	41	1 1	0.0	5
Maxin	num	31.8	30.3	0.335	95.6	46.2	43	16.5	1.2	15

Total number of blows analyzed: 58

BL# Comments

1

Start of test on 7/1/2013 at 11:09:34 AM

HOLT, SPT RIG 7 - SAMPLE 2, 20 FT

 OP: RMDT

 BL#
 Comments

 69
 End of test on 7/1/2013 at 11:11:03 AM

 Time Summary
 Drive

 Drive
 1 minute 29 seconds

 11:09:34 AM - 11:11:03 AM (7/1/2013) BN 1 - 69

Robert Miner Dynamic Testing, Inc. - Case Method & iCAP® Results

PDIPLOT Ver. 2012.2 - Printed: 2-Jul-2013

HOLT, SPT RIG 7 - SAMPLE 3, 30 FT -BH E340-B-07A

1 - Start of test on 7/1/2013 at 11:33:06 AM

2 - End of test on 7/1/2013 at 11:35:29 AM

Test date: 1-Jul-2013

Rober Case	t Miner Dynami Method & iCAP	c Testing, Inc. ® Results				Page 1 of PDIPLOT Ver. 2012.2 - Printed: 2-Jul-2013				
HOLT	, SPT RIG 7 - S MDT	AMPLE 3, 30	FT						BH E34 Test date: 1	40-B-07A -Jul-2013
AR:	1.42 in^2								SP: 0	.492 k/ft3
LE: WS: 1	34.00 ft 6,807.9 f/s								EM: 30 JC:	,000 ksi 0.35
CSI: CSX: EFV: ETR: BPM:	Max F1 or F2 (Max Measured Energy of FV Energy Transfe Blows per Min	Compr. Stress I Compr. Stres er Ratio	SS				FM VM RAT RAT	X: Maximum X: Maximum T: SPT Lengt J: Auto Capa	Force Velocity h Ratio city End Bea	ring Piles
BL#	BLC	CSI	CSX	EFV	ETR	BPM	FMX	VMX	RAT	RAU
~ 4	bl/ft	ksi	ksi	k-ft	(%)	**	kips	f/s	0	kips
24	/8 70	31.0	29.9	0.323	92.2	46.7	42	15.3	1.1	4
20 28	78 78	29.8 30.4	29.0	0.311	88.8 86.4	46.7	41	14.5	1.1	5 1
30	78	30.4	29.0	0.302	88.3	46.0	42	13.7	1.1	2
32	78	31.3	30.2	0.316	90.3	46.7	43	14.9	0.9	11
34	78	30.4	29.6	0.311	88.8	46.7	42	14.2	1.1	12
36	78	31.4	30.2	0.328	93.7	46.6	43	16.0	1.1	13
38	78	31.9	30.5	0.326	93.1	46.5	43	15.4	1.1	13
40	78	31.2	30.1	0.314	89.6	46.8	43	14.5	1.1	11
42	78	31.3	30.3	0.316	90.2	46.6	43	14.5	1.1	14
44	78	31.5	30.4	0.330	94.4	46.7	43	15.6	1.1	11
46	78	32.0	30.9	0.322	91.9	46.7	44	14.7	1.1	12
48	/8 79	30.2	29.0	0.291	83.1	46.6	41	13.0	1.1	13
52	70	32.3	30.8 30.4	0.310	90.2	46.7	44	14.2	1.1	11
54	78	31.0	30.4	0.313	89.4	46.8	43	14.3	1.1	11
56	78	31.6	30.3	0.322	92.1	46.7	43	15.1	1.1	12
58	78	33.5	31.4	0.325	92.9	46.8	45	15.3	1.1	13
60	78	31.9	30.8	0.314	89.8	46.6	44	14.0	0.9	10
62	78	31.8	30.7	0.318	90.8	46.6	44	14.4	1.1	12
64	100	31.0	30.0	0.319	91.2	46.6	43	15.1	1.1	12
66	100	30.9	30.0	0.316	90.2	46.6	43	14.5	1.1	12
68	100	33.2	31.1	0.322	91.9	46.8	44	15.0	0.9	14
70	100	31.1	30.0	0.322	92.0	46.7	43	15.0	1.1	14
7/	100	32.2	30.4	0.323	92.4	40.7	44	14.9	0.9	10
76	100	31.8	30.4	0.319	91.3	46.7	43	14.7	1.1	9
78	100	30.8	29.7	0.315	89.9	46.7	42	14.7	1.1	12
80	100	32.3	30.8	0.318	90.9	46.6	44	14.8	0.9	9
82	100	31.2	30.2	0.318	90.8	46.7	43	14.4	1.1	10
84	100	30.6	29.8	0.310	88.5	46.7	42	14.0	1.1	14
86	100	31.0	29.6	0.304	86.8	46.7	42	14.2	1.1	10
88	100	31.5	30.0	0.310	88.7	46.6	43	14.1	1.1	11
90	100	31.3	30.3	0.306	87.5	46.7	43	13.3	1.1	14
92	100	31.5	30.3	0.317	90.5	46.7	43	14.5	1.1	15
94	100	30.0	29.5	0.295	90.1	40.7	42	14.4	1.1	14
98	100	30.6	29.4	0.306	87.5	46.5	42	14.2	1.1	21
100	100	31.2	30.2	0.306	87.3	46.8	43	13.5	1.1	23
102	100	31.0	29.9	0.318	91.0	46.8	42	14.5	1.8	16
104	100	32.1	30.4	0.325	93.0	46.8	43	15.4	1.8	19
106	100	32.0	30.7	0.332	94.7	46.7	44	15.6	1.8	18
108	100	30.3	28.8	0.298	85.2	46.7	41	13.7	1.9	18
110	100	32.6	30.6	0.329	93.9	46.7	43	15.3	1.7	21
112	100	30.5	29.2	0.299	85.4	46.7	41	13.9	1.8	23
Avera	ge	31.6	30.3	0.317	90.7	46.7	43	14.7	1.2	13
Sid. D Mavin		U.8 33 5	U.0 31 /	0.009	∠.5 96.2	46 9	1	U.7 16 3	U.3 1 Q	4 22
WIDAIII		55.5	51.4	0.337 To	otal number of	blows analyz	red: 89	10.5	1.3	23

BL# Comments

ents

Start of test on 7/1/2013 at 11:33:06 AM

End of test on 7/1/2013 at 11:35:29 AM

Time Summary

1 112

Drive 2 minutes 23 seconds

11:33:06 AM - 11:35:29 AM (7/1/2013) BN 1 - 112

Robert Miner Dynamic Testing, Inc. - Case Method & iCAP® Results

PDIPLOT Ver. 2012.2 - Printed: 2-Jul-2013

HOLT, SPT RIG 7 - SAMPLE 4, 40 FT -BH E340-B-07A

1 - Start of test on 7/1/2013 at 12:04:57 PM

2 - End of test on 7/1/2013 at 12:07:13 PM

Test date: 1-Jul-2013

Case I	Vethod & iCAP	® Results			PDIPLOT Ver. 2012.2 - Printed: 2-Jul-2013					
HOLT, OP: RI	SPT RIG 7 - S. MDT	AMPLE 4, 40	FT						BH E3 Test date: 1	40-B-07A -Jul-2013
AR:	1.42 in^2								SP: ().492 k/ft3
LE:	44.00 ft								EM: 30),000 ksi
WS: 16	6,807.9 f/s								JC:	0.35
CSI:	Max F1 or F2 (Compr. Stress	5				FM	X: Maximum	Force	
CSX:	Max Measured	Compr. Stres	, SS				VM	X: Maximum	Velocity	
FFV.	Energy of FV						RAT	- SPTLengt	h Ratio	
ETR.	Energy Transfe	er Ratio					RAI	1: Auto Cana	city End Bea	aring Piles
BPM:	Blows per Minu	ute								
BL#	BLC	CSI	CSX	EFV	ETR	BPM	FMX	VMX	RAT	RAU
	bl/ft	ksi	ksi	k-ft	(%)	**	kips	f/s	[]	kips
27	70	30.3	29.8	0.318	90.8	47.2	42	15.0	0.7	10
29	70	28.2	27.3	0.299	85.4	47.2	39	13.5	1.0	7
31	70	29.6	29.0	0.304	86.8	47.2	41	13.9	0.7	12
33	70	30.2	29.9	0.320	91.4	47.1	42	14.6	0.9	11
35	70	29.4	29.0	0.305	87.3	47.2	41	13.7	0.9	11
37	70	29.4	29.3	0.317	90.6	47.1	42	14.2	0.9	12
39	70	29.3	28.4	0.301	86.0	47 1	40	14.3	1 1	5
41	70	30.2	20.4	0.326	93.0	47.0	40	15.1	0.9	11
/3	70	31.0	20.0	0.320	02.0	47.0	42	14.3	0.0	12
45	70	20.0	20.6	0.315	90.0	47.2	40	14.0	0.4	12
43	70	23.5	20.6	0.313	02.7	47.2	42	14.0	0.7	12
47	70	32.5	20.7	0.324	92.7	47.2	43	14.5	0.9	12
49	70	30.3	29.7	0.310	90.3	47.1	42	14.1	0.9	12
51	70	29.3	29.0	0.311	00.0	47.1	41	13.0	0.7	9
53	70	32.2	31.2	0.328	93.7	47.0	44	14.9	0.4	8
55	70	29.5	28.5	0.303	86.5	47.1	40	13.5	0.7	/
57	70	30.2	29.5	0.320	91.4	47.0	42	14.6	0.9	9
59	70	30.0	29.3	0.314	89.8	47.1	42	14.3	0.9	11
61	70	30.5	29.6	0.326	93.0	47.0	42	14.5	0.9	13
63	92	30.1	29.2	0.315	89.9	47.1	41	13.9	1.1	14
65	92	32.1	30.8	0.319	91.2	47.3	44	14.2	0.4	12
67	92	30.7	29.7	0.317	90.7	47.2	42	14.1	0.4	11
69	92	28.6	27.5	0.287	81.9	47.2	39	13.2	1.1	6
71	92	30.8	29.5	0.317	90.5	47.2	42	14.1	0.7	13
73	92	29.8	29.1	0.315	90.0	47.2	41	14.0	0.7	11
75	92	30.1	29.3	0.325	92.9	47.1	42	14.8	0.9	8
77	92	30.1	29.1	0.318	90.9	47.1	41	14.6	0.9	9
79	92	29.2	28.9	0.311	88.7	47.1	41	14.4	0.7	13
81	92	31.9	30.7	0.324	92.6	47.2	44	14.8	0.4	9
83	92	32.0	30.8	0.323	92.4	47.2	44	14.7	0.4	12
85	92	30.5	29.5	0.319	91.1	47.3	42	14.3	0.5	6
87	92	32.4	31.2	0.332	94.8	47.2	44	15.2	0.4	8
89	92	29.2	28.6	0.320	91.3	47.4	41	14.5	0.7	9
91	92	31.7	30.7	0.313	89.6	47.1	44	14.4	0.7	9
93	92	30.9	29.8	0.330	94.2	47.3	42	15.1	0.9	11
95	92	32.4	31.1	0.313	89.3	47.0	44	13.9	0.7	10
97	92	29.6	28.8	0.315	90.0	47.2	41	14.2	0.9	12
99	92	29.2	28.9	0.309	88.3	47.0	41	13.8	0.7	13
101	92	29.7	28.9	0.324	92.5	47 1	41	14.9	0.0	14
103	02	30.7	20.0	0.324	95 5	47.7	42	15 4	0.0	12
105	02 02	20.7	29.0	0.334	01 E	47.2	40	1/ 7	0.0	12
103	92 02	29.4	20.0	0.320	00.2	47.2	40	1/1	0.9	10
107	92	29.0	20.0	0.310	<u>90.2</u>	47.0	41	14.1	0.9	13
Averag	je	30.3	29.5	0.316	90.4	47.2	42	14.3	0.8	10
Std. D	ev.	1.1	0.9	0.009	2.5	0.1	1	0.5	0.2	2
iviaxim	um	32.5	31.2	0.334	95.5	47.4	44	15.4	1.1	14

Page 1 of 1

Total number of blows analyzed: 81

BL# Comments

Robert Miner Dynamic Testing, Inc.

1 107

Start of test on 7/1/2013 at 12:04:57 PM End of test on 7/1/2013 at 12:07:13 PM

Time Summary

Drive 2 minutes 16 seconds 12:04:57 PM - 12:07:13 PM (7/1/2013) BN 1 - 107

Robert Miner Dynamic Testing, Inc. - Case Method & iCAP® Results

PDIPLOT Ver. 2012.2 - Printed: 2-Jul-2013

HOLT, SPT RIG 7 - SAMPLE 5, 50 FT -BH E340-B-07A

1 - Start of test on 7/1/2013 at 12:32:13 PM

2 - End of test on 7/1/2013 at 12:33:17 PM

Test date: 1-Jul-2013

Rober Case	t Miner Dynami Method & iCAP	c Testing, Inc. ® Results					PDIPLC	DT Ver. 2012.	F ∷ 2 - Printed	Page 1 of 1 2-Jul-2013
HOLT, OP: R	SPT RIG 7 - SA MDT	AMPLE 5, 50	FT						BH E Test date:	340-B-07A 1-Jul-2013
AR:	1.42 in^2								SP:	0.492 k/ft3
LE: WS·1	54.00 ft 6 807 9 f/s								EM: 3	0,000 ksi
	Max F1 or F2 (Compr. Stress					FM	· Maximum	Force	0.00
CSX:	Max Measured	Compr. Stres	, SS				VM	K: Maximum	Velocity	
EFV:	Energy of FV	•					RAT	: SPT Leng	th Ratio	
ETR:	Energy Transfe	er Ratio					RAL	J: Auto Capa	icity End Be	aring Piles
	Blows per Minu		COV		ГТР				DAT	
BL#	BLC	CSI	CSX		EIR (%)	BPM **	FIMX	VIVIX f/s		RAU
2	100	29.9	29.6	0.316	90.2	45.2	42	14.6	1.1	кiрз 9
3	100	29.7	29.5	0.312	89.2	45.3	42	14.4	0.5	ő
4	100	30.0	29.5	0.329	94.0	45.4	42	14.4	0.6	12
5	100	30.8	30.5	0.332	95.0	45.3	43	14.9	0.6	7
6	100	29.6	29.2	0.324	92.6	45.5	41	14.9	1.0	8
7	100	29.7	29.3	0.323	92.4	45.4	42	14.3	0.6	9
8	100	30.1	30.0	0.327	93.4	45.3	43	14.9	0.8	10
10	100	29.2	29.1	0.327	93.4	45.5 45.3	41	14.7	0.6	12
10	100	30.7	30.4	0.332	94.9	45.4	43	15.0	0.0	13
12	100	29.7	29.7	0.317	90.6	45.5	42	14.4	0.6	12
13	100	29.0	28.6	0.316	90.3	45.2	41	14.4	0.6	10
14	100	31.9	31.4	0.334	95.4	45.5	45	15.5	0.5	15
15	100	30.3	30.2	0.343	97.9	45.3	43	14.8	0.6	10
16	100	29.3	29.2	0.331	94.6	45.5	41	14.8	0.6	12
17	100	30.6	30.2	0.330	94.3	45.5	43	15.3	0.7	12
10	100	29.5	29.1	0.320	93.0	40.4 45.4	41	14.0	0.6	1/
20	100	28.9	28.6	0.315	90.0	45.4	43	14.7	0.0	15
21	100	29.1	28.7	0.327	93.5	45.4	41	14.6	0.6	11
22	100	29.5	29.5	0.330	94.4	45.3	42	15.1	0.6	14
23	100	32.1	31.4	0.334	95.4	45.5	45	15.6	0.4	13
24	100	32.0	31.3	0.340	97.2	45.3	44	15.5	0.5	16
25	100	29.6	29.5	0.325	92.7	45.6	42	15.1	0.7	15
26	100	28.8	28.2	0.314	89.8	45.3	40	14.2	0.6	11
27	100	20.9	20.4 28.4	0.310	90.2	45.0	40	14.0	0.6	11
20	100	29.0	28.9	0.328	93.8	45.5	40	14.7	0.0	10
30	100	29.3	29.2	0.326	93.0	45.4	42	15.1	0.6	13
31	100	31.5	31.1	0.336	96.1	45.3	44	15.2	0.6	16
32	100	30.4	30.0	0.335	95.8	45.4	43	15.5	0.7	20
33	100	29.7	29.2	0.317	90.5	45.4	41	14.1	0.6	12
34	100	30.5	30.3	0.334	95.5	45.4	43	14.9	0.7	15
35	100	29.5	29.0	0.313	89.3	45.4	41	14.3	0.8	13
30	100	20.0	20.3	0.324	92.4	45.0 45.4	43	14.9	0.5	10
38	100	29.5	29.0	0.323	92.3	45.4	41	14.4	0.5	16
39	100	29.5	28.8	0.330	94.4	45.2	41	15.2	0.5	20
40	100	32.1	30.4	0.330	94.3	45.5	43	14.4	0.5	16
41	100	29.3	28.6	0.321	91.8	45.4	41	14.5	0.6	18
42	100	29.5	29.3	0.326	93.2	45.5	42	14.2	0.6	14
43	100	29.7	29.6	0.318	91.0	45.4	42	15.1	0.6	19
44 ⊿5	100	∠0.ŏ 28.1	∠0.0 28.1	0.316	90.3 90.1	40.4 15 1	41	14.Z 13.0	0.0 0.6	16
46	100	29.1	28.5	0.316	90.3	45.5	40	14.5	0.0	13
47	100	31.2	29.7	0.324	92.5	45.5	42	14.9	0.5	16
48	100	30.2	29.7	0.321	91.7	45.4	42	13.9	1.0	16
49	100	30.5	29.9	0.323	92.3	45.4	42	14.3	0.7	16
50	100	29.8	29.3	0.325	92.8	45.4	42	14.5	0.5	15
Avera	ge	29.9	29.5	0.325	92.9	45.4	42	14.7	0.6	13
Std. D	ev.	0.9	0.8	0.007	2.1	0.1	1	0.4	0.1	3
iviaxim	ıum	32.1	31.4	0.343	97.9	45.6	45	15.6	1.1	20

Total number of blows analyzed: 49

BL# Comments

Start of test on 7/1/2013 at 12:32:13 PM End of test on 7/1/2013 at 12:33:17 PM 1

50

Time Summary

1 minute 4 seconds Drive

12:32:13 PM - 12:33:17 PM (7/1/2013) BN 1 - 50

Robert Miner Dynamic Testing, Inc. - Case Method & iCAP® Results

PDIPLOT Ver. 2012.2 - Printed: 2-Jul-2013

HOLT, SPT RIG 7 - SAMPLE 6, 60 FT -BH E340-B-07A

1 - Start of test on 7/1/2013 at 1:05:07 PM

2 - End of test on 7/1/2013 at 1:06:20 PM

Test date: 1-Jul-2013

Robert Case M	Miner Dynamic	: Testing, Inc. 3 Results			Page 1 of 2 PDIPLOT Ver. 2012.2 - Printed: 2-Jul-2013					
HOLT, <u>OP: R</u>	SPT RIG 7 - SA MDT	MPLE 6, 60	FT						BH E34 Test date: 1-	10-B-07A Jul-2013
AR: LE: WS: 16	1.42 in^2 64.00 ft 5,807.9 f/s								SP: 0. EM: 30, JC: 0	492 k/ft3 000 ksi 0.35
CSI: CSX: EFV: ETR:	Max F1 or F2 C Max Measured Energy of FV Energy Transfe	compr. Stress Compr. Stres r Ratio	S SS				FMX VMX RAT: RAU	: Maximum : Maximum SPT Lengt : Auto Capa	Force Velocity h Ratio city End Bear	ring Piles
BL#	BIOWS PER MILLIN BLC	CSI	CSX	EFV	ETR	BPM	FMX	VMX	RAT	RAU
	bl/ft	ksi	ksi	k-ft	(%)	**	kips	f/s	[]	kips
1	114 114	29.5	28.6 29.1	0.302	86.2 89.3	1.9 46.2	41 41	14.3 13.8	0.6	0
3	114	33.6	31.9	0.330	94.3	46.4	45	15.3	0.5	Ő
4	114	32.8	31.2	0.336	96.0	46.2	44	15.6	0.5	4
5	114	30.2	28.9	0.303	86.7	46.4	41	13.5	0.6	4
7	114	33.0 34.2	30.8	0.320	94.6	46.2	44	14.0	0.5	2 4
8	114	31.3	29.7	0.315	90.0	46.3	42	14.0	0.6	6
9	114	31.6	30.1	0.326	93.3	46.2	43	14.9	0.6	9
10 11	114 114	32.7	31.0 29.2	0.327	93.4 89.8	46.4 46.3	44 41	14.4 14.5	0.5	12 11
12	114	33.3	31.4	0.333	95.0	46.4	45	15.3	0.5	10
13	114	30.6	29.2	0.309	88.2	46.3	42	13.8	0.5	9
14	114	30.6	29.2	0.300	85.9	46.3	41	13.6	0.6	9
15	114	30.6 30.6	29.3 29.4	0.320	93.1 91.9	46.3	42	14.9	0.5	15
17	114	32.9	30.4	0.328	93.8	46.3	43	15.0	0.5	12
18	114	30.8	29.6	0.322	92.0	46.3	42	14.2	0.6	12
19 20	114 114	32.3	30.7 31.8	0.326	93.3 95.1	46.3 46.3	44 45	15.8 15.3	0.5	10 8
21	114	31.6	30.1	0.314	89.7	46.3	43	14.3	0.5	9
22	114	30.5	29.5	0.318	90.9	46.3	42	14.6	0.5	10
23	114	31.4	30.3	0.321	91.8	46.2	43	14.5	0.5	12
24 25	114	32.9 31.2	29.6	0.325	92.0 93.7	46.5	44 42	15.1	0.5	13
26	114	31.2	29.6	0.307	87.7	46.1	42	12.9	0.6	14
27	114	29.9	29.0	0.322	92.1	46.4	41	14.0	0.6	11
28 20	114 114	32.1	30.1 20.0	0.335	95.8 85.7	46.3 46.3	43	15.7	0.6	12 18
30	114	30.9	29.0	0.318	90.7	46.3	41	15.1	0.5	12
31	114	31.8	30.3	0.326	93.0	46.2	43	15.5	0.5	15
32	114	30.8	29.5	0.323	92.2	46.4	42	14.5	0.5	10
33 34	114 114	30.0 32.8	29.1	0.311	88.9 92 7	46.3 46.2	41 44	14.2 14.9	0.5	12
35	114	30.4	29.4	0.314	89.7	46.3	42	14.5	0.6	11
36	114	32.0	30.6	0.321	91.8	46.3	43	15.0	0.5	14
37	114	33.1	31.6	0.332	94.8	46.3	45	15.6	0.5	12
39	114	32.9	30.2	0.332	89.9	46.3	44	13.8	0.5	23
40	114	30.0	29.1	0.313	89.3	46.2	41	14.1	0.6	27
41	114	31.1	29.2	0.320	91.6	46.2	42	14.8	0.5	26
42 43	114 114	30.0 31.7	29.0	0.316	90.4 93.7	46.3 46.3	41 42	14.1 14.8	0.6	26
44	114	31.2	29.7	0.333	95.0	46.2	42	15.6	0.5	17
45	114	30.7	29.4	0.305	87.1	46.1	42	13.0	0.6	14
46 47	114 114	30.8	29.7 30.3	0.320	91.4	46.4 46.3	42	14.4 14.4	0.6	14 14
48	114	31.5	30.2	0.324	93.1	46.2	43	15.1	0.6	16
49	114	30.4	29.6	0.302	86.4	46.3	42	13.1	0.6	14
50	114	32.0	30.6	0.332	94.8	46.3	43	15.3	0.5	15
51 52	114 114	31.5 33.4	30.4 31 9	0.308	87.9 93.5	40.1 46 2	43 45	13.7	0.6 0.5	16 23
53	114	31.3	30.1	0.321	91.9	46.4	43	14.9	0.5	15
54	114	31.8	30.5	0.326	93.1	46.1	43	14.9	0.6	13
55 56	114	31.3	30.2	0.312	89.1	46.3	43	13.6	0.5	13
วง 57	114	31.3 32.1	30.3 30.9	0.319	91.1 94.5	40.∠ 46.3	43 44	14.3	0.0	13 15
Averac	je	31.5	30.1	0.321	91.6	45.5	43	14.6	0.5	12
Std. De	ev.	1.1	0.9	0.010	2.7	5.8	1	0.8	0.1	6
Maxim	um	34.2	31.9	0.336 To	96.0 tal number of	46.5 blows analy-	45 zed: 57	16.0	0.6	27
				10		Siows allalyz	LUU. UI			

BL# Comments

1	Start of test on 7/1/2013 at 1:05:07 PM
57	End of test on 7/1/2013 at 1:06:20 PM

HOLT, SPT RIG 7 - SAMPLE 6, 60 FT OP: RMDT Page 2 of 2 PDIPLOT Ver. 2012.2 - Printed: 2-Jul-2013 BH E340-B-07A Test date: 1-Jul-2013

Time Summary Drive 1 minute 13 seconds

1:05:07 PM - 1:06:20 PM (7/1/2013) BN 1 - 57

Robert Miner Dynamic Testing,

Dynamic Measurements and Analyses for Deep Foundatio Holt Mobile B-58

September 26, 2017

Report 4

Mr. Dale Abernathy Holt Services, Inc. 10621 Todd Rd. East Edgewood, WA 98372

Re: Penetration Test Energy Measurements Mobile B-58 Rig No. 17, Mobile Auto Hammer Bore Hole: Yard Test Hole, August 25, 2017 Holt Services Yard, Edgewood, Washington

RMDT Job No. 17F39

Dear Mr. Abernathy,

This letter presents energy transfer measurements made during Standard Penetration Tests for the drill hole and drill rig referenced above. Robert Miner Dynamic Testing, Inc. (RMDT) made dynamic measurements with a Pile Driving Analyzer[®] as a hammer advanced the NW rod during sampling with a split spoon sampler.

The purpose of RMDT's testing was the measurement of energy transferred to the drill rods. Measurements were made on a section of NW gauge rod at the top of the drill string. Strain gages and accelerometers on the rod were connected to a Pile Driving Analyzer[®] (PDA) which generally processed acceleration and strain measurements from each hammer blow and stored both the measurements and computed results. Measurements and data processing generally followed the ASTM D 4633-16 standard. Energy transfer past the gage location, EFV, was computed by the PDA using force and velocity records as follows:

 $EFV = \int_{a}^{b} F(t) v(t) dt$

The value "a" corresponds to the start of the record which is when the energy transfer begins and "b" is the time at which energy transferred to the rod reaches a maximum value. Appendix A contains more information on our measurement equipment and methods of analysis. The EFV energy calculation is identical to the EMX energy result discussed in Appendix A. The EFV and EMX values apply to the sensor location near the top of the rod.

TEST DETAILS

On August 25, 2017, a single boring was advanced at the maintenance yard of Holt Services in Edgewood, Washington. The drill rig used during sampling was a truck mounted Mobile B-58 auger unit manufactured by Mobile Drill International and referred to as Rig 17 by the operator. The B-58 unit drilled to six predetermined depth intervals ranging from 20 to 50 ft below ground

 Mailing Address:
 P.O. Box 340, Manchester, WA, 98353, USA
 Phone: 360-871-5480

 Location:
 2288 Colchester Dr. E., Ste A, Manchester, WA, 98353
 Fax: 360-871-5483

surface. The rod used to advance the spoon at each sample depth had a diameter matching that of NW rod. The automatic hammer in use during our testing was manufactured by Mobile Dill International and appeared to use a chain drive powered by a hydraulic motor, with the ram and chain drive enclosed within an outer casing.

RESULTS

A summary of testing and monitoring results is given in Table 1. The tabulated results include the starting sample depth, the penetration resistance, the number of hammers blows in our data set, measured energy transfer, EFV, the computed transfer efficiency, ETR, and the hammer blow rate, BPM. Appendix B contains detailed numeric results for each individual test.

Energy measurements must be divided by the theoretical free fall energy of the hammer to obtain an efficiency. A 140 lb ram raised 30 inches above an impact surface has 350 lb-ft of potential energy. Thus, the transfer energy results for sampling with the 140 lb ram may be divided by 350 lb-ft to yield the ratio of the delivered energy to the nominal potential energy. This efficiency ratio, ETR, is given for each sample interval as a percent efficiency.

Table 1. Summa Sampler	Table 1. Summary of Test Details and Results for the 140-lb ram and Split Spoon Sampler								
Sample Name and Sample Depth	Penetration Resistance	Number of Blows in Data Set	Average Transfer Energy EFV	Average Transfer Efficiency ETR	Average Hammer Blow Rate BPM				
20 ft Sample	(Blow/Set)	30	(lb-ft)	(percent)	(blow/min)				
25 ft Sample	25/1 ft	25	288	82	29				
30 ft Sample	33/1 ft	33	288	82	32				
35 ft Sample	27/1 ft	27	290	83	32				
40 ft Sample	23/1 ft	23	291	83	32				
50 ft Sample	50/3 in	49	285	82	32				
Averag	e for Split Spo	on samples:	289	<mark>83</mark>	31				

Six sample returns were monitored while the 140 lb ram and standard split spoon sampler were in use. The overall average ETR and hammer blow rate was 83 percent and 31 blows per minute, respectively.

It was a pleasure to assist you and to participate on this project with the staff of Holt Services Inc. Please do not hesitate to contact us if you or other project participants have any questions about this report.

Sincerely,

Andrew J. Banas, P.E.

Robert Miner Dynamic Testing, Inc.

APPENDIX A AN INTRODUCTION INTO DYNAMIC PILE TESTING METHODS

The following has been written by Goble Rausche Likins and Associates, Inc. and may only be copied with its written permission.

BACKGROUND

Modern procedures of design and construction control require verification of bearing capacity and integrity of deep foundations during preconstruction test programs and also production installation. Dynamic pile testing methods meet this need economically and reliably, and therefore, form an important part of a quality assurance program when deep foundations are executed. Several dynamic pile testing methods exist; they have different benefits and limitations and different requirements for proper execution.

The Case Method of dynamic pile testing, named after the Case Institute of Technology where it was developed between 1964 and 1975, requires that a substantial ram mass (such as that of a pile driving hammer) impacts the pile top such that the pile undergoes at least a small permanent set. The method is therefore also referred to as a "High Strain The Case Method requires dynamic Method". measurements on the pile or shaft under the ram impact and then an evaluation of various quantities based on closed form solutions of the wave equation, a partial differential equation describing the motion of a rod under the effect of an impact. Conveniently, measurements and analyses are done by a single piece of equipment: the Pile Driving Analyzer® (PDA). However, for bearing capacity evaluations an important additional method is CAPWAP® which performs a much more rigorous analysis of the dynamic records than the simpler Case Method.

A related analysis method is the "Wave Equation Analysis" which calculates a relationship between bearing capacity and pile stress and field blow count. The GRLWEAP™ program performs this analysis and provides a complete set of helpful information and input data.

The following description deals primarily with the Case Method or "High Strain Test" Method of pile testing, however, for the sake of completeness, the "Low Strain Test" performed with the Pile Integrity Test™ (PIT), mainly for pile integrity evaluation, will also be described.

RESULTS FROM DYNAMIC TESTING

There are two main objectives of high strain dynamic pile testing:

- Dynamic Pile Monitoring and
- Dynamic Load Testing.

Dynamic pile monitoring is conducted during the installation of impact driven piles to achieve a safe and economical pile installation. Dynamic load testing, on the other hand, has as its primary goal the assessment of pile bearing capacity. It is applicable to both cast *insitu* piles or drilled shafts and impact driven piles during restrike.

Dynamic Pile Monitoring

During pile installation, the sensors attached to the pile measure pile top force and velocity. A PDA conditions and processes these signals and calculates or evaluates:

- <u>Bearing capacity</u> at the time of testing, including an assessment of shaft resistance development and driving resistance. This information supports formulation of a driving criterion.
- <u>Dynamic pile stresses</u>, axial and averaged over the pile cross section, both tensile and compressive, during pile driving to limit the potential of damage either near the pile top or along its length. Bending stresses can be evaluated at the point of sensor attachment.
- <u>Pile integrity</u> assessment by the PDA is based on the recognition of certain wave reflections from along the pile. If detected early enough, a pile may be saved from complete destruction. On the other hand, once damage is recognized measures can be taken to prevent reoccurrence.
- <u>Hammer performance</u> parameters including the energy transferred to the pile, the hammer speed in blows per minute and the stroke of open ended diesel hammers.

Dynamic Pile Load Testing

Bearing capacity testing of either driven piles or drilled shafts applies the same basic measurement approach of dynamic pile monitoring. However, the test is done independent of the pile installation process and therefore a pile driving hammer or other dynamic loading device may not be available. If a special ram has to be mobilized then its weight should be between 0.8 and 2% of the test load (e.g. between 4 and 10 tons for a 500 ton test load) to assure sufficient soil resistance activation.

For a successful test, it most important that the test is conducted after a <u>sufficient waiting time</u> following pile installation for soil properties approaching their long term condition or concrete to properly set. During testing, PDA results of pile/shaft stresses and transferred energy are used to maintain safe stresses and assure sufficient resistance activation. For safe and sufficient testing of drilled shafts, ram energies are often increased from blow to blow until the test capacity has been activated. On the other hand, restrike tests on driven piles may require a warm hammer so that the very first blow produces a complete resistance activation. Data must be evaluated by CAPWAP for bearing capacity.

After the dynamic load test has been conducted with sufficient energy and safe stresses, the CAPWAP analysis provides the following results:

- <u>Bearing capacity</u> i.e. the mobilized capacity present at the time of testing
- <u>Resistance distribution</u> including shaft resistance and end bearing components
- <u>Stresses in pile or shaft</u> calculated for both the static load application and the dynamic test. These stresses are averages over the cross section and do not include bending effects or nonuniform contact stresses, e.g. when the pile toe is on uneven rock.
- <u>Shaft impedance</u> vs depth; this is an estimate of the shaft shape if it differs substantially from the planned profile
- <u>Dynamic soil parameters</u> for shaft and toe, i.e. damping factors and quakes (related to the dynamic

stiffness of the resistance at the pile/soil interface.)

MEASUREMENTS

PDA

The basis for the results calculated by the PDA are pile top strain and acceleration measurements which are converted to force and velocity records, respectively. The PDA conditions, calibrates and displays these signals and immediately computes average pile force and velocity thereby eliminating bending effects. Using closed form Case Method solutions, based on the one-dimensional linear wave equation, the PDA calculates the results described in the analytical solutions section below.

HPA

The ram velocity may be directly obtained using radar technology in the Hammer Performance AnalyzerTM. For this unit to be applicable, the ram must be visible. The impact velocity results can be automatically processed with a PC or recorded on a strip chart.

