CEDAR HILLS REGIONAL LANDFILL QUARTERLY ENVIRONMENTAL MONITORING REPORT

First Quarter 2018

June 2018

CHECKLIST FOR GROUNDWATER REPORTING Municipal Solid Waste Landfills WAC 173-351-415

Include a signed, completed copy of this checklist with each quarterly and annual report.

Quarterly groundwater reports shall be submitted to the jurisdictional health department and Ecology within 60 days of receipt of analytical data. Annual groundwater reports shall be submitted to the jurisdictional health department and Ecology by April 1 of each year.

1^{st} 2^{nd} 3^{rd} 4^{th} YEAR <u>2018</u>	Reference (section, subsection)	Included in this report	Location – page # or appendix #
Quarterly Groundwater Reports: 173-351-415 (2) plus the referenced section			
Statistical calculations and summaries			
Descriptive statistics	420, (1)		
Statistical tests	420, (2)	X	3
Notification of statistical increase (if applicable)	420, (4)	X	3
Notification of concentrations above Chapter 173-200 WAC criteria (if any)	430, (4)	X	21
Static water level readings	415, (2)	X	App B
Potentiometric surface elevation maps depicting flow direction	415, (2)	$\overline{\mathbf{X}}$	App A
Flow rate – calculated	415, (2)	X	App A
Cation-anion balances	430, (5a)	X	29
Explanation of greater than 5% (or 10%) difference if needed	430, (5a)		
Trilinear diagrams	430, (5b)	X	35, 36
Leachate analyses (if sampled and tested)	415, (2)	X	App B
Data entered into EIM database (date entered:)	415, (3)		
Complete copy of the lab report with chain of custody record.			
Annual Groundwater Reports: 173-351-415 (1) YEAR			
Summary of statistical results and trends	415, (1)		
Summary of groundwater flow rate and direction for the year	415, (1)		
Copy of all potentiometric maps for the year	415, (1)		
Summary geochemical evaluation	415,(1)		
For Quarterly and Annual Reports			
Stamped by a licensed professional	RCW 18.220	\mathbf{X}	

Signature of Report Author

June 29, 2018 Date

Cedar Hills Regional Landfill

Landfill

If you need this publication in an alternate format, please call the Waste 2 Resources Program at (360) 407-6900. Persons with hearing loss can call 711 for Washington Relay Service. Persons with a speech disability can call 877-833-6341.

ECY 070-316 (Rev. 11/12)

CERTIFICATION

Quarterly Report Groundwater Evaluation Report Certification

I certify in accordance with the requirements of WAC 173-351-400(c) (3), that the contents of this **Cedar Hills Landfill Quarterly Environmental Monitoring Report** were prepared under my direction or supervision under a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Where applicable, some specific and related hydrogeologic portions have been duly certified by the responsible groundwater scientist. Based on my inquiry of the person(s) directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete.

Name:	Title:	Date:
Laura Belt, P.E.	Supervising Engineer,	
	Facility Engineering	June 28, 2018
	and Science Unit	
Mailing Address:		Telephone Number:
Solid Waste Division		
King County Department of Natural Re	sources & Parks	206-477-5215
201 South Jackson Street, Suite 701		
Seattle, WA 98104-3855		
Signature:	THES 9-(0-2019	

KING COUNTY SOLID WASTE CEDAR HILLS REGIONAL LANDFILL QUARTERLY ENVIRONMENTAL MONITORING REPORT

CONTENTS

	CHECKLIST FOR GROUNDWATER REPORTING	iii
	CERTIFICATION	v
SUMM	IARY OF QUARTERLY ENVIRONMENTAL MONITORING	
	RESULTS AND ANALYSIS	1
	GROUNDWATER	1
	STORM WATER	7
	LANDFILL GAS	8
	ANALYTICAL METHODS	9

FIGURES

Fig	1	GROUNDWATER MONITORING WELL LOCATIONS	11
Fig	2	STORM WATER MONITORING LOCATIONS	13
Fig	3	LEACHATE MONITORING LOCATIONS	15
Fig	4	LANDFILL GAS MIGRATION MONITORING PROBE LOCATIONS	17
Fig	5	TRILINEAR DIAGRAM UPGRADIENT AND CROSSGRADIENT REGIONAL WELLS	31
Fig	6	TRILINEAR DIAGRAM DOWNGRADIENT REGIONAL WELLS	32
Fig	7	TRILINEAR DIAGRAM EAST PERCHED ZONE WELLS	39
Fig	8	TRILINEAR DIAGRAM SSW AREA PERCHED ZONES WELLS	40

TABLES

Tab	1	SUMMARY OF CEDAR HILLS REGIONAL LANDFILL SITE WELLS	19
Tab	2	GROUNDWATER MONITORING ACTIVITIES	23
Tab	3	REGIONAL AQUIFER GROUNDWATER QUALITY STANDARD EXCEEDANCES	25
Tab	4	REGIONAL AQUIFER ION BALANCE CALCULATIONS	27
Tab	5	REGIONAL AQUIFER QUARTERLY PREDICTION LIMIT VALUES AND RESULTS	33
Tab	6	REGIONAL AQUIFER VOLATILE ORGANIC COMPOUND DETECTIONS	35
Tab	7	PERCHED ZONES GROUNDWATER QUALITY STANDARD EXCEEDANCES	36
Tab	8	PERCHED ZONES ION BALANCE CALCULATIONS	37
Tab	9	PERCHED ZONES PREDICTION LIMIT VALUES AND RESULTS	41
Tab	10	PERCHED ZONES VOLATILE ORGANIC COMPOUND DETECTIONS	43
Tab	11	SURFACE WATER MONITORING ACTIVITIES	45
Tab	12	SURFACE WATER QUALITY CRITERIA EXCEEDANCES	47
Tab	13	VOLATILE ORGANIC COMPOUND DETECTIONS IN BLANKS	48
Tab	14	GROUNDWATER QUALITY STANDARDS	49
Tab	15	STORMWATER PERMIT BENCHMARKS and EFFLUENT LIMITS	51
Tab	16	UNUSABLE DATA	52

APPENDICES

POTENTIOMETRIC SURFACE MAPS & AQUIFER FLOW CALCULATIONS	App A
FIELD DATA AND ANALYTICAL TEST RESULTS GROUNDWATER	App B
STORM WATER	
LEACHATE	
LANDFILL GAS MONITORING	
ANALYTICAL DATA QUALIFIERS	
METEROLOGICAL DATA	App C
AREA 5 TOP DECK MONITORING REPORT	App D

Cedar Hills Regional Landfill Summary of Quarterly Environmental Monitoring First Quarter of 2018

This summary contains a discussion of quarterly environmental monitoring results for groundwater, stormwater, and landfill gas migration monitoring for Cedar Hills Regional Landfill (CHRLF).

Environmental samples were collected and analyzed in accordance with the *Environmental Monitoring Sampling and Analysis Plan for Cedar Hills Regional Landfill (Dec., 2013)*, (SAP); and the *Quality Assurance Project Plan for Environmental Monitoring at King County Solid Waste Facilities* (QAPP). These plans describe procedures and activities to obtain sufficient and representative quality data to adequately conduct environmental monitoring at the CHRLF and provide documentation.

1.0 Quarterly Results and Analysis

This Section discusses the monitoring results and how they compare to previously collected data at the site.

1.1 Groundwater

Groundwater monitoring well details, locations, and monitoring status are presented in Table 1 and Figure 1. Monitoring activities for the first quarter are listed in Table 2.

1.1.1 Regional Aquifer

A refined conceptual model was developed in the *Cedar Hills Regional Landfill Site Wide Hydrogeologic Report Addendum (Dec., 2013).* The model fits the site into its regional context of recharge and discharge, provides a detailed look at flow paths within the Regional Aquifer, and defines specific detection zones for each monitoring well. The model provides a thorough evaluation of the monitoring well coverage from the facility waste placement areas and indicates that CHRLF has a sufficient and effective monitoring well network in place. In addition, an alternate groundwater sampling frequency has been implemented for detection groundwater monitoring consistent with WAC 173-351-450 (see SAP, Table 1 and Figure 1).

Note: For discussion and graphical presentation, monitoring wells are grouped together according to the flow path analysis for the regional aquifer.

Regional aquifer analysis results for downgradient and crossgradient wells for this quarter are generally consistent with past results. Several upgradient wells continue to show elevated concentrations of several parameters indicating changing water quality up-gradient of CHRLF.

Groundwater elevations and potentiometric surfaces are within historical ranges and reflect seasonal responses to precipitation. The Potentiometric Surface Map and Groundwater Flow Analysis Report can be found in Appendix A. Elevations measured this quarter conform to the current hydrogeologic model.

Groundwater samples were analyzed for both dissolved and total metal fractions per WAC 173-351-430(2)(b)(ii) as revised. However, only total metals results were compared to the water quality standards listed in WAC 173-351-990 Appendix I.

Implementation of the new SAP resulted in a reduction in the total number of wells that are monitored, and designating the remaining wells to be monitored as either Quarterly or Semi-Annual (i.e. the second and fourth quarters of the year). This quarter only wells marked as Quarterly in Table 1 were monitored.

During the second quarter of 2017, a transition to the Lower Limit of Quantitation (LLOQ) methodology for analytical testing occurred and resulted in revised reporting limits for a number of analytes. Further information on the transition to the LLOQ is available in Section 2.4.1: Laboratory Data Quality - LLOQ. Results can be viewed in Appendix B: Field and Analytical Test Results, and a discussion of exceedances is below.

Exceedances of the Primary Ground Water Quality Criteria were observed for total arsenic as follows:

	Upgradient and Crossgradient	Downgradient	
Quartarly Sampled	MW-59, MW-66, MW-81,	MW-68, MW-69, MW-72,	
Quarterly Sampled Wells	MW-83, MW-84, MW-93,	MW-74, MW-75, MW-80,	
wens	MW-94	MW-85, MW-87	
Semi-Annually	not grannlad this sugator	not gamented this guarter	
Sampled Wells	not sampled this quarter	not sampled this quarter	

Exceedances of the Secondary Ground Water Quality Criteria were observed for dissolved iron as follows:

	Upgradient and Crossgradient	Downgradient
Quarterly Sampled	MW-59	MW-68, MW-69, MW-72,
Wells	IVI VV - 39	MW-75, MW-80, MW-87
Semi-Annually	not campled this quanton	not campled this quarter
Sampled Wells	not sampled this quarter	not sampled this quarter

Exceedances of the Secondary Ground Water Quality Criteria were observed for dissolved manganese as follows:

	Upgradient and Crossgradient	Downgradient
Quarterly Sampled	MW-59, MW-93	MW-68, MW-69, MW-72,
Wells	IVI VV - 39, IVI VV - 93	MW-75, MW-80, MW-87
Semi-Annually	not campled this quanton	not compled this quarter
Sampled Wells	not sampled this quarter	not sampled this quarter

Primary and secondary exceedances of regulatory standards are tabulated and presented in Table 3. This result set contains more exceedances for both primary and secondary criteria due to the switch to LLOQ methodology (as explained in Section 2.4.1) versus previous years' analyses.

MW-68 was sampled twice this quarter due the short time period between the fourth quarter of 2017 sampling event (12/28/17) and the first sampling event of the first quarter of 2018 (01/12/18). The second sample was collected when it was recognized that the time period between the December sample and the January sample was not sufficient to serve as separate sampling events. Therefore, only the results from the second sampling event on 02/23/2018 were used for analysis in this report and both sets of results are reported in Appendix B.

Trilinear Diagrams (Figures 5 and 6) indicate water quality type (hydrochemical facie) based on dissolved ion distribution. The diagrams are useful to recognize spatial variability, potential analytical error, or change in hydrochemical facie over time. All regional samples are within the calcium-magnesium-bicarbonate hydrochemical facie. Data are consistent with previous quarters. Ion balance calculations (Table 4) indicate no analytical error in regional aquifer samples as all samples are within 10% on the ion balance.

Intra-well upper prediction limits (UPLs) are calculated annually and have been updated with data collected through the end of 2017. Calculated prediction limits and analytical results for Appendix I parameters are presented in Table 5 and summarized below.

0		1
	Upgradient and Crossgradient	Downgradient
Quarterly Sampled	MW-83 (Copper)	
Wells	MW-84 (Barium)	
Semi-Annually	not groupled this sugator	not sampled this
Sampled Wells	not sampled this quarter	quarter

Result values greater than UPLs for Appendix I parameters this quarter include:

MW-83 also had a UPL exceedance of total copper during fourth quarter of 2017. The total barium UPL exceedance in MW-84 is new.

Volatile Organic Compound (VOC) detections in regional aquifer wells this quarter are presented in Table 6. There have been regularly occurring detections of chlorinated VOCs and their breakdown products associated with the upgradient Queen City Farms (QCF) site. VOCs detected in quarterly monitored wells were trichloroethene (TCE) in quarterly sampled monitoring wells MW-83 and MW-94. *Cis*-1,2-dichloroethene was detected in quarterly sampled MW-59. These upgradient well detections are consistent with past data and continuing migration from QCF.