Saximeter™

For open end diesel hammers, the time between two impacts indicates the magnitude of the ram fall height or stroke. This information is not only measured and calculated by the PDA but also by the convenient, hand-held Saximeter.

ΡΙΤ

The Pile Integrity Tester[™] (PIT) can be used to evaluate defects in concrete piles or shafts which may have occurred during driving or casting. Also timber piles of limited length can be tested in that manner. This so-called "Low Strain Method" or "Pulse-Echo Method" of integrity testing requires only the measurement of acceleration at the pile top. The stress wave producing impact is then generated by a small hand-held hammer and the records interpreted in the time domain. PIT also supports the so-called "Transient Response Method" which requires the additional measurement of the hammer force and an analysis in the frequency domain. This method may also be used to evaluate the unknown length of deep foundations under existing structures.

ANALYTICAL SOLUTIONS BEARING CAPACITY

Wave Equation

GRL has written the GRLWEAP[™] program which calculates a relationship between bearing capacity, pile stress and blow count. This relationship is often called the "bearing graph." Once the blow count is known from pile installation logs, the bearing graph yields the bearing capacity. This approach requires no measurements and therefore can be performed during the design stage of a project, for example for the selection of hammer, cushion and pile size.

After dynamic pile monitoring and/or dynamic load testing has been performed, the "Refined Wave Equation Analysis" or RWEA (see schematic below) is often performed by inputting the PDA and CAPWAP calculated parameters. Then the bearing graph from the RWEA is the basis for a safe and sufficient driving criteria.

Case Method

The Case Method is a closed form solution based on a few simplifying assumptions such as ideal plastic soil behavior and an ideally elastic and uniform pile. Given the measured pile top force F(t) and pile top velocity v(t), the total soil resistance is

$$R(t) = \frac{1}{2} \{ [F(t) + F(t_2)] + Z[v(t) - v(t_2)] \}$$
(1)

where

- t = a point in time after impact
- t_2 = time t + 2L/c
- L = pile length below gages
- c = $(E/\rho)^{\frac{1}{2}}$ is the speed of the stress wave
- ρ = pile mass density
- Z = EA/c is the pile impedance
- E = elastic modulus of the pile (ρc^2)
- A = pile cross sectional area

The total soil resistance consists of a dynamic $(\rm R_{d})$ and a static $(\rm R_{s})$ component. The static component is therefore

$$R_{s}(t) = R(t) - R_{d}(t)$$
(2)

The dynamic component may be computed from a soil damping factor, J, and a pile toe velocity, $v_t(t)$ which is conveniently calculated for the pile toe. Using wave considerations, this approach leads immediately to the dynamic resistance

$$R_{d}(t) = J[F(t) + Zv(t) - R(t)]$$
(3)

and finally to the static resistance by means of Equation 2.

There are a number of ways in which Eq. 1 through 3 can be evaluated. Most commonly, t_2 is set to that time at which the static resistance becomes maximum. The result is the so-called **RMX** capacity. Damping factors for RMX typically range between 0.5 for coarse grained materials to 1.0 for clays. The **RSP** capacity (this method is most commonly referred to in the literature, yet it is not very frequently used) requires damping factors between 0.1 for sand and 1.0 for clay. Another capacity, **RA2**, determines the capacity at a time when the pile is essentially at rest and thus damping is small; RA2

therefore requires no damping parameter. In any event, the proper Case Method and its associated damping parameter is most conveniently found after a CAPWAP analysis has been performed.

The static resistance calculated by Case Method or CAPWAP is the mobilized resistance at the time of testing. Consideration therefore has to be given to soil setup or relaxation effects and whether or not a sufficient set has been achieved under the test loading that would correspond to a full activation of the ultimate soil resistance.

The PDA also calculates an estimate of shaft resistance as the difference between force and velocity times impedance at the time immediately prior to the return of the stress wave from the pile toe. This shaft resistance is not reduced by damping effects and is therefore called the total shaft resistance **SFT**. A correction for damping effects produces the static shaft resistance estimate, **SFR**.

The Case Method solution is simple enough to be evaluated "in real time," i.e. between hammer blows, using the PDA. It is therefore possible to calculate all relevant results for all hammer blows and plot these results as a function of depth or blow number. This is done in the PDAPLOT program.

CAPWAP

The CAse Pile Wave Analysis Program combines the wave equation pile and soil model with the Case Method measurements. Thus, the solution includes not only the total and static bearing capacity values but also the shaft resistance, end bearing, damping factors and soil stiffnesses. The method iteratively calculates a number of unknowns by signal matching. While it is necessary to make hammer performance assumptions for a GRLWEAP analysis, the CAPWAP program works with the pile top measurements. Furthermore, while GRLWEAP and Case Method require certain assumptions regarding the soil behavior, CAPWAP calculates these soil parameters.

STRESSES

During pile monitoring, it is important that compressive stress maxima at pile top and toe and tensile stress maxima somewhere along the pile be calculated for each hammer blow. At the pile top (location of sensors) both the maximum compression stress, **CSX**, and the maximum stress from individual strain transducers, **CSI**, are directly obtained from the measurements. Note that CSI is greater than or equal to CSX and the difference between CSI and CSX is a measure of bending in the plane of the strain transducers. Note also that all stresses calculated for locations below the sensors are averaged over the pile cross section and therefore do not include components from either bending or eccentric soil resistance effects.

The PDA calculates the compressive stress at the pile bottom, **CSB**, assuming (a) a uniform pile and (b) that the pile toe force is the maximum value of the total resistance R(t) minus the total shaft resistance, SFT. Again, for this stress estimation uniform resistance force are assumed (e.g. not a sloping rock.)

For concrete piles, the maximum tension stress, **TSX**, is also of great importance. It occurs at some point below the pile top. The maximum tension stress can be computed from the pile top measurements by finding the maximum tension wave (either traveling upward, $W_{\rm u}$, or downward, $W_{\rm d}$) and reducing it by the minimum compressive wave traveling in opposite direction.

$$W_{\mu} = \frac{1}{2} [F(t) - Zv(t)]$$
(4)

$$W_{d} = \frac{1}{2}[F(t) + Zv(t)]$$
 (5)

CAPWAP also calculates tensile and compressive stresses along the pile and, in general, more accurately than the PDA. In fact, for non-uniform piles or piles with joints, cracks or other discontinuities, the closed form solutions from the PDA may be in error.

PILE INTEGRITY

High Strain Tests (PDA)

Stress waves in a pile are reflected wherever the pile impedance, $Z = EA/c = \rho cA = A \sqrt{(E \rho)}$, changes. Therefore, the pile impedance is a measure of the quality of the pile material (E, ρ , c) and the size of its cross section (A). The reflected waves arrive at the pile top at a time which is greater the farther away from the pile top the reflection occurs. The magnitude of the change of the upward traveling wave (calculated from the measured force and velocity, Eq. 4) indicates the extent of the cross sectional change. Thus, with β_i (**BTA**) being a relative integrity factor which is unity for no impedance change and zero for the pile end, the following is calculated by the PDA.

$$\beta_i = (1 - \alpha_i)/(1 + \alpha_i) \tag{6}$$

with

$$\alpha_{i} = \frac{1}{2} (W_{UR} - W_{UD}) / (W_{Di} - W_{UR})$$
(7)

where

- W_{UR} is the upward traveling wave at the onset of the reflected wave. It is caused by resistance.
- W_{UD} is the upwards traveling wave due to the damage reflection.
- $W_{\mbox{\scriptsize Di}}$ is the maximum downward traveling wave due to impact.

It can be shown that this formulation is quite accurate as long as individual reflections from different pile impedance changes have no overlapping effects on the stress wave reflections.

Without rigorous derivation, it has been proposed to consider as slight damage when β is above 0.8 and a serious damage when β is less than 0.6.

Low Strain Tests (PIT)

The pile top is struck with a held hand hammer and the resulting pile top velocity is measured, displayed and interpreted for signs of wave reflections. In general, a comparison of the reflected acceleration leads to a relative measure of extent of damage, again the location of the problem is indicated by the arrival time of the reflection. PIT records can also be interpreted by the β -Method. However, low strain tests do not activate much resistance which simplifies Eq. 7 since W_{UR} is then equal to zero.

For drilled shafts and PIT records that clearly show a toe reflection, an approximate shaft profile can be calculated from low strain records using the PITSTOP program's PROFILE routine.

HAMMER PERFORMANCE

The PDA calculates the energy transferred to the pile top from:

$$\mathsf{E}(\mathsf{t}) = {}_{\mathsf{o}} \int^{\mathsf{t}} \mathsf{F}(\mathsf{t}) \mathsf{v}(\mathsf{t}) \, \mathsf{d}\mathsf{t} \tag{8a}$$

The maximum of the E(t) curve is the most important information for an overall evaluation of the performance of a hammer and driving system. This **EMX** value allows for a classification of the hammer's performance when presented as the rated transfer efficiency, also called energy transfer ratio (**ETR**) or global efficiency

$$e_{T} = EMX/E_{R}$$
 (8b)

where

 E_{R} is the manufacturer's rated energy value.

Both Saximeter and PDA calculate the stroke (**STK**) of an open end diesel hammer using

$$STK = (g/8) T_B^2 - h_L$$
 (9)

where

- g is the earth's gravitational acceleration,
- \tilde{T}_{B} is the time between two hammer blows,
- h_L is a stroke loss value due to gas compression and time losses during impact (usually 0.3 ft or 0.1 m).

DETERMINATION OF WAVE SPEED

An important facet of dynamic pile testing is an assessment of pile material properties. Since in general force is determined from strain by multiplication with elastic modulus, E, and cross sectional area, A, the dynamic elastic modulus has to be determined for pile materials other than steel. In general, the records measured by the PDA clearly indicate a pile toe reflection as long as pile penetration per blow is greater than 1 mm or .04 inches. The time between the onset of the force and velocity records at impact and the onset of the reflection from the toe (usually apparent by a local maximum of the wave up curve) is the so-called wave travel time, T. Dividing 2L (L is here the length of the pile below sensors) by T leads to the stress wave speed in the pile:

 $c = 2L/T \tag{10}$

The elastic modulus of the pile material is related to the wave speed according to the linear elastic wave equation theory by

$$E = c^2 \rho \tag{11}$$

Since the mass density of the pile material, ρ , is usually well known (an exception is timber for which samples should be weighed), the elastic modulus is easily found from the wave speed. Note, however, that this is a dynamic modulus which is generally higher than the static one and that the wave speed depends to some degree on the strain level of the stress wave. For example, experience shows that the wave speed from PIT is roughly 5% higher than the wave speed observed during a high strain test.

Other Notes:

- If the pile material is nonuniform then the wave speed c, according to Eq. 10, is an average wave speed and does not necessarily reflect the pile material properties of the location where the strain sensors are attached to the pile top. For example, pile driving often causes fine tension cracks some distance below the top of concrete piles. Then the average c is slower than that at the pile top. It is therefore recommended to determine E in the beginning of pile driving and not adjust it when the average c changes.
- If the pile has such a high resistance that there is no clear indication of a toe reflection then the wave speed of the pile material must be determined either by assumption or by taking a sample of the concrete and measuring its wave speed in a simple free column test. Another possibility is to use the proportionality relationship, discussed under "DATA QUALITY CHECKS" to find c as the ratio between the measured velocity and measured strain.

DATA QUALITY CHECKS

Quality data is the first and foremost requirement for accurate dynamic testing results. It is therefore important that the measurement engineer performing PDA or PIT tests has the experience necessary to recognize measurement problems and take appropriate corrective action should problems develop. Fortunately, dynamic pile testing allows for certain data quality checks because two independent measurements are taken that have to conform to certain relationships.

Proportionality

As long as there is only a wave traveling in one direction, as is the case during impact when only a downward traveling wave exists in the pile, force and velocity measured at the pile top are proportional

$$F = v Z = v (EA/c)$$
(12a)

This relationship can also be expressed in terms of stress

$$\sigma = v (E/c) \tag{12b}$$

or strain

$$\epsilon = v / c$$
 (12c)

This means that the early portion of strain times wave speed must be equal to the velocity unless the proportionality is affected by high friction near the pile top or by a pile cross sectional change not far below the sensors. Checking the proportionality is an excellent means of assuring meaningful measurements.

Measurements are always taken at opposite sides of the pile as a means of calculating the average force and velocity in the pile. The velocity on the two sides of the pile is very similar even when high bending exists. Thus, an independent check of the velocity measurements is easy and simple.

Strain measurements may differ greatly between the two sides of the pile when bending exists. It is even possible that tension is measured on one side while very high compression exists on the other side of the pile. In extreme cases, bending might be so high that it leads to a nonlinear stress distribution. The averaging of the two strain signals does then not lead to the average pile force and proportionality will not be achieved.

When testing drilled shafts, measurements of strain may also be affected by local concrete quality variations. It is then often necessary to use four strain transducers spaced at 90 degrees around the pile for an improved strain data quality. The use of four transducers is also recommended for large pile diameters, particularly when it is difficult to mount the sensors at least two pile widths or diameters below the pile top.

LIMITATIONS, ADDITIONAL CONSIDERATIONS

Mobilization of capacity

Estimates of pile capacity from dynamic testing indicate the **mobilized pile capacity at the time of testing**. At very high blow counts (low set per blow), dynamic test methods tend to produce lower bound capacity estimates as not all resistance (particularly at and near the toe) is fully activated.

Time dependent soil resistance effects

Static pile capacity from dynamic method calculations provide an estimate of the axial pile capacity. Increases and decreases in the pile capacity with time typically occur (soil setup/relaxation). Therefore, <u>restrike testing</u> usually yields a better indication of long term pile capacity than a test at the end of pile driving. Often a wait period of one or two days between end of driving and restrike is satisfactory for a realistic prediction of pile capacity but this waiting time depends, among other factors, on the permeability of the soil.

(A) Soil setup

Because excess positive pore pressures often develop during pile driving in fine grained soil (clays, silts or even fine sands), the capacity of a pile at the time of driving may often be less than the long term pile capacity. These pore pressures reduce the effective stress acting on the pile thereby reducing the soil resistance to pile penetration, and thus the pile capacity at the time of driving. As these pore pressures dissipate, the soil resistance acting on the pile increases as does the axial pile capacity. This phenomena is routinely called soil setup or soil freeze.

(B) Relaxation

Relaxation (capacity reduction with time) has been observed for piles driven into weathered shale, and may take several days to fully develop. Pile capacity estimates based upon initial driving or short term restrike tests can significantly overpredict long term pile capacity. Therefore, piles driven into shale should be tested after a minimum one week wait either statically or dynamically (with particular emphasis than on the first few blows). Relaxation has also been observed for displacement piles driven into dense saturated silts or fine sands due to a negative pore pressure effect at the pile toe. Again, restrike tests should be used, with great emphasis on early blows.

Capacity results for open pile profiles

Larger diameter open ended pipe piles (or H-piles which do not bear on rock) may behave differently under dynamic and static loading conditions. Under dynamic loads the soil inside the pile or between its flanges may slip and produce internal friction while under static loads the plug may move with the pile, thereby creating end bearing over the full pile cross section. As a result both friction and end bearing components may be different under static and dynamic conditions.

CAPWAP Analysis Results

A portion of the soil resistance calculated on an individual soil segment in a CAPWAP analysis can usually be shifted up or down the shaft one soil segment without significantly altering the match quality. Therefore, use of the CAPWAP resistance distribution for uplift, downdrag, scour, or other geotechnical considerations should be made with an understanding of these analysis limitations.

Stresses

PDA and CAPWAP calculated stresses are average values over the cross section. Additional allowance has to be made for bending or non-uniform contact stresses. To prevent damage it is therefore important to maintain good hammer-pile alignment and to protect the pile toes using appropriate devices or an increased cross sectional area.

In the United States is has become generally acceptable to limit the dynamic installation stresses of driven piles to the following levels:

90% of yield strength for steel piles

85% of the concrete compressive strength - after subtraction of the effective prestress - for concrete piles in compression

- 100% of effective prestress plus $\frac{1}{2}$ of the concrete's tension strength for prestressed piles in tension
- 70% of the reinforcement strength for regularly reinforced concrete piles in tension
- 300% of the static design allowable stress for timber

Note that the dynamic stresses may either be directly measured at the pile top by the PDA or calculated by the PDA for other locations along the pile based on the pile top measurements.

Additional design considerations

Numerous factors have to be considered in pile foundation design. Some of these considerations include

- additional pile loading from downdrag or negative skin friction,
- lateral and uplift loading requirements
- effective stress changes (due to changes in water table, excavations, fills or other changes in overburden),
- long term settlements in general and settlement from underlying weaker layers and/or pile group effects,

These factors have not been evaluated by GRL and have not been considered in the interpretation of the dynamic testing results. The foundation designer should determine if these or any other considerations are applicable to this project and the foundation design.

Wave equation analysis results

The results calculated by the wave equation analysis program depend on a variety of hammer, pile and soil input parameters. Although attempts have been made to base the analysis on the best available information, actual field conditions may vary and therefore stresses and blow counts may differ from the predictions reported. Capacity predictions derived from wave equation analyses should use restrike information. However, because of the uncertainties associated with restrike blow counts and restrike hammer energies, correlations of such results with static test capacities with have often displayed considerable scatter.

As for PDA and CAPWAP, the theory on which GRLWEAP is based is the one-dimensional wave equation. For that reason, stress predictions by the wave equation analysis can only be averages over the pile cross section. Thus, bending stresses or stress concentrations due to non-uniform impact or uneven soil or rock resistance are not considered in these results. Stress maxima calculated by the wave equation are usually subjected to the same limits as those measured directly or calculated from measurements by the PDA.

Appendix B

Summary of Case Method Results

2 - End of test on 8/25/2017 at 12:58 PM

1 - Start of test on 8/25/2017 at 12:56 PM

Pile Dynamics, Inc.	
Case Method & iCAP® Result	s

		Page
PDIPLOT2 2016.2.57.6 -	Printed 25-Se	ptember-2017

		, RIG 17	- 20.0 F	T SAMPLE		RIG NO 17, MOBILE 140 LB SPT					
AR^2 1.40 in ²									Dute.	SD· 01	$\frac{1}{02} \frac{1}{1} \frac{1}{1}$
	26 00 ft								EM· 30 0		
	20.00 IL										25 11
	10,007.9 1/s								N 4	<u>JC. U.</u>	<u>35 []</u>
EFV:	Energy of	FV, E					C	SX: Max	Measured	Compr.	Stress
EIR:	Energy Ira	anster Ra	atio - Rate	bed			DI	MX: Maxi	mum Disp	placemen	
BPM:	Blows per	Minute					R/	AI: SPI	Length R	atio	
FMX:	Maximum	Force					DI	-N: Final	Displace	ment	
VMX:	Maximum	Velocity									
BL#	Depth	BLC	EFV	ETR	BPM	FMX	VMX	CSX	DMX	RAT	DFN
	ft	bl/ft	k-ft	(%)	bpm	kips	f/s	ksi	in	[]	in
18	20.54	28	289.5	82.7	28.1	43	14.5	30.7	0.47	0.8	0.43
19	20.57	28	290.7	83.1	28.1	43	14.5	30.5	0.47	0.8	0.43
20	20.61	28	291.4	83.3	28.1	43	14.4	30.9	0.47	0.8	0.43
21	20.64	28	290.9	83.1	28.1	43	14.5	31.1	0.47	0.8	0.43
22	20.68	28	288.5	82.4	28.1	43	14.5	31.0	0.47	0.8	0.43
23	20.71	28	288.5	82.4	28.1	43	14.5	31.1	0.47	0.8	0.43
24	20.75	28	292.3	83.5	28.1	43	14.6	31.0	0.47	0.8	0.43
25	20.79	28	292.1	83.5	28.1	43	14.6	30.8	0.48	0.8	0.43
26	20.82	28	291.8	83.4	28.0	43	14.6	30.8	0 49	0.8	0 43
27	20.86	28	284.3	81.2	28.1	43	14.4	31.0	0.46	0.8	0.43
28	20.89	28	287.3	82.1	28.1	44	14 5	31.2	0.47	0.8	0.43
20	20.00	28	201.0	83.1	28.1	44	14.0	31.2	0.47	0.0	0.40
20	20.00	20	200.0	82.0	20.1	43	14.0	30.5	0.40	0.0	0.43
31	20.90	20	207.0	82.8	20.1	43	14.5	31.0	0.40	0.0	0.43
22	21.00	20	209.0	02.0	20.1	43	14.0	21.0	0.40	0.0	0.43
22	21.03	22	291.1	00.2	20.1	43	14.0	21.0	0.49	0.0	0.00
20	21.00	32	207.0	02.1	20.1	44	14.0	31.Z	0.50	1.1	0.30
34	21.09	ა∠ ეე	292.0	03.0	20.1	43	14.0	31.0	0.49	0.0	0.30
35	21.13	32	290.0	82.8	28.1	44	14.5	31.Z	0.49	0.8	0.38
30	21.16	32	291.1	83.2	28.1	43	14.6	31.0	0.50	0.8	0.38
31	21.19	32	286.1	81.7	28.1	43	14.4	30.9	0.52	1.1	0.38
38	21.22	32	290.4	83.0	28.1	43	14.6	30.8	0.52	0.8	0.38
39	21.25	32	292.4	83.5	28.1	44	14.7	31.2	0.53	0.8	0.38
40	21.28	32	289.4	82.7	28.1	43	14.6	30.8	0.51	1.1	0.38
41	21.31	32	289.7	82.8	28.1	44	14.6	31.1	0.54	1.1	0.38
42	21.34	32	289.2	82.6	28.1	42	14.4	29.9	0.53	1.1	0.38
43	21.38	32	287.6	82.2	28.1	43	14.5	30.9	0.51	1.1	0.38
44	21.41	32	286.5	81.9	28.1	43	14.4	30.8	0.52	1.1	0.38
45	21.44	32	286.0	81.7	28.1	43	14.5	30.7	0.53	1.1	0.38
46	21.47	32	291.5	83.3	28.1	43	14.6	30.7	0.53	1.1	0.38
47	21.50	32	285.2	81.5	28.1	43	14.4	30.7	0.56	1.1	0.38
	A	/erage	289.4	82.7	28.1	43	14.5	30.9	0.50	0.9	0.40
	Sto	l. Dev.	2.3	0.6	0.0	0	0.1	0.3	0.03	0.2	0.03
	Max	ximum	292.5	83.6	28.1	44	14.7	31.2	0.56	1.1	0.43
	Mir	nimum	284.3	81.2	28.0	42	14.4	29.9	0.46	0.8	0.38
			-	Total nur	nber of bl	ows analy	/zed: 30		-		

BL# Sensors

2-47 F1: [328NWJ2] 220.6 (1.00); F2: [328NWJ2] 220.6 (1.00); A1: [K2449] 340.0 (1.00); A2: [K3258] 337.0 (1.00)

BL# Comments

1 Start of test on 8/25/2017 at 12:56 PM

Page 1

Pile Dynamics, Inc. Case Method & iCAP® Results

Page 2 PDIPLOT2 2016.2.57.6 - Printed 25-September-2017

HOLT DRILLING, RIG 17 - 20.0 FT SAMPLE OP: RMDT RIG NO 17, MOBILE 140 LB SPT Date: 25-August-2017

47 End of test on 8/25/2017 at 12:58 PM

Time Summary

Drive 2 minutes 3 seconds 12:56 PM - 12:58 PM BN 1 - 47

1 - Start of test on 8/25/2017 at 1:09 PM

2 - End of test on 8/25/2017 at 1:10 PM

Pile Dynamics, Inc.	
Case Method & iCAP® Result	s

Page	1
PDIPLOT2 2016.2.57.6 - Printed 25-September-2017	

HOLT DRILLING, RIG 17 - 25.0 FT SAMPLE							RIG NO 17, MOBILE 140 LB SPT						
OP: RMDT									Date:	25-Augus	t-2017		
AR:	1.40 in	2								SP: 0.4	92 k/ft ³		
LE: 31.00 ft EM: 30,000 k										00 ksi			
WS: 16,807.9 f/s JC									JC: 0.3	35 []			
EFV:	Energy of	FV					CSX: Max Measured Compr. Stress						
ETR:	Energy Tra	ansfer Ra	atio - Rat	ed			DI	MX: Maxi	mum Disp	placement			
BPM:	Blows per	Minute					RAT: SPT Length Ratio						
FMX: Maximum Force DI								FN: Final	Displace	ment			
VMX:	Maximum	Velocity											
BL#	Depth	BLC	EFV	ETR	BPM	FMX	VMX	CSX	DMX	RAT	DFN		
	ft	bl/ft	k-ft	(%)	bpm	kips	f/s	ksi	in	0	in		
13	25.54	26	288.1	82.3	28.6	41	13.8	29.6	0.57	0.8	0.46		
14	25.58	26	283.6	81.0	28.6	42	14.0	30.3	0.55	0.8	0.46		
15	25.62	26	288.3	82.4	28.7	42	14.0	30.2	0.57	0.8	0.46		
16	25.65	26	285.8	81.7	28.6	41	13.8	29.6	0.55	0.8	0.46		
17	25.69	26	287.3	82.1	28.6	42	13.9	29.7	0.55	0.8	0.46		
18	25.73	26	289.3	82.7	28.6	43	14.0	30.6	0.56	0.8	0.46		
19	25.77	26	288.5	82.4	28.6	42	13.9	30.0	0.55	0.8	0.46		
20	25.81	26	287.9	82.3	28.6	42	13.9	29.9	0.55	0.8	0.46		
21	25.85	26	289.8	82.8	28.6	43	14.1	30.4	0.56	0.8	0.46		
22	25.88	26	283.0	80.9	28.6	42	14.0	30.0	0.56	0.8	0.46		
23	25.92	26	288.6	82.4	28.7	42	14.0	30.2	0.57	0.8	0.46		
24	25.96	26	288.6	82.5	28.6	43	14.1	30.6	0.59	0.8	0.46		
25	26.00	26	288.9	82.5	28.6	43	14.0	30.5	0.59	0.8	0.46		
26	26.04	24	288.3	82.4	28.6	43	14.0	30.6	0.60	0.8	0.50		
27	26.08	24	288.7	82.5	28.6	43	14.1	30.6	0.62	0.8	0.50		
28	26.13	24	288.6	82.4	28.6	42	13.9	30.1	0.58	0.8	0.50		
29	26.17	24	289.2	82.6	28.6	42	14.0	30.2	0.63	0.8	0.50		
30	26.21	24	286.2	81.8	28.6	42	13.9	30.0	0.64	0.8	0.50		
31	26.25	24	288.7	82.5	28.7	43	14.1	30.7	0.66	0.8	0.50		
32	26.29	24	289.6	82.8	28.6	42	14.0	30.3	0.66	0.8	0.50		
33	26.33	24	289.5	82.7	28.6	42	14.0	30.0	0.67	0.8	0.50		
34	26.38	24	288.9	82.5	28.7	42	14.0	30.1	0.64	0.8	0.50		
35	26.42	24	289.5	82.7	28.7	43	14.1	30.8	0.65	0.8	0.50		
36	26.46	24	289.7	82.8	28.6	43	14.1	30.4	0.65	0.8	0.50		
31	20.50	24	289.5	82.7	28.6	42	14.0	29.9	0.64	0.8	0.50		
	A	verage	288.2	82.3	28.6	42	14.0	30.2	0.60	0.8	0.48		
	Sto	a. Dev.	1./	0.5	0.0	0	0.1	0.3	0.04	0.0	0.02		
	Ma	ximum	289.8	82.8	28.7	43	14.1	30.8	0.67	0.8	0.50		
	MI	nimum	283.0	80.9 Tatal mum	28.5 مام معرفا	41 	13.8 Total: 05	29.6	0.55	0.8	0.46		

Total number of blows analyzed: 25

- BL# Sensors
- 2-37 F1: [328NWJ2] 220.6 (1.00); F2: [328NWJ2] 220.6 (1.00); A1: [K2449] 340.0 (1.00); A2: [K3258] 337.0 (1.00)
- BL# Comments
- 1 Start of test on 8/25/2017 at 1:09 PM
- 37 End of test on 8/25/2017 at 1:10 PM

Pile Dynamics, Inc. Case Method & iCAP® Results Page 2 PDIPLOT2 2016.2.57.6 - Printed 25-September-2017

HOLT DRILLING, RIG 17 - 25.0 FT SAMPLE OP: RMDT RIG NO 17, MOBILE 140 LB SPT Date: 25-August-2017

Time Summary

Drive 1 minute 15 seconds 1:09 PM - 1:10 PM BN 1 - 37

Pile Dynamics, Inc. - PDIPLOT2 Ver 2016.2.57.6 - Case Method & iCAP® Results

1 - Start of test on 8/25/2017 at 1:21 PM

2 - End of test on 8/25/2017 at 1:23 PM

Pile Dynamics, Inc.	
Case Method & iCAP® Results	s

Pa	ge 1
PDIPLOT2 2016.2.57.6 - Printed 25-September-20	17

AR: 1.40 in² SP: 0.402 kff² LE: 36.00 ft WS: 16.807.9 l/s JC: 0.35 [] EFV: Energy of FV ESV: CSX: Maximum Displacement RAT: BPM: Blows per Minute RAT: SPT Length Ratio DMX: Maximum Displacement VMX: Maximum Velocity BL# Depth BLC EFV ETR BPM FMX: Xaximum Displacement 13 30.54 28 284.2 81.2 31.8 40 13.6 28.9 0.54 0.8 0.43 15 30.61 28 283.7 81.5 31.7 41 13.8 29.8 0.51 0.8 0.43 16 30.61 28 283.7 81.0 31.7 41 13.9 29.2 0.51 0.8 0.43 17 30.68 28 28.3 31.6 41 13.9 29.4 0.49 0.8 0.43 20 30.79 </th <th colspan="7">HOLT DRILLING, RIG 17 - 30.0 FT SAMPLE OP: RMDT</th> <th colspan="6">RIG NO 17, MOBILE 140 LB SPT Date: 25-August-2017</th>	HOLT DRILLING, RIG 17 - 30.0 FT SAMPLE OP: RMDT							RIG NO 17, MOBILE 140 LB SPT Date: 25-August-2017						
LE: 36.00 ft EM: 30.00 ksi WS: 16,807.9 f/s C 0.35 [] EFV: Energy of FV CSX: Max Measured Compr. Stress ETR: Energy Transfer Ratio - Rated DMX: Maximum Force DFN: FMX: Maximum Velocity DFN: Final Displacement BL# Depth BLC EFV ETR: BPM MX: Maximum Force DFN: Final Displacement YMX: Maximum Velocity ETR: BPM FMX VMX CSX DMX RAT DFN: 13 30.54 28 284.2 31.8 40 13.6 28.9 0.54 0.8 0.43 15 30.61 28 283.7 81.5 31.7 41 13.9 29.2 0.51 0.8 0.43 16 30.71 28 288.7 82.3 31.7 41 13.9 29.6 0.51 0.8 0.43 20 30.79 28 287.5 82.1 31.6 41 13.9 29.6 0.41	AR:	1.40 in	2								SP: 0.4	92 k/ft ³		
WS: 16,807.9 ffs JC: 0.35 [] EFV: Energy of FV CSX: Max Measured Compr. Stress ETR: Energy Transfer Ratio - Rated DMX: Maximum Displacement BPM: Blows per Minute RAT: SPT. Length Ratio TMX: Maximum Force DFN: Final Displacement VMX: Maximum Velocity DFN: Final Displacement MX: Maximum Velocity To DFN: Final Displacement VMX: Maximum Force DFN: Final Displacement 13 30.54 28 286.9 82.0 31.8 41 13.7 28.9 0.54 0.8 0.43 16 30.64 28 283.7 81.0 31.7 41 13.8 29.2 0.51 0.8 0.43 19 30.75 28 288.7 82.5 31.8 41 13.8 29.2 0.51 0.8 0.43 21 30.66 28 287.5 82.5 31.7 41 13.8	LE:	36.00 ft									EM: 30,0	00 ksi		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	WS: 1	16,807.9 f/s	5								JC: 0.	35 []		
ETR: Energý Transfer Ratio - Rated BPM: Blows per Minuté FMX: Maximum Velocity BL# Depth BLC EFV ETR BPM FMX VMX CSX DMX RAT DFN ft bl/ft k-ft (%) bpm kips f/s ksi in [] in 13 30.54 28 284.2 81.2 31.8 40 13.6 28.9 0.54 0.8 0.43 14 30.57 28 286.9 82.0 31.8 41 13.7 28.9 0.54 0.8 0.43 15 30.61 28 285.3 81.5 31.7 41 13.8 29.5 0.52 0.8 0.43 16 30.64 28 284.4 81.3 31.7 42 13.8 29.8 0.51 0.8 0.43 17 30.68 28 283.7 81.0 31.7 41 13.9 29.6 0.51 0.8 0.43 18 30.71 28 286.9 82.3 31.7 41 13.8 29.3 0.50 0.8 0.43 19 30.75 28 286.7 82.5 31.8 41 13.8 29.3 0.50 0.8 0.43 21 30.82 28 287.5 82.1 31.6 41 13.8 29.4 0.49 0.8 0.43 23 30.86 28 287.9 82.3 31.6 41 13.8 29.4 0.49 0.8 0.43 24 30.93 28 287.5 82.1 31.6 41 13.9 29.4 0.49 0.8 0.43 24 30.93 28 287.7 82.5 31.6 41 13.9 29.6 0.47 0.8 0.43 25 30.96 28 287.7 82.5 31.7 41 13.9 29.5 0.46 0.8 0.43 26 31.00 28 288.7 82.5 31.7 41 13.9 29.5 0.46 0.8 0.43 23 30.89 28 287.7 82.5 31.7 41 13.9 29.5 0.46 0.8 0.43 24 30.93 28 287.5 82.1 31.7 41 13.9 29.4 0.49 0.8 0.43 25 30.96 28 287.7 82.2 31.7 41 13.9 29.5 0.46 0.8 0.43 26 31.00 28 290.2 82.9 31.7 41 13.9 29.5 0.46 0.8 0.43 27 31.03 38 289.2 82.6 31.7 41 13.9 29.5 0.46 0.8 0.43 27 31.03 38 289.2 82.6 31.7 41 13.9 29.5 0.46 0.8 0.43 23 30.86 28 287.7 82.2 31.7 41 13.9 29.5 0.46 0.8 0.43 24 30.93 28 287.7 82.2 31.7 41 13.9 29.5 0.46 0.8 0.43 25 30.96 28 288.7 82.5 31.6 42 13.9 30.0 0.46 0.8 0.43 32 31.06 38 287.1 82.0 31.8 41 13.8 29.3 0.41 0.8 0.31 33 31.18 38 280.3 81.8 31.7 41 13.9 29.4 0.41 0.8 0.31 34 31.21 38 286.5 82.4 31.7 41 13.9 29.4 0.41 0.8 0.31 35 31.24 38 287.5 82.1 31.7 41 13.9 29.4 0.41 0.8 0.31 34 31.21 38 286.7 82.2 31.7 41 13.9 29.4 0.41 0.8 0.31 34 31.21 38 287.7 82.2 31.7 41 13.9 29.4 0.41 0.8 0.31 34 31.24 38 287.7 82.2 31.7 41 13.9 29.4 0.41 0.8 0.31 34 31.24 38 287.7 82.2 31.7 41 13.9 29.4 0.41 0.8 0.31 34 31.34 38 280.7 82.4 31.6 41 13.9 29.2 0.41 0.8 0.31 34 31.34 38 280.7 82.4 31.6 41 13.9 29.2 0.41 0.8 0.31 34 31.34 38 280.7 82.2 31.7 42 14.0 20.3 0.41 0.8 0.31 34 31.34 38 280.7 82	EFV:	Energy of	FV					CS	SX: Max	Measured	Compr.	Stress		
BPM: Blows per Minute RAT: SPT Length Ratio FMX: Maximum Force DFN: Final Displacement WMX: Maximum Velocity DFN: Final Displacement BL# Depth BLC EFV ETR BPM FMX: VMX: CSX DMX RAT: SPT 13 30.54 28 284.2 81.2 31.8 40 13.6 28.9 0.54 0.8 0.43 14 30.57 28 286.9 82.0 31.7 41 13.8 29.5 0.52 0.8 0.43 16 30.64 28 283.7 81.0 31.7 41 13.9 29.6 0.51 0.8 0.43 20 30.79 28 288.7 82.5 31.8 41 13.8 29.2 0.49 0.8 0.43 23 30.89 28 287.5 82.1 31.6 41 13.9 29.2 0.49 0.8 0.43	ETR:	Energy Tra	ansfer Ra	atio - Rat	ed			DI	MX: Maxi	mum Disp	lacement	t		
FMX: Maximum Force DFN: Final Displacement VMX: Maximum Velocity EFV ETR BPM FMX VMX: CSX DMX RAT DFN 13 30.54 28 284.2 81.2 31.8 40 13.6 28.9 0.54 0.8 0.43 14 30.57 28 286.9 82.0 31.8 41 13.7 28.9 0.54 0.8 0.43 16 30.64 28 284.4 81.3 31.7 41 13.8 29.2 0.51 0.8 0.43 17 30.68 28 283.7 81.0 31.7 41 13.9 29.2 0.51 0.8 0.43 20 30.79 28 288.0 82.3 31.7 41 13.8 29.2 0.49 0.8 0.43 21 30.82 28 287.5 82.1 31.6 41 13.9 29.4 0.49 0.8 0	BPM:	Blows per	Minute					RA	AT: SPT	Length R	atio			
VMX: Maximum Velocity BL# Depth BLC EFV ETR BPM FMX VMX. CSX DMX RAT DFN 13 30.54 28 284.2 81.2 31.8 40 13.6 28.9 0.54 0.8 0.43 14 30.57 28 286.9 82.0 31.8 41 13.7 28.9 0.54 0.8 0.43 15 30.61 28 285.3 81.5 31.7 41 13.8 29.5 0.52 0.8 0.43 16 30.64 28 283.7 81.0 31.7 41 13.9 29.6 0.51 0.8 0.43 20 30.79 28 288.7 82.5 31.8 41 13.8 29.2 0.49 0.8 0.43 21 30.82 28 287.5 82.1 31.6 41 13.9 29.6 0.46 0.8 0.43 22 <td>FMX:</td> <td>Maximum</td> <td>Force</td> <td></td> <td></td> <td></td> <td></td> <td colspan="7">DFN: Final Displacement</td>	FMX:	Maximum	Force					DFN: Final Displacement						
BL# Depth BLC EFV ETR BPM FMX VMX CSX DMX RAT DFN 13 30.54 28 284.2 81.2 31.8 40 13.6 28.9 0.54 0.8 0.43 14 30.57 28 286.9 82.0 31.8 41 13.7 28.9 0.54 0.8 0.43 15 30.61 28 285.3 81.5 31.7 41 13.8 29.5 0.52 0.8 0.43 16 30.64 28 283.7 81.0 31.7 41 13.9 29.2 0.51 0.8 0.43 19 30.75 28 288.7 82.5 31.8 41 13.8 29.3 0.50 0.8 0.43 21 30.82 28 287.5 82.1 31.6 41 13.9 29.4 0.48 0.8 0.43 24 30.93 28 287.5	VMX:	Maximum	Velocity											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	BL#	Depth	BLC	EFV	ETR	BPM	FMX	VMX	CSX	DMX	RAT	DFN		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		ft	bl/ft	k-ft	(%)	bpm	kips	f/s	ksi	in	0	in		
14 30.57 28 286.9 82.0 31.8 41 13.7 28.9 0.54 0.8 0.43 15 30.61 28 285.3 81.5 31.7 41 13.8 29.5 0.52 0.8 0.43 16 30.64 28 284.4 81.3 31.7 41 13.9 29.2 0.51 0.8 0.43 17 30.68 28 288.7 82.4 31.7 41 13.9 29.6 0.51 0.8 0.43 20 30.79 28 288.7 82.5 31.8 41 13.8 29.2 0.49 0.8 0.43 21 30.82 28 287.5 82.1 31.6 41 13.9 29.4 0.49 0.8 0.43 22 30.86 28 287.9 82.1 31.6 41 13.9 29.6 0.47 0.8 0.43 24 30.93 28 287.5 82.1 31.7 41 13.9 29.6 0.46 0.8 0.43	13	30.54	28	284.2	81.2	31.8	40	13.6	28.9	0.54	0.8	0.43		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	14	30.57	28	286.9	82.0	31.8	41	13.7	28.9	0.54	0.8	0.43		
16 30.64 28 283.7 81.0 31.7 42 13.8 29.8 0.51 0.8 0.43 17 30.68 28 283.7 81.0 31.7 41 13.9 29.2 0.51 0.8 0.43 18 30.71 28 288.4 82.4 31.7 41 13.8 29.3 0.50 0.8 0.43 20 30.79 28 288.0 82.3 31.7 41 13.8 29.2 0.49 0.8 0.43 21 30.82 28 287.5 82.1 31.6 41 13.8 29.4 0.49 0.8 0.43 22 30.89 28 287.5 82.1 31.7 41 13.9 29.6 0.46 0.8 0.43 25 30.96 28 287.5 82.1 31.7 41 13.9 29.5 0.46 0.8 0.43 26 31.00 28 287.7 82.2 31.7 41 13.9 29.6 0.42 0.8 0.32	15	30.61	28	285.3	81.5	31.7	41	13.8	29.5	0.52	0.8	0.43		
17 30.68 28 283.7 81.0 31.7 41 13.9 29.2 0.51 0.8 0.43 18 30.71 28 288.4 82.4 31.7 41 13.9 29.6 0.51 0.8 0.43 20 30.79 28 288.0 82.3 31.7 41 13.8 29.2 0.49 0.8 0.43 21 30.82 28 287.5 82.1 31.6 41 13.9 29.4 0.48 0.8 0.43 23 30.89 28 287.5 82.1 31.7 41 13.9 29.6 0.47 0.8 0.43 24 30.93 28 287.5 82.1 31.7 41 13.9 29.5 0.46 0.8 0.43 26 31.00 28 290.2 82.9 31.7 41 13.9 29.5 0.45 0.8 0.43 27 31.03 38 287.7 82.2 31.7 41 13.8 29.3 0.41 0.8 0.31	16	30.64	28	284.4	81.3	31.7	42	13.8	29.8	0.51	0.8	0.43		
18 30.71 28 288.4 82.4 31.7 41 13.9 29.6 0.51 0.8 0.43 19 30.75 28 288.7 82.5 31.8 41 13.8 29.3 0.50 0.8 0.43 20 30.79 28 288.0 82.3 31.7 41 13.9 29.4 0.49 0.8 0.43 21 30.82 28 287.5 82.1 31.6 41 13.9 29.4 0.49 0.8 0.43 23 30.89 28 287.5 82.1 31.7 41 13.9 29.6 0.47 0.8 0.43 24 30.93 28 287.5 82.1 31.7 41 13.9 29.5 0.46 0.8 0.43 25 30.96 28 287.7 82.2 31.7 41 13.9 29.7 0.43 0.8 0.31 26 31.05 38 287.7 82.2 31.7 41 13.8 29.3 0.41 0.8 0.31	17	30.68	28	283.7	81.0	31.7	41	13.9	29.2	0.51	0.8	0.43		
19 30.75 28 288.7 82.5 31.8 41 13.8 29.3 0.50 0.8 0.43 20 30.79 28 288.0 82.3 31.7 41 13.8 29.2 0.49 0.8 0.43 21 30.82 28 287.5 82.1 31.6 41 13.8 29.4 0.49 0.8 0.43 22 30.86 28 287.5 82.1 31.7 41 13.9 29.6 0.47 0.8 0.43 24 30.93 28 287.5 82.1 31.7 41 13.9 29.5 0.46 0.8 0.43 26 31.00 28 287.5 82.1 31.7 41 13.9 29.5 0.45 0.8 0.43 26 31.00 28 280.2 82.6 31.7 41 13.8 29.3 0.41 0.8 0.31 27 31.03 38 287.7 82.2 31.7 41 13.8 29.3 0.41 0.8 0.31	18	30.71	28	288.4	82.4	31.7	41	13.9	29.6	0.51	0.8	0.43		
20 30.79 28 288.0 82.3 31.7 41 13.8 29.2 0.49 0.8 0.43 21 30.82 28 287.5 82.1 31.6 41 13.9 29.4 0.49 0.8 0.43 22 30.86 28 287.9 82.3 31.6 41 13.9 29.4 0.49 0.8 0.43 22 30.89 28 288.7 82.5 31.7 41 13.9 29.6 0.47 0.8 0.43 24 30.96 28 288.7 82.5 31.6 42 13.9 29.5 0.46 0.8 0.43 26 31.00 28 290.2 82.9 31.7 41 13.8 29.3 0.42 0.8 0.32 29 31.03 38 287.7 82.2 31.7 41 13.8 29.3 0.41 0.8 0.31 30 31.11 38 287.7	19	30.75	28	288.7	82.5	31.8	41	13.8	29.3	0.50	0.8	0.43		
21 30.82 28 287.5 82.1 31.6 41 13.9 29.4 0.49 0.8 0.43 22 30.86 28 287.9 82.3 31.6 41 13.8 29.4 0.48 0.8 0.43 23 30.89 28 287.5 82.5 31.7 41 13.9 29.6 0.47 0.8 0.43 24 30.93 28 287.5 82.1 31.7 41 13.9 29.5 0.46 0.8 0.43 25 30.96 28 280.7 82.5 31.6 42 13.9 29.5 0.45 0.8 0.43 26 31.00 28 287.7 82.2 31.7 41 13.8 29.3 0.42 0.8 0.32 29 31.08 38 287.7 82.2 31.7 41 13.8 29.3 0.41 0.8 0.31 30 31.11 38 286.3 81.8 31.7 41 13.9 29.6 0.41 0.8 0.31	20	30.79	28	288.0	82.3	31.7	41	13.8	29.2	0.49	0.8	0.43		
22 30.86 28 287.9 82.3 31.6 41 13.8 29.4 0.48 0.8 0.43 23 30.89 28 288.7 82.5 31.7 41 13.9 29.6 0.47 0.8 0.43 24 30.93 28 287.5 82.1 31.7 41 13.9 29.5 0.46 0.8 0.43 25 30.96 28 280.7 82.5 31.6 42 13.9 29.5 0.46 0.8 0.43 26 31.00 28 280.2 82.6 31.7 41 13.9 29.5 0.45 0.8 0.32 29 31.08 38 287.7 82.2 31.7 41 13.8 29.3 0.41 0.8 0.32 31 31.13 38 286.3 81.8 31.7 41 13.9 29.6 0.42 0.8 0.32 31 31.13 38 286.3 81.8 31.7 41 13.9 29.6 0.41 0.8 0.31	21	30.82	28	287.5	82.1	31.6	41	13.9	29.4	0.49	0.8	0.43		
23 30.89 28 288.7 82.5 31.7 41 13.9 29.6 0.47 0.8 0.43 24 30.93 28 287.5 82.1 31.7 41 13.9 29.5 0.46 0.8 0.43 25 30.96 28 288.7 82.5 31.6 42 13.9 30.0 0.46 0.8 0.43 26 31.00 28 290.2 82.9 31.7 41 13.9 29.5 0.45 0.8 0.43 27 31.03 38 289.2 82.6 31.7 42 13.9 29.7 0.43 0.8 0.31 28 31.05 38 287.1 82.0 31.8 41 13.8 29.3 0.42 0.8 0.32 31 31.13 38 286.5 82.4 31.7 41 13.9 29.6 0.42 0.8 0.31 32 31.16 38 287.1 82.0 31.7 41 13.9 29.4 0.40 0.8 0.31	22	30.86	28	287.9	82.3	31.6	41	13.8	29.4	0.48	0.8	0.43		
24 30.93 28 287.5 82.1 31.7 41 13.9 29.5 0.46 0.8 0.43 25 30.96 28 288.7 82.5 31.6 42 13.9 30.0 0.46 0.8 0.43 26 31.00 28 290.2 82.9 31.7 41 13.9 29.7 0.43 0.8 0.43 27 31.03 38 289.2 82.6 31.7 42 13.9 29.7 0.43 0.8 0.31 29 31.05 38 287.7 82.2 31.7 41 13.8 29.3 0.42 0.8 0.32 29 31.08 38 287.1 82.0 31.8 41 13.8 29.3 0.41 0.8 0.31 30 31.11 38 286.3 81.8 31.7 41 13.9 29.6 0.41 0.8 0.31 32 31.16 38 287.5 82.1 31.7 41 13.9 29.4 0.40 0.8 0.31	23	30.89	28	288.7	82.5	31.7	41	13.9	29.6	0.47	0.8	0.43		
25 30.96 28 288.7 82.5 31.6 42 13.9 30.0 0.46 0.8 0.43 26 31.00 28 290.2 82.9 31.7 41 13.9 29.5 0.45 0.8 0.43 27 31.03 38 289.2 82.6 31.7 42 13.9 29.7 0.43 0.8 0.31 28 31.05 38 287.7 82.2 31.7 41 13.8 29.3 0.42 0.8 0.32 29 31.08 38 287.1 82.0 31.8 41 13.8 29.3 0.41 0.8 0.31 30 31.11 38 286.3 81.8 31.7 41 13.9 29.6 0.41 0.8 0.31 33 31.18 38 287.5 82.1 31.7 41 13.9 29.4 0.41 0.8 0.31 34 31.21 38 287.5 82.4 31.6 41 13.9 29.4 0.40 0.8 0.31	24	30.93	28	287.5	82.1	31.7	41	13.9	29.5	0.46	0.8	0.43		
26 31.00 28 290.2 82.9 31.7 41 13.9 29.5 0.45 0.8 0.43 27 31.03 38 289.2 82.6 31.7 42 13.9 29.7 0.43 0.8 0.31 28 31.05 38 287.7 82.2 31.7 41 13.8 29.3 0.42 0.8 0.32 29 31.08 38 287.1 82.0 31.8 41 13.8 29.3 0.41 0.8 0.31 30 31.11 38 286.3 81.8 31.7 41 13.9 29.6 0.42 0.8 0.32 31 31.13 38 286.3 81.8 31.7 41 13.9 29.6 0.41 0.8 0.31 32 31.16 38 287.5 82.1 31.7 41 13.9 29.4 0.41 0.8 0.31 34 31.21 38 280.3 82.9 31.7 42 14.0 29.7 0.41 0.8 0.31	25	30.96	28	288.7	82.5	31.6	42	13.9	30.0	0.46	0.8	0.43		
27 31.03 38 289.2 82.6 31.7 42 13.9 29.7 0.43 0.8 0.31 28 31.05 38 287.7 82.2 31.7 41 13.8 29.3 0.42 0.8 0.32 29 31.08 38 287.1 82.0 31.8 41 13.8 29.3 0.41 0.8 0.31 30 31.11 38 286.5 82.4 31.7 41 13.9 29.6 0.42 0.8 0.32 31 31.13 38 286.3 81.8 31.7 41 13.9 29.6 0.41 0.8 0.31 32 31.16 38 287.5 82.1 31.7 41 13.9 29.4 0.41 0.8 0.31 34 31.21 38 287.1 82.0 31.7 42 14.0 29.7 0.41 0.8 0.31 35 31.24 38 290.3 82.9 31.7 42 13.9 29.8 0.40 0.8 0.31	26	31.00	28	290.2	82.9	31.7	41	13.9	29.5	0.45	0.8	0.43		
28 31.05 38 287.7 82.2 31.7 41 13.8 29.3 0.42 0.8 0.32 29 31.08 38 287.1 82.0 31.8 41 13.8 29.3 0.41 0.8 0.31 30 31.11 38 286.5 82.4 31.7 41 13.9 29.6 0.42 0.8 0.32 31 31.13 38 286.3 81.8 31.7 41 13.9 29.6 0.41 0.8 0.31 32 31.16 38 287.5 82.1 31.7 41 13.9 29.4 0.41 0.8 0.31 34 31.21 38 287.1 82.0 31.7 41 13.9 29.4 0.40 0.8 0.31 35 31.24 38 289.2 82.6 31.7 42 14.0 29.7 0.41 0.8 0.31 36 31.26 38 288.2 82.4 31.6 41 13.9 29.2 0.41 0.8 0.31	27	31.03	38	289.2	82.6	31.7	42	13.9	29.7	0.43	0.8	0.31		
29 31.08 38 287.1 82.0 31.8 41 13.8 29.3 0.41 0.8 0.31 30 31.11 38 288.5 82.4 31.7 41 13.9 29.6 0.42 0.8 0.32 31 31.13 38 286.3 81.8 31.7 41 13.9 29.6 0.41 0.8 0.31 32 31.16 38 287.2 82.1 31.7 41 13.9 29.6 0.41 0.8 0.31 33 31.18 38 287.5 82.1 31.7 41 13.9 29.4 0.40 0.8 0.31 34 31.21 38 287.1 82.0 31.7 42 14.0 29.7 0.41 0.8 0.31 35 31.26 38 288.5 82.4 31.6 41 13.8 29.2 0.40 0.8 0.31 37 31.29 38 288.7 82.5 31.7 42 13.9 29.2 0.41 0.8 0.31	28	31.05	38	287.7	82.2	31.7	41	13.8	29.3	0.42	0.8	0.32		
30 31.11 38 288.5 82.4 31.7 41 13.9 29.6 0.42 0.8 0.32 31 31.13 38 286.3 81.8 31.7 41 13.8 29.3 0.41 0.8 0.31 32 31.16 38 287.2 82.1 31.7 41 13.9 29.6 0.41 0.8 0.31 33 31.18 38 287.5 82.1 31.7 41 13.9 29.4 0.41 0.8 0.31 34 31.21 38 287.1 82.0 31.7 42 14.0 29.7 0.41 0.8 0.31 35 31.24 38 290.3 82.9 31.7 42 14.0 29.7 0.41 0.8 0.31 36 31.29 38 288.5 82.4 31.6 41 13.8 29.2 0.40 0.8 0.31 39 31.34 38 290.7 83.1 31.6 41 13.9 29.2 0.41 0.8 0.31	29	31.08	38	287.1	82.0	31.8	41	13.8	29.3	0.41	0.8	0.31		
31 31.13 38 286.3 81.8 31.7 41 13.8 29.3 0.41 0.8 0.31 32 31.16 38 287.2 82.1 31.7 41 13.9 29.6 0.41 0.8 0.31 33 31.18 38 287.5 82.1 31.7 41 13.9 29.4 0.41 0.8 0.31 34 31.21 38 287.1 82.0 31.7 41 13.9 29.4 0.40 0.8 0.31 35 31.24 38 290.3 82.9 31.7 42 14.0 29.7 0.41 0.8 0.31 36 31.26 38 288.5 82.4 31.6 41 13.8 29.2 0.40 0.8 0.31 37 31.29 38 288.7 82.5 31.7 41 13.9 29.2 0.41 0.8 0.31 39 31.34 38 290.7 83.1 31.6 41 13.9 29.2 0.41 0.8 0.31	30	31.11	38	288.5	82.4	31.7	41	13.9	29.6	0.42	0.8	0.32		
32 31.16 38 287.2 82.1 31.7 41 13.9 29.6 0.41 0.8 0.31 33 31.18 38 287.5 82.1 31.7 41 13.9 29.4 0.41 0.8 0.31 34 31.21 38 287.1 82.0 31.7 41 13.9 29.4 0.40 0.8 0.31 35 31.24 38 290.3 82.9 31.7 42 14.0 29.7 0.41 0.8 0.31 36 31.26 38 288.5 82.4 31.6 41 13.8 29.2 0.40 0.8 0.31 37 31.29 38 288.7 82.5 31.7 41 13.9 29.2 0.41 0.8 0.31 38 31.32 38 288.7 82.5 31.7 41 13.9 29.2 0.41 0.8 0.31 40 31.37 38 288.2 82.4 31.8 41 13.9 29.2 0.41 0.8 0.31	31	31.13	38	286.3	81.8	31.7	41	13.8	29.3	0.41	0.8	0.31		
33 31.18 38 287.5 82.1 31.7 41 13.9 29.4 0.41 0.8 0.31 34 31.21 38 287.1 82.0 31.7 41 13.9 29.4 0.40 0.8 0.31 35 31.24 38 290.3 82.9 31.7 42 14.0 29.7 0.41 0.8 0.31 36 31.26 38 288.5 82.4 31.6 41 13.8 29.2 0.40 0.8 0.31 37 31.29 38 289.2 82.6 31.7 42 13.9 29.8 0.40 0.8 0.31 38 31.32 38 288.7 82.5 31.7 41 13.9 29.2 0.41 0.8 0.31 39 31.34 38 290.7 83.1 31.6 41 13.9 29.2 0.41 0.8 0.31 41 31.39 38 290.2 82.9 31.7 41 13.9 29.2 0.41 0.8 0.31	32	31.16	38	287.2	82.1	31.7	41	13.9	29.6	0.41	0.8	0.31		
34 31.21 38 287.1 82.0 31.7 41 13.9 29.4 0.40 0.8 0.31 35 31.24 38 290.3 82.9 31.7 42 14.0 29.7 0.41 0.8 0.31 36 31.26 38 288.5 82.4 31.6 41 13.8 29.2 0.40 0.8 0.31 37 31.29 38 289.2 82.6 31.7 42 13.9 29.8 0.40 0.8 0.31 38 31.32 38 288.7 82.5 31.7 41 13.9 29.2 0.41 0.8 0.31 39 31.34 38 290.7 83.1 31.6 41 13.9 29.2 0.41 0.8 0.31 40 31.37 38 288.2 82.4 31.8 41 13.9 29.2 0.41 0.8 0.31 41 31.39 38 290.2 82.9 31.7 41 13.9 29.4 0.41 0.8 0.31	33	31.18	38	287.5	82.1	31.7	41	13.9	29.4	0.41	0.8	0.31		
35 31.24 38 290.3 82.9 31.7 42 14.0 29.7 0.41 0.8 0.31 36 31.26 38 288.5 82.4 31.6 41 13.8 29.2 0.40 0.8 0.31 37 31.29 38 289.2 82.6 31.7 42 13.9 29.8 0.40 0.8 0.31 38 31.32 38 288.7 82.5 31.7 41 13.9 29.2 0.41 0.8 0.31 39 31.34 38 290.7 83.1 31.6 41 13.9 29.2 0.41 0.8 0.32 40 31.37 38 288.2 82.4 31.8 41 13.9 29.2 0.41 0.8 0.31 41 31.39 38 290.2 82.9 31.7 41 13.9 29.4 0.41 0.8 0.31 42 31.42 38 287.9 82.3 31.8 42 13.9 29.7 0.41 0.8 0.31	34	31.21	38	287.1	82.0	31.7	41	13.9	29.4	0.40	0.8	0.31		
36 31.26 38 288.5 82.4 31.6 41 13.8 29.2 0.40 0.8 0.31 37 31.29 38 289.2 82.6 31.7 42 13.9 29.8 0.40 0.8 0.31 38 31.32 38 288.7 82.5 31.7 41 13.9 29.2 0.41 0.8 0.31 39 31.34 38 290.7 83.1 31.6 41 13.9 29.2 0.41 0.8 0.32 40 31.37 38 288.2 82.4 31.8 41 13.9 29.2 0.41 0.8 0.32 40 31.37 38 288.2 82.4 31.8 41 13.9 29.2 0.41 0.8 0.31 41 31.39 38 290.2 82.9 31.7 41 13.9 29.7 0.41 0.8 0.31 42 31.42 38 287.9 82.3 31.6 42 14.0 30.3 0.40 0.8 0.31	35	31.24	38	290.3	82.9	31.7	42	14.0	29.7	0.41	0.8	0.31		
37 31.29 38 289.2 82.6 31.7 42 13.9 29.8 0.40 0.8 0.31 38 31.32 38 288.7 82.5 31.7 41 13.9 29.2 0.41 0.8 0.31 39 31.34 38 290.7 83.1 31.6 41 13.9 29.2 0.41 0.8 0.32 40 31.37 38 288.2 82.4 31.8 41 13.9 29.2 0.41 0.8 0.32 40 31.37 38 288.2 82.4 31.8 41 13.9 29.2 0.41 0.8 0.31 41 31.39 38 290.2 82.9 31.7 41 13.9 29.2 0.41 0.8 0.31 42 31.42 38 287.9 82.3 31.8 42 13.9 29.7 0.41 0.8 0.31 43 31.45 38 282.9 80.8 31.6 42 14.0 30.3 0.40 0.8 0.31	36	31.26	38	288.5	82.4	31.6	41	13.8	29.2	0.40	0.8	0.31		
38 31.32 38 288.7 82.5 31.7 41 13.9 29.2 0.41 0.8 0.31 39 31.34 38 290.7 83.1 31.6 41 13.9 29.3 0.41 0.8 0.32 40 31.37 38 288.2 82.4 31.8 41 13.9 29.2 0.41 0.8 0.32 40 31.37 38 288.2 82.4 31.8 41 13.9 29.2 0.41 0.8 0.31 41 31.39 38 290.2 82.9 31.7 41 13.9 29.2 0.41 0.8 0.31 42 31.42 38 287.9 82.3 31.8 42 13.9 29.7 0.41 0.8 0.31 43 31.45 38 282.9 80.8 31.8 41 13.9 29.3 0.40 0.8 0.31 44 31.47 38 286.9 82.0 31.6 42 14.0 30.3 0.41 0.8 0.31	37	31.29	38	289.2	82.6	31.7	42	13.9	29.8	0.40	0.8	0.31		
39 31.34 38 290.7 83.1 31.6 41 13.9 29.3 0.41 0.8 0.32 40 31.37 38 288.2 82.4 31.8 41 13.9 29.2 0.41 0.8 0.31 41 31.39 38 290.2 82.9 31.7 41 13.9 29.2 0.41 0.8 0.31 42 31.42 38 287.9 82.3 31.8 42 13.9 29.7 0.41 0.8 0.31 43 31.45 38 282.9 80.8 31.8 41 13.9 29.7 0.41 0.8 0.31 44 31.47 38 286.9 82.0 31.6 42 14.0 30.3 0.40 0.8 0.31 45 31.50 38 287.8 82.2 31.7 42 14.0 29.9 0.41 0.8 0.31 45 31.50 38 287.6 82.2 31.7 41 13.9 29.5 0.45 0.8 0.36	38	31.32	38	288.7	82.5	31.7	41	13.9	29.2	0.41	0.8	0.31		
40 31.37 38 288.2 82.4 31.8 41 13.9 29.2 0.41 0.8 0.31 41 31.39 38 290.2 82.9 31.7 41 13.9 29.4 0.41 0.8 0.31 42 31.42 38 287.9 82.3 31.8 42 13.9 29.7 0.41 0.8 0.31 43 31.45 38 282.9 80.8 31.8 41 13.9 29.7 0.41 0.8 0.31 44 31.47 38 282.9 80.8 31.6 42 14.0 30.3 0.40 0.8 0.31 45 31.50 38 287.8 82.2 31.7 42 14.0 29.9 0.41 0.8 0.31 45 31.50 38 287.6 82.2 31.7 41 13.9 29.5 0.45 0.8 0.36 5td. Dev. 1.8 0.5 0.1 0 0.1 0.3 0.05 0.0 0.06 Maximum <td< td=""><td>39</td><td>31.34</td><td>38</td><td>290.7</td><td>83.1</td><td>31.6</td><td>41</td><td>13.9</td><td>29.3</td><td>0.41</td><td>0.8</td><td>0.32</td></td<>	39	31.34	38	290.7	83.1	31.6	41	13.9	29.3	0.41	0.8	0.32		
41 31.39 38 290.2 82.9 31.7 41 13.9 29.4 0.41 0.8 0.31 42 31.42 38 287.9 82.3 31.8 42 13.9 29.7 0.41 0.8 0.31 43 31.45 38 282.9 80.8 31.8 41 13.9 29.3 0.40 0.8 0.31 44 31.47 38 286.9 82.0 31.6 42 14.0 30.3 0.41 0.8 0.31 45 31.50 38 287.8 82.2 31.7 42 14.0 29.9 0.41 0.8 0.31 45 31.50 38 287.6 82.2 31.7 42 14.0 29.9 0.41 0.8 0.31 45 31.50 38 287.6 82.2 31.7 41 13.9 29.5 0.45 0.8 0.36 Std. Dev. 1.8 0.5 0.1 0 0.1 0.3 0.05 0.0 0.06 Maximum <td< td=""><td>40</td><td>31.37</td><td>38</td><td>288.2</td><td>82.4</td><td>31.8</td><td>41</td><td>13.9</td><td>29.2</td><td>0.41</td><td>0.8</td><td>0.31</td></td<>	40	31.37	38	288.2	82.4	31.8	41	13.9	29.2	0.41	0.8	0.31		
42 31.42 38 287.9 82.3 31.8 42 13.9 29.7 0.41 0.8 0.31 43 31.45 38 282.9 80.8 31.8 41 13.9 29.3 0.40 0.8 0.31 44 31.47 38 286.9 82.0 31.6 42 14.0 30.3 0.41 0.8 0.31 45 31.50 38 287.8 82.2 31.7 42 14.0 29.9 0.41 0.8 0.31 45 31.50 38 287.6 82.2 31.7 42 14.0 29.9 0.41 0.8 0.31 Average 287.6 82.2 31.7 41 13.9 29.5 0.45 0.8 0.36 Std. Dev. 1.8 0.5 0.1 0 0.1 0.3 0.05 0.0 0.06 Maximum 290.7 83.1 31.8 42 14.0 30.3 0.54 0.8 0.43 Minimum 282.9 80.8 31.6 <	41	31.39	38	290.2	82.9	31.7	41	13.9	29.4	0.41	0.8	0.31		
43 31.45 38 282.9 80.8 31.8 41 13.9 29.3 0.40 0.8 0.31 44 31.47 38 286.9 82.0 31.6 42 14.0 30.3 0.41 0.8 0.31 45 31.50 38 287.8 82.2 31.7 42 14.0 29.9 0.41 0.8 0.31 Average 287.6 82.2 31.7 42 14.0 29.9 0.41 0.8 0.31 Average 287.6 82.2 31.7 41 13.9 29.5 0.45 0.8 0.36 Std. Dev. 1.8 0.5 0.1 0 0.1 0.3 0.05 0.0 0.06 Maximum 290.7 83.1 31.8 42 14.0 30.3 0.54 0.8 0.43 Minimum 282.9 80.8 31.6 40 13.6 28.9 0.40 0.8 0.31	42	31.42	38	287.9	82.3	31.8	42	13.9	29.7	0.41	0.8	0.31		
44 31.47 38 286.9 82.0 31.6 42 14.0 30.3 0.41 0.8 0.31 45 31.50 38 287.8 82.2 31.7 42 14.0 29.9 0.41 0.8 0.31 Average 287.6 82.2 31.7 42 14.0 29.9 0.41 0.8 0.31 Average 287.6 82.2 31.7 41 13.9 29.5 0.45 0.8 0.36 Std. Dev. 1.8 0.5 0.1 0 0.1 0.3 0.05 0.0 0.06 Maximum 290.7 83.1 31.8 42 14.0 30.3 0.54 0.8 0.43 Minimum 282.9 80.8 31.6 40 13.6 28.9 0.40 0.8 0.31	43	31.45	38	282.9	80.8	31.8	41	13.9	29.3	0.40	0.8	0.31		
45 31.50 38 287.8 82.2 31.7 42 14.0 29.9 0.41 0.8 0.31 Average 287.6 82.2 31.7 41 13.9 29.5 0.45 0.8 0.36 Std. Dev. 1.8 0.5 0.1 0 0.1 0.3 0.05 0.0 0.06 Maximum 290.7 83.1 31.8 42 14.0 30.3 0.54 0.8 0.43 Minimum 282.9 80.8 31.6 40 13.6 28.9 0.40 0.8 0.31	44	31.47	38	286.9	82.0	31.6	42	14.0	30.3	0.41	0.8	0.31		
Average287.682.231.74113.929.50.450.80.36Std. Dev.1.80.50.100.10.30.050.00.06Maximum290.783.131.84214.030.30.540.80.43Minimum282.980.831.64013.628.90.400.80.31	45	31.50	38	287.8	82.2	31.7	42	14.0	29.9	0.41	0.8	0.31		
Std. Dev.1.80.50.100.10.30.050.00.06Maximum290.783.131.84214.030.30.540.80.43Minimum282.980.831.64013.628.90.400.80.31		A	verage	287.6	82.2	31.7	41	13.9	29.5	0.45	0.8	0.36		
Maximum290.783.131.84214.030.30.540.80.43Minimum282.980.831.64013.628.90.400.80.31		Sto	d. Dev.	1.8	0.5	0.1	0	0.1	0.3	0.05	0.0	0.06		
Minimum 282.9 80.8 31.6 40 13.6 28.9 0.40 0.8 0.31		Ma	ximum	290.7	83.1	31.8	42	14.0	30.3	0.54	0.8	0.43		
	Minimum 282.9 80.8 31.6 40 13.6 28.9 0.40 0								0.8	0.31				

Total number of blows analyzed: 33

BL# Sensors

2-45 F1: [328NWJ2] 220.6 (1.00); F2: [328NWJ2] 220.6 (1.00); A1: [K2449] 340.0 (1.00); A2: [K3258] 337.0 (1.00)

Pile Dynamics, Inc. Case Method & iCAP® Results Page 2 PDIPLOT2 2016.2.57.6 - Printed 25-September-2017