Carbon disulfide was detected in upgradient quarterly monitoring wells MW-59 and downgradient quarterly monitoring wells MW-69 and MW-80. This compound has not been detected frequently in the CHRLF monitoring program. Detections are likely due to implementation of LLOQ procedures, which allows for quantification at lower concentrations when acceptable performance criteria are met. Previous analytical results for carbon disulfide had been reported at a higher detection limit, which precluded quantification and reporting at the levels currently being reported. Evaluation is ongoing to assess if the source of these detections are from presence in native samples, or due to a possible field sampling or lab contamination.

1.1.2 Perched Zones

The East Main Hill perched zones (EPZ) are localized areas of shallow subsurface saturation that appear laterally and vertically discontinuous, predominantly within till and lacustrine silts.

In the South Solid Waste Area perched zone (SSWA), perched groundwater occurs in pockets within variable surficial deposits comprised of local alluvium, recessional outwash, and/or weathered till (shallow perched zone) and within melt-out deposits in an overall predominately lodgment till sequence (deeper perched zone).

Groundwater elevations measured during the quarter in the perched zones are within historical ranges. Samples were collected from three EPZ monitoring wells (MW-30A, MW-47, and MW-62), one groundwater extraction well (EW-25), and surface water station SW-E1, which is believed to receive discharge from the EPZ. MW-101 near the former SSWA was also sampled. Groundwater quality data from perched zones wells collected during the first quarter of 2018 are consistent with previous samples.

MW-105 was installed on the south side of the east leachate lagoon to provide a monitoring well in the shallowest perched groundwater zone to provide early leak detection. If specific conductance shows a statistically significant increasing trend, or exceeds 500 µmhos/cm specific conductance (whichever condition is triggered first), then additional sampling (per the SAP) will be conducted and results assessed with respect to potential leakage from the lagoon.

This quarter, MW-105 was monitored for specific conductance per the SAP and was found to be consistent with previous characterizations (170 µmhos/cm).

Exceedances of regulatory standards for the perched zone wells are tabulated and presented in Table 7. All are consistent with past analyses and known impacts.

Trilinear plots for perched zones samples are all within the calcium-magnesiumbicarbonate hydrochemical facie, as in past samples (Table 8 and Figures 7 and 8). Cation/Anion balances indicate no potential analytical error (greater than 10% ion imbalance) in any perched wells.

As with the regional data, perched zone prediction limits are derived from cumulative data through the end of 2017. Calculated prediction limits for Appendix I parameters along with analytical results are presented in Table 9.

MW-30A again had a nitrate UPL exceedance occur this quarter; however, a historical review of the data at that monitoring location indicates that there is a long-term history of similar nitrate concentrations as seen during the current period. Upon consideration of the fact that the EPZ is already under current investigation, MW-30A will not enter into a retesting protocol for nitrate at this time. Consistent with previous quarters MW-

101 had a cis-1,2-Dichloroethane UPL exceedance. Future results will continue to be monitored and testing for UPL exceedances will occur quarterly.

VOC detections in the perched zones are presented in Table 10. Multiple detections that are listed in the table are due to switch to LLOQ methodology, which lowered the detection limit for a variety of VOCs. These data points are qualified 'JT' in Table 10, 'JT' qualified results are only reported as qualitative, i.e. 'present but unquantified'. All other analytes are consistent with past analyses and known impacts.

1.2 Stormwater

Cedar Hills Regional Landfill is covered by an Industrial Stormwater General Permit (ISGP) issued by the Washington State Department of Ecology. The permit defines discharge Benchmarks, applicable to all facilities, and Effluent Limits, applicable specifically to landfills. These values are reproduced in Table 15. Stations SW-N4, SW-SL3 and SW-GS1 are the designated points for comparison to permit benchmarks and effluent limits.

Monitoring activities are listed in Table 11. Samples were obtained from all the designated compliance stations SW-GS1, SW-SL3 and SW-N4. As per our ISGP, after eight quarters of consistent measurements below the benchmark, sampling is no longer required for that constituent. As a result, turbidity was not measured during the first quarter of 2018 at station SW-SL3.

ISGP Discharge Monitoring Reports (DMRs) are included in Appendix B.

In 2017, KCSWD also had a Construction Stormwater General Permit (CSGP) - permit number WAR305034 with WDOE - for the Area 8 construction activities. A separate SWPPP was created for this CSGP permit. This permit is still active and will be in effect through the duration of the construction project.

Four discharge locations are monitored weekly for compliance with the CSGP in accordance with the SWPPP. The construction contractor also monitors the construction site BMPs and the CSGP monitoring locations daily during construction activities. The four monitoring locations are as follows: C-1 at the northwest end of the site downstream of the northwest siltation pond; C-2 at the northeast end of the site, downstream of the north stormwater pond; C-3 at the southeast part of the site, downstream of the south stormwater lagoon and upstream of the bioswale; and C-4 at the southwest part of the site, downstream from the southwest siltation pond.

Due to exceedances of the turbidity benchmark in 2017 a Chitosan Enhanced Sand Filtration system was installed to pretreat the construction stormwater. As required per the regulations, authorization was obtained from Ecology prior to installation and operation.

Turbidity was exceeded multiple times this quarter at stations C1, C3, and C4 (Table 12). Copies of required stormwater reports submitted to WDOE are included in Appendix B.

1.3 Landfill Gas

Compliance probes, interior probes, on-site buildings, and supplemental monitoring probe results and location maps are included in Appendix B.

1.3.1 Compliance Probe Network

A network of compliance probes are monitored for landfill gas (LFG) migration around the perimeter of the landfill. Probes are monitored by the LFG crew monthly to monitor system performance and quarterly for compliance. Location of the compliance probes can be viewed in Figure 4 and in Appendix B.

No compliance probe methane detections occurred during the first quarter of 2018.

1.3.2 Interior Probe Network

Additional probes on the landfill site, located interior to the compliance probes and outside of the waste footprint are monitored. These probes are monitored by the LFG crew monthly primarily to monitor system performance and as an early warning for LFG migration. Location of the interior probes can be viewed in Appendix B.

Previously, the results for interior gas probes had not been included in the quarterly compliance reporting for the landfill, as they do not represent points of compliance for the site. At the request of the regulatory agencies, these results are being reported although they do not represent compliance points. Results can be view in Appendix B.

1.3.3 On-Site Building Monitoring

As required by WAC 173-351-200, gas concentrations are monitored inside facility structures. Structures are monitored on a quarterly for methane. No methane was detected this quarter. The location map and monitoring results are presented in Appendix B.

1.3.4 Supplemental Migration Monitoring

Detections above the regulatory limit in LFG probe GP-33C in September of 2011 prompted actions including: monitoring frequency increases, operational adjustments to increase LFG recovery rates, off-site structure monitoring and preparation of a response plan. Operational review resulted in modifications to enhance extraction from unlined areas and under liner spaces that could potentially act as gas conveyance pathways. The plan resulted in installation of 13 borings targeting the potential zone of LFG migration in the native sediments. Eight borings serve as LFG extraction wells and five as monitoring probes. The extraction wells and migration probes are currently monitored twice a month, and methane has not been detected in these probes this quarter.

Data indicate the system has been effective in controlling LFG migration to the perimeter probes.

Location map and supplemental Monitoring Probe results are included in Appendix B.

2.0 Analytical Methods

Groundwater quality is evaluated by comparison of analysis results to regulatory standards, geochemical analysis and statistical evaluation. Water quality analytical results for stormwater runoff discharged from the landfill site are compared to the limits set in the ISGP. The following is a brief description of the standards and analytical tools used to review each matrix.

2.1 Regulatory Standards

Groundwater monitoring results are compared to Washington State Groundwater Quality Criteria, WAC 173-200 (Table 14). Stormwater monitoring results are compared to the ISGP Benchmark Criteria, or WAC 173-201A Water Quality Standards for Surface Waters of the State of Washington.

2.2 Trilinear Diagrams and Major Ion Balance

Geochemical data are presented on trilinear diagrams. Major cations and anions are plotted on individual triangles as percentages of total milliequivalents per liter (meq/L). These diagrams illustrate differences in major ion chemistry between groundwater samples and can be used to categorize water composition into identifiable groups or hydrochemical facies. These hydrochemical facies reflect distinct compositions of cation and anion concentrations. The value of the diagram lies in pointing out relationships that exist among individual samples. Trilinear diagrams are included with ionic balance calculations in this report. Ion balance calculations are useful for determining analytical correctness and can be of value in detecting laboratory error or variation in field sampling procedures.

2.3 Prediction Limits

A Prediction Limit is a statistical test that compares an analytical result to a computed limit value. The limit value is derived from past analytical results, which are considered representative historical data. A value outside of this limiting value is considered evidence that the result is not drawn from the same sample population distribution.

At CHRLF, intra-well comparisons present a more conservative approach to determining if a statistically significant release has occurred and is the recommended approach for evaluation of detection monitoring data. In the intra-well approach, a threshold background value is set by determining an UPL. Prediction limits set a comparison threshold for background data with compliance well data and are used to determine if a sample is statistically elevated above background conditions.

The calculated prediction limits are based entirely on intra-well comparisons. All of the prediction limits are one-sided UPLs.

UPLs for the subsequent year's detection monitoring are calculated at the end of each

year and incorporate the previous year's analytical results.

UPLs are based on a 0.05 significance level, as approved by Ecology to be protective of human health and the environment. A 0.05 significance level indicates that at most there is a 5 percent chance that a Type I error (false positive) will occur in the results.

The method for calculating the UPLs depends on both the type of distribution and the number of non-detects present in the background data set. UPLs for background data sets with 100 percent non-detects (NDs) are equal to the highest laboratory method detection limit (MDL). UPLs for background data sets with greater than 50 percent, but less than 100 percent non-detects are calculated based on the highest detected concentration for the respective data set. Although there are alternative methods for calculating UPLs for background data sets with greater than 90 percent, but less than 100 percent non-detects (e.g., Poisson's Method), the use of the highest detected concentration is generally considered to be the most conservative. UPLs for background data sets with less than 50 percent non-detects are evaluated for normality, as non-parametric data sets are based on the highest detected concentration for the respective data set. For UPLs of constituents that had been only ever had non-detects prior to the implementation of the LLOQ and are now detected, the MDL is being used until sufficient data is available to calculate at UPL.

UPLs for either normally distributed or transformed data sets with 0 percent non-detects are calculated based on the following equations used to calculate parametric prediction limits with retesting (*EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities – Unified Guidance*, 2009):

Normal Distribution

 $UPL = x + \kappa s$

or

Transformed Distribution:

 $UPL = y + \kappa s_y$

where: x = mean of the baseline data

- y = mean of the transformed data
- κ = multiplier for intra-well prediction limits
- s = standard deviation of baseline data
- s_y = standard deviation of transformed data

Analytical results are compared to the respective UPLs on a quarterly/semi-annual basis, depending on the monitoring program, for Appendix I parameters. If there is an exceedance of the UPL, retesting of the respective analytical parameter at the respective location is required in order to determine if the exceedance is representative of a statistically significant increase over background.

A 1-of-3 retesting plan will be used for any exceedances of the intra-well UPLs at the

CHRLF. This retesting plan provides adequate statistical power and minimizes Type II (False Negative) errors, while providing retesting that accommodates lab turnaround time, data review, and scheduling. This test is performed on parameters listed in WAC 173-351-990 Appendix I and is used to detect a change in the population distribution of the individual well.