HOLT DRILLING, RIG 17 - 30.0 FT SAMPLE OP: RMDT RIG NO 17, MOBILE 140 LB SPT Date: 25-August-2017

BL# Comments

- 1 Start of test on 8/25/2017 at 1:21 PM
- 45 End of test on 8/25/2017 at 1:23 PM

Time Summary

Drive 1 minute 23 seconds 1:21 PM - 1:23 PM BN 1 - 45

Pile Dynamics, Inc. - PDIPLOT2 Ver 2016.2.57.6 - Case Method & iCAP® Results

1 - Start of test on 8/25/2017 at 1:31 PM

2 - End of test on 8/25/2017 at 1:33 PM

Pile Dynamics, Inc.	
Case Method & iCAP® Results	;

	Page
PDIPLOT2 2016.2.57.6 - Prir	ted 25-September-2017

HOLT DRILLING, RIG 17 - 35.0 FT SAMPLE								RIG NO 17, MOBILE 140 LB SPT						
<u>OP: R</u>	RMDT								Date:	25-Augus	st-2017			
AR:	1.40 in	2								SP: 0.4	92 k/ft ³			
LE: 41.00 ft							EM: 30,000 ksi							
<u>WS:</u> 1	16,807.9 f/s	3				JC:0.35 []								
EFV: Energy of FV								CSX: Max Measured Compr. Stress						
ETR:	Energy Tra	ansfer Ra	atio - Rate	ed			RAT: SPT Length Ratio							
BPM:	Blows per	Minute				DMX: Maximum Displacement								
FMX:	Maximum	Force				DFN: Final Displacement								
VMX:	Maximum	Velocity												
BL#	Depth	BLC	EFV	ETR	BPM	FMX	VMX	CSX	RAT	DMX	DFN			
	ft	bl/ft	k-ft	(%)	bpm	kips	f/s	ksi	[]	in	in			
20	35.54	26	287.1	82.0	31.7	41	14.2	29.2	0.9	0.56	0.46			
21	35.58	26	291.4	83.3	31.9	41	14.3	29.5	0.6	0.57	0.46			
22	35.62	26	291.5	83.3	31.9	41	14.2	29.4	0.6	0.56	0.46			
23	35.65	26	290.1	82.9	31.9	41	14.3	29.3	0.6	0.57	0.46			
24	35.69	26	293.9	84.0	32.0	41	14.3	29.4	0.9	0.59	0.46			
25	35.73	26	289.1	82.6	31.9	41	14.2	29.2	0.6	0.56	0.46			
26	35.77	26	292.3	83.5	31.9	41	14.3	29.2	0.6	0.56	0.46			
27	35.81	26	290.8	83.1	31.8	41	14.3	29.1	0.6	0.55	0.46			
28	35.85	26	292.7	83.6	31.7	41	14.3	29.4	0.6	0.58	0.46			
29	35.88	26	290.0	82.9	32.0	41	14.3	29.0	0.6	0.56	0.46			
30	35.92	26	289.8	82.8	31.8	42	14.3	29.9	0.6	0.58	0.46			
31	35.96	26	289.3	82.7	32.0	40	14.3	28.9	0.6	0.55	0.46			
32	36.00	26	290.3	82.9	31.8	41	14.3	29.2	0.6	0.54	0.46			
33	36.04	28	292.4	83.5	31.8	41	14.3	29.5	0.6	0.53	0.43			
34	36.07	28	288.6	82.5	31.9	41	14.2	29.0	0.6	0.52	0.43			
35	36.11	28	288.7	82.5	31.9	41	14.2	29.6	0.9	0.53	0.43			
36	36.14	28	287.8	82.2	31.9	42	14.2	29.8	0.9	0.52	0.43			
37	36.18	28	288.0	82.3	31.9	42	14.2	30.0	0.9	0.54	0.43			
38	36.21	28	284.9	81.4	31.8	40	14.1	28.9	0.9	0.51	0.43			
39	36.25	28	292.5	83.6	31.9	42	14.3	30.0	0.6	0.51	0.43			
40	36.29	28	290.5	83.0	31.9	41	14.3	29.2	0.6	0.51	0.43			
41	36.32	28	287.9	82.3	31.8	40	14.3	28.8	0.9	0.49	0.43			
42	36.36	28	290.3	82.9	31.9	42	14.3	29.8	0.6	0.50	0.43			
43	36.39	28	288.5	82.4	31.8	40	14.3	28.8	0.9	0.48	0.43			
44	36.43	28	290.3	82.9	32.0	41	14.4	29.4	0.6	0.49	0.43			
45	36.46	28	286.6	81.9	31.9	41	14.3	29.2	0.9	0.52	0.43			
46	36.50	28	289.2	82.6	31.9	41	14.3	29.1	0.9	0.51	0.43			
	A	/erage	289.8	82.8	31.9	41	14.3	29.3	0.7	0.54	0.44			
	Sto	I. Dev.	2.0	0.6	0.1	0	0.1	0.3	0.1	0.03	0.02			
Maximum			293.9	84.0	32.0	42	14.4	30.0	0.9	0.59	0.46			
	Minimum 284.9 81.4 31.7						14.1	28.8	0.6	0.48	0.43			
				Total pur	mbor of bl	lowe analy	170d. 27							

Total number of blows analyzed: 27

BL# Sensors

2-46 F1: [328NWJ2] 220.6 (1.00); F2: [328NWJ2] 220.6 (1.00); A1: [K2449] 340.0 (1.00); A2: [K3258] 337.0 (1.00)

BL# Comments

- 1 Start of test on 8/25/2017 at 1:31 PM
- 46 End of test on 8/25/2017 at 1:33 PM

Page 1

Pile Dynamics, Inc. Case Method & iCAP® Results Page 2 PDIPLOT2 2016.2.57.6 - Printed 25-September-2017

HOLT DRILLING, RIG 17 - 35.0 FT SAMPLE OP: RMDT RIG NO 17, MOBILE 140 LB SPT Date: 25-August-2017

Time Summary

Drive 1 minute 24 seconds 1:31 PM - 1:33 PM BN 1 - 46

1 - Start of test on 8/25/2017 at 1:42 PM

2 - End of test on 8/25/2017 at 1:42 PM

Pile Dynamics, Inc.
Case Method & iCAP® Results

	Page
PDIPLOT2 2016.2.57.6 ·	- Printed 25-September-2017

HOLT DRILLING, RIG 17 - 40.0 FT SAMPLE RIG NO 17, MOBILE 140 LB									B SPT		
OP: RMDT Date: 25-August-20									t-2017		
AR:	1.40 in	2								SP: 0.4	92 k/ft ³
LE:	46.00 ft									EM: 30,0	00 ksi
WS: 1	16,807.9 f/s	s								JC: 0.	35 []
EFV:	Energy of	FV					CS	SX: Max	Measured	d Compr.	Stress
ETR:	Energy Tr	ansfer Ra	atio - Rat	ed			R/	AT: SPT	Length R	atio	
BPM:	Blows per	Minute					DI	MX: Maxii	num Disp	blacemen	t
FMX:	Maximum	Force					Dł	FN: Final	Displace	ment	
VMX:	Maximum	Velocity									
BL#	Depth	BLC	EFV	ETR	BPM	FMX	VMX	CSX	RAT	DMX	DFN
	ft	bl/ft	k-ft	(%)	bpm	kips	f/s	ksi	[]	in	in
5	40.55	22	283.1	80.9	32.0	42	14.4	29.9	0.4	0.69	0.54
6	40.59	22	283.6	81.0	31.8	42	14.4	29.7	0.4	0.66	0.54
7	40.64	22	289.1	82.6	31.8	42	14.4	29.9	0.4	0.65	0.54
8	40.68	22	288.6	82.4	31.8	42	14.4	30.3	0.4	0.64	0.54
9	40.73	22	292.3	83.5	31.9	42	14.5	30.3	0.4	0.61	0.54
10	40.77	22	292.5	83.6	31.8	43	14.5	30.5	0.4	0.60	0.54
11	40.82	22	289.9	82.8	31.9	42	14.3	30.3	0.4	0.60	0.54
12	40.86	22	289.5	82.7	31.9	42	14.3	30.2	0.4	0.58	0.54
13	40.91	22	291.8	83.4	31.8	43	14.4	30.5	0.4	0.59	0.54
14	40.95	22	291.5	83.3	31.8	43	14.3	30.4	0.9	0.58	0.54
15	41.00	22	291.3	83.2	31.9	42	14.3	30.2	0.9	0.59	0.54
16	41.04	24	289.4	82.7	31.9	42	14.1	30.1	0.9	0.55	0.50
17	41.08	24	293.4	83.8	31.8	43	14.4	30.4	0.4	0.56	0.50
18	41.13	24	295.7	84.5	31.8	43	14.4	30.5	0.9	0.56	0.50
19	41.17	24	293.1	83.7	31.9	43	14.4	30.4	0.4	0.54	0.50
20	41.21	24	293.7	83.9	31.8	43	14.4	30.5	0.9	0.54	0.50
21	41.25	24	294.7	84.2	31.8	43	14.4	30.5	0.4	0.53	0.50
22	41.29	24	295.0	84.3	31.8	43	14.4	30.5	0.4	0.56	0.50
23	41.33	24	294.4	84.1	31.8	42	14.4	30.3	0.4	0.52	0.50
24	41.38	24	292.0	83.4	31.8	43	14.4	30.4	0.7	0.53	0.50
25	41.42	24	291.5	83.3	31.9	42	14.2	30.1	0.4	0.54	0.50
26	41.46	24	295.0	84.3	31.8	42	14.4	30.3	0.4	0.56	0.50
27	41.50	24	291.6	83.3	31.9	42	14.4	30.2	0.4	0.53	0.50
	A	verage	291.4	83.3	31.8	42	14.4	30.3	0.5	0.58	0.52
	Sto	d. Dev.	3.2	0.9	0.1	0	0.1	0.2	0.2	0.05	0.02
	Ma	ximum	295.7	84.5	32.0	43	14.5	30.5	0.9	0.69	0.54
	Mi	nimum	283.1	80.9	31.8	42	14.1	29.7	0.4	0.52	0.50
				Total nur	mber of bl	ows analy	/zed: 23				

BL# Sensors

2-27 F1: [328NWJ2] 220.6 (1.00); F2: [328NWJ2] 220.6 (1.00); A1: [K2449] 340.0 (1.00); A2: [K3258] 337.0 (1.00)

- BL# Comments
- 1 Start of test on 8/25/2017 at 1:42 PM
- 27 End of test on 8/25/2017 at 1:42 PM

Da ge 1

Pile Dynamics, Inc. Case Method & iCAP® Results Page 2 PDIPLOT2 2016.2.57.6 - Printed 25-September-2017

HOLT DRILLING, RIG 17 - 40.0 FT SAMPLE OP: RMDT RIG NO 17, MOBILE 140 LB SPT Date: 25-August-2017

Time Summary

Drive 48 seconds 1:42 PM - 1:42 PM BN 1 - 27

1 - Start of test on 8/25/2017 at 1:59 PM

2 - End of test on 8/25/2017 at 2:00 PM

Pile Dynamics, I	Inc.
Case Method &	iCAP® Results

	Page
PDIPLOT2 2016.2.57.6 - F	Printed 25-September-2017

		G, RIG 17	′ - 50.0 FT	SAMPLE	1			RIG NO	17, MOBI	LE 140 L	B SPT
	1 /0 ir	2							Dale.	SD· 0/	$\frac{51-2017}{02 k/ft^3}$
	56 00 ft									EM: 30.0	00 ksi
WS· ·	16 807 9 f/	Is								.IC: 0	35 []
FFV [.]	Energy of	FV					CS	SX· Max	Measure	d Compr	Stress
FTR.	Energy Tr	ansfer R	atio - Rate	h			R	AT SPT	l ength R	atio	01033
BPM.	Blows per	· Minute						MX [.] Maxii	mum Disr	olacemen	t
FMX:	Maximum	Force					D	FN: Final	Displace	ment	•
VMX:	Maximum	Velocity							2.00.000		
BL#	Depth	BLC	EFV	ETR	BPM	FMX	VMX	CSX	RAT	DMX	DFN
	ft	bl/ft	k-ft	(%)	bpm	kips	f/s	ksi	П	in	in
2	50.01	200	280.4	80.1	31.9	42	14.1	30.2	0.4	0.27	0.06
3	50.02	200	281.9	80.5	31.9	43	14.2	30.5	0.9	0.27	0.06
4	50.02	200	283.4	81.0	31.9	43	14.2	30.5	0.4	0.27	0.06
5	50.03	200	280.6	80.2	32.0	43	14.2	30.4	0.6	0.28	0.05
6	50.03	200	279.3	79.8	32.0	42	14.0	30.2	0.6	0.32	0.06
7	50.04	200	285.2	81.5	32.0	43	14.3	30.6	0.4	0.29	0.06
8	50.04	200	283.7	81.0	32.0	42	14.2	30.1	0.4	0.27	0.06
9	50.05	200	281.6	80.5	32.0	42	14.1	30.0	0.4	0.25	0.06
10	50.05	200	282.6	80.7	31.8	42	14.1	29.9	0.6	0.27	0.06
11	50.06	200	282.1	80.6	32.0	42	14.2	30.3	0.4	0.24	0.07
12	50.06	200	281.3	80.4	32.0	42	14.1	30.1	0.6	0.27	-0.03
13	50.07	200	281.6	80.4	31.8	42	14.1	30.2	0.4	0.25	0.06
14	50.07	200	280.9	80.3	31.9	42	14.1	30.0	0.4	0.23	0.06
15	50.08	200	282.2	80.6	31.9	42	14.1	30.0	0.4	0.22	0.06
10	50.08	200	2005.0	01./	32.0	42	14.2	30.0	0.7	0.23	0.06
10	50.09	200	200.7	01.0 00.5	31.9 21.0	42	14.Z	30.Z	0.7	0.22	0.00
10	50.09	200	201.0	00.0	31.0 21.0	42	14.0	29.0	0.7	0.22	0.00
20	50.10	200	207.9	02.3 82.0	31.0	4Z 12	14.1	30.0	0.7	0.23	0.00
20	50.10	200	286.1	81.7	31.8	42	14.1	30.0	0.7	0.23	0.00
22	50.11	200	283.9	81.1	31.9	42	14.0	29.9	0.4	0.23	0.00
23	50.12	200	287.5	82.1	32.0	42	14.0	30.0	0.7	0.20	0.00
24	50.12	200	280.6	80.2	31.7	41	13.7	29.5	0.7	0.23	0.06
25	50.13	200	287.6	82.2	31.8	42	14.0	29.9	0.4	0.23	0.06
26	50.13	200	282.6	80.7	31.7	41	13.8	29.5	0.7	0.23	0.06
27	50.14	200	287.4	82.1	31.8	42	13.9	30.0	0.7	0.23	0.06
28	50.14	200	285.9	81.7	31.8	42	13.9	29.9	0.7	0.23	0.06
29	50.15	200	286.8	82.0	31.9	42	14.0	29.9	0.7	0.23	0.06
30	50.15	200	287.6	82.2	31.9	42	14.0	29.8	0.7	0.23	0.06
31	50.16	200	287.7	82.2	31.8	42	14.1	29.8	0.7	0.25	0.06
32	50.16	200	289.9	82.8	31.9	42	14.0	29.9	0.7	0.27	0.06
33	50.17	200	288.1	82.3	31.9	42	14.0	29.7	0.7	0.25	0.06
34	50.17	200	288.6	82.5	31.9	42	14.1	29.8	0.7	0.25	0.06
35	50.18	200	287.5	82.2	31.9	42	13.9	29.9	0.7	0.25	0.06
36	50.18	200	285.9	81.7	31.8	41	14.2	29.4	0.4	0.26	0.06
37	50.19	200	287.4	82.1	31.8	40	14.2	28.8	0.5	0.26	0.06
38	50.19	200	289.6	82.8	31.9	42	14.3	29.7	0.4	0.25	0.06
39	50.20	200	201.9	02.2	31.8	42	14.2	29.8	0.4	0.25	0.06
40	50.20	200	200.9	0U.J	31.9	41	13.9	29.5	0.7	0.25	0.06
41	50.21 50.21	200	204.U 287 ∩	01.1 82 0	J∠.U 31 0	4Z 40	14.1	29.0 30.0	0.0	0.20	0.00
4Z 12	50.21 50.22	200	201.0	02.U 82.7	31.0 31.0	4Z 12	14.2	30.Z 30.5	0.4	0.20	0.00
43	50.22	200 200	209.0	02.7 81 8	32.0	40 12	14.Z	30.0	0.4	0.20	0.00
44 45	50.22	200	288.6	82.4	31 9	43	14.3	30.4	0.0	0.25	0.00
46	50.23	200	288.8	82.5	31.8	43	14.2	30.4	0.4	0.25	0.06

Page 1

Pile Dynamics, Inc. Case Method & iCAP® Results

PDIPLOT2 2016.2.57.6 - Printed 25-September-2017

HOLT DRILLING, RIG 17 - 50.0 FT SAMPLE RIG NO 17, MOBILE 140 LI										B SPT	
UP: R	MDT								Date:	25-Augus	SI-2017
BL#	Depth	BLC	EFV	ETR	BPM	FMX	VMX	CSX	RAT	DMX	DFN
	ft	bl/ft	k-ft	(%)	bpm	kips	f/s	ksi	[]	in	in
47	50.24	200	288.4	82.4	31.9	42	14.1	30.3	0.4	0.24	0.06
48	50.24	200	288.2	82.3	31.9	42	14.0	30.3	0.7	0.24	0.06
49	50.25	200	291.1	83.2	31.8	43	14.2	30.4	0.4	0.25	0.06
50	50.25	200	285.0	81.4	31.9	42	13.8	30.0	0.7	0.25	0.06
	A	verage	285.3	81.5	31.9	42	14.1	30.0	0.5	0.25	0.06
	Sto	d. Dev.	3.1	0.9	0.1	0	0.1	0.3	0.2	0.02	0.01
	Ma	ximum	291.1	83.2	32.0	43	14.3	30.6	0.9	0.32	0.07
	Mi	nimum	279.3	79.8	31.7	40	13.7	28.8	0.4	0.22	-0.03
	Total number of blows analyzed: 49										

BL# Sensors

2-50 F1: [328NWJ2] 220.6 (1.00); F2: [328NWJ2] 220.6 (1.00); A1: [K2449] 340.0 (1.00); A2: [K3258] 337.0 (1.00)

- **BL#** Comments
- 1 Start of test on 8/25/2017 at 1:59 PM
- 50 End of test on 8/25/2017 at 2:00 PM

Time Summary

Drive 1 minute 32 seconds 1:59 PM - 2:00 PM BN 1 - 50

Page 2

May 9, 2013

Mr. Dale Abernathy Holt Services, Inc. 13000 Lakeholme Road Sw Lakewood, WA 98498

Re: Penetration Test Energy Measurements Rig B2177GW, 140lb and 300 lb ram, NW-J, November 1, 2012 Landa Track Rig Model L-10-T, 140 lb ram, NW-J, April 17, 2013 Tera-Sonic CC-150, 140 lb ram, AW-J, April 19, 2013 King and Pierce County, Washington

RMDT Job No. 12F53

Dear Mr. Abernathy,

This letter presents energy transfer measurements made during Penetration Tests for the drill rigs referenced above. Robert Miner Dynamic Testing, Inc. (RMDT) made dynamic measurements with a Pile Driving Analyzer[®] as a hammer advanced the NW or AW rod during soil sampling.

The purpose of RMDT's testing was the measurement of energy transferred to the drill rods. Measurements were made on a sections of NW or AW gauge rod at the top of the drill rod. Strain gages and accelerometers on the rod were connected to a Pile Driving Analyzer[®] (PDA) which generally processed acceleration and strain measurements from each hammer blow and stored both the measurements and computed results. Measurements and data processing generally followed the ASTM D 4633-10 standard. Energy transfer past the gage location, EFV, was computed by the PDA using force and velocity records as follows:

 $EFV = \int_{a}^{b} F(t) v(t) dt$

The value "a" corresponds to the start of the record which is when the energy transfer begins and "b" is the time at which energy transferred to the rod reaches a maximum value. Appendix A contains more information on our measurement equipment and methods of analysis. The EFV energy calculation is identical to the EMX energy result discussed in Appendix A. The EFV and EMX values apply to the sensor location near the top of the rod.

TEST DETAILS

Rig B2177GW, November 1, 2012

Testing occurred on November 1, 2012. Boring B59 was advanced at the Holt Services Yard located in Lakewood. Washington. The drill rig was a Model B59 manufactured by Mobile Drill International (Mobile). The automatic hammer in use during our testing was also manufactured

 Mailing Address:
 P.O. Box 340, Manchester, WA, 98353, USA
 Phone: 360-871-5480

 Location:
 2288 Colchester Dr. E., Ste A, Manchester, WA, 98353
 Fax: 360-871-5483

SPT Energy Measurements, Holt Services, Inc. RMDT Job No. 12F53

by Mobile and was reported to use either a 140 lb or a 300 lb ram. A 140 lb and 300 lb ram were used to advance a standard split spoon and a 3" O.D. split spoon sampler, respectively. NW size rod was used during all testing.

Track Rig Model L-10-T, April 17, 2013

Testing occurred on April 17, 2013. Boring E330-B28 was advanced along the proposed Sound Transit East Link Lightrail Line near 116th Ave NE and NE 8th St in Bellevue, Washington. The drill rig was a track-mounted Landa Drilling Services, Inc. Limited Access Rig (SN:130115). The automatic hammer in use during our testing was reported to use a 140 lb ram to advance a standard split spoon sampler. NW size rod was used during all testing

Terra-Sonic CC150 Track Rig, April 19, 2013

Testing occurred on April 19, 2013. Boring E340-B12 was advanced along the proposed Sound Transit East Link Lightrail Line near 124th Ave NE and NE 14th St in Bellevue, Washington. The drill rig was a track-mounted Terra-Sonic Rig. The automatic hammer in use during our testing was a Mobile self compensating autohammer and was reported to use a 140 lb ram to advance a standard split spoon sampler. AW size rod was used during all testing.

RESULTS

Summaries of the results for tests conducted at each of the three test sites (and ram weights) are given in Tables 1 through 4. The tabulated results include the starting sample depth, the penetration resistance, the number of hammers blows in our data set, measured energy transfer, EFV, the computed transfer efficiency, ETR, and the hammer blow rate, BPM. Appendix B contains detailed numeric results for each individual test.

Energy measurements must be divided by the theoretical free fall energy of the hammer to obtain an efficiency. A 140 lb ram raised 30 inches above an impact surface has 350 lb-ft of potential energy. A 300 lb ram raised 30 inches above an impact surface has 750 lb-ft of potential energy. Thus, the transfer energy results for sampling with the 140 and 300 lb rams may be divided by 350 and 750 lb-ft, respectively, to yield the ratio of the delivered energy to the nominal potential energy. This efficiency ratio, ETR, is given for each sample interval as a percent efficiency.

Rig B2177GW, November 1, 2012

Five sample returns were monitored while a 140 lb ram and standard split spoon sampler were in use. The overall average ETR was 98 percent and the average hammer blow rate was 22 blows per minute.

_

٦

Table 1. Summa and Sp	Table 1. Summary of Test Details and Results for Rig B2177GW using a 140-lb ramand Split Spoon Sampler, November 1, 2012							
Sample Name and Start Depth	amePenetrationNumberAverageAveragertResistanceof BlowsTransferTransferinEnergyEfficiencyData SetEFVETR							
(Blow/Set) (lb-ft) (percent) (blo								
20 ft	7/1 ft	7	300	86	24			
35 ft	6/1 ft	6	354	101	21			
40 ft	4/1 ft	4	353	101	22			
55 ft	5/1 ft	5	354	101	22			
65 ft	19/1 ft	19	356	102	22			
		Average:	343	<mark>98</mark>	22			

For this drilling rig on November 1, 2012 five sample intervals were monitored while a 300 lb ram and a 3" O.D. split spoon sampler were used. For the 300 lb ram the average ETR values within the sample intervals ranged from 99 to 103 percent. The overall average ETR was 101 percent and the average hammer blow rate was 23 blows per minute.

Table 2. Summa and 3"(Table 2. Summary of Test Details and Results for Rig B2177GW using a 300-lb ram and 3"O.D. Sampler, November 1, 2012							
Sample Name and Start Depth	Penetration Resistance (Blow/Set)	Number of Blows in Data Set	Average Transfer Energy EFV (Ib-ft)	Average Transfer Efficiency ETR (percent)	Average Hammer Blow Rate BPM (blow/min)			
25 ft	12/1 ft	12	739	99	25			
30 ft	6/1 ft	6	738	98	24			
45 ft	3/1 ft	3	769	103	21			
50 ft	3/1 ft	3	770	103	23			
60 ft	3/1 ft	3	759	101	20			
		Average:	755	101	23			

Track Rig Model L-10-T, April 17, 2013

Six sample returns were monitored while the 140 lb ram and standard split spoon sampler were in use. For the 140 lb ram the average ETR values within the sample intervals ranged from 83 to 90 percent. The overall average ETR value was 87 percent. The hammer strike rate was reduced after Sample 50 ft was recorded to determine if the hammer strike rate (BPM) influenced the recorded transfer energy (EFV). Test results reported only modest variations to the calculated EFV at hammer strike rates between 24 and 49 BPM.

Table 3. Summa and Sta	Table 3. Summary of Test Details and Results for Rig L-10-T using a 140-lb ram and Standard Split Spoon Sampler, April 17, 2013							
Sample Name and Start Depth	Penetration Resistance (Blow/Set)	Number of Blows in Data Set	Average Transfer Energy EFV (Ib-ft)	Average Transfer Efficiency ETR (percent)	Average Hammer Blow Rate BPM (blow/min)			
35 ft	50/6 in	49	296	85	48			
40 ft	50/6 in	50	307	88	46			
45 ft	75/1 ft	75	308	88	49			
50 ft	66/1 ft	66	315	90	49			
55 ft	50/4 in	40	292	83	24			
60 ft	50/6 in	50	311	89	25			
		Average:	305	87	40			

Terra-Sonic CC150 Track Rig

Three sample returns were monitored while the 140 lb ram and standard split spoon sampler were in use before artesian pressures forced drilling to halt for the day. The overall average ETR and hammer blow rate was 95 percent and 46 blows per minute, respectively.

Table 4. Summary of Test Details and Results for Terra-Sonic CC150 Track Rig using a140-lb ram and Standard Split Spoon Sampler, April 19, 2013							
Sample Name and Start Depth	Penetration Resistance (Blow/Set)	Number of Blows in Data Set	Average Transfer Energy EFV (Ib-ft)	Average Transfer Efficiency ETR (percent)	Average Hammer Blow Rate BPM (blow/min)		
20 ft	30/1 ft	30	339	97	44		
30 ft	50/4 in	50	325	93	47		
45 ft	50/6 in	44	338	97	48		
		Average:	334	<mark>95</mark>	46		

It was a pleasure to assist you and to participate on this project with the staff of Holt Services, Inc. Please do not hesitate to contact us if you or your client have any questions about this report.

Sincerely,

Andrew Banas Staff Engineer Robert Miner Dynamic Testing, Inc.

w g. Miner

Robert Miner President

Appendix B

Summary of Case Method Field Results

APPENDIX A AN INTRODUCTION INTO DYNAMIC PILE TESTING METHODS

The following has been written by Goble Rausche Likins and Associates, Inc. and may only be copied with its written permission.

BACKGROUND

Modern procedures of design and construction control require verification of bearing capacity and integrity of deep foundations during preconstruction test programs and also production installation. Dynamic pile testing methods meet this need economically and reliably, and therefore, form an important part of a quality assurance program when deep foundations are executed. Several dynamic pile testing methods exist; they have different benefits and limitations and different requirements for proper execution.

The Case Method of dynamic pile testing, named after the Case Institute of Technology where it was developed between 1964 and 1975, requires that a substantial ram mass (such as that of a pile driving hammer) impacts the pile top such that the pile undergoes at least a small permanent set. The method is therefore also referred to as a "High Strain The Case Method requires dynamic Method". measurements on the pile or shaft under the ram impact and then an evaluation of various quantities based on closed form solutions of the wave equation, a partial differential equation describing the motion of a rod under the effect of an impact. Conveniently, measurements and analyses are done by a single piece of equipment: the Pile Driving Analyzer® (PDA). However, for bearing capacity evaluations an important additional method is CAPWAP® which performs a much more rigorous analysis of the dynamic records than the simpler Case Method.

A related analysis method is the "Wave Equation Analysis" which calculates a relationship between bearing capacity and pile stress and field blow count. The GRLWEAP™ program performs this analysis and provides a complete set of helpful information and input data.

The following description deals primarily with the Case Method or "High Strain Test" Method of pile testing, however, for the sake of completeness, the "Low Strain Test" performed with the Pile Integrity Test™ (PIT), mainly for pile integrity evaluation, will also be described.

RESULTS FROM DYNAMIC TESTING

There are two main objectives of high strain dynamic pile testing:

- Dynamic Pile Monitoring and
- Dynamic Load Testing.

Dynamic pile monitoring is conducted during the installation of impact driven piles to achieve a safe and economical pile installation. Dynamic load testing, on the other hand, has as its primary goal the assessment of pile bearing capacity. It is applicable to both cast *insitu* piles or drilled shafts and impact driven piles during restrike.

Dynamic Pile Monitoring

During pile installation, the sensors attached to the pile measure pile top force and velocity. A PDA conditions and processes these signals and calculates or evaluates:

- <u>Bearing capacity</u> at the time of testing, including an assessment of shaft resistance development and driving resistance. This information supports formulation of a driving criterion.
- <u>Dynamic pile stresses</u>, axial and averaged over the pile cross section, both tensile and compressive, during pile driving to limit the potential of damage either near the pile top or along its length. Bending stresses can be evaluated at the point of sensor attachment.
- <u>Pile integrity</u> assessment by the PDA is based on the recognition of certain wave reflections from along the pile. If detected early enough, a pile may be saved from complete destruction. On the other hand, once damage is recognized measures can be taken to prevent reoccurrence.
- <u>Hammer performance</u> parameters including the energy transferred to the pile, the hammer speed in blows per minute and the stroke of open ended diesel hammers.

Dynamic Pile Load Testing

Bearing capacity testing of either driven piles or drilled shafts applies the same basic measurement approach of dynamic pile monitoring. However, the test is done independent of the pile installation process and therefore a pile driving hammer or other dynamic loading device may not be available. If a special ram has to be mobilized then its weight should be between 0.8 and 2% of the test load (e.g. between 4 and 10 tons for a 500 ton test load) to assure sufficient soil resistance activation.

For a successful test, it most important that the test is conducted after a <u>sufficient waiting time</u> following pile installation for soil properties approaching their long term condition or concrete to properly set. During testing, PDA results of pile/shaft stresses and transferred energy are used to maintain safe stresses and assure sufficient resistance activation. For safe and sufficient testing of drilled shafts, ram energies are often increased from blow to blow until the test capacity has been activated. On the other hand, restrike tests on driven piles may require a warm hammer so that the very first blow produces a complete resistance activation. Data must be evaluated by CAPWAP for bearing capacity.

After the dynamic load test has been conducted with sufficient energy and safe stresses, the CAPWAP analysis provides the following results:

- <u>Bearing capacity</u> i.e. the mobilized capacity present at the time of testing
- <u>Resistance distribution</u> including shaft resistance and end bearing components
- <u>Stresses in pile or shaft</u> calculated for both the static load application and the dynamic test. These stresses are averages over the cross section and do not include bending effects or nonuniform contact stresses, e.g. when the pile toe is on uneven rock.
- <u>Shaft impedance</u> vs depth; this is an estimate of the shaft shape if it differs substantially from the planned profile
- <u>Dynamic soil parameters</u> for shaft and toe, i.e. damping factors and quakes (related to the dynamic

stiffness of the resistance at the pile/soil interface.)

MEASUREMENTS

PDA

The basis for the results calculated by the PDA are pile top strain and acceleration measurements which are converted to force and velocity records, respectively. The PDA conditions, calibrates and displays these signals and immediately computes average pile force and velocity thereby eliminating bending effects. Using closed form Case Method solutions, based on the one-dimensional linear wave equation, the PDA calculates the results described in the analytical solutions section below.

HPA

The ram velocity may be directly obtained using radar technology in the Hammer Performance AnalyzerTM. For this unit to be applicable, the ram must be visible. The impact velocity results can be automatically processed with a PC or recorded on a strip chart.

Saximeter™

For open end diesel hammers, the time between two impacts indicates the magnitude of the ram fall height or stroke. This information is not only measured and calculated by the PDA but also by the convenient, hand-held Saximeter.

ΡΙΤ

The Pile Integrity Tester[™] (PIT) can be used to evaluate defects in concrete piles or shafts which may have occurred during driving or casting. Also timber piles of limited length can be tested in that manner. This so-called "Low Strain Method" or "Pulse-Echo Method" of integrity testing requires only the measurement of acceleration at the pile top. The stress wave producing impact is then generated by a small hand-held hammer and the records interpreted in the time domain. PIT also supports the so-called "Transient Response Method" which requires the additional measurement of the hammer force and an analysis in the frequency domain. This method may also be used to evaluate the unknown length of deep foundations under existing structures.

ANALYTICAL SOLUTIONS BEARING CAPACITY

Wave Equation

GRL has written the GRLWEAP[™] program which calculates a relationship between bearing capacity, pile stress and blow count. This relationship is often called the "bearing graph." Once the blow count is known from pile installation logs, the bearing graph yields the bearing capacity. This approach requires no measurements and therefore can be performed during the design stage of a project, for example for the selection of hammer, cushion and pile size.

After dynamic pile monitoring and/or dynamic load testing has been performed, the "Refined Wave Equation Analysis" or RWEA (see schematic below) is often performed by inputting the PDA and CAPWAP calculated parameters. Then the bearing graph from the RWEA is the basis for a safe and sufficient driving criteria.

Case Method

The Case Method is a closed form solution based on a few simplifying assumptions such as ideal plastic soil behavior and an ideally elastic and uniform pile. Given the measured pile top force F(t) and pile top velocity v(t), the total soil resistance is

$$R(t) = \frac{1}{2} \{ [F(t) + F(t_2)] + Z[v(t) - v(t_2)] \}$$
(1)

where

- t = a point in time after impact
- t_2 = time t + 2L/c
- L = pile length below gages
- c = $(E/\rho)^{\frac{1}{2}}$ is the speed of the stress wave
- ρ = pile mass density
- Z = EA/c is the pile impedance
- E = elastic modulus of the pile (ρc^2)
- A = pile cross sectional area

The total soil resistance consists of a dynamic $(\rm R_{d})$ and a static $(\rm R_{s})$ component. The static component is therefore

$$R_{s}(t) = R(t) - R_{d}(t)$$
(2)

The dynamic component may be computed from a soil damping factor, J, and a pile toe velocity, $v_t(t)$ which is conveniently calculated for the pile toe. Using wave considerations, this approach leads immediately to the dynamic resistance

$$R_{d}(t) = J[F(t) + Zv(t) - R(t)]$$
(3)

and finally to the static resistance by means of Equation 2.