2.4 Laboratory Data Quality

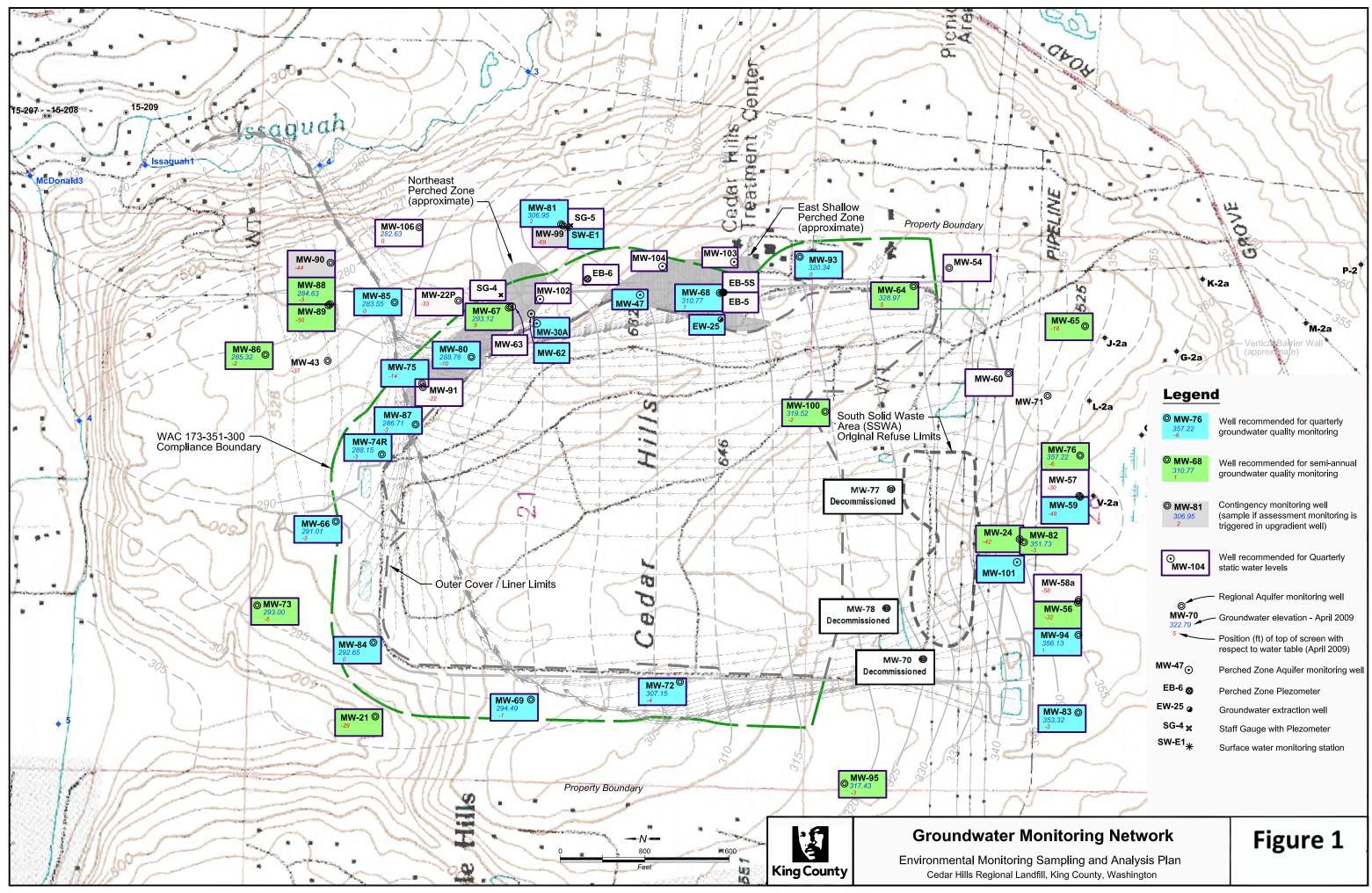
Laboratory analytical data is reviewed to verify meeting data quality objectives (DQOs) as defined in the QAPP. Occasionally, results identified during this process are deemed to be unsuitable for evaluation purposes. A summary of suspect results can be found in Table 16.

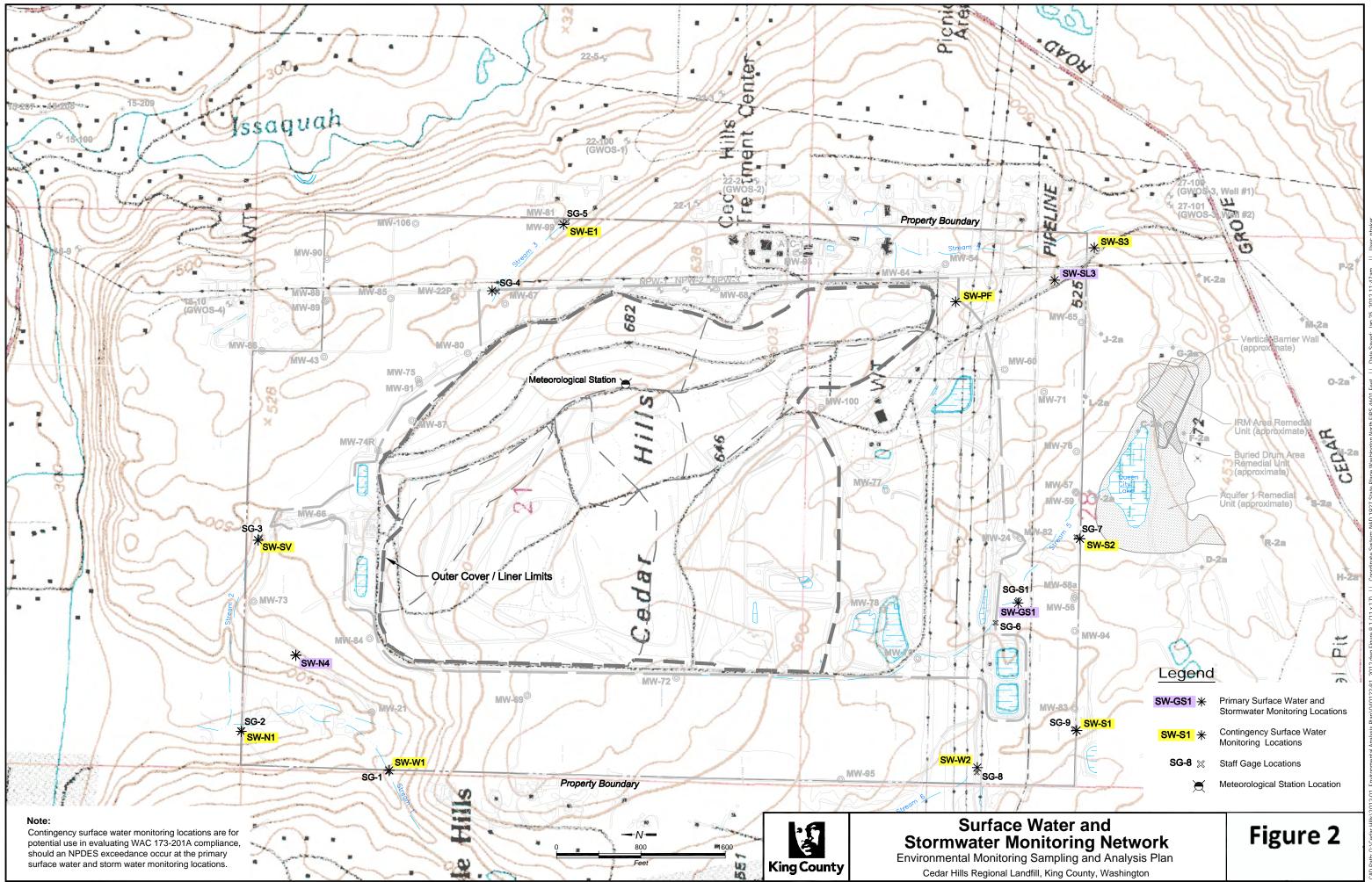
2.4.1 Lower Limit of Quantification (LLOQ)

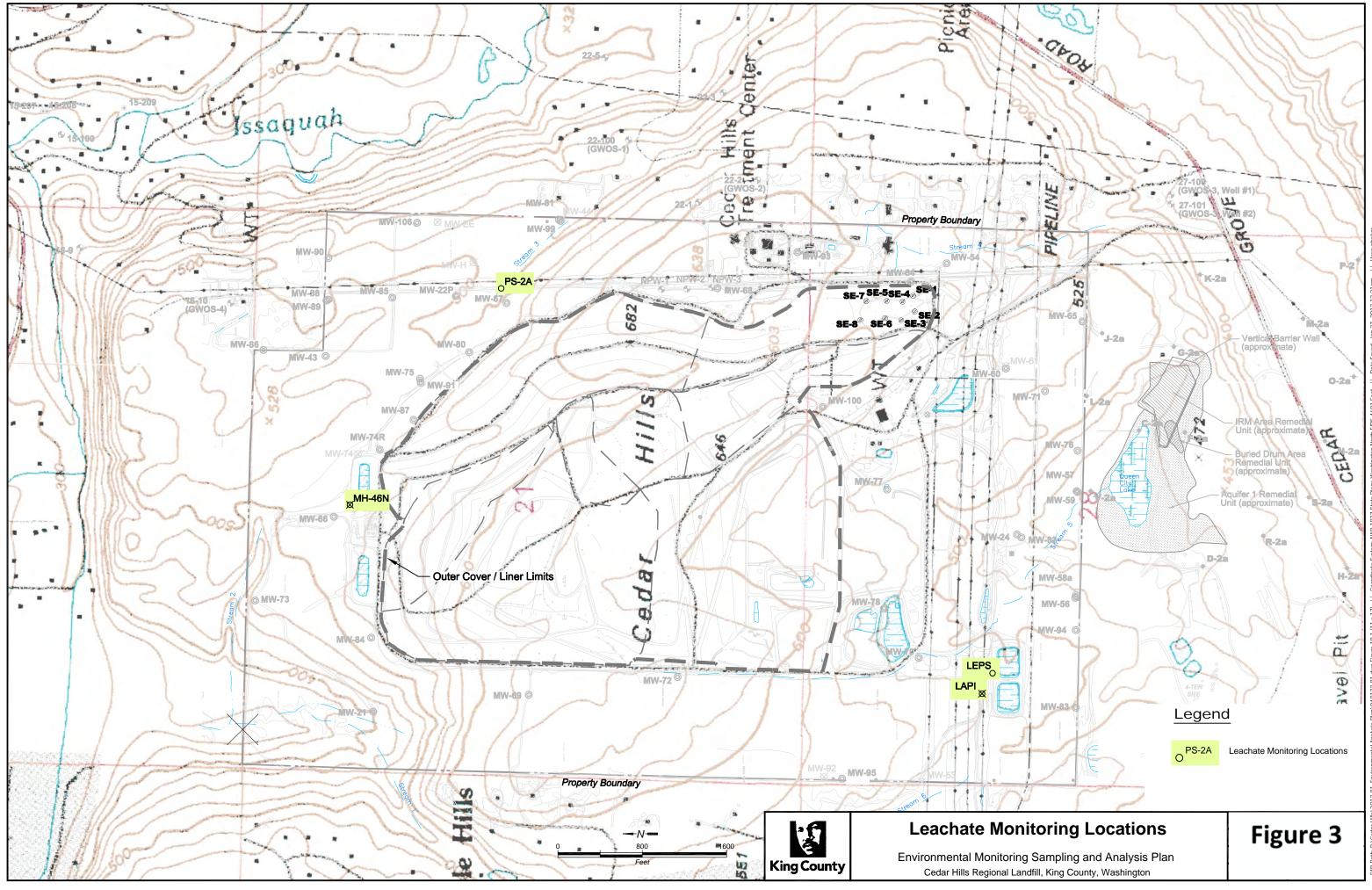
Changes made in accordance with federal regulations for the guidance of analytical testing methodologies covered by SW-846 (Test Methods for Evaluating Solid Waste) were implemented in 2017 by the contract laboratory. One specific effect of these changes was to replace the Method Detection Limit (MDL) methodology with the LLOQ methodology as the basis for determining the lowest quantitative value of an analyte that can be reported. This affected all methods covered within SW-486.

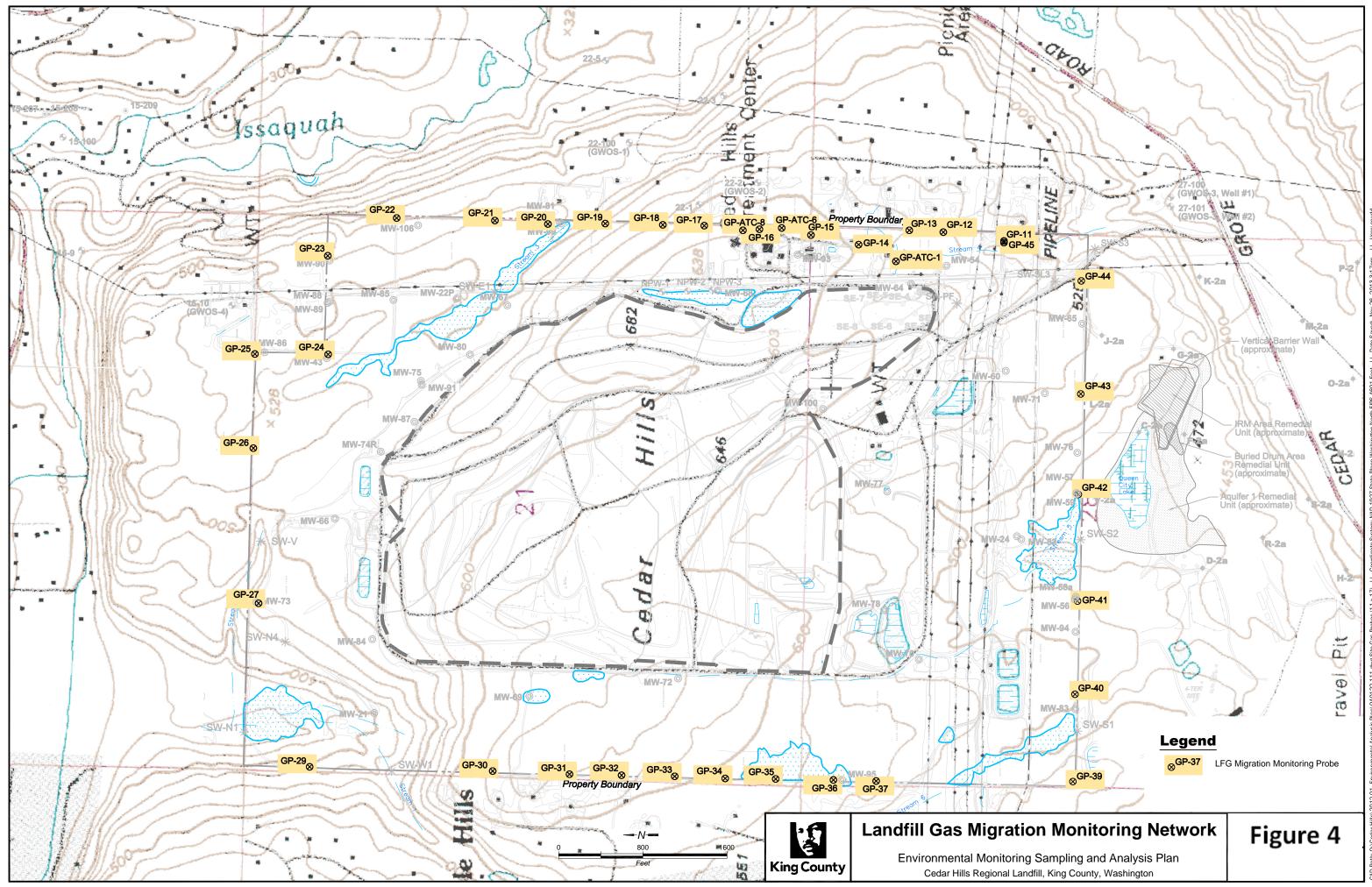
The LLOQ is a performance based methodology that tests known standards repeatedly to create a calibration curve for a specific method. Commonly, the lowest concentration of the (linear) calibration curve is set as the LLOQ. However, in some cases the LLOQ may be greater than the baseline curve concentration due to lab specific factors such as instrument sensitivity and method analytical uncertainty.