There are a number of ways in which Eq. 1 through 3 can be evaluated. Most commonly, t_2 is set to that time at which the static resistance becomes maximum. The result is the so-called **RMX** capacity. Damping factors for RMX typically range between 0.5 for coarse grained materials to 1.0 for clays. The **RSP** capacity (this method is most commonly referred to in the literature, yet it is not very frequently used) requires damping factors between 0.1 for sand and 1.0 for clay. Another capacity, **RA2**, determines the capacity at a time when the pile is essentially at rest and thus damping is small; RA2

therefore requires no damping parameter. In any event, the proper Case Method and its associated damping parameter is most conveniently found after a CAPWAP analysis has been performed.

The static resistance calculated by Case Method or CAPWAP is the mobilized resistance at the time of testing. Consideration therefore has to be given to soil setup or relaxation effects and whether or not a sufficient set has been achieved under the test loading that would correspond to a full activation of the ultimate soil resistance.

The PDA also calculates an estimate of shaft resistance as the difference between force and velocity times impedance at the time immediately prior to the return of the stress wave from the pile toe. This shaft resistance is not reduced by damping effects and is therefore called the total shaft resistance **SFT**. A correction for damping effects produces the static shaft resistance estimate, **SFR**.

The Case Method solution is simple enough to be evaluated "in real time," i.e. between hammer blows, using the PDA. It is therefore possible to calculate all relevant results for all hammer blows and plot these results as a function of depth or blow number. This is done in the PDAPLOT program.

CAPWAP

The CAse Pile Wave Analysis Program combines the wave equation pile and soil model with the Case Method measurements. Thus, the solution includes not only the total and static bearing capacity values but also the shaft resistance, end bearing, damping factors and soil stiffnesses. The method iteratively calculates a number of unknowns by signal matching. While it is necessary to make hammer performance assumptions for a GRLWEAP analysis, the CAPWAP program works with the pile top measurements. Furthermore, while GRLWEAP and Case Method require certain assumptions regarding the soil behavior, CAPWAP calculates these soil parameters.

STRESSES

During pile monitoring, it is important that compressive stress maxima at pile top and toe and tensile stress maxima somewhere along the pile be calculated for each hammer blow. At the pile top (location of sensors) both the maximum compression stress, **CSX**, and the maximum stress from individual strain transducers, **CSI**, are directly obtained from the measurements. Note that CSI is greater than or equal to CSX and the difference between CSI and CSX is a measure of bending in the plane of the strain transducers. Note also that all stresses calculated for locations below the sensors are averaged over the pile cross section and therefore do not include components from either bending or eccentric soil resistance effects.

The PDA calculates the compressive stress at the pile bottom, **CSB**, assuming (a) a uniform pile and (b) that the pile toe force is the maximum value of the total resistance R(t) minus the total shaft resistance, SFT. Again, for this stress estimation uniform resistance force are assumed (e.g. not a sloping rock.)

For concrete piles, the maximum tension stress, **TSX**, is also of great importance. It occurs at some point below the pile top. The maximum tension stress can be computed from the pile top measurements by finding the maximum tension wave (either traveling upward, $W_{\rm u}$, or downward, $W_{\rm d}$) and reducing it by the minimum compressive wave traveling in opposite direction.

$$W_{\mu} = \frac{1}{2} [F(t) - Zv(t)]$$
(4)

$$W_{d} = \frac{1}{2}[F(t) + Zv(t)]$$
 (5)

CAPWAP also calculates tensile and compressive stresses along the pile and, in general, more accurately than the PDA. In fact, for non-uniform piles or piles with joints, cracks or other discontinuities, the closed form solutions from the PDA may be in error.

PILE INTEGRITY

High Strain Tests (PDA)

Stress waves in a pile are reflected wherever the pile impedance, $Z = EA/c = \rho cA = A \sqrt{(E \rho)}$, changes. Therefore, the pile impedance is a measure of the quality of the pile material (E, ρ , c) and the size of its cross section (A). The reflected waves arrive at the pile top at a time which is greater the farther away from the pile top the reflection occurs. The magnitude of the change of the upward traveling wave (calculated from the measured force and velocity, Eq. 4) indicates the extent of the cross sectional change. Thus, with β_i (**BTA**) being a relative integrity factor which is unity for no impedance change and zero for the pile end, the following is calculated by the PDA.

$$\beta_i = (1 - \alpha_i)/(1 + \alpha_i) \tag{6}$$

with

$$\alpha_{i} = \frac{1}{2} (W_{UR} - W_{UD}) / (W_{Di} - W_{UR})$$
(7)

where

- W_{UR} is the upward traveling wave at the onset of the reflected wave. It is caused by resistance.
- W_{UD} is the upwards traveling wave due to the damage reflection.
- $W_{\mbox{\scriptsize Di}}$ is the maximum downward traveling wave due to impact.

It can be shown that this formulation is quite accurate as long as individual reflections from different pile impedance changes have no overlapping effects on the stress wave reflections.

Without rigorous derivation, it has been proposed to consider as slight damage when β is above 0.8 and a serious damage when β is less than 0.6.

Low Strain Tests (PIT)

The pile top is struck with a held hand hammer and the resulting pile top velocity is measured, displayed and interpreted for signs of wave reflections. In general, a comparison of the reflected acceleration leads to a relative measure of extent of damage, again the location of the problem is indicated by the arrival time of the reflection. PIT records can also be interpreted by the β -Method. However, low strain tests do not activate much resistance which simplifies Eq. 7 since W_{UR} is then equal to zero.

For drilled shafts and PIT records that clearly show a toe reflection, an approximate shaft profile can be calculated from low strain records using the PITSTOP program's PROFILE routine.

HAMMER PERFORMANCE

The PDA calculates the energy transferred to the pile top from:

$$\mathsf{E}(\mathsf{t}) = {}_{\mathsf{o}} \int^{\mathsf{t}} \mathsf{F}(\mathsf{t}) \mathsf{v}(\mathsf{t}) \, \mathsf{d}\mathsf{t} \tag{8a}$$

The maximum of the E(t) curve is the most important information for an overall evaluation of the performance of a hammer and driving system. This **EMX** value allows for a classification of the hammer's performance when presented as the rated transfer efficiency, also called energy transfer ratio (**ETR**) or global efficiency

$$e_{T} = EMX/E_{R}$$
 (8b)

where

 E_{R} is the manufacturer's rated energy value.

Both Saximeter and PDA calculate the stroke (**STK**) of an open end diesel hammer using

$$STK = (g/8) T_B^2 - h_L$$
 (9)

where

- g is the earth's gravitational acceleration,
- \tilde{T}_{B} is the time between two hammer blows,
- h_L is a stroke loss value due to gas compression and time losses during impact (usually 0.3 ft or 0.1 m).

DETERMINATION OF WAVE SPEED

An important facet of dynamic pile testing is an assessment of pile material properties. Since in general force is determined from strain by multiplication with elastic modulus, E, and cross sectional area, A, the dynamic elastic modulus has to be determined for pile materials other than steel. In general, the records measured by the PDA clearly indicate a pile toe reflection as long as pile penetration per blow is greater than 1 mm or .04 inches. The time between the onset of the force and velocity records at impact and the onset of the reflection from the toe (usually apparent by a local maximum of the wave up curve) is the so-called wave travel time, T. Dividing 2L (L is here the length of the pile below sensors) by T leads to the stress wave speed in the pile:

 $c = 2L/T \tag{10}$

The elastic modulus of the pile material is related to the wave speed according to the linear elastic wave equation theory by

$$E = c^2 \rho \tag{11}$$

Since the mass density of the pile material, ρ , is usually well known (an exception is timber for which samples should be weighed), the elastic modulus is easily found from the wave speed. Note, however, that this is a dynamic modulus which is generally higher than the static one and that the wave speed depends to some degree on the strain level of the stress wave. For example, experience shows that the wave speed from PIT is roughly 5% higher than the wave speed observed during a high strain test.

Other Notes:

- If the pile material is nonuniform then the wave speed c, according to Eq. 10, is an average wave speed and does not necessarily reflect the pile material properties of the location where the strain sensors are attached to the pile top. For example, pile driving often causes fine tension cracks some distance below the top of concrete piles. Then the average c is slower than that at the pile top. It is therefore recommended to determine E in the beginning of pile driving and not adjust it when the average c changes.
- If the pile has such a high resistance that there is no clear indication of a toe reflection then the wave speed of the pile material must be determined either by assumption or by taking a sample of the concrete and measuring its wave speed in a simple free column test. Another possibility is to use the proportionality relationship, discussed under "DATA QUALITY CHECKS" to find c as the ratio between the measured velocity and measured strain.

DATA QUALITY CHECKS

Quality data is the first and foremost requirement for accurate dynamic testing results. It is therefore important that the measurement engineer performing PDA or PIT tests has the experience necessary to recognize measurement problems and take appropriate corrective action should problems develop. Fortunately, dynamic pile testing allows for certain data quality checks because two independent measurements are taken that have to conform to certain relationships.

Proportionality

As long as there is only a wave traveling in one direction, as is the case during impact when only a downward traveling wave exists in the pile, force and velocity measured at the pile top are proportional

$$F = v Z = v (EA/c)$$
(12a)

This relationship can also be expressed in terms of stress

$$\sigma = v (E/c) \tag{12b}$$

or strain

$$\epsilon = v / c$$
 (12c)

This means that the early portion of strain times wave speed must be equal to the velocity unless the proportionality is affected by high friction near the pile top or by a pile cross sectional change not far below the sensors. Checking the proportionality is an excellent means of assuring meaningful measurements.

Measurements are always taken at opposite sides of the pile as a means of calculating the average force and velocity in the pile. The velocity on the two sides of the pile is very similar even when high bending exists. Thus, an independent check of the velocity measurements is easy and simple.

Strain measurements may differ greatly between the two sides of the pile when bending exists. It is even possible that tension is measured on one side while very high compression exists on the other side of the pile. In extreme cases, bending might be so high that it leads to a nonlinear stress distribution. The averaging of the two strain signals does then not lead to the average pile force and proportionality will not be achieved.

When testing drilled shafts, measurements of strain may also be affected by local concrete quality variations. It is then often necessary to use four strain transducers spaced at 90 degrees around the pile for an improved strain data quality. The use of four transducers is also recommended for large pile diameters, particularly when it is difficult to mount the sensors at least two pile widths or diameters below the pile top.

LIMITATIONS, ADDITIONAL CONSIDERATIONS

Mobilization of capacity

Estimates of pile capacity from dynamic testing indicate the **mobilized pile capacity at the time of testing**. At very high blow counts (low set per blow), dynamic test methods tend to produce lower bound capacity estimates as not all resistance (particularly at and near the toe) is fully activated.

Time dependent soil resistance effects

Static pile capacity from dynamic method calculations provide an estimate of the axial pile capacity. Increases and decreases in the pile capacity with time typically occur (soil setup/relaxation). Therefore, <u>restrike testing</u> usually yields a better indication of long term pile capacity than a test at the end of pile driving. Often a wait period of one or two days between end of driving and restrike is satisfactory for a realistic prediction of pile capacity but this waiting time depends, among other factors, on the permeability of the soil.

(A) Soil setup

Because excess positive pore pressures often develop during pile driving in fine grained soil (clays, silts or even fine sands), the capacity of a pile at the time of driving may often be less than the long term pile capacity. These pore pressures reduce the effective stress acting on the pile thereby reducing the soil resistance to pile penetration, and thus the pile capacity at the time of driving. As these pore pressures dissipate, the soil resistance acting on the pile increases as does the axial pile capacity. This phenomena is routinely called soil setup or soil freeze.

(B) Relaxation

Relaxation (capacity reduction with time) has been observed for piles driven into weathered shale, and may take several days to fully develop. Pile capacity estimates based upon initial driving or short term restrike tests can significantly overpredict long term pile capacity. Therefore, piles driven into shale should be tested after a minimum one week wait either statically or dynamically (with particular emphasis than on the first few blows). Relaxation has also been observed for displacement piles driven into dense saturated silts or fine sands due to a negative pore pressure effect at the pile toe. Again, restrike tests should be used, with great emphasis on early blows.

Capacity results for open pile profiles

Larger diameter open ended pipe piles (or H-piles which do not bear on rock) may behave differently under dynamic and static loading conditions. Under dynamic loads the soil inside the pile or between its flanges may slip and produce internal friction while under static loads the plug may move with the pile, thereby creating end bearing over the full pile cross section. As a result both friction and end bearing components may be different under static and dynamic conditions.

CAPWAP Analysis Results

A portion of the soil resistance calculated on an individual soil segment in a CAPWAP analysis can usually be shifted up or down the shaft one soil segment without significantly altering the match quality. Therefore, use of the CAPWAP resistance distribution for uplift, downdrag, scour, or other geotechnical considerations should be made with an understanding of these analysis limitations.

Stresses

PDA and CAPWAP calculated stresses are average values over the cross section. Additional allowance has to be made for bending or non-uniform contact stresses. To prevent damage it is therefore important to maintain good hammer-pile alignment and to protect the pile toes using appropriate devices or an increased cross sectional area.

In the United States is has become generally acceptable to limit the dynamic installation stresses of driven piles to the following levels:

90% of yield strength for steel piles

85% of the concrete compressive strength - after subtraction of the effective prestress - for concrete piles in compression

- 100% of effective prestress plus $\frac{1}{2}$ of the concrete's tension strength for prestressed piles in tension
- 70% of the reinforcement strength for regularly reinforced concrete piles in tension
- 300% of the static design allowable stress for timber

Note that the dynamic stresses may either be directly measured at the pile top by the PDA or calculated by the PDA for other locations along the pile based on the pile top measurements.

Additional design considerations

Numerous factors have to be considered in pile foundation design. Some of these considerations include

- additional pile loading from downdrag or negative skin friction,
- lateral and uplift loading requirements
- effective stress changes (due to changes in water table, excavations, fills or other changes in overburden),
- long term settlements in general and settlement from underlying weaker layers and/or pile group effects,

These factors have not been evaluated by GRL and have not been considered in the interpretation of the dynamic testing results. The foundation designer should determine if these or any other considerations are applicable to this project and the foundation design.

Wave equation analysis results

The results calculated by the wave equation analysis program depend on a variety of hammer, pile and soil input parameters. Although attempts have been made to base the analysis on the best available information, actual field conditions may vary and therefore stresses and blow counts may differ from the predictions reported. Capacity predictions derived from wave equation analyses should use restrike information. However, because of the uncertainties associated with restrike blow counts and restrike hammer energies, correlations of such results with static test capacities with have often displayed considerable scatter.

As for PDA and CAPWAP, the theory on which GRLWEAP is based is the one-dimensional wave equation. For that reason, stress predictions by the wave equation analysis can only be averages over the pile cross section. Thus, bending stresses or stress concentrations due to non-uniform impact or uneven soil or rock resistance are not considered in these results. Stress maxima calculated by the wave equation are usually subjected to the same limits as those measured directly or calculated from measurements by the PDA.

Appendix B

Summary of Case Method Field Results

Robert Miner Dynamic Testing, Inc. - Case Method & iCAP® Results

PDIPLOT Ver. 2012.2 - Printed: 26-Apr-2013

HOLT SERVICES - 20 FT, B59 -NWJ

Test date: 1-Nov-2012

1 - Start of test on 11/1/2012 at 9:18:43 AM

2 - End of test on 11/1/2012 at 9:19:08 AM

Robert Miner Dynamic Testing, Inc. Case Method & iCAP® Results

Page 1 of 1 PDIPLOT Ver. 2012.2 - Printed: 26-Apr-2013

HOLT	SERVICES - 2	20 FT, B59								NWJ
OP: F	RMDT								lest date: 1-	Nov-2012
AR:	1.43 in^2								SP: C).492 k/ft3
LE:	23.40 ft								EM: 29),869 ksi
WS:	16,771.1 f/s								JC:	0.35
CSI:	Max F1 or F2	Compr. Stress						BI	PM: Blows pe	er Minute
CSX:	Max Measure	d Compr. Stress	6					FI	IX: Maximur	n Force
ETR:	Energy Transf	er Ratio						VI	MX: Maximur	n Velocity
EFV:	Energy of FV							R	AT: SPT Len	gth Ratio
BL#	depth	BLC	CSI	CSX	ETR	EFV	BPM	FMX	VMX	RAT
	ft	bl/ft	ksi	ksi	(%)	k-ft	**	kips	f/s	0
5	20.63	8	29.3	27.9	83.5	0.292	25.2	40	15.3	1.1
6	20.75	8	29.2	28.0	84.8	0.297	25.2	40	16.6	1.1
7	20.88	8	28.4	27.4	87.1	0.305	25.2	39	16.2	1.1
8	21.00	8	30.2	28.4	87.2	0.305	25.1	41	16.7	1.1
9	21.17	6	30.4	28.4	85.7	0.300	25.2	41	16.3	1.1
10	21.33	6	28.1	27.5	86.8	0.304	19.3	39	16.8	1.1
11	21.50	6	29.7	28.2	85.7	0.300	25.1	40	15.8	1.1
		Average	29.3	28.0	85.8	0.300	24.3	40	16.2	1.1
		Std. Dev.	0.8	0.4	1.3	0.004	2.1	1	0.5	0.0
		Maximum	30.4	28.4	87.2	0.305	25.2	41	16.8	1.1
		Minimum	28.1	27.4	83.5	0.292	19.3	39	15.3	1.1
				Тс	otal number of	of blows analy	zed: 7			
р і <i>4</i>	donth (ft)	Com	manta							

BL#	depth (ft)	Comments

1	20.13	Start of test on 11/1/20

Start of test on 11/1/2012 at 9:18:43 AM End of test on 11/1/2012 at 9:19:08 AM 11 21.50

Time Summary

Drive 25 seconds 9:18:43 AM - 9:19:08 AM (11/1/2012) BN 1 - 11

Robert Miner Dynamic Testing, Inc. - Case Method Results

PDIPLOT Ver. 2010.2 - Printed: 1-Nov-2012

HOLT SERVICES - 25 FT B59 NWJ

Test date: 1-Nov-2012

[2]]

Robert Miner Dynamic Testing, Inc. Case Method Results

Page 1 of 1 PDIPLOT Ver. 2010.2 - Printed: 1-Nov-2012

HOLT SERVICES - 25 FT B59

NWJ

OP: RI	MDT								Test date: 1-N	lov-2012
AR:	1.43 in^2								SP: 0.	492 k/ft3
LE:	30.40 ft								EM: 29,	869 ksi
WS: 16	6,771.1 f/s								JC:	0.35
ETR:	Energy Trans	fer Ratio						AMX:	Maximum Acc	eleration
EFV:	Energy of FV	,						SFT:	Skin friction to	otal
BPM:	Blows per Mi	nute						EF2: Energy of F^2		
FMX:	Maximum Fo	rce						RAT:	SPT Length R	atio
VMX:	Maximum Ve	locity							U	
BL#	BLC	ÉTR	EFV	BPM	FMX	VMX	AMX	SFT	EF2	RAT
	bl/ft	(%)	k-ft	**	kips	f/s	g's	kips	k-ft	Π
6	10	99.2	0.744	24.6	43	16.2	2,531	25	0.813	1.1
7	10	98.1	0.736	24.6	43	16.4	2,487	26	0.806	1.1
8	10	97.7	0.733	24.6	44	16.4	2,541	27	0.808	1.1
9	10	99.3	0.745	24.6	43	16.3	2,388	26	0.812	1.1
10	10	99.1	0.744	24.6	43	16.3	2,360	24	0.808	1.1
11	14	98.4	0.738	24.6	43	16.3	2,395	26	0.807	1.1
12	14	97.5	0.731	24.6	43	16.4	2,434	25	0.803	1.1
13	14	98.0	0.735	24.5	43	16.7	2,727	25	0.806	1.1
14	14	98.9	0.742	24.5	43	16.6	2,624	26	0.806	1.1
15	14	99.4	0.745	24.5	43	16.7	2,658	25	0.810	1.1
16	14	98.6	0.740	24.6	43	16.6	2,646	26	0.806	1.1
17	14	98.4	0.738	24.5	42	16.5	2,606	26	0.802	1.1
Averag	je	98.5	0.739	24.6	43	16.4	2,533	26	0.807	1.1
Maxim	um	99.4	0.745	24.6	44	16.7	2,727	27	0.813	1.1
@ Blov	N#	15	9	6	8	15	13	8	6	10
				Tota	al number of	blows ana	yzed: 12			

Time Summary

Drive 39 seconds 10:03:13 - 10:03:52 (11/1/2012) BN 1 - 17

Robert Miner Dynamic Testing, Inc. - Case Method Results

PDIPLOT Ver. 2010.2 - Printed: 1-Nov-2012

HOLT SERVICES - 30 FT B59 NWJ

Test date: 1-Nov-2012

[2]]

Robert Miner Dynamic Testing, Inc. Case Method Results

Page 1 of 1 PDIPLOT Ver. 2010.2 - Printed: 1-Nov-2012

HOLT SERVICES - 30 FT B59 OP: RMDT						
AR:	1.43 in^2					
LE:	35.40 ft					

ETR: Energy Transfer Ratio

WS: 16,771.1 f/s

EFV: Energy of FV

BPM: Blows per Minute

VMX: Maximum Velocity

BLC

bl/ft

4

4

8

8

8

8

ETR

(%)

99.5

93.8

96.4

97.7

98.2

98.3

4

104.5

104.5

EFV

0.746

0.783

0.703

0.723

0.733

0.737

0.738

0.783

4

k-ft

BPM

23.5

23.6

23.6

23.6

23.6

23.6

23.6

23.6

4

FMX: Maximum Force

NWJ Test date: 1-Nov-2012 SP: 0.492 k/ft3 EM: 29,869 ksi 0.35 JC: AMX: Maximum Acceleration SFT: Skin friction total EF2: Energy of F^2 RAT: SPT Length Ratio FMX VMX AMX SFT EF2 RAT kips f/s g's kips k-ft [] 2,801 . 23 40 17.4 0.819 1.1 26 41 17.7 2,966 0.832 1.1 40 17.6 2,811 26 0.835 1.1 41 17.5 2,811 27 0.830 1.1 40 26 17.8 2,827 0.825 1.1

28

26

28

8

0.822

0.827

0.835

5

1.1

1.1

1.1

8

Average Maximum

BL#

3

4

5

6

7

8

@ Blow#

Total number of blows analyzed: 6

17.4

17.5

17.8

7

2,842

2,843

2,966

4

40

40

41

6

Time Summary

Drive 18 seconds 10:21:04 - 10:21:22 (11/1/2012) BN 1 - 8

Robert Miner Dynamic Testing, Inc. - Case Method Results

PDIPLOT Ver. 2010.2 - Printed: 1-Nov-2012

HOLT SERVICES - 35 FT B59 NWJ

Test date: 1-Nov-2012

Robert Miner Dynamic Testing, Inc. Case Method Results

Page 1 of 1 PDIPLOT Ver. 2010.2 - Printed: 1-Nov-2012 NWJ

0.398

3

1.1

3

24

7

HOLT SERVICES - 35 FT B59 OP: RMDT AR: 1.43 in^2 LE: 40.40 ft

ETR: Energy Transfer Ratio

WS: 16,771.1 f/s

BL#

3

4

5

6

7

8

Average

Maximum

EFV: Energy of FV

BPM: Blows per Minute

VMX: Maximum Velocity

BLC

bl/ft

4

4

8

8

8

8

ETR

(%)

102.1

102.2

101.3

100.7

100.7

100.3

101.2

102.2

4

EFV

k-ft

0.357

0.358

0.355

0.352

0.352

0.351

0.354

0.358

4

20.9

3

FMX: Maximum Force

NWJ Test date: 1-Nov-2012 SP: 0.492 k/ft3 EM: 29,869 ksi JC: 0.35 AMX: Maximum Acceleration SFT: Skin friction total EF2: Energy of F^2 RAT: SPT Length Ratio BPM FMX VMX AMX SFT EF2 RAT f/s kips kips k-ft [] g's 20.9 2,358 . 22 0.398 41 15.5 1.1 20.9 41 15.9 2,467 22 0.383 0.8 20.9 40 15.8 2,461 23 0.384 0.8 20.9 41 15.5 2,364 23 0.383 0.8 20.9 2,440 40 24 15.6 0.382 0.8 20.9 40 15.4 2,386 23 0.394 1.1 20.9 41 15.6 2,413 23 0.387 0.9

2,467

4

@ Blow#

Time Summary

Drive 20 seconds

11:08:09 - 11:08:29 (11/1/2012) BN 1 - 8

Total number of blows analyzed: 6

15.9

4

41

3

Robert Miner Dynamic Testing, Inc. - Case Method Results

PDIPLOT Ver. 2010.2 - Printed: 1-Nov-2012

[=1]

HOLT SERVICES - 40 FT B59 NWJ

Test date: 1-Nov-2012

Robert Miner Dynamic Testing, Inc. Case Method Results

Page 1 of 1 PDIPLOT Ver. 2010.2 - Printed: 1-Nov-2012 NWJ Test date: 1-Nov-2012 SP: 0.492 k/ft3 EM: 29,869 ksi

SFT:

0.35

JC:

AMX: Maximum Acceleration

Skin friction total

HOLT SERVICES - 40 FT B59 <u>OP: RMDT</u> AR: 1.43 in^2 LE: 45.40 ft

WS: 16,771.1 f/s ETR: Energy Transfer Ratio EFV: Energy of FV BPM: Blows per Minute

EF2: Energy of F^2 FMX: Maximum Force RAT: SPT Length Ratio VMX: Maximum Velocity BL# BLC ETR EFV BPM FMX VMX AMX SFT EF2 RAT bl/ft (%) k-ft ** kips f/s g's kips k-ft [] 3 100.5 0.352 21.7 . 40 2,799 4 16.0 26 0.402 1.1 39 4 4 101.8 0.356 21.5 16.4 2,745 28 0.397 1.1 5 4 100.3 0.351 21.7 39 15.9 2,747 28 0.395 1.1 6 4 0.352 21.7 39 2,557 24 0.397 100.7 15.9 1.1 0.353 21.6 39 16.1 2,712 27 0.398 1.1 Average 100.8 2,799 0.402 Maximum 0.356 21.7 40 28 101.8 16.4 1.1 @ Blow# 4 4 3 4 3 5 3 6 3 Total number of blows analyzed: 4

Time Summary

Drive 14 seconds

11:17:40 - 11:17:54 (11/1/2012) BN 1 - 6

Robert Miner Dynamic Testing, Inc. - Case Method Results

[=1]

HOLT SERVICES - 45 FT, B59 -NWJ

Test date: 1-Nov-2012

Robert Miner Dynamic Testing, Inc. Case Method Results

HOLT SERVICES - 45 FT, B59

1.43 in^2

OP: RMDT

AR:

Page 1 of 1 PDIPLOT Ver. 2010.2 - Printed: 1-Nov-2012 NWJ Test date: 1-Nov-2012 SP: 0.492 k/ft3 EM: 29,869 ksi JC: 0.35 AMX: Maximum Acceleration

SFT: Skin friction total

LE: 50.40 ft WS: 16,771.1 f/s ETR: Energy Transfer Ratio EFV: Energy of FV

								• • • •				
BPM: Blows per Minute									EF2: Energy of F^2 RAT: SPT Length Ratio			
FMX: Maximum Force												
VMX: Ma	aximum Ve	elocity							Ū.			
BL#	BLC	ETR	EFV	BPM	FMX	VMX	AMX	SFT	EF2	RAT		
	bl/ft	(%)	k-ft	**	kips	f/s	g's	kips	k-ft	[]		
2	2	101.8	0.764	20.9	40	17.3	2,409	33	0.841	1.1		
3	2	103.3	0.775	20.9	40	16.3	2,358	36	0.845	1.1		
4	2	102.5	0.769	20.9	40	16.5	2,433	39	0.847	1.1		
Average		102.6	0.769	20.9	40	16.7	2,400	36	0.844	1.1		
Maximum	ı	103.3	0.775	20.9	40	17.3	2,433	39	0.847	1.1		
@ Blow#		3	3	2	4	2	4	4	4	2		
				— (

Total number of blows analyzed: 3

Time Summary

Drive 9 seconds 11:43:57 - 11:44:06 (11/1/2012) BN 1 - 4

Robert Miner Dynamic Testing, Inc. - Case Method Results

[=1]

HOLT SERVICES - 50 FT, B59 -NWJ

Robert Miner Dynamic Testing, Inc. Case Method Results

Page 1 of 1 PDIPLOT Ver. 2010.2 - Printed: 1-Nov-2012 NWJ Test date: 1-Nov-2012 ٩P 0.492 k/ft3 9,869 ksi 0.35

HOLT SERVICES - 50 FT, B59 OP: RMDT

AR:	1.43 in^2								SP: 0.4	492 k/ft3
LE:	55.40 ft								EM: 29,	869 ksi
WS: 16	,771.1 f/s								JC: C	.35
ETR: E	Energy Trans	sfer Ratio						AMX: M	aximum Acc	eleration
EFV: E	Energy of FV	/						SFT: SI	kin friction to	tal
BPM: E	Blows per Mi	inute						EF2: Er	nergy of F^2	
FMX: N	Maximum Fo	orce						RAT: SI	PT Length R	atio
VMX: N	Maximum Ve	elocity							_	
BL#	BLC	ETR	EFV	BPM	FMX	VMX	AMX	SFT	EF2	RAT
	bl/ft	(%)	k-ft	**	kips	f/s	g's	kips	k-ft	[]
3	0	104.6	0.784	22.7	41	16.7	2,977	35	0.889	1.1
4	4	101.7	0.763	22.7	43	16.5	2,924	38	0.894	1.1
5	4	101.6	0.762	22.7	42	16.5	2,916	36	0.888	1.1
Average	е	102.6	0.770	22.7	42	16.6	2,939	36	0.890	1.1
Maximu	ım	104.6	0.784	22.7	43	16.7	2,977	38	0.894	1.1
@ Blow	/#	3	3	3	4	3	3	4	4	4
				Tot	al number c	of blows and	alyzed: 3			

Time Summary

Drive 10 seconds 11:55:44 - 11:55:54 (11/1/2012) BN 1 - 5

Robert Miner Dynamic Testing, Inc. - Case Method Results

PDIPLOT Ver. 2010.2 - Printed: 1-Nov-2012

[=1]

HOLT SERVICES - 55 FT, B59 -NWJ

Page 1 of 1 PDIPLOT Ver. 2010.2 - Printed: 1-Nov-2012

6

6

5

8

HOLT SERVICES - 55 FT, B59 <u>OP: RMDT</u> AR: 1.43 in^2

ETR: Energy Transfer Ratio

60.40 ft

BPM: Blows per Minute

VMX: Maximum Velocity

BLC

bl/ft

4

4

6

6

6

ETR

(%)

102.4

102.1

100.9

100.2

100.3

101.2

102.4

4

4

FMX: Maximum Force

WS: 16,771.1 f/s

EFV: Energy of FV

LE:

BL#

4

5

6

7

8

Average

Maximum

@ Blow#

NWJ Test date: 1-Nov-2012 SP: 0.492 k/ft3 EM: 29,869 ksi 0.35 JC: AMX: Maximum Acceleration SFT: Skin friction total EF2: Energy of F^2 RAT: SPT Length Ratio EFV BPM FMX VMX AMX SFT EF2 RAT k-ft kips f/s g's kips k-ft [] 0.358 22.1 . 39 15.9 2,496 18 0.389 0.7 0.357 22.1 39 15.9 2,505 15 0.390 0.7 0.353 22.1 39 15.9 2,609 19 0.386 0.7 0.351 22.1 39 15.9 2,422 17 0.384 0.7 38 2,422 0.351 22.0 15.8 13 0.377 0.7 0.354 39 22.1 15.9 2,491 16 0.385 0.7 0.358 22.1 39 15.9 2,609 19 0.390 0.7

Time Summary

Drive 19 seconds

Total number of blows analyzed: 5 12:19:01 - 12:19:20 (11/1/2012) BN 1 - 8

5

6

4

[=1]

HOLT SERVICES - 60 FT, B59 -NWJ

HOLT SERVICES - 60 FT, B59

1.43 in^2

OP: RMDT

AR:

Page 1 of 1 PDIPLOT Ver. 2010.2 - Printed: 1-Nov-2012 NWJ Test date: 1-Nov-2012 SP: 0.492 k/ft3 EM: 29,869 ksi JC: 0.35 AMX: Maximum Acceleration

SFT: Skin friction total

LE: 65.40 ft WS: 16,771.1 f/s ETR: Energy Transfer Ratio EFV: Energy of FV BPM: Blows per Minute FMX: Maximum Force

								• • • •		
BPM: BI	lows per M	inute						EF2: Er	nergy of F^2	
FMX: M	aximum Fo	orce						RAT: SF	PT Length R	atio
VMX: M	aximum Ve	elocity							Ū	
BL#	BLC	ETR	EFV	BPM	FMX	VMX	AMX	SFT	EF2	RAT
	bl/ft	(%)	k-ft	**	kips	f/s	g's	kips	k-ft	[]
2	2	103.6	0.777	20.1	43	16.6	2,808	33	0.858	1.1
3	4	100.3	0.752	20.1	43	16.6	2,932	36	0.868	1.1
4	4	99.6	0.747	20.1	42	16.4	2,753	35	0.857	1.1
Average		101.2	0.759	20.1	43	16.5	2,831	34	0.861	1.1
Maximur	n	103.6	0.777	20.1	43	16.6	2,932	36	0.868	1.1
@ Blow#	ŧ	2	2	2	2	2	3	3	3	2
				Tot	al number c	of blows and	lyzed: 3			

Time Summary

Drive 9 seconds

12:38:36 - 12:38:45 (11/1/2012) BN 1 - 4

PDIPLOT Ver. 2010.2 - Printed: 1-Nov-2012

HOLT SERVICES - 65 FT, B59 -NWJ

Test date: 1-Nov-2012

[2]]

Page 1 of 1 PDIPLOT Ver. 2010.2 - Printed: 1-Nov-2012

HOLT SERVICES - 65 FT, B59 OP: RMDT AR: 1.43 in^2

70.40 ft WS: 16,771.1 f/s

LE:

NWJ Test date: 1-Nov-2012 SP: 0.492 k/ft3 EM: 29,869 ksi 0.35 JC: AMX: Maximum Acceleration SET: Skin friction total