During the second quarter of 2017, the transition to using the LLOQ methodology resulted in revised reporting limits for a number of analytes. Quantitation limits for all trace metals (i.e. non-major cationic species metals), and a subset of the VOCs analyzed for regularly are lower than past analyses, while some VOCs have higher or the same limits as before. As a result of these changes, previously unobserved trace metals and VOCs in a number of wells are now reportable at concentrations lower than previous methodologies could detect. This does not invalidate past analytical data reported at the MDL as non-detects, but serves to confirm that some analytes can be present below detection limits due to instrumentation and/or analytical methodology limitations.


The change to LLOQ does increase the need for continually assessing and evaluating whether analytes detected that had been previously not detected are due to a confirmed presence in the native sample, or result from either field sampling or laboratory contamination.


Due to the change to the LLOQ methodology change, it may be necessary to re-establish background data sets for any parameters with modified reporting limits in order to maintain statistical integrity and support hypothesis testing conclusions. Transition to new background data sets will occur when sufficient data has been acquired based on


minimum statistical requirements.


2.4.2 Analytical Uncertainty and Data Review

An important consideration when reviewing analytical test data is to examine the uncertainty associated with the measurement of each analyte. In some cases, this uncertainty can be greater than the degree of confidence a prediction limit spans due to the 'noise' that is intrinsic to analytical testing methods. When a UPL and reporting limit are close in magnitude, the uncertainty around whether an exceedance did or did not occur increases. Arsenic exceedances in groundwater are an example of such a case. Both the UPL and detection limit for arsenic are typically quite low (parts per billion), which cause the result to be subject to both the uncertainty within the calculation of the UPL, and the noise inherent to analytical method used to detect at a low target detection/quantitation limit. Therefore the inherent uncertainty in both of these methodologies needs to be considered during a statistical evaluation of data.

Table 1 CEDAR HILLS REGIONAL LANDFILL GROUNDWATER MONITORING WELLS

	General Condition			Recommendatio	Recommendations				
Well Name	Casing Diameter (inches)	Well Depth (feet)	Installation Date	Water Table or Deep Zone	Well Monitoring Classification	Comments on Well Use	Static Water Level Monitoring Frequency	Water Quality Monitoring Frequency	Rationale
MW-21 (Upgradient)	6	163	5/17/83	Deep	Detection	Background	Quarterly	Semi-annual	Monitors background conditions of deep aquifer.
MW-22P (Downgradient)	2	284	5/25/83	Deep	Detection	WL only	Quarterly	None	Not effectively located for facilities or background monitoring.
MW-24 (Upgradient)	6	192	6/2/83	Deep	Detection	Background	Quarterly	Semi-annual	Twice-annual monitoring of QCF impacts in deep upgradient well. Monitor SWLs to define deeper Regional Aquifer flow paths.
MW-54 (Upgradient)	2	351	9/26/86	Deep	Detection	WL only	Quarterly	None	Not effectively located for facilities monitoring as it lies up gradient of the CHRLF facilities. Upgradient water quality monitored in other wells.
MW-56 (Upgradient)	2	166	10/12/88	Deep	Detection	Background	Quarterly	Semi-annual	Twice-annual monitoring of QCF impacts in upgradient well. Low groundwater velocities (0.014 ft/day) indicate slow movement of QCF contaminants through this area. Travel distance for 180 days is estimated at 2.5 ft indicating any releases would be detected with 6 month sample interval. Comparison quarterly and semiannual statistics indicates semiannual sampling does not have significant effect on trend analysis. Monitor SWLs to define deeper Regional Aquifer flow paths.
MW-57 (Upgradient)	2	144	8/22/88	Deep	Detection	WL only	Quarterly	None	Monitoring redundant with MW-59. Strong downward vertical gradients indicate impacts at MW-57 would also be detected at MW-59.
MW-58A (Upgradient)	2	219	9/26/88	Deep	Detection	WL only	Quarterly	None	Monitoring redundant with MW-56. Strong downward vertical gradients indicate impacts at MW-58A would also be detected at MW-56.
MW-59 (Upgradient)	2	180.5	8/16/88	Deep	Detection	Background	Quarterly	Quarterly	Quarterly monitoring of QCF impacts in upgradient well.
MW-60 (Upgradient)	2.5	240	9/13/91	Water Table	Detection	WL only	Quarterly	None	Upgradient flow from QCF in shallow Regional Aquifer characterized by MW-65 and MW-76. Downgradient area monitored by MW-100.
MW-64 (Upgradient)	2.5	274	3/22/93	Water Table	Detection		Quarterly	Semi-annual	Adjacent to SE Pit. Conversion from quarterly to semiannual sampling does not have significant effect on intrawell statistics.
MW-65 (Upgradient)	2.5	234	3/29/93	Deep	Detection	Background	Quarterly	Semi-annual	Twice-annual monitoring of QCF impacts in upgradient well. Monitor SWLs to define deeper Regional Aquifer flow paths.
MW-66 (Upgradient)	2.5	248	4/5/93	Water Table	Detection		Quarterly	Quarterly	Monitor north end leachate detention facilities.
MW-67 (Downgradient)	2.5	230	4/28/93	Water Table	Detection		Quarterly	Semi-annual	Monitors potential EPZ contaminants infiltrating into Regional Aquifer.
MW-68 (Cross-Gradient/ Downgradient)	2.5	353	4/15/93	Water Table	Detection		Quarterly	Quarterly	Well is completed adjacent to unlined Main Hill where downward flow from Main Hill and impacted EPZ would be captured. Monitors Main Hill gas effected area.
MW-69 (Downgradient)	2.5	371	4/23/93	Water Table	Detection		Quarterly	Quarterly	West side flow converges in this area and well is upgradient of key downgradient wells.
MW-72 (Downgradient)	2.5	376	8/7/98	Water Table	Detection		Quarterly	Quarterly	Key water quality monitoring well for southwest landfill area.
MW-73 (Upgradient)	4	206	9/3/99	Water Table	Detection	Background	Quarterly	Semi-annual	Background water quality monitoring for northwest facility area. Downgradient flow paths from well largely by- pass facility so provides only general indication of background conditions.
MW-74R (Downgradient)	4	249	11/1/00	Water Table	Detection		Quarterly	Quarterly	Detection zone monitors north end facilities. Quarterly monitoring recommended due to elevated chloride.
MW-75 (Downgradient)	4	269	9/24/99	Deep	Detection		Quarterly	Quarterly	Key downgradient monitoring well.
MW-76 (Upgradient)	4	148	10/25/99	Water Table	Detection	Background	Quarterly	Semi-annual	Monitor QCF impacts effecting upgradient water quality in shallow portion of Regional Aquifer. Low groundwater velocities (0.014 ft/day) indicate slow movement of QCF contaminants through this area. Travel distance for 180 days is estimated at 2.5 ft indicating any releases would be detected with 6 month sample interval. Comparison of annual and semiannual statistics indicates semiannual sampling does not have significant effect on trend analysis. Additional demonstration for reduction in water quality sampling frequency is presented in Appendix F.

Table 1 CEDAR HILLS REGIONAL LANDFILL GROUNDWATER MONITORING WELLS

	General Condition			Recommendatio	Recommendations				
Well Name	Casing Diameter (inches)	Well Depth (feet)	Installation Date	Water Table or Deep Zone	Well Monitoring Classification	Comments on Well Use	Static Water Level Monitoring Frequency	Water Quality Monitoring Frequency	Rationale
MW-80 (Downgradient)	4	259	2/27/01	Water Table	Detection		Quarterly	Quarterly	Key downgradient monitoring well for monitoring impacts from unlined Main Hill and EPZ.
MW-81 (Upgradient)	4	192	10/3/02	Water Table	Detection		Quarterly	Quarterly	Monitors ground water quality from off-site area east of facility. Retain as monitoring point to monitor for potential LFG impacts to groundwater. Key well for defining potentiometric divide on east side.
MW-82 (Upgradient)	4	133	11/2/00	Water Table	Detection	Background	Quarterly	Semi-annual	Twice-annual monitoring of QCF impacts in shallow Regional upgradient well. Low groundwater velocities (0.014 ft/day) indicate slow movement of QCF contaminants through this area. Travel distance for 180 days is estimated at 2.5 ft indicating any releases would be detected with 6 month sample interval. Comparison quarterly and semiannual statistics indicates semiannual sampling does not have significant effect on trend analysis. Monitor SWLs to define deeper Regional Aquifer flow paths.
MW-83 (Upgradient)	4	154	10/27/00	Water Table	Detection	Background	Quarterly	Quarterly	Quarterly monitoring of QCF impacts in shallow Regional upgradient well.
MW-84 (Upgradient)	4	246	10/20/00	Water Table	Detection	Background	Quarterly	Quarterly	Monitor background conditions in shallow regional aquifer
MW-85 (Downgradient)	4	257	12/1/00	Water Table	Detection		Quarterly	Quarterly	Key downgradient monitoring well with large detection zone underlying waste placement areas. Located in area of convergent groundwater flow and near center of high transmissivity channel.
MW-86 (Downgradient)	4	259	12/12/00	Water Table	Detection		Quarterly	Semi-annual	Provides monitoring of north end facilities. Conversion from quarterly to semiannual sampling does not have significant effect on intrawell statistics.
MW-87 (Downgradient)	4	261	11/21/00	Water Table	Detection		Quarterly	Quarterly	Key downgradient monitoring well.
MW-88 (Downgradient)	4	239	9/13/01	Water Table	Detection		Quarterly	Semi-annual	Provides limited monitoring of north end facilities. Conversion from quarterly to semiannual sampling does not have significant effect on intrawell statistics.
MW-89 (Downgradient)	4	291	11/12/01	Deep	Detection		Quarterly	Semi-annual	Provides limited monitoring of north end facilities in deep Regional Aquifer. Continue monitoring in place of MW-43. Conversion from quarterly to semiannual sampling does not have significant effect on intrawell statistics.
MW-90 (Downgradient)	4	274	8/14/02	Deep	Assessment		Quarterly	Contingent	Water quality monitoring redundant with MW-89. Reserve as contingency well in event assessment monitoring is triggered in MW-88,89 or 85.
MW-91 (Downgradient)	6	289	10/26/01	Deep	Detection	WL only	Quarterly	None	Large diameter well used for testing. Redundant with well MW-75. Additional demonstration for reduction in water quality sampling frequency is presented in Appendix F.
MW-93 (Cross Gradient)	4	320	6/24/02	Water Table	Detection		Quarterly	Quarterly	Well monitors the Main Hill gas affected area.
MW-94 (Upgradient)	4	145	7/2/02	Water Table	Detection	Background	Quarterly	Quarterly	Quarterly monitoring of QCF impacts in shallow Regional upgradient well.
MW-95 (Cross Gradient)	4	263	7/22/02	Water Table	Detection		Quarterly	Semi-annual	Monitor off-site water quality at south end of facility. Downgradient flow paths poorly defined and may by- pass facility. Additional demonstration for reduction in water quality sampling frequency is presented in Appendix F.
MW-99 (Upgradient)	4	279	8/30/02	Deep	Assessment		Quarterly	Contingent	Monitors easterly upgradient water quality from offsite. Reserve as contingency well in event assessment monitoring is triggered in MW-81. Additional demonstration for reduction in water quality sampling frequency is presented in Appendix F.
MW-100 (Downgradient)	4	300	8/26/02	Water Table	Detection		Quarterly	Semi-annual	Well useful for flowpath and geochemical modeling. Assists in tracking QCF contaminant migration through facility. Additional demonstration for reduction in water quality sampling frequency is presented in Appendix F.
MW-106 (Cross gradient)	4	203	2/19/09	Water Table	Detection	WL only	Quarterly	None	Defines east side flow paths.

Table 1 CEDAR HILLS REGIONAL LANDFILL GROUNDWATER MONITORING WELLS

		Gene	eral Condition		Recommendatio	ons			
Well Name	Casing Diameter (inches)	Well Depth (feet)	Installation Date	Water Table or Deep Zone	Well Monitoring Classification	Comments on Well Use	Static Water Level Monitoring Frequency	Water Quality Monitoring Frequency	Rationale
East Main Hill Perched Z	ones								
EB-5	2	60	5/06/90	EPZ	Assessment	WL only	Quarterly	None	Monitor water levels to evaluate affect of extraction system shut down.
EB-5S	2	20	6/06/90	EPZ	Assessment	WL only	Quarterly	None	Monitor water levels to evaluate affect of extraction system shut down.
EB-6	2	30	11/28/90	EPZ	Assessment	WL only	Quarterly	None	Monitor water levels to evaluate affect of extraction system shut down. Well has limited water yield limiting ability to collect samples.
EW-25	6	36	6/10/92	EPZ	Assessment		Quarterly	Quarterly	Key EPZ compliance well. Temporary monitoring point sampled with passive diffusion sampler.
MW-30A	3	35	6/09/89	EPZ	Assessment		Quarterly	Quarterly	Monitor attenuating VOCs.
MW-47	2	44	5/31/85	EPZ	Assessment		Quarterly	Quarterly	Key EPZ compliance well.
MW-62	2	54	1/02/90	EPZ	Assessment		Quarterly	Quarterly	Monitor attenuating VOCs.
MW-63	2	17	12/02/90	EPZ	Assessment	WL only	Quarterly	None	Monitor water levels to evaluate affect of extraction system shut down.
MW-102	2	50	1/27/09	EPZ	Assessment	WL only	Quarterly	None	Monitor water levels to evaluate affect of extraction system shut down.
MW-103	2	35	1/28/09	EPZ	Assessment	WL only	Quarterly	None	Monitor water levels to evaluate affect of extraction system shut down.
MW-104	2	32	1/29/09	EPZ	Assessment	WL only	Quarterly	None	Monitor water levels to evaluate affect of extraction system shut down.
South Solid Waste Area P	erched Zone	:		:					
MW-101	2	54	6/2/06	SSWA	Assessment		Quarterly	Quarterly	Key SSWA perched zone compliance well

Notes:

(1) The following wells were decommissioned: MW-70, MW-77, MW-78, MW-96 and MW-97 as of 2016.

(2) Shallow wells are wells completed in the Regional Aquifer with the top screen slot within 10 ft of the water table. Deep wells are completed in the Regional Aquifer with the top screen slot greater than 10 ft below the water table. (3) Water quality monitoring shading relates to Figure 2.

Abbreviations:

WL = Water Level

NA = Not Applicable

DZ = Detection Zone EPZ = East Perched Zone

SSWA = South Solid Waste Area QCF = Queen City Farms

Cedar Hills Regional Landfill Environmental Monitoring Report 1st Quarter 2018

TABLE 2

GROUNDWATER MONITORING ACTIVITIES 1st QUARTER 2018

Well ID	Zone	Date	IER MONITORING ACTIVITIE Planned Activity	-	Comment
EW-25	Perched	2/6/18		Sample ID EW25180206-	Comment
EW-25 EW-25	Perched	1/8/18	Quarterly Groundwater Sampling Groundwater Elevation Measurement	NA	
EW-25 EW-25	Perched	2/5/18	Groundwater Elevation Measurement	NA	
MW-21	Regional	1/8/18	Groundwater Elevation Measurement	NA	
MW-22 MW-22	Regional	1/8/18	Groundwater Elevation Measurement	NA	
MW-24	Regional	1/8/18	Groundwater Elevation Measurement	NA	
MW-24 MW-25	Perched	1/8/18	Groundwater Elevation Measurement	NA	
MW-27A	Perched	1/8/18	Groundwater Elevation Measurement	NA	
MW-27A MW-28	Perched	1/8/18	Groundwater Elevation Measurement	NA	
MW-29	Perched	1/8/18	Groundwater Elevation Measurement	NA	
MW-30A	Perched	1/8/18	Groundwater Elevation Measurement	NA	
MW-30A MW-30A	Perched	2/5/18	Groundwater Elevation Measurement	NA	
MW-30A MW-30A	Perched	2/7/18	Quarterly Groundwater Sampling	W30A180207-	
MW-41D	Perched	1/8/18	Groundwater Elevation Measurement	NA	
MW-41S	Perched	1/8/18	Groundwater Elevation Measurement	NA	
MW 42	Pagional	1/8/18	Groundwater Elevation Measurement	NA	
MW-43 MW-45	Regional Perched	1/8/18	Groundwater Elevation Measurement	NA	
MW-45 MW-47	Perched	1/8/18	Groundwater Elevation Measurement	NA	
MW-47 MW-47	Perched	2/5/18	Groundwater Elevation Measurement	NA	
MW-47 MW-47	Perched	2/6/18	Quarterly Groundwater Sampling	W47-180206-	
101 00 -4 /	reicheu	2/0/18	Quarterly Groundwater Sampling	W47-180200-	
MW-48	Perched	1/8/18	Groundwater Elevation Measurement	NA	
MW-50	Perched	1/8/18	Groundwater Elevation Measurement	NA	
MW-54	Perched	1/8/18	Groundwater Elevation Measurement	NA	
MW-55	Perched	1/8/18	Groundwater Elevation Measurement	NA	
MW-56	Regional	1/8/18	Groundwater Elevation Measurement	NA	
MW-57	Perched	1/8/18	Groundwater Elevation Measurement	NA	
MW-58A	Regional	1/8/18	Groundwater Elevation Measurement	NA	
MW-59	Regional	1/8/18	Groundwater Elevation Measurement	NA	
MW-59	Regional	1/9/18	Quarterly Groundwater Sampling	W59-180109-	
MW-60	Regional	1/8/18	Groundwater Elevation Measurement	NA	
MW-62	Regional	1/8/18	Groundwater Elevation Measurement	NA	
MW-62	Regional	2/5/18	Groundwater Elevation Measurement	NA	
MW-62	Perched	2/7/18	Quarterly Groundwater Sampling	W62-180207-	
MW-63	Regional	1/8/18	Groundwater Elevation Measurement	NA	
MW-63	Regional	2/5/18	Groundwater Elevation Measurement	NA	
MW-64	Perched	1/8/18	Groundwater Elevation Measurement	NA	
MW-65	Perched	1/8/18	Groundwater Elevation Measurement	NA	
MW-66	Regional	1/8/18	Groundwater Elevation Measurement	NA	
MW-66	Regional	1/12/18	Quarterly Groundwater Sampling	W66-180112-	
MW-67	Regional	1/8/18	Groundwater Elevation Measurement	NA	
MW-67	Regional	2/5/18	Groundwater Elevation Measurement	NA	
MW-68	Regional	1/8/18	Groundwater Elevation Measurement	NA	
MW-68	Regional	1/12/18	Quarterly Groundwater Sampling	W68-180112-	
MW-68	Regional	2/23/18	Quarterly Groundwater Sampling	W68-180223-	
MW-69	Regional	1/8/18	Groundwater Elevation Measurement	NA	
MW-69	Regional	1/24/18	Quarterly Groundwater Sampling	W69-180124-	
MW-72	Regional	1/8/18	Groundwater Elevation Measurement	NA	
MW-72	Regional	1/19/18	QA/QC Sample	W72-180119D	Field Duplicate
MW-72	Regional	1/19/18	Quarterly Groundwater Sampling	W72-180119-	
MW-73	Regional	1/8/18	Groundwater Elevation Measurement	NA	
MW-74	Regional	1/8/18	Groundwater Elevation Measurement	NA	
MW-74	Regional	1/11/18	Quarterly Groundwater Sampling	W74R180111-	
MW-75	Regional	1/8/18	Groundwater Elevation Measurement	NA	
MW-75	Regional	1/11/18	Quarterly Groundwater Sampling	W75-180111-	
MW-76	Regional	1/8/18	Groundwater Elevation Measurement	NA	
MW-79	Regional	1/8/18	Groundwater Elevation Measurement	NA	Damaged
MW-80	Regional	1/8/18	Groundwater Elevation Measurement	NA	5
MW-80	Regional	1/9/18	Quarterly Groundwater Sampling	W80-180109-	
MW-81	Regional	1/8/18	Groundwater Elevation Measurement	NA	
MW-81	Regional	1/9/18	Quarterly Groundwater Sampling	W81-180109-	

TABLE 2

GROUNDWATER MONITORING ACTIVITIES 1st QUARTER 2018

Well ID	Zone	Date	Planned Activity	Sample ID	Comment
MW-82	Perched	1/8/18	Groundwater Elevation Measurement	NA	
MW-83	Regional	1/8/18	Groundwater Elevation Measurement	NA	
MW-83	Regional	1/9/18	Quarterly Groundwater Sampling	W83-180109-	
MW-84	Regional	1/8/18	Groundwater Elevation Measurement	NA	
MW-84	Regional	1/22/18	Quarterly Groundwater Sampling	W84-180122-	
	rtegionai	1,22,10	Quarterly Ground water bumpning		
MW-85	Regional	1/8/18	Groundwater Elevation Measurement	NA	
MW-85	Regional	1/12/18	Quarterly Groundwater Sampling	W85-180112-	
MW-86	Regional	1/8/18	Groundwater Elevation Measurement	NA	
MW-87	Regional	1/8/18	Groundwater Elevation Measurement	NA	
MW-87	Regional	1/11/18	Quarterly Groundwater Sampling	W87-180111-	
MW-88	Regional	1/8/18	Groundwater Elevation Measurement	NA	
MW-89	Regional	1/8/18	Groundwater Elevation Measurement	NA	
MW-90	Regional	1/8/18	Groundwater Elevation Measurement	NA	
MW-90 MW-91	Regional	1/8/18	Groundwater Elevation Measurement	NA	
	-				
MW-93	Regional	1/8/18	Groundwater Elevation Measurement	NA	
MW-93	Regional	1/24/18	Quarterly Groundwater Sampling	W93-180124-	
MW-94	Regional	1/8/18	Groundwater Elevation Measurement	NA	
MW-94	Regional	1/11/18	Quarterly Groundwater Sampling	W94-180111-	
MW-95	Regional	1/8/18	Groundwater Elevation Measurement	NA	
MW-98	Regional	1/8/18	Groundwater Elevation Measurement	NA	
MW 00	D	1/0/10		NT 4	
MW-99	Regional	1/8/18	Groundwater Elevation Measurement	NA	
MW-100	Regional	1/8/18	Groundwater Elevation Measurement	NA	
MW-101	Perched	1/8/18	Groundwater Elevation Measurement	NA	
MW-101	Perched	2/6/18	Quarterly Groundwater Sampling	W101180206-	
MW-102	Perched	1/8/18	Groundwater Elevation Measurement	NA	
MW-102	Perched	2/5/18	Groundwater Elevation Measurement	NA	
MW-103	Perched	1/8/18	Groundwater Elevation Measurement	NA	
MW-103	Perched	2/5/18	Groundwater Elevation Measurement	NA	
MW-104	Perched	1/8/18	Groundwater Elevation Measurement	NA	
MW-104	Perched	2/5/18	Groundwater Elevation Measurement	NA	
MW-105	Perched	1/8/18	Groundwater Elevation Measurement	NA	
MW-105	Perched	1/22/18	Leachate Lagoon Monitoring	NA	Conductivity only
MW-105 MW-106	Regional	1/8/18	Groundwater Elevation Measurement	NA	Conductivity only
MW-100 MW-106	Regional	2/5/18	Groundwater Elevation Measurement	NA	
MW-EB5	Perched	1/8/18	Groundwater Elevation Measurement	NA	
WW-ED5	reicheu	1/0/10	Groundwater Elevation Measurement	11A	
MW-EB5	Perched	2/5/18	Groundwater Elevation Measurement	NA	
MW-EB5S	Perched	1/8/18	Groundwater Elevation Measurement	NA	
MW-EB5S	Perched	2/5/18	Groundwater Elevation Measurement	NA	
MW-EB6	Perched	1/8/18	Groundwater Elevation Measurement	NA	
MW-EB6	Perched	2/5/18	Groundwater Elevation Measurement	NA	
WS-NPW-1	Regional	1/8/18	Groundwater Elevation Measurement	NA	
WS-NPW-3	Regional	1/8/18	Groundwater Elevation Measurement	NA	
SW-E1	Perched	2/6/2018	East Perched Zone SW Monitoring	SE1-180206Q	
Field Blank	NA	2/6/18	QA/QC Sample	EW25180206F	
Field Blank	NA	2/7/18	QA/QC Sample	W62-180207F	
i ielo Diulix	1 12 1	2,7/10	211 20 bumple		
EQUIPMENT BLANK	NA	3/1/2018	QA/QC Sample	WU1H180301E	
EQUIPMENT BLANK	NA	3/1/2018	QA/QC Sample	WU1M180301E	
EQUIPMENT BLANK	NA	3/1/2018	QA/QC Sample	WU1S180301E	

NA = No sample ID assigned, No sample collected.