	-, -									
ETR:	Energy Tran	sfer Ratio		AMX: Ma	aximum Acc	eleration				
EFV:	Energy of F	V						SFT: Sk	an friction to	tal
BPM:	Blows per N	linute						EF2: Er	nergy of F^2	
FMX:	Maximum F	orce						RAT: SF	PT Length R	atio
VMX:	Maximum V	elocity							-	
BL#	BLC	ETR	EFV	BPM	FMX	VMX	AMX	SFT	EF2	RAT
	bl/ft	(%)	k-ft	**	kips	f/s	g's	kips	k-ft	[]
10	26	97.4	0.341	21.6	37	13.9	1,849	14	0.363	0.6
11	26	101.4	0.355	21.5	39	14.7	2,041	17	0.376	0.6
12	26	99.8	0.349	21.6	38	14.4	1,922	16	0.373	0.8
13	26	100.0	0.350	21.6	38	14.2	1,813	13	0.370	0.6
14	26	101.2	0.354	21.5	38	14.4	1,903	17	0.372	0.6
15	26	101.4	0.355	21.6	38	14.7	1,935	15	0.377	0.6
16	26	100.1	0.350	21.5	37	13.7	1,692	14	0.372	0.8
17	26	102.3	0.358	21.6	39	14.9	2,093	18	0.379	0.8
18	26	103.1	0.361	21.5	39	15.1	1,979	17	0.385	0.8
19	26	103.7	0.363	21.5	39	15.2	2,020	17	0.384	0.6
20	26	102.9	0.360	21.5	39	15.0	2,039	19	0.385	0.8
21	26	101.8	0.356	21.6	39	14.8	1,952	19	0.385	0.6
22	26	103.0	0.360	21.5	39	15.0	2,034	19	0.387	0.8
23	12	103.1	0.361	21.6	40	15.0	2,009	18	0.389	0.8
24	12	103.1	0.361	21.6	39	15.0	2,004	19	0.387	0.8
25	12	99.1	0.347	21.5	36	14.2	1,634	14	0.362	0.8
26	12	102.2	0.358	21.6	37	14.6	1,878	18	0.375	0.8
27	12	102.5	0.359	21.6	38	14.9	1,959	17	0.377	0.8
28	12	102.4	0.358	21.6	37	14.6	1,963	19	0.378	0.8
Averag	je	101.6	0.356	21.6	38	14.7	1,933	17	0.378	0.7
Maxim	um	103.7	0.363	21.6	40	15.2	2,093	19	0.389	0.8
@ Blov	N#	19	19	10	23	19	17	22	23	26
				Toto	l number of	f blowe anal	wzod 10			

Time Summary

Drive 1 minute 15 seconds Total number of blows analyzed: 19

12:59:21 - 13:00:36 (11/1/2012) BN 1 - 28

PDIPLOT Ver. 2012.2 - Printed: 26-Apr-2013

HOLT SERVICES, SOUND TRANSIT - SAMPLE 35 FT BHE330-B28

1 - Start of test on 4/17/2013 at 9:28:14 AM

2 - End of test on 4/17/2013 at 9:29:14 AM

Test date: 17-Apr-2013

Robe Case	ert Miner Dynan Method & iCA	nic Testing, Inc. P® Results			Page 1 of 1 PDIPLOT Ver. 2012.2 - Printed: 26-Apr-2013					
HOL OP: I	T SERVICES, S RMDT	SOUND TRANSIT	- SAMF	PLE 35 FT				Tes	E t date:	3HE330-B28 17-Apr-2013
AR: LE:	1.43 in^2 39.00 ft								SP: EM:	0.492 k/ft3 30,000 ksi
CSI:	Max F1 or F2	Compr. Stress						BPM:	Blows	0.35 per Minute
CSX	Max Measure	d Compr. Stress						FMX:	Maxin	num Force
ETR: FFV:	Energy Trans	ter Ratio						VMX: RAT:	SPT I	enoth Ratio
BL#	depth	BLC	CSI	CSX	ETR	EFV	BPM	FMX	VMX	RAT
_	ft	bl/ft	ksi	ksi	(%)	k-ft	**	kips	f/s	[]
2	35.02	100	30.1	29.7	85.0	0.297	45.4	43	13.6	1.1
3	35.03	100	30.9	30.3	84.2 82.0	0.295	47.0	43	13.9	1.1
5	35.05	100	30.7	30.3	85.5	0.299	47.6	43	14.0	1.1
6	35.06	100	31.1	30.6	84.5	0.296	47.9	44	14.1	1.1
7	35.07	100	30.9	30.2	84.4	0.295	48.0	43	14.5	1.1
8	35.08	100	30.8	30.1	83.7	0.293	48.0	43	14.3	1.1
10	35.09	100	30.2	29.7	82.5	0.289	48.1	43	14.1	1.1
11	35.10	100	30.6	30.4	85.7	0.300	47.9	43	14.3	1.1
12	35.12	100	29.8	29.4	84.1	0.295	48.1	42	14.3	0.7
13	35.13	100	30.7	30.3	84.7	0.297	48.2	43	14.5	1.1
14	35.14	100	30.5	30.3	85.7	0.300	48.1	43	14.5	0.9
15	35.15	100	30.4	30.1	83.8	0.293	48.2	43	14.2	1.1
17	35.10	100	30.5	30.5	84.1	0.294	48.1	43	14.0	1.1
18	35.18	100	30.9	30.7	85.8	0.300	48.2	44	14.6	0.7
19	35.19	100	30.6	30.2	84.0	0.294	48.2	43	14.9	1.1
20	35.20	100	30.6	30.4	84.7	0.296	48.2	43	14.8	0.7
21	35.21	100	30.7	30.5	84.5	0.296	48.2	44	15.0	1.1
22	35.22	100	30.0	29.0	64.5 86 3	0.296	46.4 48.2	42	14.5	1.1
24	35.24	100	30.4	30.4	85.3	0.298	48.3	43	14.9	1.1
25	35.25	100	30.3	30.3	83.6	0.292	48.3	43	14.3	1.1
26	35.26	100	30.0	29.9	83.7	0.293	48.2	43	15.4	1.1
27	35.27	100	29.6	29.1	83.8	0.293	48.4	42	14.8	1.1
20 20	35.20	100	29.0 29.8	29.5	02.3 84 1	0.266	40.3 48 3	42	15.0	0.7
30	35.30	100	29.1	28.7	82.6	0.289	48.4	41	15.0	1.1
31	35.31	100	29.6	29.5	84.9	0.297	48.3	42	15.1	1.0
32	35.32	100	29.8	29.5	83.6	0.293	48.3	42	14.9	0.9
33	35.33	100	30.1	29.6	83.0	0.290	48.5	42	15.0	1.1
34	35.34	100	30.1	29.9 31.1	84.5 86.2	0.296	48.3 48.4	43 44	14.7	1.1
36	35.36	100	30.6	30.5	85.2	0.298	48.3	44	15.6	1.1
37	35.37	100	29.8	29.8	85.6	0.299	48.4	43	15.6	0.7
38	35.38	100	30.5	30.1	85.1	0.298	48.4	43	14.9	1.1
39	35.39	100	31.4	31.3	87.4	0.306	48.4	45	15.6	1.1
40 41	35.40 35.41	100	29.6	29.4 31.6	84.0 88.1	0.294	48.5 48.5	42	14.6	1.1
42	35.42	100	31.3	31.2	85.8	0.300	48.4	45	15.4	1.1
43	35.43	100	30.7	30.2	84.7	0.296	48.5	43	14.9	1.1
44	35.44	100	31.5	31.4	84.9	0.297	48.5	45	15.2	1.1
45	35.45	100	30.3	30.0	84.1	0.294	48.4	43	14.8	1.1
46 ⊿7	35.40 35 17	100	30.4 30.4	30.4 30.2	84.U 84 5	0.294 0.296	48.4 48.6	43 43	15.1	0.9
48	35.48	100	31.5	31.3	86.4	0.302	48.4	45	15.6	1.1
49	35.49	100	31.5	31.2	84.6	0.296	48.5	45	15.3	0.7
50	35.50	100	30.0	29.7	84.2	0.295	48.3	42	14.7	1.1
		Average	30.5	30.2	84.5	0.296	48.2	43	14.8	1.0
		Std. Dev.	0.6 31.6	0.6 31 6	1.2	0.004	0.5	1	0.5	0.1
		Minimum	29.1	28.7	82.3	0.288	45.4	41	13.6	0.7

82.3 0.288 45.4 Total number of blows analyzed: 49

BL# depth (ft)

Start of test on 4/17/2013 at 9:28:14 AM End of test on 4/17/2013 at 9:29:14 AM

35.01 35.50 Time Summary

1 50

Drive 1 minute 9:28:14 AM - 9:29:14 AM (4/17/2013) BN 1 - 50

Comments

PDIPLOT Ver. 2012.2 - Printed: 26-Apr-2013

HOLT SERVICES, SOUND TRANSIT - SAMPLE 40 FT BH:330-B28

1 - Start of test on 4/17/2013 at 11:18:01 AM

2 - End of test on 4/17/2013 at 11:19:04 AM

Test date: 17-Apr-2013

Robe Case	rt Miner Dynam Method & iCA	nic Testing, Inc. P® Results			Page 1 of 1 PDIPLOT Ver. 2012.2 - Printed: 26-Apr-2013					
HOLT OP: R	SERVICES, S	SOUND TRANSIT	- SAMF	PLE 40 FT				Tes	t date:	BH:330-B28 17-Apr-2013
AR: LE: WS: 1	1.43 in^2 44.00 ft 16 807 9 f/s								SP: EM:	0.492 k/ft3 30,000 ksi 0.35
CSI: CSX:	Max F1 or F2 Max Measure	Compr. Stress d Compr. Stress						BPM: FMX:	Blows	s per Minute num Force
ETR: FFV·	Energy Transi Energy of EV	rer Ratio						VMX: RAT	SPT I	enoth Ratio
BL#	depth	BLC	CSI	CSX	ETR	EFV	BPM	FMX	VMX	RAT
	' ft	bl/ft	ksi	ksi	(%)	k-ft	**	kips	f/s	[]
2	40.02	100	30.0	29.4	87.0	0.305	43.3	42.1	14.3	0.9
3	40.03	100	30.7	30.6	88.1	0.308	44.8	43.7	16.1	0.8
45	40.04	100	32.3	30.2	04.0 83.7	0.290	45.5 45.7	45.4 43.1	14.5	0.0
6	40.06	100	32.9	32.9	84.6	0.296	46.0	47.0	14.2	0.6
7	40.07	100	33.0	32.7	85.2	0.298	45.9	46.8	15.4	0.6
8	40.08	100	31.0	30.4	83.6	0.293	46.0	43.6	14.0	0.6
9	40.09	100	30.6	30.0	83.4	0.292	45.9	43.0	14.5	1.1
10	40.10	100	33.6	33.6	87.4	0.306	46.0	48.0	16.2	0.6
11	40.11	100	33.4	33.0	89.0	0.311	46.0	47.3	16.4	0.6
12	40.12	100	34.4	33.9	88.Z	0.309	45.9	48.0	15.4	0.8
14	40.13	100	32.9	31.9	89.0	0.301	45.9	47.0	16.0	0.0
15	40.15	100	34.4	34.0	87.5	0.306	45.9	48.6	15.6	0.8
16	40.16	100	33.7	33.3	86.5	0.303	46.1	47.7	15.9	0.7
17	40.17	100	31.8	31.5	93.0	0.326	46.1	45.1	17.0	0.4
18	40.18	100	33.7	33.5	83.9	0.294	46.0	47.9	14.8	0.6
19	40.19	100	33.9	33.5	88.5	0.310	46.1	47.9	15.8	0.6
20	40.20	100	33.2	32.4	94.0	0.329	46.1	46.3	17.2	0.8
21	40.21	100	31.7	31.5	85.3 9/1	0.298	46.0	45.1	15.9	0.6
22	40.22	100	30.6	30.4	83.2	0.294	40.1	43.7	16.3	0.0
24	40.24	100	30.4	30.2	87.8	0.307	46.1	43.2	16.1	0.6
25	40.25	100	33.3	32.9	88.6	0.310	46.2	47.1	16.2	0.6
26	40.26	100	30.1	29.5	85.9	0.301	46.0	42.2	16.1	0.9
27	40.27	100	33.8	33.2	90.3	0.316	46.1	47.5	16.5	0.6
28	40.28	100	32.3	31.8	88.0	0.308	46.1	45.5	17.1	0.6
29	40.29	100	33.0	32.7	88.7	0.310	46.2	46.8	16.9	0.6
30	40.30	100	31.0	30.6		0.310	46.1	43.8	17.2	0.6
32	40.31	100	33.6	33.1	89.0	0.312	46.2	47.0	16.5	0.8
33	40.33	100	32.6	32.0	88.7	0.311	46.1	45.8	17.0	0.6
34	40.34	100	33.0	32.4	91.1	0.319	46.2	46.3	17.7	0.6
35	40.35	100	33.8	33.0	88.8	0.311	46.4	47.2	17.0	0.6
36	40.36	100	33.0	32.3	90.9	0.318	48.6	46.2	18.0	0.6
37	40.37	100	33.2	32.3	93.9	0.329	49.7	46.2	17.1	0.9
38	40.38	100	32.7	32.2	89.0	0.311	49.5	46.1	16.4	0.7
39 40	40.39	100	32.2	32.2	00.4 00.3	0.309	49.0 49.7	44.0	16.7	0.9
41	40.41	100	31.8	31.8	90.7	0.317	49.7	45.5	16.3	0.8
42	40.42	100	31.4	31.0	87.8	0.307	49.5	44.4	16.0	0.9
43	40.43	100	31.1	31.0	88.1	0.308	49.6	44.4	16.2	1.1
44	40.44	100	32.1	31.6	86.5	0.303	49.7	45.2	15.3	0.7
45	40.45	100	31.6	31.2	86.8	0.304	49.6	44.6	16.2	0.6
46	40.46	100	29.6	29.6	86.7	0.304	49.7	42.3	16.4	0.7
41 10	40.47	100	29.5	29.1	85.9	0.301	49.6	41.7	16.2	0.7
4ŏ ∕\0	40.48 10 10	100	30.8 31.6	30.7 31 6	01.2 87.1	0.305	49.7 10 g	44.U 15 1	10.1	0.9
50	40.50	100	31.7	31.3	87.0	0.305	49.7	44.8	15.5	0.9
	10.00	Average	32.2	31.8	87.7	0.307	47.0	45.5	16.1	0.7
		Std. Dev.	1.3	1.2	2.5	0.009	1.7	1.8	0.9	0.1
		Maximum	34.4	34.0	94.0	0.329	49.7	48.6	18.0	1.1
		Minimum	29.5	29.1	83.2	0.291	43.3	41.7	14.0	0.4

Total number of blows analyzed: 49

BL# depth (ft)

Comments

Start of test on 4/17/2013 at 11:18:01 AM End of test on 4/17/2013 at 11:19:04 AM

40.01 40.50

Time Summary

1 50

Drive 1 minute 3 seconds 11:18:01 AM - 11:19:04 AM (4/17/2013) BN 1 - 50

PDIPLOT Ver. 2012.2 - Printed: 26-Apr-2013

HOLT SERVICES, SOUND TRANSIT - SAMPLE 45 FT BH:E330-B28

1 - Start of test on 4/17/2013 at 12:52:45 PM

2 - End of test on 4/17/2013 at 12:54:58 PM

Test date: 17-Apr-2013

HOLT SERVICES, SOUND TRANSIT - SAMPLE 45 FT

Page 1 of 2 PDIPLOT Ver. 2012.2 - Printed: 26-Apr-2013

. BH:E330-B28

OP: F	RMDT								Test date	e: 17-Apr-2013
AR: LE:	1.43 in^2 49.00 ft								SI El	P: 0.492 k/ft3 M: 30,000 ksi
<u>VVS: 1</u>	16,807.9 f/s	mar Stragg								<u>2: 0.35</u>
CSX:	Max Measured (Compr. Stress							FMX: Max	kimum Force
ETR:	Energy Transfer	Ratio							VMX: Max	kimum Velocity
EFV:	Energy of FV								RAT: SP	Length Ratio
BL#	depth	BLC	CSI	CSX	ETR	EFV	BPM	FMX	VM	X RAT
	ft	bl/ft	ksi	ksi	(%)	k-ft	**	kips	f,	s []
36	45.51	80	31.3	31.3	88.3	0.309	49.0	44.7	15.	7 1.0
37 38	40.00 45 54	80	31.9	31.7	00.0 86.3	0.303	49.1	40.4 44 6	15.	0 1.0
39	45.55	80	30.5	30.1	86.3	0.302	49.1	43.1	14.	8 1.0
40	45.56	80	31.5	31.3	84.7	0.296	48.9	44.8	15.	0 1.0
41	45.58	80	32.4	32.1	86.8	0.304	49.1	45.9	14.	9 1.0
42	45.59	80	32.1	31.5	84.6	0.296	49.1	45.0	14.	7 1.1
43	45.60	80	31.4	31.1	85.3	0.299	49.0	44.5	15.	1 1.1
44 15	45.61	80 80	31.5	31.1	87.Z 84.6	0.305	49.1	44.5	15.	3 1.0 1 11
40	45.03	80	31.5	31.2	86.2	0.290	49.1	44.0	15	- 1.1 0 11
47	45.65	80	30.9	30.4	86.1	0.301	49.0	43.5	15.	1 1.0
48	45.66	80	32.6	32.4	86.6	0.303	49.0	46.4	14.	9 1.1
49	45.68	80	30.8	30.4	85.5	0.299	49.1	43.5	15.	2 1.0
50	45.69	80	31.9	31.8	86.5	0.303	49.1	45.4	15.	1 1.1
51	45.70	80	31.4	30.9	86.9	0.304	49.1	44.2	14.	8 0.9 9 1.0
53	45.71	80	31.7	31.1	86.7	0.303	49.1	44.5	14.	0 10
54	45.74	80	31.3	30.9	87.7	0.307	49.1	44.2	15.	5 1.1
55	45.75	80	30.7	30.6	87.2	0.305	49.0	43.7	15.	4 1.0
56	45.76	80	30.5	30.4	90.1	0.315	49.2	43.5	15.	6 1.1
57	45.78	80	30.9	30.4	87.7	0.307	49.2	43.4	15.	6 1.0
58	45.79	80	31.9	31.3	87.2	0.305	49.1	44.8	15.	1 1.0 1 1.0
59 60	45.80	80 80	29.5	29.4	90.1 90.1	0.306	49.2	42.0	16	1 1.0 3 1.0
61	45.83	80	31.2	30.5	87.4	0.306	49.1	43.6	15.	8 0.9
62	45.84	80	32.0	31.7	87.9	0.307	49.1	45.4	15.	8 1.1
63	45.85	80	31.2	31.2	88.6	0.310	49.2	44.6	16.	4 1.1
64	45.86	80	31.3	31.0	86.9	0.304	49.2	44.4	15.	9 1.1
65	45.88	80	31.3	31.3	88.6	0.310	49.1	44.7	16.	0 1.1
67	45.89	80	30.0	29.7	00.2 88 5	0.309	49.2 49.1	44.4	15.	0 1.0 1 1.0
68	45.91	80	31.8	31.7	89.0	0.312	49.2	45.4	16.	4 1.1
69	45.93	80	30.9	30.7	88.9	0.311	49.2	43.9	16.	3 1.1
70	45.94	80	32.0	31.9	87.1	0.305	49.2	45.7	15.	9 1.0
71	45.95	80	30.9	30.6	88.2	0.309	49.2	43.8	16.	5 1.1
72	45.96	80	30.6	30.0	89.5	0.313	49.2	43.0	16. 15	4 1.0 0 1.1
74	45.98	80	31.3	31.3	87.5	0.306	49.1	44.7	15	8 11
75	46.00	80	30.2	30.1	88.2	0.309	49.2	43.1	16.	4 1.1
76	46.01	70	30.6	30.5	88.3	0.309	49.2	43.7	16.	4 1.0
77	46.03	70	30.4	29.8	88.2	0.309	49.3	42.6	16.	3 1.0
78	46.04	70	30.1	29.6	88.3	0.309	49.3	42.4	16.	5 1.0
79 80	46.06	70	32.1 29.5	31.7 29.3	09.0 01.8	0.313	49.2 49.1	45.4 41 Q	10.	3 I.U 1 10
81	46.09	70	30.0	29.4	88.9	0.311	49.3	42.1	16.	7 1.0
82	46.10	70	31.6	31.3	88.6	0.310	49.1	44.8	16.	2 1.0
83	46.11	70	29.3	28.8	86.4	0.302	49.3	41.2	16.	7 1.0
84	46.13	70	30.9	30.9	90.5	0.317	49.3	44.2	16.	6 1.0
85	46.14	70	31.8	31.6	88.4	0.310	49.3	45.2	16.	3 1.0
00 87	46.10	70	32.5	32.0	92.3	0.323	49.2	44.4 45.8	16	9 1.0 6 1.0
88	46.19	70	31.1	30.6	86.5	0.303	49.3	43.7	16.	4 1.0
89	46.20	70	31.6	31.3	89.1	0.312	49.2	44.8	16.	3 1.0
90	46.21	70	31.5	31.2	87.3	0.306	49.2	44.7	16.	4 1.0
91	46.23	70	30.3	30.0	87.9	0.308	49.3	42.9	16.	8 1.0
92	46.24	70 70	31.6	31.3	89.8 89.F	0.314	49.2	44.8	16.	2 1.0
93 Q4	40.∠0 46.27	70	20.4 29.7	29.1 29.5	00.0 87 <i>4</i>	0.310	49.3 49.2	42.5 42.2	16.	0 1.0 3 1.0
95	46.29	70	32.3	32.1	88.5	0.310	49.2	45.9	15	7 1.1
96	46.30	70	31.7	31.6	90.8	0.318	49.3	45.2	17.	0 1.1
97	46.31	70	32.0	31.9	89.8	0.314	49.2	45.6	16.	5 1.0
98	46.33	70	29.3	29.2	91.8	0.321	49.2	41.8	17.	0 1.0
100	46.34	70	31.7	31.0	80.0 80.0	0.311	49.2 10.2	44.4	16.	1.0 8 1.0
101	46.37	70	29.2	28.8	88.8	0.311	49.3	41.2	16.	7 1.0

Page 2 of 2 PDIPLOT Ver. 2012.2 - Printed: 26-Apr-2013

HOLT SERVICES, SOUND TRANSIT - SAMPLE 45 FT

BH:E330-B28
Test date: 17-Apr-2013

OP: RM	וט								lest date: 17-	Apr-2013
BL#	depth	BLC	CSI	CSX	ETR	EFV	BPM	FMX	VMX	RAT
	ft	bl/ft	ksi	ksi	(%)	k-ft	**	kips	f/s	[]
102	46.39	70	30.7	30.2	87.7	0.307	49.2	43.3	16.1	1.0
103	46.40	70	29.7	29.6	91.3	0.320	49.3	42.3	16.7	1.0
104	46.41	70	31.7	31.3	89.2	0.312	49.2	44.8	16.5	1.0
105	46.43	70	31.2	30.5	88.6	0.310	49.2	43.7	16.3	1.0
106	46.44	70	31.5	31.2	87.1	0.305	49.2	44.7	16.1	1.0
107	46.46	70	31.8	31.5	90.4	0.317	49.2	45.0	16.2	1.0
108	46.47	70	31.1	30.7	88.9	0.311	49.2	43.9	16.5	1.0
109	46.49	70	32.3	32.0	88.9	0.311	49.3	45.8	16.0	1.0
110	46.50	70	31.1	30.4	88.0	0.308	49.2	43.4	16.3	1.0
		Average	31.1	30.8	88.1	0.308	49.2	44.1	16.0	1.0
		Std. Dev.	0.8	0.8	1.6	0.006	0.1	1.2	0.6	0.0
		Maximum	32.6	32.4	92.3	0.323	49.3	46.4	17.1	1.1
		Minimum	29.2	28.8	84.6	0.296	48.9	41.2	14.7	0.9

Total number of blows analyzed: 75

45.01 46.50

Start of test on 4/17/2013 at 12:52:45 PM End of test on 4/17/2013 at 12:54:58 PM

Time Summary

1 110

Drive 2 minutes 13 seconds 12:52:45 PM - 12:54:58 PM (4/17/2013) BN 1 - 110

BL# depth (ft) Comments

PDIPLOT Ver. 2012.2 - Printed: 26-Apr-2013

HOLT SERVICES, SOUND TRANSIT - SAMPLE 50 FT BH:E330-B28

1 - Start of test on 4/17/2013 at 1:16:29 PM

2 - End of test on 4/17/2013 at 1:18:30 PM

Test date: 17-Apr-2013

HOLT SERVICES, SOUND TRANSIT - SAMPLE 50 FT

Page 1 of 2 PDIPLOT Ver. 2012.2 - Printed: 26-Apr-2013

. BH:E330-B28

OP: R	RMDT								Test of	date: 1	7-Apr-2013
AR: LE:	1.43 in^2 54.00 ft									SP: EM:	0.492 k/ft3 30,000 ksi
<u>vv5: 1</u>	May E1 or E2 Co	mor Stroop									0.35
CSX:	Max Measured (Compr. Stress							FMX: I	Jows Maxim	um Force
ETR:	Energy Transfer	Ratio							VMX: I	Maxim	um Velocity
EFV:	Energy of FV								RAT: S	SPT L	ength Ratio
BL#	depth	BLC	CSI	CSX	ETR	EFV	BPM	FMX		VMX	RAT
	ft	bl/ft	ksi	ksi	(%)	k-ft	**	kips		f/s	0
34	50.52	66	29.9	29.9	87.7	0.307	48.3	42.7		18.1	0.7
30 36	50.53 50.55	66 66	20.0 32.1	20.4 32.1	69.7 88.0	0.314	40.4 48 5	40.6 45.9		18.6	0.6
37	50.56	66	29.5	29.4	92.9	0.325	48.4	42.1		19.1	0.7
38	50.58	66	30.5	30.5	87.7	0.307	48.5	43.7		18.1	0.5
39	50.59	66	33.2	33.2	91.2	0.319	48.4	47.4		18.2	0.5
40	50.61	66	31.7	31.6	92.3	0.323	48.4	45.2		19.0	0.5
41	50.62	66 66	30.8	30.6	90.2	0.316	48.3	43.7		18.0	0.7
4Z 13	50.64 50.65	66 66	30.5 20.0	30.3	88.4 02.2	0.309	48.5 48.5	43.3		19.0	0.7
44	50.67	66	30.4	30.3	32.2 89.5	0.313	48.3	43.3		18.4	0.5
45	50.68	66	28.8	28.5	89.5	0.313	48.4	40.7		18.0	0.7
46	50.70	66	33.5	33.2	90.7	0.317	48.4	47.6		18.1	0.5
47	50.71	66	30.4	30.3	89.6	0.314	48.4	43.4		18.8	0.5
48	50.73	66	29.2	29.2	89.8	0.314	48.5	41.7		18.1	1.1
49 50	50.74	66 66	29.5 30.6	29.1	89.5 80.0	0.313	48.4 18.5	41.7		18.4	0.7
51	50.70	66	31.5	31.4	89.2	0.312	48.5	45.0		18.2	0.5
52	50.79	66	29.5	28.2	89.4	0.313	48.4	40.4		17.6	0.7
53	50.80	66	29.5	29.0	90.2	0.316	48.4	41.5		18.5	0.7
54	50.82	66	29.6	29.5	89.5	0.313	48.6	42.2		17.9	0.7
55	50.83	66	29.1	28.6	89.7	0.314	48.5	41.0		18.4	0.7
56	50.85	66	31.0	30.7	89.7	0.314	48.4	44.0		17.5	0.7
58	50.88	66	30.4	30.0	09.0 90.0	0.314	40.0	42.9		18.1	0.7
59	50.89	66	30.9	30.8	90.4	0.316	48.5	44.1		18.4	0.7
60	50.91	66	28.8	28.5	89.6	0.313	48.5	40.8		17.9	1.0
61	50.92	66	29.4	29.3	90.0	0.315	48.5	41.9		18.2	0.7
62	50.94	66	29.0	28.7	90.0	0.315	48.4	41.1		18.2	0.8
63	50.96	66	30.3	30.1	91.1	0.319	48.5	43.1		18.9	0.9
65	50.97	66	30.6	30.3	90.9 89.4	0.313	48.5	43.3		18.3	0.5
66	51.00	66	29.9	29.6	92.3	0.323	48.4	42.4		19.0	0.7
67	51.02	66	31.2	31.0	90.5	0.317	48.6	44.4		17.8	0.5
68	51.03	66	30.0	29.7	89.9	0.315	48.5	42.5		18.2	0.7
69	51.05	66	30.1	29.7	89.4	0.313	48.5	42.5		17.7	0.7
70	51.00	00 66	31.5	31.4	90.2	0.316	48.6	44.9		10.0	0.5
72	51.08	66	28.9	29.9	92.4 90.5	0.324	48.5	42.0		18.0	0.7
73	51.11	66	31.2	30.9	90.8	0.318	48.6	44.2		18.3	0.7
74	51.12	66	29.0	28.8	90.8	0.318	48.5	41.2		18.2	0.7
75	51.14	66	30.4	30.0	92.2	0.323	48.4	42.9		19.5	0.7
76	51.15	66	30.2	30.1	90.8	0.318	48.6	43.1		18.4	0.9
78	51.17 51.18	66 66	20.7	20.2	90.4 90.9	0.310	40.4 48.7	40.3		18.6	0.7
79	51.20	66	30.5	30.3	88.9	0.311	48.5	43.4		18.0	0.7
80	51.21	66	30.5	30.2	88.9	0.311	48.5	43.2		18.2	0.7
81	51.23	66	30.6	30.2	89.6	0.314	48.6	43.2		18.1	0.7
82	51.24	66	31.0	30.7	90.3	0.316	48.4	43.9		18.1	0.7
83	51.26	66 66	32.2	32.1	90.9	0.318	48.6	45.9		18.4	0.5
04 85	51.27	66 66	29.4 30.7	29.0	94.1 88.7	0.329	40.0 48.5	41.5 43.3		19.3	0.7
86	51.30	66	30.9	30.4	87.4	0.306	48.5	43.5		17.4	0.7
87	51.32	66	31.3	31.1	89.4	0.313	48.4	44.5		18.1	0.5
88	51.33	66	30.4	30.0	89.9	0.314	48.6	43.0		18.3	0.7
89	51.35	66	31.7	31.3	89.8	0.314	48.4	44.8		17.8	0.5
90	51.36	66	29.4	29.0	87.3	0.306	48.6 49 F	41.4		1/./ 10 F	0.7
91	51.30 51.30	00 66	29.5 30.0	29.2 29.7	09.4 92 3	0.313	40.0 48 6	41.8 42.5		10.0	0.7
93	51.41	66	29.1	28.7	89.8	0.314	48.6	41.0		19.0	0.7
94	51.42	66	28.8	28.5	90.2	0.316	48.4	40.7		18.4	0.7
95	51.44	66	29.2	29.0	88.0	0.308	48.6	41.6		18.5	0.7
96	51.46	66	29.1	28.7	88.1	0.308	48.6	41.1		17.9	0.9
97 08	51.47 51.40	00 98	29.1 28.9	29.1 28.5	80.U	0.308	48.6 48.6	41./ /0 P		18.4 18.0	0.7
99	51.50	66	30.7	30.2	88.2	0.309	48.6	43.2		18.4	0.5

HOLT SERVICES, SOUND TRANSIT - SAMPLE 50 FT OP: RMDT

Page 2 of 2 PDIPLOT Ver. 2012.2 - Printed: 26-Apr-2013

BH:E330-B28

OP: RMDT								Test date: 17-/	Apr-2013
		CSI	CSX	ETR	EFV	BPM	FMX	VMX	RAT
		ksi	ksi	(%)	k-ft	**	kips	f/s	0
	Average	30.3	30.0	90.0	0.315	48.5	42.9	18.4	0.7
	Std. Dev.	1.1	1.2	1.4	0.005	0.1	1.7	0.5	0.1
	Maximum	33.5	33.2	94.1	0.329	48.7	47.6	19.7	1.1
	Minimum	28.5	28.2	87.3	0.306	48.3	40.3	17.4	0.5
			То	tal number o	f blows analy:	zed: 66			

BL#	depth (ft)	Comments
-----	------------	----------

1	50.02	Start of test on 4/17/2013 at 1:16:29 PM
00	E1 E0	End of toot on 1/17/2012 at 1:18:20 DM

99 51.50 End of test on 4/17/2013 at 1:18:30 PM

Time Summary

Drive 2 minutes 1 second

1:16:29 PM - 1:18:30 PM (4/17/2013) BN 1 - 99

PDIPLOT Ver. 2012.2 - Printed: 26-Apr-2013

HOLT SERVICES, SOUND TRANSIT - SAMPLE 55 FT BH:E330-B28

1 - Start of test on 4/17/2013 at 2:05:19 PM

2 - End of test on 4/17/2013 at 2:08:52 PM

Test date: 17-Apr-2013

Robe Case	rt Miner Dynar Method & iCA	nic Testing, Inc. P® Results			Page 1 of 1 PDIPLOT Ver. 2012.2 - Printed: 26-Apr-2013					
HOLT OP: F	SERVICES, S	SOUND TRANSIT	- SAMF	PLE 55 FT				Те	B st date: 1	H:E330-B28 17-Apr-2013
AR: LE: WS: 1	1.43 in^2 59.00 ft 16,807.9 f/s								SP: EM: JC:	0.492 k/ft3 30,000 ksi 0.35
CSI: CSX: ETR: EFV:	Max F1 or F2 Max Measure Energy Trans Energy of FV	Compr. Stress ed Compr. Stress fer Ratio						BPN FMX VMX RAT	I: Blows : Maxim : Maxim : SPT L	per Minute num Force num Velocity ength Ratio
BL#	depth	BLC	CSI	CSX	ETR	EFV	BPM	FMX	VMX	RAT
	ft	bl/ft	ksi	ksi	(%)	k-ft	**	kips	f/s	[]
2	55.02	122	29.0	28.2	84.5	0.296	22.1	40.3	14.6	0.8
3	55.03	122	30.0	29.2	83.4	0.292	23.1	41.8	14.7	0.8
4	55.03	122	29.7	29.2	81.8	0.286	23.9	41.8	14.9	0.8
5	55.04	122	30.3	29.6	85.7	0.300	24.2	42.3	14.7	0.8
6	55.05	122	29.2	28.5	81.0	0.284	24.3	40.8	15.2	0.7
(55.06	122	29.9	28.8	82.1	0.287	24.6	41.3	15.4	0.7
8	55.07	122	30.5	29.3	84.4	0.296	24.3	41.9	15.0	0.7
40	55.07	122	29.4	28.4	84.6	0.296	23.9	40.7	14.7	0.9
10	55.08	122	30.4	29.4	84.0	0.294	24.2	42.0	14.7	0.7
12	55.09	122	20.4	29.3	04.Z	0.295	24.0	41.9	14.2	0.9
12	55.10	122	29.0	20.9	86.2	0.205	24.3	41.5	14.7	1.0
34	55 28	122	28.6	28.0	81.6	0.302	24.4	40.1	14.7	0.8
35	55 29	122	20.0	20.0	83.8	0.200	24.8	41.5	14.2	0.0
36	55.30	122	31.3	30.9	87.5	0.306	24.8	44.3	14.0	0.0
37	55.30	122	28.4	28.0	80.4	0.282	24.8	40.0	14.0	0.7
38	55.31	122	30.1	29.7	84.7	0.297	24.8	42.5	14.2	0.9
39	55.32	122	29.1	28.7	82.5	0.289	24.6	41.1	14.0	0.8
40	55.33	122	29.0	28.7	82.4	0.288	24.5	41.0	14.2	0.8
41	55.34	122	29.0	28.3	80.6	0.282	24.6	40.5	13.9	0.9
42	55.34	122	28.8	28.1	81.1	0.284	24.8	40.2	13.8	0.9
43	55.35	122	28.5	28.1	79.6	0.279	24.5	40.2	13.8	0.8
44	55.36	122	28.7	27.9	81.2	0.284	24.4	39.9	14.0	1.0
45	55.37	122	28.9	28.3	78.8	0.276	24.4	40.5	13.7	0.9
46	55.38	122	29.6	29.5	84.6	0.296	24.3	42.1	14.3	0.7
47	55.39	122	29.5	29.0	81.9	0.287	24.4	41.4	13.9	0.8
48	55.39	122	32.1	31.8	87.4	0.306	24.5	45.5	15.1	0.7
49	55.40	122	30.9	30.8	86.9	0.304	24.2	44.1	14.7	0.7
50	55.41	122	32.5	32.4	90.1	0.315	24.3	46.4	15.6	0.7
51	55.42	122	28.7	28.5	80.9	0.283	24.0	40.7	14.4	0.9
52	55.43	122	33.Z	33.1	89.4	0.313	24.4	47.4	15.9	0.6
23	55.43 55.44	122	29.0	29.3	02.7	0.290	24.3	41.9	14.5	0.9
54	55.44	122	29.3	29.0	01.0 00.0	0.200	24.2	41.4	14.4	0.9
56	55.45	122	29.4	20.0	82.2	0.203	24.4	41.2	14.1	0.9
57	55 47	122	23.5	23.0	88.3	0.200	24.7	46.1	16.2	0.3
58	55 48	122	28.6	28.1	81 3	0.284	24. 4 24.5	40.3	13.0	0.7
59	55 48	122	29.3	28.9	81.2	0.284	24.5	41.3	14.5	0.5
60	55.49	122	30.8	30.5	85.6	0.300	24.3	43.6	14.8	0.7
61	55.50	122	29.1	28.4	80.9	0.283	24.3	40.6	14.8	0.9
		Average	29.8	29.3	83.3	0.292	24.4	41.9	14.5	0.8
		Std. Dev.	1.2	1.3	2.7	0.009	0.5	1.8	0.6	0.1
		Maximum	33.2	33.1	90.1	0.315	25.1	47.4	16.2	1.0
		Minimum	28.4	27.9	78.8	0.276	22.1	39.9	13.7	0.6

78.80.27622.7Total number of blows analyzed:40

depth (ft)	Comments
	depth (ft)

1	55.01	Start of test on 4/17/2013 at 2:05:19 PM
	00.01	

Time Summary

Drive 3 minutes 33 seconds 2:05:19 PM - 2:08:52 PM (4/17/2013) BN 1 - 61

PDIPLOT Ver. 2012.2 - Printed: 26-Apr-2013

HOLT SERVICES, SOUND TRANSIT - SAMPLE 60 FT BH:E330-B28

1 - Start of test on 4/17/2013 at 2:36:38 PM

2 - End of test on 4/17/2013 at 2:39:35 PM

Test date: 17-Apr-2013

HOLT SERVICES, SOUND TRANSIT - SAMPLE 60 FT

Page 1 of 1 PDIPLOT Ver. 2012.2 - Printed: 26-Apr-2013

BH:E330-B28

OP: F	RMDT		-						Test o	date: 1	7-Apr-2013
AR: LE: WS 1	1.43 in^2 64.00 ft 6 807 9 f/s									SP: EM:	0.492 k/ft3 30,000 ksi 0 35
	Max E1 or E2	Compr. Stross									nor Minuto
CSY-	Max Moscure	d Compr. Stress								Jows	
ETD.	Enorgy Trans	for Potio							1 WIZ. 1	Jovim	um Volocity
	Energy of EV										ongth Dotio
		DI O	0.01	001/	ETD		DDM		<u>NAL 1</u>		
BL#	depth	BLC	CSI	CSX	EIR	EFV	BPM	FMX		VIVIX	RAI
07	π	DI/IT	KSI	KSI	(%)	K-TT	05.4	KIPS		T/S	ll
27	60.51	100	30.1	29.6	89.2	0.312	25.4	42		16.2	0.6
28	60.52	100	30.1	29.6	88.9	0.311	25.4	42		16.3	0.6
29	60.53	100	30.1	29.7	90.1	0.315	25.4	42		16.3	0.6
30	60.54	100	30.3	29.7	89.8	0.314	25.5	42		16.3	0.5
31	60.55	100	30.3	29.6	88.2	0.309	25.5	42		16.1	0.6
32	60.56	100	30.2	29.7	88.1	0.308	25.5	42		16.0	0.6
33	60.57	100	30.3	29.8	90.8	0.318	25.5	43		16.4	0.5
34	60.58	100	30.1	29.6	87.3	0.306	25.4	42		16.0	0.6
35	60.59	100	30.0	29.5	90.5	0.317	25.5	42		16.4	0.5
36	60.60	100	29.7	29.2	90.1	0.315	25.5	42		16.4	0.6
37	60.61	100	30.0	29.5	90.9	0.318	25.5	42		16.5	0.5
38	60.62	100	30.0	29.6	88.9	0.311	25.4	42		16.2	0.5
39	60.63	100	30.0	29.5	90.4	0.316	25.4	42		16.4	0.5
40	60.64	100	29.8	29.4	90.2	0.316	25.5	42		16.4	0.6
41	60.65	100	30.0	29.4	90.7	0.318	25.5	42		16.5	0.5
42	60.66	100	29.7	29.2	90.5	0.317	25.5	42		16.2	0.5
43	60.67	100	29.6	29.1	90.8	0.318	25.5	42		16.2	0.5
44	60.68	100	29.7	29.2	90.4	0.316	25.5	42		16.2	0.5
45	60.69	100	29.8	29.2	91.0	0.319	25.4	42		16.3	0.5
46	60.70	100	29.4	28.9	90.7	0.318	25.3	41		16.2	0.5
47	60.71	100	29.5	28.9	90.2	0.316	25.4	41		16.2	0.5
48	60.72	100	29.7	29.3	90.9	0.318	25.5	42		16.0	0.5
49	60.73	100	29.6	29.0	90.3	0.316	25.5	42		16.4	0.6
50	60.74	100	29.4	28.9	89.9	0.315	25.5	41		16.2	0.6
51	60.75	100	29.4	28.9	90.0	0.315	25.5	41		16.1	0.6
52	60.76	100	29.4	28.7	89.1	0.312	25.5	41		16.0	0.6
53	60.77	100	29.3	28.9	88.6	0.310	25.4	41		15.9	0.6
54	60.78	100	29.3	28.8	90.4	0.316	25.4	41		16.1	0.6
55	60.79	100	29.2	28.7	89.1	0.312	25.5	41		16.0	0.6
56	60.80	100	29.4	29.0	89.1	0.312	25.5	41		15.8	0.6
57	60.81	100	29.5	29.0	89.6	0.313	25.4	41		16.1	0.6
58	60.82	100	29.2	28.7	87.8	0.307	25.4	41		16.0	0.6
59	60.83	100	29.4	28.8	88.4	0.309	25.4	41		15.9	0.6
60	60.84	100	29.0	28.5	88.3	0.309	25.4	41		16.0	0.6
61	60.85	100	29.4	28.9	86.2	0.302	25.4	41		15.5	0.6
62	60.86	100	29.8	29.2	87.8	0.307	25.4	42		15.6	0.6
63	60.87	100	29.6	29.0	86.7	0.303	25.4	41		15.5	0.6
64	60.88	100	28.5	28.0	87.1	0.305	25.5	40		15.9	0.6
65	60.89	100	28.6	28.1	87.7	0.307	25.4	40		15.8	0.6
66	60.90	100	28.4	27.8	85.9	0.301	25.4	40		15.9	0.6
67	60.91	100	28.7	28.1	87.9	0.308	25.4	40		16.1	0.6
68	60.92	100	28.2	27.7	86.9	0.304	25.4	40		16.3	0.6
69	60.93	100	27.8	27.4	85.9	0.301	25.4	39		16.5	0.6
70	60.94	100	28.3	27.8	87.4	0.306	25.4	40		16.5	0.6
71	60.95	100	28.0	27.5	86.3	0.302	25.4	39		16.6	0.6
72	60.96	100	27.3	26.7	86.2	0.302	25.4	38		16.7	0.6
73	60.97	100	27.7	27.0	88.5	0.310	25.4	39		17.1	0.6
74	60.98	100	27.2	26.6	86.9	0.304	25.4	38		17.1	0.6
75	60.99	100	27.4	26.8	86.7	0.304	25.5	38		17.0	0.6
76	61.00	100	27.3	26.7	88.8	0.311	24.9	38		17.4	0.6
		Average	29.3	28.7	88.9	0.311	25.4	41		16.2	0.6
		Std. Dev	0.9	0.9	1.6	0.005	0.1	1		0.4	0.0
		Maximum	30.3	29.8	91.0	0.319	25.5	43		17.4	0.6
		Minimum	27.2	26.6	85.9	0.301	24.9	38		15.5	0.5

Total number of blows analyzed: 50

BL# depth (ft)

Comments

60.02 1

Start of test on 4/17/2013 at 2:36:38 PM End of test on 4/17/2013 at 2:39:35 PM

76 61.00

Time Summary

Drive 2 minutes 57 seconds 2:36:38 PM - 2:39:35 PM (4/17/2013) BN 1 - 76

PDIPLOT Ver. 2012.2 - Printed: 26-Apr-2013

HOLT SERVICES, SONIC - SAMPLE 20 FTE340-B-12, 140LB MOBILE AUTO

1 - Start of test on 4/19/2013 at 10:59:50 AM

2 - End of test on 4/19/2013 at 11:00:38 AM

Test date: 19-Apr-2013

Robert Miner Dynamic Testing, Inc.	
Case Method & iCAP® Results	

Case Method & iCAP® Results HOLT SERVICES, SONIC - SAMPLE 20 FT Page 1 of 1 PDIPLOT Ver. 2012.2 - Printed: 26-Apr-2013

E340-B-12, 140LB MOBILE AUTO

	SERVICES, S	SONIC - SAMP	20 F I					E340-B-12, -	140LB MOB Fest date: 19	Apr-2013
AR:	1.20 in^2								SP: ($\frac{7.012010}{492 \text{ k/ft3}}$
LE:	23.00 ft								EM: 30).000 ksi
WS: 1	16,807.9 f/s								JC:	0.35
CSI:	Max F1 or F2	2 Compr. Stress	S					BF	M: Blows pe	er Minute
CSX:	Max Measure	ed Compr. Stre	SS					FN	1X: Maximu	m Force
ETR:	Energy Trans	sfer Ratio						VN	IX: Maximu	n Velocity
EFV:	Energy of FV	,						RA	T: SPT Ler	igth Ratio
BL#	depth	BLC	CSI	CSX	ETR	EFV	BPM	FMX	VMX	RAT
	ft	bl/ft	ksi	ksi	(%)	k-ft	**	kips	f/s	0
7	20.55	20	23.7	21.9	96.1	0.336	43.6	26	13.6	1.1
8	20.60	20	23.4	21.6	100.4	0.351	42.8	26	13.5	1.1
9	20.65	20	23.7	22.2	98.5	0.345	44.4	27	13.5	1.1
10	20.70	20	24.0	22.3	99.0	0.346	43.7	27	13.5	1.1
11	20.75	20	23.4	21.9	97.7	0.342	43.7	26	13.5	1.1
12	20.80	20	23.3	21.6	98.4	0.344	43.6	26	13.5	1.1
13	20.85	20	23.4	21.7	101.9	0.357	42.7	26	13.9	1.1
14	20.90	20	22.8	20.9	97.5	0.341	44.8	25	13.8	1.1
15	20.95	20	22.3	20.6	96.4	0.338	44.0	25	12.9	1.1
16	21.00	20	22.2	20.6	95.5	0.334	44.1	25	12.8	1.1
17	21.03	40	22.1	20.4	96.2	0.337	44.2	24	13.1	1.1
18	21.05	40	22.3	20.4	96.6	0.338	43.6	25	13.2	1.1
19	21.08	40	22.8	21.1	95.7	0.335	43.8	25	13.4	1.1
20	21.10	40	22.6	21.2	95.3	0.334	44.2	25	13.5	1.1
21	21.13	40	22.2	20.7	99.1	0.347	43.3	25	13.9	1.1
22	21.15	40	22.5	20.8	97.0	0.339	44.1	25	14.4	1.1
23	21.18	40	22.6	21.5	96.1	0.336	44.1	26	14.3	1.1
24	21.20	40	22.6	21.4	99.0	0.346	43.6	26	14.5	1.1
25	21.23	40	23.1	21.6	95.9	0.335	43.6	26	14.1	1.1
26	21.25	40	22.3	20.8	96.1	0.336	44.5	25	13.6	1.1
27	21.28	40	22.3	20.9	95.7	0.335	43.8	25	14.4	1.1
28	21.30	40	23.0	21.1	94.6	0.331	43.8	25	14.4	1.1
29	21.33	40	22.9	21.3	95.9	0.336	43.4	26	13.7	1.1
30	21.35	40	22.9	21.1	95.0	0.332	43.7	25	14.5	1.1
31	21.38	40	22.2	20.5	96.2	0.337	44.1	25	14.2	1.1
32	21.40	40	22.5	20.6	94.9	0.332	43.9	25	14.6	1.1
33	21.43	40	22.8	20.8	96.6	0.338	44.0	25	15.0	1.1
34	21.45	40	22.7	21.0	97.4	0.341	44.0	25	15.4	1.1
35	21.48	40	22.7	20.9	94.3	0.330	43.9	25	14.3	1.1
36	21.50	40	22.0	20.6	94.2	0.330	44.0	25	14.5	1.1
		Average	22.8	21.1	96.8	0.339	43.8	25	13.9	1.1
		Std. Dev.	0.5	0.5	1.8	0.006	0.4	1	0.6	0.0
		Maximum	24.0	22.3	101.9	0.357	44.8	27	15.4	1.1
		Minimum	22.0	20.4	94.2	0.330	42.7	24	12.8	1.1

Total number of blows analyzed: 30

BL# depth (ft)

Comments

1 20.08

36 21.50

Start of test on 4/19/2013 at 10:59:50 AM End of test on 4/19/2013 at 11:00:38 AM

Time Summary

Drive 48 seconds

10:59:50 AM - 11:00:38 AM (4/19/2013) BN 1 - 36

PDIPLOT Ver. 2012.2 - Printed: 26-Apr-2013

HOLT SERVICES, SONIC - SAMPLE 30 FTE340-B-12, 140LB MOBILE AUTO

/=// 1 - Start of test on 4/19/2013 at 11:37:49 AM

2 - End of test on 4/19/2013 at 11:39:43 AM

Test date: 19-Apr-2013

HOLT SERVICES, SONIC - SAMPLE 30 FT

Page 1 of 1 PDIPLOT Ver. 2012.2 - Printed: 26-Apr-2013

E340-B-12, 1401 B MOBILE AUTO

	SERVICES, S	SONIC - SAMP	'LE 30 F I					E340-B-1	Z, 140LB MC	19-Anr-2013
	1 20 in^2								SP.	0 492 k/ft3
LE:	33.00 ft								EM:	30.000 ksi
WS: 1	6.807.9 f/s								JC:	0.35
CSI	Max F1 or F2	Compr. Stress							BPM: Blows	ner Minute
CSX:	Max Measure	ed Compr. Stre	ss						FMX: Maxim	um Force
FTR:	Energy Trans	fer Ratio						,	VMX: Maxim	num Velocity
EFV:	Energy of FV								RAT: SPT L	ength Ratio
BI #	denth	BLC	CSI	CSX	FTR	EE//	BPM	FMX	VMX	RAT
DL	ft	bl/ft	ksi	ksi	(%)	k-ft	**	kins	f/s	п
41	30 51	100	24.8	24.4	92.4	0.323	46 4	29	14.7	11
42	30.52	100	24.5	24.0	92.7	0.325	46.7	29	14.6	1.1
43	30.53	100	24.5	24.1	92.0	0.322	46.7	29	14.0	1.1
44	30.54	100	24.5	24.4	93.6	0.328	46.6	29	14.6	1.1
45	30.55	100	25.0	24.5	93.9	0.329	46.7	29	14.4	1.1
46	30.56	100	25.2	24.7	92.6	0.324	46.6	30	13.7	1.1
47	30.57	100	25.7	25.1	93.8	0.328	46.6	30	14.0	1.1
48	30.58	100	25.1	24.7	91.2	0.319	46.8	30	13.8	1.1
49	30.59	100	24.9	24.4	92.7	0.325	46.5	29	14.0	1.1
50	30.60	100	24.1	23.9	92.6	0.324	46.5	29	14.7	1.1
51	30.61	100	24.7	24.4	93.5	0.327	46.7	29	14.5	1.1
52	30.62	100	24.6	24.5	93.0	0.326	46.6	29	14.7	1.1
53	30.63	100	24.9	24.7	93.0	0.326	46.5	30	14.4	1.1
54	30.64	100	24.9	24.5	93.4	0.327	46.9	29	14.8	1.1
55	30.65	100	25.5	25.0	93.8	0.328	46.7	30	14.1	1.1
56	30.66	100	25.8	25.3	94.7	0.332	46.8	30	14.6	1.1
57	30.67	100	26.0	25.2	92.5	0.324	46.9	30	14.1	1.1
58	30.68	100	24.7	24.1	92.7	0.324	46.7	29	14.3	1.1
59	30.69	100	24.3	23.9	90.7	0.317	47.0	29	14.3	1.1
61	30.70	100	24.0	24.0	92.7	0.324	40.0	30	14.0	1.1
62	30.71	100	23.2	24.9	92.7	0.323	40.0	28	14.7	1.1
63	30.72	100	24.0	23.0	91.5	0.320	46.6	20	14.4	1.1
64	30.74	100	25.2	25.0	93.8	0.328	46.7	30	14.4	1.1
65	30.75	100	25.8	25.0	92.8	0.325	46.7	30	14.3	1.1
66	30.76	100	24.7	24.3	93.7	0.328	47.0	29	14.7	1.1
67	30.77	100	24.9	24.2	93.9	0.329	46.8	29	14.5	1.1
68	30.78	100	23.7	23.3	94.0	0.329	46.9	28	15.0	1.1
69	30.79	100	25.3	24.9	94.0	0.329	46.9	30	14.4	1.1
70	30.80	100	25.6	24.5	92.8	0.325	46.7	29	15.0	1.1
71	30.81	100	26.5	25.2	94.3	0.330	47.3	30	14.8	1.1
72	30.82	100	26.5	25.1	91.2	0.319	46.7	30	14.6	1.1
73	30.83	100	27.6	26.2	93.6	0.327	47.3	31	14.2	1.1
74	30.84	100	27.4	26.7	92.6	0.324	47.0	32	15.1	1.1
75	30.85	100	28.0	27.1	94.1	0.329	47.0	33	14.6	1.1
76	30.86	100	27.6	27.2	94.2	0.330	47.0	33	14.6	1.1
11	30.87	100	28.2	27.6	92.6	0.324	47.0	33	14.4	1.1
78	30.88	100	28.7	28.3	93.3	0.327	47.0	34	14.5	1.1
79	30.89	100	29.7	28.0	93.1	0.326	47.1	34	15.7	1.1
0U 91	30.90	100	20.2	27.7	94.4	0.330	40.9	30	14.9	1.1
82	30.91	100	29.9	20.7	91.7	0.321	47.0	34	11.2	1.1
83	30.92	100	29.5	28.5	91.6	0.321	47.1	34	15.0	1.1
84	30.94	100	30.4	28.6	92.7	0.324	47.0	34	15.2	1.1
85	30.95	100	28.4	27.5	92.9	0.325	47.1	33	14.7	1.1
86	30.96	100	28.5	28.1	92.3	0.323	47.0	34	14.6	1.1
87	30.97	100	28.5	28.2	91.9	0.322	47.2	34	15.0	1.1
88	30.98	100	29.2	28.4	92.3	0.323	47.1	34	14.7	1.1
89	30.99	100	28.9	28.4	95.0	0.332	47.2	34	14.8	1.1
90	31.00	100	30.3	28.6	<u>9</u> 1.9	0.322	47.0	34	15.2	1.1
		Average	26.4	25.7	92.9	0.325	46.9	31	14.6	1.1
		Std. Dev.	1.9	1.7	1.0	0.004	0.2	2	0.4	0.0
		Maximum	30.4	28.7	95.0	0.332	47.3	34	15.7	1.1
		Minimum	23.7	23.3	90.6	0.317	46.4	28	13.7	1.1

23.3 90.6 0.317 46.4 Total number of blows analyzed: 50

BL# depth (ft)

Comments

30.01 1 90 31.00

Start of test on 4/19/2013 at 11:37:49 AM End of test on 4/19/2013 at 11:39:43 AM

Time Summary

Drive 1 minute 54 seconds 11:37:49 AM - 11:39:43 AM (4/19/2013) BN 1 - 90

PDIPLOT Ver. 2012.2 - Printed: 26-Apr-2013

HOLT SERVICES, SONIC - SAMPLE 45 FTE340-B-12, 140LB MOBILE AUTO

1 - Start of test on 4/19/2013 at 1:57:55 PM

2 - End of test on 4/19/2013 at 1:58:55 PM

Test date: 19-Apr-2013

HOLT SERVICES, SONIC - SAMPLE 45 FT

Page 1 of 1 PDIPLOT Ver. 2012.2 - Printed: 26-Apr-2013

E340-B-12. 140LB MOBILE AUTO

	MDT	30NIC - 3P	ANTLE 43 F	I				ES	40-D-12, 1 Те	st date: 1	9-Apr-2013
	1 20 in^2									St date. 1	0 /02 k/ft3
	1.20 IIP 2										0.492 Milo
LL. W/S·1	6 807 0 f/c										0.35
	0,007.31/3								Maxima	50.	0.55
CSI:	Max F1 or F	-2 Compr. St	ress					FMX:	Maximum	Force	
CSX:	Max Measu	rea Compr. :	Stress						Maximum	velocity	
EIR:	Energy I rai	nster Ratio						RAI:	SPILeng	ith Ratio	
EFV:	Energy of F	V						CSB:	Compress	sion Stress	s at Bottom
BPIVI:	Blows per in										
BL#	depth	BLC	CSI	CSX	EIR	EFV	BPM	FMX	VMX	RAI	CSB
-	ft	bl/ft	KSI	ksi	(%)	k-ft		kips	t/s	IJ	KSI
2	45.02	92	23.4	23.0	98.4	0.345	47.5	28	15.4	1.1	23.0
3	45.03	92	24.2	23.9	97.1	0.340	47.4	29	15.9	1.1	24.3
4	45.04	92	22.8	22.4	97.5	0.341	47.4	27	15.9	1.1	23.6
5	45.05	92	23.7	23.7	98.5	0.345	47.4	28	15.9	1.1	22.8
6	45.07	92	23.2	22.6	98.0	0.343	47.4	27	15.9	1.1	24.1
7	45.08	92	22.8	22.1	96.2	0.337	47.5	26	15.7	1.1	22.5
8	45.09	92	23.1	22.9	96.3	0.337	47.5	27	15.9	1.1	23.7
9	45.10	92	24.1	23.0	97.7	0.342	47.4	28	15.6	1.1	22.7
10	45.11	92	22.7	21.8	97.5	0.341	47.5	26	15.6	1.1	23.4
11	45.12	92	22.9	22.0	95.3	0.333	47.4	26	15.4	1.1	22.5
12	45.13	92	23.6	23.0	95.2	0.333	47.6	28	15.5	1.1	20.4
13	45.14	92	23.9	23.5	96.4	0.337	47.7	28	15.1	1.1	19.7
14	45.15	92	23.5	23.4	97.6	0.342	47.6	28	14.9	1.1	20.1
15	45.16	92	22.5	22.3	97.8	0.342	47.6	27	15.4	1.1	21.4
16	45.17	92	24.5	23.8	96.4	0.338	47.7	29	15.2	1.1	21.5
17	45.18	92	23.8	23.5	98.6	0.345	47.6	28	15.0	1.1	21.4
18	45.20	92	22.6	22.3	97.8	0.342	47.5	27	15.2	1.1	23.0
19	45.21	92	22.3	21.8	94.1	0.329	47.8	26	15.3	1.1	23.6
20	45.22	92	23.1	23.0	96.0	0.336	47.6	28	15.2	1.1	23.5
21	45.23	92	23.6	23.1	96.4	0.337	47.6	28	15.3	1.1	23.1
22	45.24	92	23.0	22.9	96.3	0.337	47.6	27	14.7	1.1	23.5
23	45.25	92	24.0	23.4	95.9	0.336	47.6	28	15.5	1.1	24.0
24	45.26	92	24.1	23.5	95.5	0.334	47.7	28	15.4	1.1	24.0
25	45.27	92	23.7	23.3	95.9	0.336	47.7	28	15.3	1.1	23.5
26	45.28	92	24.7	23.1	95.3	0.333	47.6	28	15.4	1.1	24.1
27	45.29	92	23.3	22.4	95.3	0.334	47.5	27	14.7	1.1	24.0
28	45.30	92	22.3	21.9	95.1	0.333	47.6	26	14.7	1.1	22.9
29	45.32	92	22.1	21.8	95.8	0.335	47.7	26	15.3	1.1	23.8
30	45.33	92	23.7	23.1	99.2	0.347	46.8	28	15.6	1.1	24.8
31	45.34	92	24.7	23.7	95.0	0.332	49.1	28	14.6	1.1	22.7
32	45.35	92	22.6	22.5	96.7	0.338	47.1	27	14.6	1.1	23.7
33	45.36	92	21.9	21.6	96.7	0.338	47.4	26	14.4	1.1	24.1
34	45.37	92	24.0	23.3	95.3	0.333	47.6	28	14.9	1.1	25.8
35	45.38	92	24.1	23.7	97.7	0.342	47.7	28	14.3	1.1	23.3
36	45.39	92	23.8	23.2	99.6	0.349	46.8	28	14.5	1.1	23.2
37	45.40	92	22.8	22.6	95.2	0.333	50.5	27	14.2	1.1	22.2
38	45.41	92	22.2	21.9	96.9	0.339	46.2	26	14.5	1.1	22.8
39	45.42	92	22.0	21.9	96.3	0.337	47.7	26	14.5	1.1	21.5
40	45.43	92	23.3	22.7	95.7	0.335	47.4	27	14.7	1.1	22.6
41	45.45	92	22.4	22.3	95.7	0.335	47.5	27	14.6	1.1	21.2
42	45.46	92	22.8	22.3	95.7	0.335	47.6	27	15.3	1.1	22.7
43	45.47	92	22.8	22.5	97.6	0.342	47.4	27	15.1	1.1	21.3
44	45.48	92	22.5	22.1	97.1	0.340	47.4	26	15.3	1.1	22.7
45	45.49	92	22.4	22.2	97.6	0.342	47.7	27	15.1	1.1	21.7
		Average	23.2	22.7	96.6	0.338	47.6	27	15.1	1.1	22.9
		Std. Dev.	0.7	0.6	1.2	0.004	0.6	1	0.5	0.0	1.2
		Maximum	24.7	23.9	99.6	0.349	50.5	29	15.9	1.1	25.8
		Minimum	21.9	21.6	94.1	0.329	46.2	26	14.2	1.1	19.7

Total number of blows analyzed: 44

BL# depth (ft)

45.01

Comments

Start of test on 4/19/2013 at 1:57:55 PM End of test on 4/19/2013 at 1:58:55 PM

46 45.50

Time Summary

1

Drive 1 minute

1:57:55 PM - 1:58:55 PM (4/19/2013) BN 1 - 46

Report 6

Holt Mobile B-54

Job No. 186004-1

Report on: Dynamic Energy Measurements SPT Rig Calibration Project Portland, Oregon

Prepared for Holt Services, Inc. By Marty Bixler and Diego Campos

March 20, 2018

Dynamic engineers, inc.

Measurements and Analyses

www.GRLengineers.com

info@GRLengineers.com

March 20, 2018

Dale Smith Holt Services, Inc. 10621 Todd Road, E Edgewood, WA 98372

Re: Energy Measurement for Dynamic Penetrometers Standard Penetration Tests (SPT) Portland, Oregon

GRL Job No. 186004-1

Dear Mr. Smith:

This report transmits our findings from energy measurements and related data analysis conducted by GRL Engineers, Inc. (GRL) for your Mobile B-54 track-rig operating in Portland, Oregon. One automatic hammer and penetrometer system was monitored during Standard Penetration Tests. Dynamic testing summarized in this report was conducted on March 19, 2018.

A Pile Driving Analyzer® Model 8G recorded, processed and displayed the dynamic data to meet the objectives of the hammer system calibration. Discussions on the test methods, limitations and implementation are provided in Appendix A. The energy measurement results are summarized in the appended tables with the average and standard deviation provided in Appendix B together with representative plots of force and normalized velocity.

EQUIPMENT

Hammer and Penetrometer System

Energy measurements were recorded during standard penetration tests conducted for one automatic hammer and the following drill rig type.

Drill Rig Type
Mobile B-54 Track-rig #9
SN 2010009

Measurements were recorded for two boring locations; B3 and B4. Holt Services, Inc. advanced the penetrometer to depths of approximately $16\frac{1}{2}$ feet at each boring location with relatively little resistance, and then encountered relatively high resistance conditions. The instrumented subassembly was connected to the top of the drill rod string and measurements recorded at

intervals for several depths of data. Selected data presented in this report is from depths of approximately 20 and 23 feet for boring B3 and a depth of approximately 20 feet for boring B4.

Measurements were recorded for each blow required to advance the sampler. Results are provided for typically 12 inches (or less when refusal conditions were encountered) of the sampler advancement (i.e., excluding the initial 6 inches of advancement when the penetrometer was able to advance the full 18 inches) for the averaging of results. Please refer to ASTM D4633 regarding recommendations on blow counts and instrumented drill rod lengths, as well as other details of the test method.

The following drill rod dimensions, of rod size NWJ, were employed during testing.

Drill Rod Area	Outside Diameter	Inside Diameter
sq. inch	Inch	inch
1.45	2.63	2.25

Note that these are the rod size dimensions for the instrumented section used for the testing, as well as the drill rod string. A split spoon sampler was used as the penetrometer.

Instrumentation

A Pile Driving Analyzer was employed for recording, processing, and displaying the dynamic data. An instrumented subassembly, inserted at the top of the drill rod string below the hammer and anvil system and above the drill rods, was used to record force and acceleration data. The subassembly was instrumented with two foil strain gages in a full bridge circuit and two piezoresistive accelerometers attached on diametrically opposite sides of the subassembly. Data sampling frequency was 50.0 kHz.

The 8G utilizes a digital system, and with the employed sampling frequency of 50.0 kHz, the signal conditioning conforms to ASTM D4633. Results for the maximum hammer operating rate, rod top force and velocity, and transferred energy are provided in Appendix B and summarized in the appended tables. Discussions on the test method and its limitations can be found in Appendix A.

MEASUREMENTS AND CALCULATIONS

The primary objective of testing was the measurement of the energy transmitted from the hammer impact through the anvil into the instrumented subassembly and drill rods. Strain transducers and accelerometers were employed for the calculation of the transferred energy using force, F(t) and velocity v(t), records as follows:

$$EFV = \int_{b}^{a} F(t)v(t)dt$$

where time "b" is to the beginning of the energy transfer and time "a" is to the time at which the energy transfer reaches a maximum. Force is calculated as the product of the measured strain, elastic modulus and cross-sectional area, and measured acceleration is integrated to velocity.

Integrated over the complete impact event and calculated from measured force and velocity, the energy transferred to the top of the drill rod was calculated as a function of time. The maximum transferred energy (i.e., EFV) is used as an indicator of the energy content of the event. The described method is the only theoretically correct method of measuring energy transfer and automatically corrects for rod non-uniformities such as connector masses or loose joints.

TEST RESULTS

Result Discussion

Dynamic data was evaluated for the hammer operating rate, rod top force and velocity, and transferred energy. Appendix B provides the evaluated quantities for blows making up the SPT N-value, with their averages and standard deviation, plotted and printed as a function of depth for the monitored sequences of the standard penetration tests. Measurements collected for relevant samples are presented herein.

The tables in Appendix B include:

- FMX the maximum measured rod top force
- VMX the maximum measured rod top velocity
- BPM the hammer operating rate in blows per minute
- EFV the maximum calculated energy (EMX) transferred to the rod top
- ETR ratio of transferred energy (EFV) to the maximum theoretical potential energy

The maximum theoretical potential energy is the product of the standard 140 lb hammer impact mass dropped the standard 30 inches.

A representative plot of force and normalized velocity versus time for a typical blow from each data set is provided in Appendix B to demonstrate the data quality.

Summary of Results

I. The automatic hammer was monitored during standard penetration tests conducted on March 19, 2018. The average energy transfer ratio calculated with the EFV method for the monitored sequences for the drill rigs are tabulated below together with the corresponding, average hammer operating rates.

Drill Rig	Energy Transfer Ratio	Operating Rate
	percent	bpm
Mobile B-54 Rig #9	<mark>88.2</mark>	41.5

Please note the first two samples obtained from the rig obtained transfer efficiencies of 85.4 and 89.5 percent, and the third sample had a transfer efficiency of 89.6 percent.

- II. The uncorrected N-values encountered during the sequences ranged from 80 to 94.
- III. To convert the uncorrected N-values for the employed hammer and penetrometer system and operators, the Schmertman correction for adjustment to 60 percent transfer efficiency is

$$N_{60} = \left(\frac{e_m}{60}\right) N_m$$

where N_{60} is the corrected hammer N-value, e_m is the percent energy transfer efficiency (i.e., $e_m = 100^{*}ETR$) and N_m is the measured SPT N-value. N_{60} values for the measurements and monitored depths meeting ASTM requirements are presented in the appended tables. The measured overall energy transfer ratio tabulated above for the drill rig produce an N_{60} equivalent of roughly 1.47N_m. Further corrections due to overburden stresses in the soil may be made prior to use of the N-values for design purposes.