Table 3GROUNDWATER CONCENTRATIONS ABOVE WAC 173-200-040 CRITERIAWATER QUALITY STANDARDS FOR GROUND WATERS OF THE STATE OF WASHINGTON

Parameter	Units	Well ID	Sample Date	Sample ID	Sample Value
		Upgradient and Cr	ossgradient Wells		
pH (Field)	pH Units	MW-81	1/9/2018	W81-180109-	6.45
		MW-94	1/11/2018	W94-180111-	6.29
A	(MW-59	1/0/2019	W50 190100	0.000422
Arsenic (Total)	(mg/L)		1/9/2018	W59-180109-	0.000422
		MW-66	1/12/2018	W66-180112-	0.000654
		MW-81	1/9/2018	W81-180109-	0.000541
		MW-83	1/9/2018	W83-180109-	0.000428
		MW-84	1/22/2018	W84-180122-	0.000353
		MW-93	1/24/2018	W93-180124-	0.00136
		MW-94	1/11/2018	W94-180111-	0.000148
Iron (Dissolved)	(mg/L)	MW-59	1/9/2018	W59-180109-	3.72
Manganese (Dissolved)	(mg/L)	MW-59	1/9/2018	W59-180109-	0.12
		MW-93	1/24/2018	W93-180124-	0.205
	Wells Down	gradient to Waste	Cells and North end	d Facilities	
Arsenic (Total)	(mg/L)	MW-68	2/23/2018	W68-180223-	0.0213
		MW-69	1/24/2018	W69-180124-	0.00238
		MW-72	1/19/2018	W72-180119-	0.000107
		MW-74	1/11/2018	W74R180111-	0.000416
		MW-75	1/11/2018	W75-180111-	0.000555
		MW-80	1/9/2018	W80-180109-	0.004
		MW-85	1/12/2018	W85-180112-	0.000736
		MW-87	1/11/2018	W87-180111-	0.00527
	(7)		2/22/2010	W/60 100222	0.504
Iron (Dissolved)	(mg/L)	MW-68	2/23/2018	W68-180223-	0.584
		MW-69	1/24/2018	W69-180124-	1.1
		MW-72	1/11/2018	W72-180119-	2.61
	+	MW-75	1/11/2018	W75-180111-	2.09
	+	MW-80	1/12/2018	W80-180109-	2.02
		MW-87	1/11/2018	W87-180111-	4.73
Manganese (Dissolved)	(mg/L)	MW-68	2/23/2018	W68-180223-	0.306
		MW-69	1/24/2018	W69-180124-	0.26
		MW-72	1/19/2018	W72-180119-	0.36
		MW-75	1/11/2018	W75-180111-	0.179
		MW-80	1/9/2018	W80-180109-	0.327
		MW-87	1/11/2018	W87-180111-	0.518

CEDAR HILLS REGIONAL LANDFILL REGIONAL AQUIFER (Data Collected from January 1, 2018 to March 31, 2018)

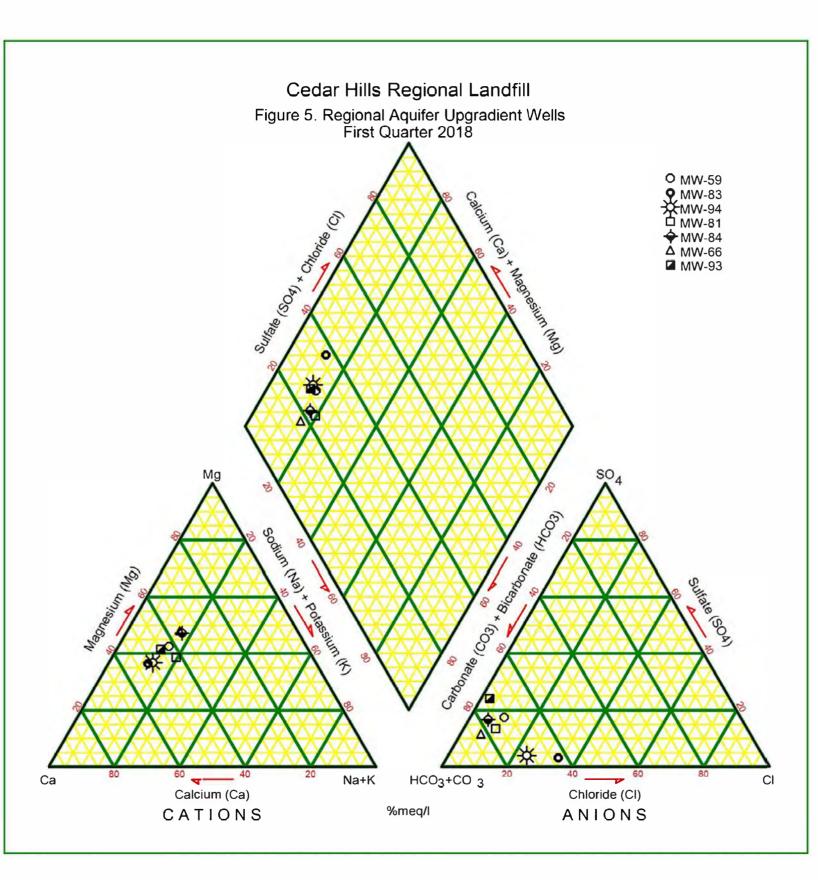
Cedar Hills Regional Landfill Environmental Monitoring Report 1st Quarter 2018

Table 4 Ion Balance Calculations Cedar Hills Regional Landfill Quarterly and Semi-Annual Regional Aquifer Groundwater Monitoring

Data Collected from January 1, 2018 to March 31, 2018

											Upgradie	nt and Cros	sgradient						
Site ID			MW-59			MW-83			MW-94			MW-81	-		MW-84			MW-66	
			1/9/18			1/9/18			1/11/18			1/9/18			1/22/18			1/12/18	
Cations	MW n	mg/L	meq/L	%(meq)	mg/L	meq/L	%(meq)	mg/L	meq/L	%(meq)	mg/L	meq/L	%(meq)	mg/L	meq/L	%(meq)	mg/L	meq/L	%(meq)
pH		6.6			6.6			6.3			6.5			6.6			6.8		
Conductance		196			639			302			159			180			218		
TDSobs		124			426			194			109			110			132		
Calcium	40.1 2	16.0	0.7984	39.1	67.3	3.35828	51.5	30.7	1.53194	49.7	13.5	0.67365	41.7	13.1	0.65369	35.7	16.7	0.83333	36.0
Magnesium	24.3 2	9.9	0.81136	39.8	28.9	2.37811	36.5	13.8	1.13557	36.8	7.6	0.62456	38.7	10.5	0.86402	47.2	13.5	1.11088	48.0
Potassium	39.1 1	1.1	0.02813	1.4	3.6	0.09105	1.4	2.3	0.05806	1.9	0.8	0.02051	1.3	1.1	0.02788	1.5	1.2	0.03044	1.3
Sodium	23.0 1	6.1	0.26403	12.9	16.0	0.69596	10.7	8.1	0.3532	11.5	6.8	0.29578	18.3	6.6	0.28491	15.6	7.8	0.33972	14.7
Iron	55.8 2	3.72	0.13322	6.5	0.01	0.00036		0.12	0.00415		0.01	0.00036	0.0	0.01	0.00036	0.0	0.01	0.00036	0.0
Manganese	54.9 2	0.12	0.00437	0.2	0.00	9.7E-05	0.0	0.00	0.00016		0.00	3.6E-06	0.0	0.01	0.00047	0.0	0.00	4.3E-06	0.0
Ammonia-N	14.0 1	0.01	0.00036	0.0	0.00	0.00014	0.0	0.00	0.00019	0.0	0.00	0.00014	0.0	0.00	0.00014	0.0	0.00	0.00014	0.0
Total Cations (meq/L)			2.0			6.5			3.1			1.6			1.8			2.3	
Anions																			
Alkalinity, Total		66			194			103			55			68			88		
Carbonate	60.0 2	0.017	0.00057	0.0	0.04751	0.00158	0.0	0.01208	0.0004	0.0	0.00929	0.00031		0.01792	0.0006	0.0	0.0358	0.00119	0.1
Bicarbonate	61.0 1	80.85	1.32523	72.1	236.58	3.87783	61.8	125.64	2.05929	71.4	66.84	1.09553	72.0	83.29	1.3652	76.9	107.41	1.76054	80.7
Chloride	35.5 1	6.7	0.18926	10.3	74.3	2.09573		24.3	0.68541	23.8		0.13821	9.1	3.7	0.10295	5.8	4.7	0.13257	6.1
Nitrate-N		0.01	0.00071	0.0	1.45	0.10352	1.6	0.30	0.0212		1.34	0.09567		0.15	0.01078		0.52	0.03705	1.7
Sulfate	96.1 2	15.5	0.32272	17.6	9.6	0.19905	3.2	5.6	0.11618	4.0	9.3	0.19259	12.7	14.2	0.29566	16.7	12.0	0.24985	11.5
Total Anions (meq/L)			1.8			6.3			2.9			1.5			1.8			2.2	
Total Ions (meq/L)			3.9			12.8			6.0			3.1			3.6			4.5	
Cation/Anion Ratio			1.11			1.04			1.07			1.06			1.03			1.06	
Percent Difference																	l		I
		5.2			1.9			3.4			3.0			1.6	1		3.0		
Trilinear Diagram Data																			
sum (Ca, Mg, Na+K)			1.90			6.52			3.08			1.61			1.83			2.31	
Calcium	,		1.90	41.98		0.52	51.48		5.00	49.76		1.01	41.72		1.05	35.71		2.51	36.01
Magnesium				42.66			36.46			36.88			38.68			47.20			48.00
Sodium + Potassium				15.36			12.06			13.36			19.59			17.09			15.99
Sourdin + 1 otassium				100.0			100.0			15.50			100.0			100.0			100.0
				100.0			100.0						100.0			100.0			100.0
sum (SO ₄ , Cl, HCO ₃ -	$+CO_2$		1.84			6.17			2.86			1.43			1.76			2.14	
Sulfate			1.04	17.560		0.17	3.224		2.00	4.060		1.45	13.500		1.70	16.757		2.17	11.653
Chloride				10.299			33.943			23.955			9.688			5.835			6.183
Bicarbonate + Carbor	nate			72.141			62.833			23.935 71.985			76.812			77.408			82.165
Bicarbonate + Carbon	nate			100.0			100.0			/1.963			/0.012			//.408			02.103
		L		100.0	l		100.0												

Table 4 Ion Balance Calculations Cedar Hills Regional Landfill Quarterly and Semi-Annual Regional Aquifer Groundwater Monitoring


Data Collected from January 1, 2018 to March 31, 2018

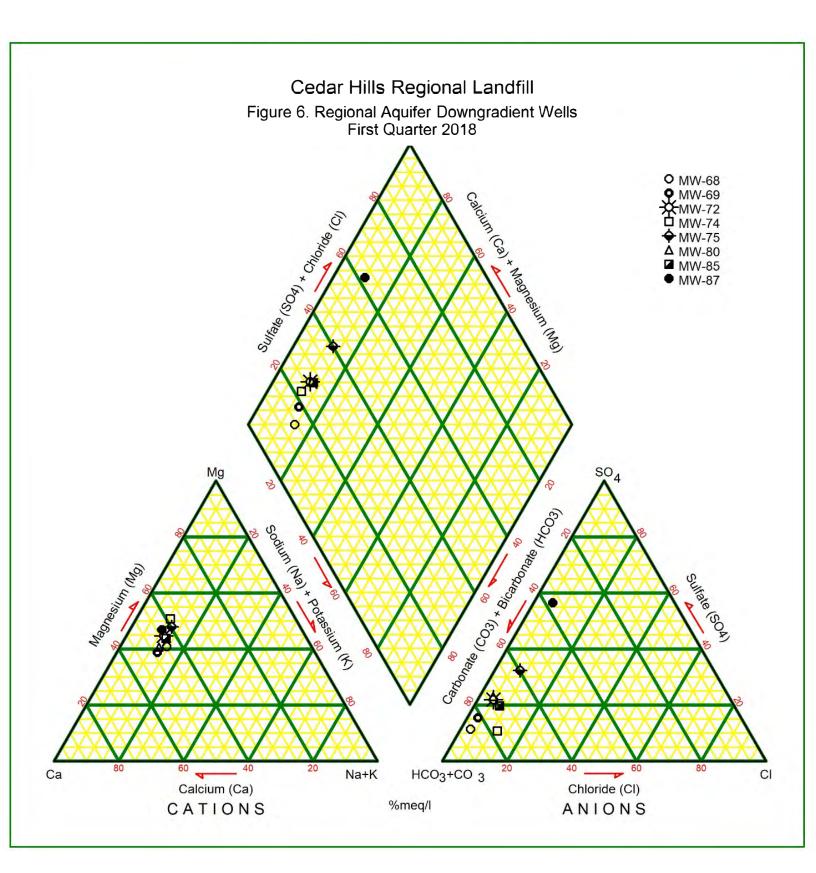

														Down	gradient to	Waste Ce	lls and No	rth End Fa	cilities
Site ID			MW-93			MW-68			MW-69			MW-72		Down	MW-74	i maste ee		MW-75	cintics
			1/24/18			2/23/18			1/24/18			1/19/18			1/11/18			1/11/18	
Cations	MW	n mg/L	meq/L	%(meq)	mg/L	meq/L	%(meq)	mg/L	meq/L	%(meq)	mg/L	meq/L	%(meq)	mg/L	meq/L	%(meq)	mg/L	meq/L	%(meq)
pH		6.9			7.1			7.3			6.8			6.8			6.6		
Conductance		324			284			327			343			559			359		
TDSobs		199			173			193			208			326			225		
Calcium	40.1	2 31.1	1.5519	44.9	26.9	1.34232	44.3	32.9	1.64172	48.0	32.1	1.6018	42.5	48.4	2.41517	38.7	30.1	1.502	38.9
Magnesium	24.3	2 17.4	1.4318	41.4	14.9	1.22609	40.4	15.9	1.30837	38.2	19.9	1.63752	43.4	38.5	3.16807	50.8	22.0	1.81033	46.9
Potassium	39.1	1 1.6	0.04143	1.2	1.7	0.04322	1.4	1.8	0.04681	1.4	2.0	0.05166	1.4	2.3	0.05908	0.9	2.0	0.05192	1.3
Sodium	23.0	1 9.7	0.42193	12.2	8.9	0.38756	12.8	8.6	0.37495	11.0	8.5	0.37103	9.8	13.7	0.59592	9.6	9.5	0.41192	10.7
Iron	55.8	2 0.01	0.00036	0.0	0.58	0.02091	0.7	1.10	0.03939	1.2	2.61	0.09347	2.5	0.01	0.00036	0.0	2.09	0.07485	1.9
Manganese	54.9	2 0.21	0.00746	0.2	0.31	0.01114		0.26	0.00947	0.3	0.36	0.01311	0.3	0.00	3.6E-06	0.0	0.18	0.00652	0.2
Ammonia-N	14.0	1 0.05	0.00392	0.1	0.02	0.00122	0.0	0.02	0.00167	0.0	0.02	0.00114	0.0	0.00	0.00018	0.0	0.01	0.00066	0.0
Total Cations (meq/L)			3.5			3.0			3.4			3.8			6.2			3.9	
Anions																			
Alkalinity, Total		121			129			135			126			227			106		
Carbonate	60.0	2 0.0591	0.00197		0.08695	0.0029		0.15091	0.00503		0.0467	0.00156		0.08221	0.00274		0.02368	0.00079	0.0
Bicarbonate	61.0	1 147.50	2.41767		157.20	2.57671		164.39	2.69456		153.63	2.51806		276.77	4.53658		129.27	2.11889	59.8
Chloride	35.5	1 3.0	0.0849	2.6		0.08716		3.8	0.10803		5.9	0.16501		24.0	0.67695	11.5		0.2767	7.8
Nitrate-N	14.0	1 0.02	0.00107		0.01	0.00071		0.01	0.00071		0.01	0.00071		0.30	0.02142		0.01	0.00071	0.0
Sulfate	96.1	2 38.3	0.79744	24.1	16.6	0.34563	11.5	24.7	0.51427	15.5	36.2	0.75371	21.9	30.0	0.62463	10.7	55.0	1.14515	32.3
Total Anions (meq/L)			3.3			3.0			3.3			3.4			5.9			3.5	
Total Ions (meq/L)			6.8			6.0			6.7			7.2			12.1			7.4	
Cation/Anion Ratio			1.05			1.01			1.03			1.10			1.06			1.09	
Percent Difference					l			l			I						l		I
		2.	3		0.3	1		1.5			4.6			3.1			4.3	1	
Trilinear Diagram Data			-			-			-			-			-			-	
sum (Ca, Mg, Na+K)	\ \		3.45			3.00			3.37			3.66			6.24			3.78	
Calcium	,		5.45	45.02		5.00	44.76		5.57	48.69		5.00	43.74		0.24	38.72		5.78	39.78
Magnesium				41.54			40.88			38.80			44.72			50.72			47.94
Sodium + Potassium				13.44			14.36			12.51			11.54			10.50			12.28
50dium + 1 otassium				15.44			14.50			12.31			11.54			10.50			12.20
sum (SO ₄ , Cl, HCO ₃ -	+CO ₃)		3.30			3.01			3.32			3.44			5.84			3.54	
Sulfate				24.150			11.473			15.481			21.921			10.694			32.335
Chloride				2.571			2.893			3.252			4.799			11.590			7.813
Bicarbonate + Carbon	nate			73.278			85.633			81.267			73.280			77.716			59.852

Table 4 Ion Balance Calculations Cedar Hills Regional Landfill Quarterly and Semi-Annual Regional Aquifer Groundwater Monitoring

Data Collected from January 1, 2018 to March 31, 2018

Site ID		I		MW-80			MW-85			MW-87	
She ID				1/9/18			1/12/18			1/11/18	
Cations	MW	n	mg/L	meq/L	%(meq)	mg/L	meq/L	%(meq)	mg/L	meq/L	%(meq)
pН			6.9			6.6			6.8		
Conductance			312			347			527		
TDSobs			202			212			361		
Calcium	40.1	2	30.5	1.52196	46.0	32.5	1.62176	43.5	46.9	2.34032	41.7
Magnesium	24.3	2	15.9	1.30837	39.6	19.8	1.62929	43.7	30.9	2.54269	45.4
Potassium	39.1	1	1.6	0.04195	1.3	1.7	0.0445	1.2	2.5	0.0642	1.1
Sodium	23.0		8.0	0.34798	10.5		0.42932		10.8	0.46977	8.4
Iron	55.8	-	2.02	0.07234		0.01	0.00036		4.73	0.16939	3.0
Manganese	54.9		0.33	0.0119		0.00	3.6E-06		0.52	0.01886	0.3
Ammonia-N	14.0		0.01	0.00071		0.00	0.00014		0.02	0.00136	0.0
Total Cations (meg/L)	14.0	1	0.01	3.3	0.0	0.00	0.00014 3.7	0.0	0.02	0.00130 5.6	0.0
Anions				5.5			5.7			5.0	
Alkalinity, Total			112			126			99		
Carbonate	60.0	2	0.04765	0.00159	0.1	0.03231	0.00108	0.0	0.03511	0.00117	0.0
Bicarbonate	61.0		136.54	2.23807		153.65	2.51854		120.95	1.98253	37.6
Chloride	35.5		130.34 4.6	0.1289		9.7	0.27304		120.95		
			4.0 0.01							0.30463	5.8
Nitrate-N	14.0	-	0.02	0.00071		0.11	0.00764		0.01 143.0	0.00071	0.0
Sulfate	96.1	2	34.1	0.70999	23.1	33.0	0.68709	19.7	143.0	2.97738	56.5
Total Anions (meq/L) Total Ions (meq/L)				3.1 6.4			3.5 7.2			5.3 10.9	
Total Ions (Ineq/L)				0.4			1.2			10.9	
Cation/Anion Ratio				1.07			1.07			1.06	
Percent Difference								ļ			
			3.5	1		3.3	1		3.1	1	
Trilinear Diagram Data											
				2.22			2.72			5 40	
sum (Ca, Mg, Na+K)				3.22	17.00		3.72	40.54		5.42	42.00
Calcium					47.26			43.54			43.20
Magnesium					40.63			43.74			46.94
Sodium + Potassium					12.11			12.72			9.86
					100.0						
sum (SO ₄ , Cl, HCO ₃ +	-CO ₃)			3.08			3.48			5.27	
Sulfate					23.062			19.745			56.543
Chloride					4.187			7.846			5.785
Bicarbonate + Carbor	nate				72.750			72.408			37.672
					100.0			, 2 00			57.572

					C	EDAR HIL SUMI		WAC 173-	351 APPE	NDIX I IN	TRAWELI	QUARTE L PREDIC	FION LIM								
	Parameter	Toley An.	Total Area	Tolal Bar	Tolal Bo	Tolat Cas	Total Ch.	Total Cost	Total Co.	Tolal Lon	Toley Mic.	loud Sec	Tolal Sile	Total The.	load bar	Tolal Zi	Minale ac.	Dich, 12	Tennenhene	Trichlor	Viny Charles
Well	Units	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	ug/L	ug/L	ug/L	ug/L
									Upgradie	nt and Cro	ssgradient	Wells									
MW-59	Limit	0.001	0.001	0.0055	0.001	0.002	0.005	0.003	0.002	0.001	0.01	0.001	0.003	0.001	0.002	0.00748	0.29	1.37	0.2	0.45	0.02
	Result	< 0.0003	0.000422	0.00372	< 0.0001	< 0.00005	< 0.0002	< 0.00005	< 0.0002	< 0.0001	0.00025	< 0.0005	< 0.00004	< 0.0001	< 0.000075	0.00138	< 0.01	1.20	< 0.1	< 0.1	< 0.01
MW-66	Limit	0.001	0.001	0.0065	0.001	0.002	0.005	0.003	0.002	0.001	0.01	0.00104	0.003	0.001	0.002	0.004	0.881329	0.2	0.2	0.2	0.02
	Result	< 0.0003	0.000654	0.0050	< 0.0001	< 0.00005	0.000236	< 0.00005	< 0.0002	< 0.0001	0.000249	0.001	< 0.00004	< 0.0001	0.000666	0.00181	0.519	< 0.1	< 0.1	< 0.1	< 0.01
MW-81	Limit	0.001	0.001	0.0049	0.001	0.002	0.005	0.003	0.002	0.001	0.01	0.00104	0.003	0.001	0.00253	0.00895	1.77	0.2	0.2	0.2	0.02
	Result	< 0.0003	0.000541	0.0031	< 0.0001	< 0.00005	< 0.0002	< 0.00005	< 0.0002	< 0.0001	0.000142	0.000904	< 0.00004	< 0.0001	0.00167	0.000602	1.34	< 0.1	< 0.1	< 0.1	< 0.01
MW-83	Limit	0.001	0.001	0.0110	0.001	0.002	0.005	0.003	0.00549	0.001	0.01	0.001	0.003	0.001	0.002	0.004	4.11	0.2	0.2	3.03	0.02
	Result	< 0.0003	0.000428	0.0097	< 0.0001	< 0.00005	< 0.0002	0.000279	0.00601	< 0.0001	0.00284	< 0.0005	< 0.00004	< 0.0001	0.000847	0.000699	1.45	< 0.1	< 0.1	1.49	< 0.01
MW-84	Limit	0.001	0.001	0.0041	0.001	0.002	0.005	0.003	0.002	0.001	0.01	0.001	0.003	0.001	0.002	0.004	0.739614	0.2	0.2	0.2	0.02
	Result	< 0.0003	0.000353	0.00412	< 0.0001	< 0.00005	< 0.0002	< 0.00005	< 0.0002	< 0.0001	0.00145	0.000878	< 0.00004	< 0.0001	0.000485	0.000697	0.151	< 0.1	< 0.1	< 0.1	< 0.01
MW-93	Limit	0.001	0.001435	0.0096	0.001	0.002	0.005	0.003	0.002	0.001	0.01	0.001	0.003	0.001	0.00231	0.0112	0.21	0.2	0.2	0.2	0.02
	Result	< 0.0003	0.00136	0.0080	< 0.0001	< 0.00005	0.000429	9.78E-05	< 0.0002	< 0.0001	0.00041	< 0.0005	< 0.00004	< 0.0001	0.00229	0.0010	0.015	< 0.1	< 0.1	< 0.1	< 0.01
MW-94	Limit	0.001	0.001	0.0050	0.001	0.002	0.005	0.003	0.0051	0.001	0.01	0.001	0.003	0.001	0.002	0.004	2.295128	0.2	0.2	4.71	0.02
	Result	< 0.0003	0.000148	0.0027	< 0.0001	< 0.00005	0.00066	0.00017	0.00102	< 0.0001	0.00069	< 0.0005	< 0.00004	< 0.0001	0.000953	< 0.0005	0.297	< 0.1	< 0.1	2.61	< 0.01
ļ										owngradie											
ļ	Limit	0.001	0.495	0.0197	0.001	0.002	0.005	0.003	0.00737	0.001	0.01	0.001	0.003	0.001	0.0037	0.004	0.13	0.2	0.2	0.2	0.02
MW-68	Result	< 0.001	0.493	0.0197	< 0.0001	< 0.0002	0.000235	0.000257	0.00737	< 0.001	0.000755	< 0.001	< 0.0003	< 0.001	0.000398	0.004	< 0.01	< 0.1	< 0.1	< 0.1	< 0.01
	Limit	0.001	0.021	0.0108	0.001	0.000	0.00233	0.000237	0.002	0.001	0.00733	0.001	0.003	0.001	0.000398	0.00141	0.076	0.2	0.2	0.2	0.02
MW-69	Result	< 0.001	0.004	0.0144	< 0.001	< 0.0002	0.000266	< 0.0005	< 0.002	< 0.001	0.000248	< 0.001	< 0.0003	< 0.001	< 0.0002	< 0.0005	< 0.01	< 0.1	< 0.1	< 0.1	< 0.02
	Limit	0.001	0.002	0.0124	0.001	0.002	0.00200	0.003	0.00331	0.00104	0.00248	0.001	0.003	0.001	0.002	0.0201	0.15	0.2	0.2	0.2	0.02
MW-72	Result	< 0.0003	0.001	0.0118	< 0.0001	< 0.0002	0.000785	< 0.0005	0.000331	< 0.00104	0.00234	< 0.0005	< 0.0003	< 0.001	< 0.0002	0.0201	< 0.01	< 0.1	< 0.1	< 0.1	< 0.02
	Limit	0.001	0.001	0.0171	0.001	0.002	0.005	0.003	0.002	0.001	0.000234	0.00104	0.003	0.001	0.002	0.004	0.487	0.2	0.2	0.2	0.02
MW-74	Result	< 0.0003	0.001	0.0125	< 0.0001	< 0.0002	< 0.0002	< 0.0005	0.002	< 0.001	0.00112	0.00104	< 0.00004	< 0.001	0.002	< 0.0004	0.487	< 0.1	< 0.1	< 0.1	< 0.02
	Limit	0.001	0.001	0.0123	0.001	0.002	0.005	0.003	0.00213	0.001	0.00112	0.00014	0.003	0.001	0.000	0.004	0.11	0.2	0.2	0.2	0.02
MW-75	Result	< 0.0003	0.001	0.0134	< 0.0001	< 0.0002	< 0.0002	< 0.00005	< 0.0002	< 0.0001	< 0.001	< 0.0005	< 0.00004	< 0.0001	< 0.0002	0.000577	< 0.01	< 0.1	< 0.1	< 0.1	< 0.01
	Limit	0.001	0.039	0.0230	0.001	0.002	0.005	0.003	0.002	0.001	0.01	0.001	0.003	0.001	0.002	0.0117	0.028	0.2	0.2	0.2	0.02
MW-80	Result	< 0.0003	0.004	0.0135	< 0.0001	< 0.00005	< 0.0002	< 0.00005	< 0.0002	< 0.0001	0.000136	< 0.0005	< 0.00004	< 0.001	< 0.000075	0.000548	< 0.01	< 0.1	< 0.1	< 0.1	< 0.01
	Limit	0.001	0.001	0.0071	0.001	0.002	0.005	0.003	0.002	0.001	0.00130	0.00132	0.003	0.001	0.002	0.000	1.630	0.2	0.2	0.2	0.02
MW-85	Result	< 0.0003	0.001	0.00622	< 0.0001	< 0.00005	< 0.0002	< 0.00005	< 0.0002	< 0.0001	0.000235	0.00104	< 0.00004	< 0.0001	0.0009	< 0.0005	0.107	< 0.1	< 0.1	< 0.1	< 0.01
	Limit	0.001	0.027	0.0409	0.001	0.002	0.005	0.003	0.00347	0.001	0.01	0.001	0.003	0.001	0.005	0.004	0.24	0.2	0.2	0.2	0.02
MW-87	Result	< 0.0003	0.005	0.0264	< 0.0001		0.000225						< 0.00004		0.0012	0.000733	< 0.01	< 0.1	< 0.1	< 0.1	< 0.01