Holt Services, Inc. Energy Measurement for Dynamic Penetrometers GRL Job No. 186004-1

Page 5

We appreciate the opportunity to be of assistance to you on this project. Please contact our offices should you have any questions regarding the contents of this report, or if we may be of further service.

Respectfully, GRL ENGINEERS, INC.

Marty G. Bixler, P.E. (Oregon #89606) Senior Engineer

Diego Campos, E.I. Staff Engineer

APPENDIX A AN INTRODUCTION INTO SPT DYNAMIC PILE TESTING

The following has been written by GRL Engineers, Inc. and may only be copied with its written permission.

1. BACKGROUND

The Standard Penetration Test is frequently conducted as an in-situ assessment of soil strength. This test requires that a 140 lb weight is dropped 30 inches onto a drive rod at whose bottom a sampler is usually installed. The sampler is driven for 18 inches; the number of blows required for the last 12 inches of driving is the so-called N-value. The N-value may be used as a strength indicator for foundation design or as a means of assessing the liquefaction potential of soils.

Obviously, the SPT hammer efficiency is an important consideration when using the N-values for design purposes. Measurements have indicated that the energy in the drive rod is sometimes only 30% and and may reach 90% of the potential or rated energy of the SPT hammer (E-rated = 0.35 kip-ft or 0.475 kJ). The type of hammer used to drive the rod is the main reason for these variations. On the average, the energy in the drive rod is 60% of the standard rated energy.

Because of the variability of energy, methods based on N-values are considered unreliable. However, measurements during SPT testing using the Case Method can be done on a routine basis and these measurements yield the transferred energy values. With measured energy, EMX, known, an adjustment of the measured N-value, N_m , can be made as follows.

$$N_{60} = N_m [E_m / (0.6E_r)]$$
(1)

Thus, if the measured energy value is equal to the normally expected transferred energy of 60% of E-rated then the adjusted and measured N-values are identical. On the other hand, if the measured energy is only 30% then the adjusted blow count will be reduced by 50%.

2. DYNAMIC TESTING AND ANALYSIS METHODS APPLIED TO SPT

The Case Method of dynamic pile testing, named after the Case Institute of Technology where it was developed between 1964 and 1975, requires that a substantial ram mass (e.g. a pile driving hammer) impacts the pile top such that the pile undergoes at least a small permanent set. Thus, the method is also referred to as a "High Strain Method". The Case Method requires dynamic measurements on the pile or shaft under the ram impact and then a calculation of various quantities. Conveniently, for SPT applications, the measurements and analyses are done by a single piece of equipment: the SPT Analyzer. The Pile Driving Analyzer® (PDA) is also suitable to perform these measurements and data processing.

A related analysis method is the "Wave Equation Analysis" which calculates a relationship between bearing capacity, pile stresses, transferred energy and field blow count. The GRLWEAP[™] program performs this analysis and provides a complete set of helpful information and input data. This program can be used very effectively to simulate the SPT driving process.

3. MEASUREMENTS

GRL uses equipment manufactured by Pile Dynamics, Inc. The system includes either an SPT-Analyzer[™] (SPTA) or a Pile Driving Analyzer® (PDA), an instrumented rod section and two accelerometers. SPT energy testing is very closely related to and borrows procedures from dynamic pile testing. Those interested in the basis of the SPT energy testing method may obtain extensive literature on dynamic pile testing from GRL Engineers, Inc.

3.1 SPT Analyzer or Pile Driving Analyzer

The basis for the results calculated by the SPTA or PDA are strain and acceleration measured in an instrumented rod section. These signals are converted to rod top force, F(t), and rod top velocity, v(t). The SPTA or PDA conditions, calibrates and displays these signals and immediately computes average pile force and velocity thereby eliminating bending effects. The product of these two measurements is then integrated over time which yields the energy transferred to the instrumented section as a function of time (see Section 4.1).

For convenience and accuracy, strain measurements are usually taken on an instrumented section of SPT drive rod. Ideally, the section properties of the instrumented rod and those of the drive rod are the same, however, using subs, other sections can also be utilized.

For the instrumented section, PDI provides a force calibration in such a way that the output of the instrumented rod is directly calculated without the need for an accurate elastic modulus or cross sectional area of the rod section.

The acceleration measurements are often demanding in the SPT environment, because of high frequency and high acceleration motion components. An experienced measurement engineer, therefore, has to evaluate the quality of this data before final conclusions are drawn from the numerical results calculated by SPTA or PDA.

SPTA or PDA records are taken while the standard Nvalue is acquired in the conventional manner. This then allows a direct correlation between N-value and average transferred energy.

3.2 HPA

The SPT hammer's ram velocity may be directly obtained using radar technology in the Hammer Performance Analyzer[™]. The impact velocity results can be automatically processed with a PC or recorded on a strip chart. HPA measurements yield a hammer kinetic energy, but not the energy transferred to the drive rod.

4 RECORD EVALUATION BY SPTA OR PDA

4.1 HAMMER PERFORMANCE

The PDA calculates the energy transferred to the pile top from:

$$E(t) = {}_{o} \int^{t} F(\tau) v(\tau) d\tau$$
(2)

The maximum of the E(t) curve is often called **ENTHRU or EMX**; it is the most important quantity for an overall evaluation of the performance of a hammer

and driving system. **EMX** allows for a classification of the hammer's performance when presented as, e_{T} , the rated transfer efficiency, also called energy transfer ratio (**ETR**) or global efficiency.

$$e_{\rm T} = {\rm EMX/E_{\rm R}} \tag{3}$$

where E_R is the hammer manufacturer's rated energy value or 0.35 kip-ft (0.475 kJ) in the case of the SPT hammer.

Often in the SPT literature one finds also reference to the EF2 energy. This evaluation is based on assumed proportionality between force and velocity (see also Section 5):

$$v(t) = F(t) / Z \tag{4}$$

where Z = EA/c is the pile impedance, E is the elastic modulus, A is the cross sectional area and c is the speed of the stress wave in the pile material.

Combining equations 2 and 4 leads to

$$\mathsf{EF}(\mathsf{t}) = {}_{\mathsf{O}} {\int^{\mathsf{t}} \mathsf{F}(\mathsf{T})^2 / \mathsf{Z} \, \mathsf{d}\mathsf{T}}$$
(5)

The EF2 transferred energy value is the EF-value at the time t = 2L/c, where L is the drive rod length and c is the stress wave speed in steel (16,800 ft/s or 5,124 m/s). Since the force is easier to measure than both force and velocity, Equation 5 is preferred by some test engineers. However, the EF method is fraught with errors and certain correction factors have to be applied to make it approximately correct. Among the error sources are the following:

- Proportionality is often violated prior to time 2L/c. The proportionality between force and velocity in a downward traveling wave only holds if the wave does not encounter a disturbance prior to reflecting off the pile toe. Such disturbances include a change in cross sectional area, an open or loose splice or joint, or resistance along the shaft.
- Using only one force measurement precludes a data quality check based on the proportionality between force and velocity. Thus, a force measurement that is for some reason in error may not be detectable, which will lead to errors in the EF2 value. Data quality checks will be discussed further in Section 5.

The use if EF2 is therefore not recommended but it is often included in result presentations for the sake of completeness.

4.2 STRESSES

During SPT monitoring, it is also of interest to monitor compressive stresses at both the top of the drive rod and at its bottom.

At the pile top (location of sensors) the maximum compression stress averaged over the rod's cross section, **CSX**, is directly obtained from the measurements. Note that this stress value refers to the instrumented section. If the rod has a different cross sectional area then the stress in the rod will be different from CSX.

The SPTA or PDA can also calculate, in an approximate manner, the force at the rod bottom, **CFB**. To obtain the corresponding stress, this force value should be divided by the appropriate cross sectional area, e.g. by the rod area just above the sampler or by the sampler area itself. Of course, non-uniform stress components as they might occur at the sampler tip due to a sloping rock are not considered in this calculation.

5. DATA QUALITY CHECKS

Quality data is the first and foremost requirement for accurate dynamic testing results. It is therefore important that the measurement engineer performing SPTA or PDA tests has the experience necessary to recognize measurement problems and take appropriate corrective action should problems develop. Fortunately, dynamic pile testing allows for certain data quality checks because two independent measurements are taken that have to conform to the so-called proportionality relationship.

As long as there is only a wave traveling in one direction, as is the case during impact when only a downward traveling wave exists in the rod, force and velocity measured at its top are proportional

$$F = v Z \tag{5}$$

where Z is again the pile impedance, Z = EA/c. This relationship can also be expressed in terms of stress

$$\sigma = F/A = v (E/c) \tag{6}$$

or strain

$$\varepsilon = \sigma/E = v / c$$
 (7)

This means that the early portion of strain times wave speed must be equal to the velocity unless the proportionality is affected by high friction near the pile top or by a pile cross sectional change not far below the sensors. Checking the proportionality is an excellent means of assuring meaningful measurements but is only truly meaningful for perfectly uniform rods. Open or loose splices, for example, will lead to a non-proportionality. For SPT rods it is fortunate that usually no soil resistance acts along the shaft and for that reason, proportionality can exist until the stress wave returns from sampler top or rod bottom unless connectors are not sufficiently tightened or have a significant mass.

Velocity data quality can also be checked by looking at the final displacement, DFN, which is calculated from the acceleration by double integration. If the calculated final displacement is much higher or lower than indicated by the N-value, the accelerometer attachment may be loose or the sensor may be faulty. If major drift in the velocity is observed, the EMX value may be in error, even though proportionality from impact to time 2L/c exists. In this case, it may be useful to evaluate the energy transferred to the drill rod at time 2L/c, which is calculated by the PDA or SPTA as the E2E quantity.

> © 2003 GRL Engineers, Inc. App-A-SPT-12-03

Appendix B

Results of SPT Rig Calibration

Pile Dynamics, Inc.	Page 1 of 8
SPT Analyzer Results	PDA-S Ver. 2018.24 - Printed: 3/20/2018
MOBILE B-54 RIG 9	20-B3
GRL-MGB	Test date: 3/19/2018
AR: 1.45 in^2	SP: 0.492 k/ft3
LE: 25.00 ft	EM: 30000 ksi
WS: 16807.9 ft/s	

F3 : [292NWJ] 215.95 PDICAL (1) FF1 F4 : [292NWJ-2] 216.67 PDICAL (1) FF1

A1 (PR): [K4422] 400 mv/6.4v/5000g (1) VF1 A2 (PR): [K4981] 322 mv/6.4v/5000g (1) VF1

FMX: Maximum Force

VMX: Maximum Velocity

BPM: Blows/Minute

EFV: Maximum Energy ETR: Energy Transfer Ratio - Rated

3PM: Blows/Minute							
BL#	BC	LP	FMX	VMX	BPM	EFV	ETR
	/6"	ft	kips	ft/s	bpm	ft-lb	%
1	34	20.01	38	13.9	52.9	293.7	83.9
2	34	20.03	37	11.8	48.4	286.5	81.9
3	34	20.04	34	11.4	46.6	280.5	80.1
4	34	20.06	34	11.1	43.8	284.7	81.3
5	34	20.07	34	12.7	43.2	292.6	83.6
6	34	20.09	34	12.4	43.3	295.9	84.5
7	34	20.10	37	13.9	43.4	299.0	85.4
8	34	20.12	36	14.1	43.3	293.3	83.8
9	34	20.13	35	14.1	43.5	293.7	83.9
10	34	20.15	35	14.2	42.9	293.3	83.8
11	34	20.16	35	14.2	43.0	292.2	83.5
12	34	20.18	36	14.7	42.8	302.5	86.4
13	34	20.19	34	14.5	42.9	286.2	81.8
14	34	20.21	35	14.6	43.0	305.4	87.3
15	34	20.22	33	14.8	43.0	292.3	83.5
Pile Dynamics, In	С.						Page 2 of 8
----------------------	------	-------	----	------	------	--------------------	----------------------
SPT Analyzer Results						PDA-S Ver. 2018.24	- Printed: 3/20/2018
16	34	20.24	35	15.1	42.8	298.6	85.3
17	34	20.25	35	15.1	42.5	303.9	86.8
18	34	20.26	34	15.1	42.4	301.6	86.2
19	34	20.28	35	15.2	42.3	303.9	86.8
20	34	20.29	34	15.4	42.4	296.5	84.7
21	34	20.31	35	15.2	42.2	307.2	87.8
22	34	20.32	35	15.2	42.3	302.6	86.5
23	34	20.34	35	15.2	42.4	305.1	87.2
24	. 34	20.35	34	15.4	42.1	303.9	86.8
25	34	20.37	36	15.0	41.9	309.8	88.5
26	34	20.38	35	15.3	42.0	302.9	86.5
27	34	20.40	35	15.3	41.8	301.9	86.3
28	34	20.41	34	15.5	41.8	303.9	86.8
29	34	20.43	35	15.6	41.6	303.6	86.7
30	34	20.44	33	16.0	41.9	306.0	87.4
31	34	20.46	34	15.5	41.5	298.6	85.3
32	34	20.47	35	15.6	41.5	310.1	88.6
33	34	20.49	34	15.5	41.7	310.8	88.8
34	. 34	20.50	35	15.4	41.6	310.1	88.6
35	94	20.51	34	15.6	41.6	303.3	86.7
36	94	20.52	33	15.6	41.4	290.9	83.1
37	94	20.53	35	15.6	41.9	308.0	88.0
38	94	20.54	35	15.7	41.3	294.5	84.2
39	94	20.55	34	15.8	41.4	307.0	87.7
40	94	20.56	35	15.1	41.7	310.5	88.7
41	94	20.57	35	15.8	41.2	306.3	87.5
42	94	20.58	35	15.5	41.3	302.7	86.5
43	94	20.59	35	15.6	41.3	299.5	85.6
44	. 94	20.60	35	15.8	41.3	298.8	85.4
45	94	20.61	35	15.8	41.2	296.6	84.7
46	94	20.62	35	15.7	41.0	299.7	85.6
47	94	20.63	34	16.4	41.0	300.4	85.8
48	94	20.64	34	16.2	41.2	302.1	86.3
49	94	20.65	35	15.4	41.4	305.4	87.3
50	94	20.66	35	15.3	41.0	298.4	85.3
51	.94	20.67	34	15.6	41 1	299.4	85.5
52		20.68	35	15.7	41.3	303.8	86.8
53	94	20.69	35	15.3	41.0	297.0	84.9

35 35

34

35

34

41.0

41.0

40.8

41.2

40.8

15.6

15.3

15.5

15.5

15.1

298.2 297.7

298.7

300.4

291.6

85.2

85.1

85.4

85.8

83.3

58

94

94

94

94

94

20.70

20.71

20.72

20.73

20.74

Pile Dynamics,	Inc.						F	Page 3 of 8
SPT Analyzer Resu	ults					PDA	-S Ver. 2018.24 - Printe	d: 3/20/2018
	59	94	20.75	35	15.6	40.9	301.4	86.1
	60	94	20.76	34	15.5	41.0	296.3	84.7
	61	94	20.77	33	15.0	2.4	294.1	84.0
	62	94	20.78	35	15.7	42.6	295.1	84.3
	63	94	20.79	33	15.4	40.6	295.5	84.4
	64	94	20.80	34	15.6	41.0	295.8	84.5
	65	94	20.81	35	15.5	40.9	294.7	84.2
	66	94	20.82	34	15.6	40.9	292.6	83.6
	67	94	20.83	34	15.6	40.9	292.7	83.6
	68	94	20.84	35	15.7	40.7	303.6	86.7
	69	94	20.85	35	15.8	41.0	294.3	84.1
	70	94	20.86	34	15.7	41.1	288.6	82.4
	71	94	20.87	34	15.9	40.5	293.1	83.7
	72	94	20.88	34	15.5	41.0	292.5	83.6
	73	94	20.89	35	15.5	41.0	299.8	85.7
	74	94	20.90	35	16.0	41.0	295.6	84.5
	75	94	20.91	35	15.9	41.0	294.7	84.2
	76	94	20.92	36	15.9	40.8	299.8	85.7
	77	94	20.93	36	15.9	40.6	296.5	84.7
	78	94	20.94	36	15.8	40.8	304.4	87.0
	79	94	20.95	35	15.8	41.0	297.2	84.9
	80	94	20.96	35	15.8	41.2	297.7	85.1
	81	94	20.97	36	16.0	40.7	299.7	85.6
	82	94	20.98	36	15.6	41.0	298.7	85.3
	83	94	20.99	35	16.0	41.1	292.8	83.7
	84	94	21.00	37	15.9	41.1	302.2	86.3
			Average	35	15.2	41.4	298.7	85.4
			Std Dev	1	1.0	4.6	6.1	1.7
			Maximum	38	16.4	52.9	310.8	88.8
			Minimum	33	11.1	2.4	280.5	80.1
				N-value: 84				

Sample Interval Time: 143.07 seconds.

Pile Dynamics, Inc.	Page 4 of 8
SPT Analyzer Results	PDA-S Ver. 2018.24 - Printed: 3/20/2018
MOBILE B-54 RIG 9	20-B3
GRL-MGB	Test date: 3/19/2018
AR: 1.45 in^2	SP: 0.492 k/ft3
LE: 28.00 ft	EM: 30000 ksi
WS: 16807.9 ft/s	

F3 : [292NWJ] 215.95 PDICAL (1) FF1 F4 : [292NWJ-2] 216.67 PDICAL (1) FF1

A1 (PR): [K4422] 400 mv/6.4v/5000g (1) VF1 A2 (PR): [K4981] 322 mv/6.4v/5000g (1) VF1

BL#	BC	LP	FMX	VMX	BPM	EFV	ETR
	/6"	ft	kips	ft/s	bpm	ft-lb	%
85	23	23.02	35	15.6	53.8	305.9	87.4
86	23	23.04	34	15.8	46.5	313.2	89.5
87	23	23.07	35	15.6	44.8	304.7	87.0
88	23	23.09	35	15.8	43.8	313.4	89.5
89	23	23.11	34	15.5	43.2	306.1	87.5
90	23	23.13	36	15.8	43.5	309.6	88.5
91	23	23.15	36	15.6	43.4	306.8	87.7
92	23	23.17	35	15.7	43.0	310.9	88.8
93	23	23.20	35	15.7	43.0	312.7	89.3
94	23	23.22	36	15.8	42.7	316.4	90.4
95	23	23.24	37	15.8	42.9	314.5	89.9
96	23	23.26	36	15.9	42.8	312.2	89.2
97	23	23.28	37	15.7	42.5	311.6	89.0
98	23	23.30	35	15.7	42.5	313.5	89.6
99	23	23.33	35	15.6	42.5	306.8	87.6
100	23	23.35	39	16.0	42.7	316.0	90.3
101	23	23.37	34	15.4	42.2	299.2	85.5
102	23	23.39	35	15.5	42.5	306.2	87.5

Pile Dynamics, Inc.						F	Page 5 of 8
SPT Analyzer Results					PDA	-S Ver. 2018.24 - Printe	d: 3/20/2018
103	23	23.41	35	15 7	42.3	310.1	88.6
104	23	23.43	37	15.0	42.3	310.0	88.8
105	23	23.46	37	15.8	41.8	303.7	86.8
100	23	23.48	36	15.8	42.3	310.3	88.7
107	23	23.50	38	16.3	41.0	314.3	80.8
108	34	23.50	37	16.0	42.1	313.0	89.7
100	34	23 53	38	16.1	41.8	315.6	90.2
110	34	23 54	36	15.9	42.0	310.3	88.6
111	34	23.56	37	15.9	41.0	309.6	88.5
112	34	23.57	38	15.8	42.0	308.6	88.2
113	34	23 59	35	15.8	41 7	320.1	91.4
114	34	23.60	36	15.9	41.7	315.7	90.2
115	34	23.62	36	15.7	41 9	309.7	88.5
116	34	23.63	34	15.6	41.0	313 3	89.5
117	34	23.65	37	15.0	41.7	311.5	89.0
118	34	23.66	34	15.6	41.5	314.6	80.0
110	34	23.68	38	15.0	41.7	316.8	90.5
120	34	23.00	37	15.5	41.7	318.1	90.5 QO Q
120	34	23.03	36	15.7	41.5	315 /	90.9 00.1
121	34	23.71	35	15.7	41.7	313.4	90.1
122	34	23.72	37	15.0	41.4	316.0	09.9
123	34	23.74	38	15.7	41.0	315.0	90.3
124	34	23.75	30	16.0	41.7	316.6	90.1
125	34	23.70	37	15.9	41.5	313.0	90.0 80.4
120	34	23.70	35	15.6	41.0	300.6	09.4
127	34	23.79	36	15.0	41.4	314.0	80.7
120	34	23.01	35	15.5	41.2	316.4	09.7
129	34	23.02	20	15.5	41.0	212.4	90.4
130	34	23.04	30	15.0	41.5	312.4	09.3
131	34	23.00	37	10.0	41.0	310.7	00.0
132	34	23.07	20	15.0	41.0	212.0	90.0
133	34	23.00	39 27	15.9	41.4	312.9	09.4
134	34	23.90	20	15.7	41.4	312.0	09.4
135	34	23.91	30	15.9	41.4	310.0	90.9
130	34	23.93	39	10.0	41.2	311.9	09.1
137	34	23.94	30	15.7	41.0	313.3	90.1
138	34	23.90	35	15.0	41.4	317.Z	90.6
139	34	23.97	39	15.9	41.2	310.3	91.0
140	34	23.99	30	15.8	41.4	307.8	87.9
141	34	24.00	37	15.7	41.5	305.2	87.2
142	40	24.01	30 20	15./	41.1	309.5	88.4
143	40	24.02	38	15.8	41.0	313.8	89.7
144	40	24.03	35	15.0	41.5	314.4	89.8
145	46	24.04	36	15.6	41.5	304.5	87.0

Pile Dynamics, Inc.						ſ	Page 6 of 8
SPT Analyzer Results					PDA	-S Ver. 2018.24 - Printe	d: 3/20/2018
146	46	24.05	37	15.8	41.6	310.0	88.6
140	46	24.03	36	15.5	41.0	302.2	86.3
147	40	24.07	38	16.1	41.3	317.0	00.5
140	40	24.00	30	16.1	41.3	310.3	01.2
149	40	24.09	28	16.0	41.3	313.5	91.2
150	40	24.10	34	10.0	41.4	200.1	09.0
151	40	24.11	30	16.1	41.3	310.0	00.0
152	40	24.12	39	10.1	41.4	215.5	91.4
153	40	24.13	40	10.0	41.4	210.0	90.2
154	40	24.14	34	15.5	40.9	310.7 200.1	91.1
155	40	24.10	34	15.5	41.2	309.1	00.3
150	40	24.10	30	15.0	41.7	320.3	91.5
157	40	24.17	30	15.0	41.5	307.0	07.9
158	40	24.18	30	15.8	41.4	307.0	87.7
159	46	24.20	36	15.7	41.1	308.7	88.2
160	46	24.21	36	15.8	41.1	311.6	89.0
161	46	24.22	37	15.8	40.9	318.6	91.0
162	46	24.23	34	14.8	41.3	309.3	88.4
163	46	24.24	34	14.9	41.1	309.8	88.5
164	46	24.25	34	15.2	41.1	315.0	90.0
165	46	24.26	34	14.8	41.2	303.2	86.6
166	46	24.27	34	14.7	41.2	304.0	86.9
167	46	24.28	34	15.0	40.8	314.4	89.8
168	46	24.29	35	15.4	41.1	319.5	91.3
169	46	24.30	35	15.6	41.0	318.8	91.1
170	46	24.32	34	15.2	41.0	308.9	88.3
171	46	24.33	36	15.3	41.0	315.1	90.0
172	46	24.34	36	16.0	41.4	313.1	89.5
173	46	24.35	36	16.0	41.4	310.4	88.7
174	46	24.36	36	16.0	41.0	311.7	89.1
175	46	24.37	38	16.1	41.2	321.1	91.7
176	46	24.38	37	16.0	41.4	310.3	88.6
177	46	24.39	35	15.8	41.2	309.1	88.3
178	46	24.40	37	16.1	41.1	312.0	89.2
179	46	24.41	36	16.0	41.3	309.6	88.5
180	46	24.42	37	16.2	41.5	320.2	91.5
181	46	24.43	37	16.0	41.0	308.3	88.1
182	46	24.45	37	16.2	41.3	321.0	91.7
183	46	24.46	36	16.0	41.5	310.5	88.7
184	46	24.47	36	16.0	41.4	309.6	88.4
185	46	24.48	38	16.2	41.2	315.2	90.1
186	46	24.49	36	16.0	41.1	307.7	87.9
187	46	24.50	39	16.3	41.2	323.0	92.3

Page 7 of 8 PDA-S Ver. 2018.24 - Printed: 3/20/2018

Average	36	15.7	41.4	313.1	89.5
Std Dev	1	0.3	0.3	4.6	1.3
Maximum	40	16.3	42.1	323.0	92.3
Minimum	34	14.7	40.8	302.2	86.3
	N-value: 80				

Sample Interval Time: 146.78 seconds.

Page 8 of 8 PDA-S Ver. 2018.24 - Printed: 3/20/2018

Summary of SPT Test Results

FMX: Maximum Force EFV:	Maximum Energy	
VMX: Maximum Velocity ETR:	Energy Transfer R	atio - Rated
BPM: Blows/Minute		
Instr. Blows Start Final N N60 Average Average Average	Average	Average
Length Applied Depth Depth Value Value FMX VMX BPM	EFV	ETR
ft /6" ft ft kips ft/s bpm	ft-lb	%
25.00 34-94 20.00 21.00 94 136 35 15.2 41.4	298.7	85.4
28.00 23-34-46 23.00 24.50 80 116 36 15.7 41.4	313.1	89.5
Overall Average Values: 36 15.5 41.4	305.7	87.4
Standard Deviation: 1 0.8 3.3	9.0	2.6
Overall Maximum Value: 40 16.4 52.9	323.0	92.3
Overall Minimum Value: 33 11.1 2.4	280.5	80.1

SPT Analyzer Results	PDA-S Ver. 2018.24 - Printed: 3/20/2018
MOBILE B-54 RIG 9	20-B4
GRL-MGB	Test date: 3/19/2018
AR: 1.45 in ²	SP: 0.492 k/ft3
LE: 25.00 ft	EM: 30000 ksi
WS: 16807.9 ft/s	

Depth: (20.00 - 21.50 ft], displaying BN: 92

F3 : [292NWJ] 215.95 PDICAL (1) FF1 F4 : [292NWJ-2] 216.67 PDICAL (1) FF1

A1 (PR): [K4422] 400 mv/6.4v/5000g (1) VF1 A2 (PR): [K4981] 322 mv/6.4v/5000g (1) VF1

FMX: Maximum Force

VMX: Maximum Velocity BPM: Blows/Minute

Pile Dynamics, Inc.

EFV: Maximum Energy ETR: Energy Transfer Ratio - Rated

BDW:	Blows/Minute							
	BL#	BC	LP	FMX	VMX	BPM	EFV	ETR
		/6"	ft	kips	ft/s	bpm	ft-lb	%
	1	0	20.01	43	15.2	53.8	310.8	88.8
	2	0	20.02	42	14.3	46.3	312.3	89.2
	3	0	20.03	45	14.7	43.7	321.6	91.9
	4	0	20.05	42	14.4	43.0	299.7	85.6
	5	0	20.06	41	14.9	42.9	309.4	88.4
	6	0	20.07	41	15.2	42.9	302.4	86.4
	7	0	20.08	37	15.1	42.9	296.3	84.7
	8	0	20.09	40	15.5	42.7	312.1	89.2
	9	0	20.10	39	15.9	42.7	305.6	87.3
	10	0	20.11	37	15.4	42.3	298.2	85.2
	11	0	20.13	41	15.5	42.6	312.1	89.2
	12	0	20.14	40	15.7	42.1	309.6	88.4
	13	0	20.15	42	15.3	42.4	311.8	89.1
	14	0	20.16	40	14.7	42.4	305.6	87.3
	15	0	20.17	42	14.7	42.2	307.1	87.8

Page 1 of 5

Pile Dynamics, Inc.
SPT Analyzer Results

16	0	20.18	40	15.1	42.4	304.7	87.1
17	0	20.19	40	15.0	41.9	304.9	87.1
18	0	20.20	40	16.3	42.1	309.8	88.5
19	0	20.22	41	15.7	42.1	316.2	90.3
20	0	20.23	37	15.8	41.7	307.0	87.7
21	0	20.24	39	16.2	42.1	312.0	89.1
22	0	20.25	42	15.8	42.0	316.1	90.3
23	0	20.26	40	16.0	41.9	313.5	89.6
24	0	20.27	40	15.5	41.7	318.1	90.9
25	0	20.28	41	16.0	41.9	318.5	91.0
26	0	20.30	41	15.5	41.7	314.5	89.9
27	0	20.31	40	15.7	41.6	313.6	89.6
28	0	20.32	39	15.7	41.7	312.1	89.2
29	0	20.33	41	15.7	41.9	320.1	91.5
30	0	20.34	40	15.9	41.8	315.0	90.0
31	0	20.35	40	15.6	41.8	316.9	90.5
32	0	20.36	41	15.7	41.8	317.9	90.8
33	0	20.38	40	16.2	41.7	319.5	91.3
34	0	20.39	39	16.0	41.9	318.1	90.9
35	0	20.40	41	15.5	41.6	316.0	90.3
36	0	20.41	38	15.9	41.7	313.0	89.4
37	0	20.42	38	16.1	41.9	317.6	90.7
38	0	20.43	41	15.7	41.7	319.7	91.3
39	0	20.44	42	15.1	41.6	319.5	91.3
40	0	20.45	40	15.5	41.5	313.8	89.7
41	0	20.47	41	15.5	41.5	317.1	90.6
42	0	20.48	41	15.6	41.4	319.4	91.2
43	0	20.49	39	16.1	41.6	317.0	90.6
44	0	20.50	40	15.8	41.4	317.9	90.8
45	44	20.51	40	16.0	41.4	319.9	91.4
46	44	20.52	40	16.2	41.6	318.2	90.9
47	44	20.53	41	16.1	41.6	322.2	92.1
48	44	20.54	40	15.8	41.5	313.0	89.4
49	44	20.55	41	15.7	41.5	319.1	91.2
50	44	20.56	40	15.4	41.6	311.1	88.9
51	44	20.57	41	15.4	41.2	308.3	88.1
52	44	20.58	41	14.5	41.2	310.8	88.8
53	44	20.59	42	14.8	41.3	316.9	90.5
54	44	20.60	41	14.8	41.3	315.1	90.0
55	44	20.61	41	14.7	41.3	319.3	91.2
56	44	20.62	40	14.0	41.4	308.8	88.2
57	44	20.63	42	15.0	41.0	317.3	90.6
58	44	20.64	41	14.6	41.4	315.0	90.0

Pile Dynamics, Inc. SPT Analyzer Results					PDA	F -S Ver. 2018.24 - Printe	Page 3 of 5 d: 3/20/2018
59	44	20.65	40	14.8	41 3	314 9	90.0
59 60	44	20.05	40	14.5	41.5	305.9	87.4
61	44	20.00	40	14.6	41.1	309.2	88.3
62	44	20.68	41	14.0	41.7	308.3	88.1
63	44	20.69	41	14.8	41.1	315.9	90.3
64	44	20.00	41	14.7	41 1	307.6	87.9
65	44	20.70	41	14 7	41.3	310.8	88.8
66	44	20.72	41	14.6	41.1	307.7	87.9
67	44	20.73	41	14 7	40.7	308.7	88.2
68	44	20.74	41	14.6	40.9	308.4	88 1
69	44	20.75	41	14.8	41 1	311.8	89.1
70	44	20.76	42	14.6	41.3	307.3	87.8
71	44	20.77	41	14.5	41.2	306.2	87.5
72	44	20.78	42	14.9	41.1	312.3	89.2
73	44	20.79	40	14.7	41.3	319.5	91.3
74	44	20.80	41	14.8	41.1	307.2	87.8
75	44	20.81	41	14.7	41.0	315.8	90.2
76	44	20.82	40	14.7	41.2	317.4	90.7
77	44	20.83	41	14.8	41.2	320.6	91.6
78	44	20.84	41	14.8	41.2	318.9	91.1
79	44	20.85	41	14.4	41.1	314.0	89.7
80	44	20.86	41	14.5	41.1	317.3	90.7
81	44	20.87	41	14.6	41.2	318.5	91.0
82	44	20.88	41	14.4	41.0	320.5	91.6
83	44	20.89	41	14.4	40.9	315.3	90.1
84	44	20.90	41	14.3	41.2	313.3	89.5
85	44	20.91	41	14.5	41.0	314.7	89.9
86	44	20.92	41	14.7	41.2	320.9	91.7
87	44	20.93	41	14.7	41.2	316.9	90.5
88	44	20.94	41	14.6	41.1	314.9	90.0
89	44	20.95	42	14.7	41.1	320.6	91.6
90	44	20.96	40	14.8	41.4	316.9	90.6
91	44	20.97	41	14.4	41.3	308.5	88.1
92	44	20.98	42	14.5	41.5	317.7	90.8
93	44	20.99	42	14.6	41.1	316.5	90.4
94	44	21.00	41	14.6	41.3	319.6	91.3
		Average	41	15.1	41.8	313.5	89.6
		Std Dev	1	0.6	1.4	5.5	1.6
		Maximum	45	16.3	53.8	322.2	92.1
		Minimum	37	14.0	40.7	296.3	84.7

N-value: 94

Page 4 of 5 PDA-S Ver. 2018.24 - Printed: 3/20/2018

Sample Interval Time: 134.04 seconds.

Page 5 of 5 PDA-S Ver. 2018.24 - Printed: 3/20/2018

Summary of SPT Test Results

Project: MOBILE B-5	54 RIG 9, Test Da	te: 3/19/2018								
FMX: Maximum Force							EFV: Maximum Energy			
VMX: Maximum Velo	ocity							ETR: Energy Transfer Ratio - Rated		
BPM: Blows/Minute										
Instr.	Blows	Start	Final	N	N60	Average	Average	Average	Average	Average
Length	Applied	Depth	Depth	Value	Value	FMX	VMX	BPM	EFV	ETR
ft	/6"	ft	ft			kips	ft/s	bpm	ft-lb	%
25.00	0-44-50	20.00	21.50	94	140	41	15.1	41.8	313.5	89.6
				Overall Avera	age Values:	41	15.1	41.8	313.5	89.6
	Standard Deviation:		1	0.6	1.4	5.5	1.6			
				Overall Maximum Value:		45	16.3	53.8	322.2	92.1
				Overall Minir	mum Value:	37	14.0	40.7	296.3	84.7

golder.com