TABLE 5

Results greater than Limit Value in Bold

F2 Secondary Federal Drinking Water Quality Standard

SGW State of Washington Ground Water Quality Standard

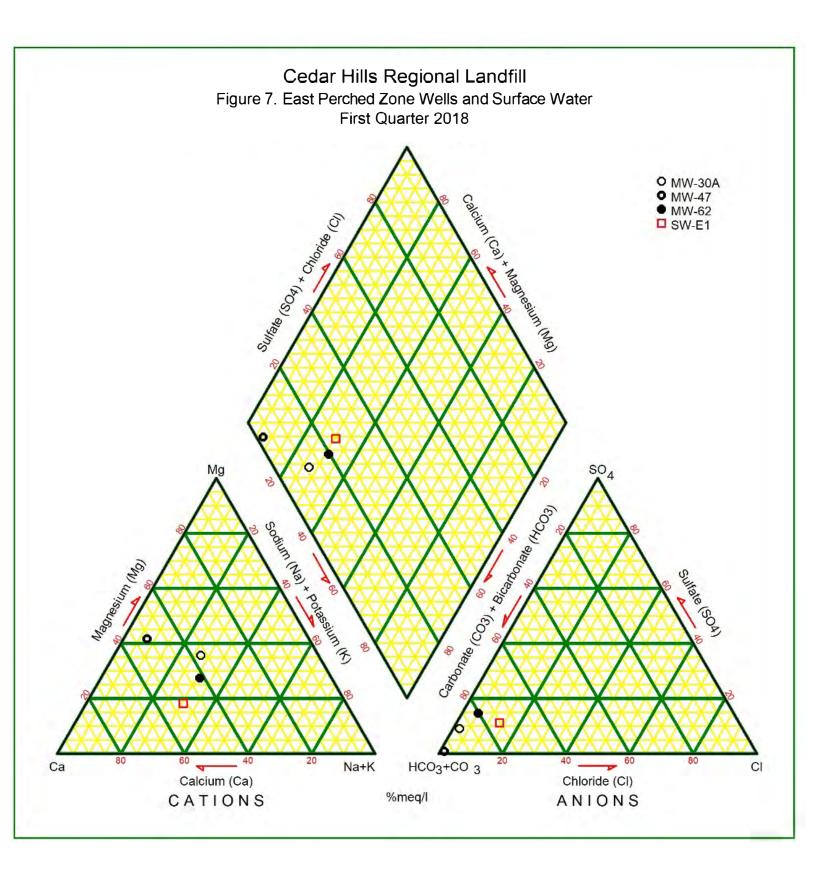
See Revised Data Qualifier List for Qualifier Information

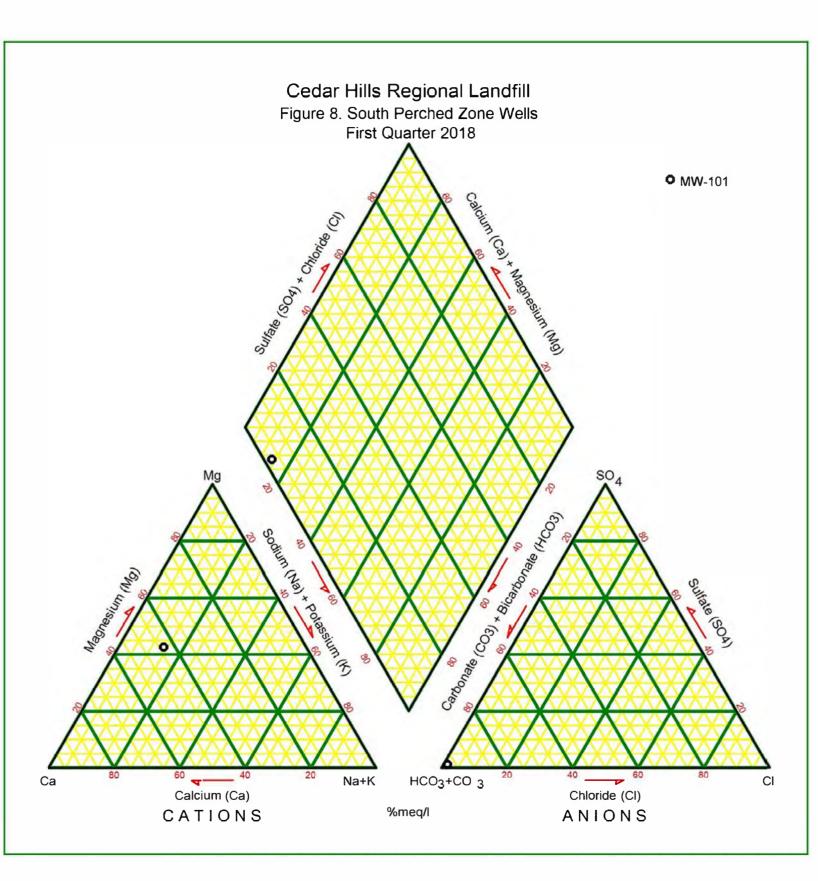
TABLE 6 CEDAR HILLS REGIONAL LANDFILL VOLATILE ORGANIC COMPOUND DETECTIONS IN REGIONAL AQUIFER WELLS

Analyte	Site ID	Date	Sample ID	Sample Value (ug/L)
	Upgradien	t and Crossgradient W	ells	
Carbon Disulfide	MW-59	01/09/18	W59-180109-	0.12 JT
cis-1,2-Dichloroethene	MW-59	1/9/2018	W59-180109-	1.2
Trichloroethene	MW-83	1/9/2018	W83-180109-	1.49
	MW-94	1/11/2018	W94-180111-	2.61
· · · · ·	vells Downgradient to	Waste Cells and North	h end Facilities	
Carbon Disulfide	MW-69	1/24/2018	W69-180124-	0.15 JT
Carbon Disulfide	MW-80	01/09/18	W80-180109-	0.235

(Data Collected from January 1, 2018 to March 31, 2018)

TABLE 7 SUMMARY OF EXCEEDANCES OF WAC 173-200-040 WATER QUALITY STANDARDS FOR GROUND WATERS OF THE STATE OF WASHINGTON


CEDAR HILLS REGIONAL LANDFILL PERCHED ZONES


(Data Collected from January 1, 2018 to March 31, 2018)

Parameter	Units	Well ID	Sample Date	Sample ID	Sample Value
		East Perched Zo	ne Wells	-	
рН	Std. Units	MW-30A	2/7/2018	W30A180207-	6.39
1,1-Dichloroethane	(ug/L)	MW-30A	2/7/2018	W30A180207-	1.48
		MW-62	2/7/2018	W62-180207-	1.44
	<i>((</i>))		2/5/2010	W200 + 4000005	0.000511
Arsenic (Total)	(mg/L)	MW-30A	2/7/2018	W30A180207-	0.000511
		MW-47	2/6/2018	W47-180206-	0.00407
		MW-62	2/7/2018	W62-180207-	0.000423
Iron (Dissolved)	(mg/L)	MW-47	2/6/2018	W47-180206-	4.77
lion (Dissolved)	(IIIg/L)	141 44 -47	2/0/2018	W47-180200-	4.77
Manganese (Dissolved)	(mg/L)	MW-47	2/6/2018	W47-180206-	3.19
	(8/=/				,
Nitrate	(mg/L)	MW-30A	2/7/2018	W30A180207-	15.3
Specific Conductance (Field)	(umhos/cm)	MW-47	2/6/2018	W47-180206-	830
Total Dissolved Solids	(mg/L)	MW-47	2/6/2018	W47-180206-	719
Vinyl Chloride	(ug/L)	MW-47	2/6/2018	W47-180206-	5.48
	Sou	th Solid Waste Area	a Perched Wells		
Arsenic (Total)	(mg/L)	MW-101	2/6/2018	W101180206-	0.0124
Arsenie (Total)	(IIIg/L)	101 00 - 101	2/0/2018	W101100200-	0.0124
Iron (Dissolved)	(mg/L)	MW-101	2/6/2018	W101180206-	1.14
Manganese (Dissolved)	(mg/L)	MW-101	2/6/2018	W101180206-	1.07
Vinyl Chloride	(ug/L)	MW-101	2/6/2018	W101180206-	0.342

See Data Qualifier List for Qualifier Information.

							East Perc	ched Zone							SSWA	
	Site ID		MW-30A			MW-47			MW-62			SW-E1			MW-101	
	Date Molecular		2/7/18			2/6/18			2/7/18			2/6/18			2/6/18	
Cations	Weight	mg/L	meq/L	%(meq)	mg/L	meq/L	%(meq)	mg/L	meq/L	%(meq)	mg/L	meq/L	%(meq)	mg/L	meq/L	%(meq)
pН		6.4			6.9			6.9			5.7			7.0		
Conductance		220			830			215			38			405		
TDSobs		206			719			144			43			345		
Calcium	40.1	19.5	0.97305	37.0	140.0	6.98603	49.9	18.3	0.91317	41.4	3.9	0.19261	51.1	52.6	2.62475	43.0
Magnesium	24.3	11.4	0.93808	35.7	69.4	5.71076	40.8	7.4	0.60481	27.5	0.8	0.06871	18.2	31.3	2.5756	42.2
Potassium	39.1	1.5	0.03734	1.4	4.8	0.12353	0.9	1.1	0.02788	1.3	0.4	0.0111	2.9	2.6	0.06727	1.1
Sodium	23.0	15.6	0.67856	25.8	20.3	0.883	6.3	15.1	0.65681	29.8	2.4	0.10352	27.5	17.5	0.76121	12.5
Iron	55.8	0.0	0.00036	0.0	4.8	0.17082	1.2	0.0	0.00036	0.0	0.0	0.00075	0.2	1.1	0.04083	0.7
Manganese	54.9	0.0	5.9E-06	0.0	3.2	0.11613	0.8	0.0	6E-06	0.0	0.0	0.00012	0.0	1.1	0.03895	0.6
Ammonia-N	14.0	0.0	0.00014	0.0	0.0	0.00014	0.0	0.0	0.00014	0.0	0.0	0.00022	0.1	0.0	0.0011	0.0
Total Cations (mee	₁/L)		2.6			14.0			2.2			0.4			6.1	
Anions																
Alkalinity, Tota		59.7			653			73.2			11.2			305		
Carbonate	60.0	0.00881	0.00029	0.0	0.27783	0.00926	0.1	0.03659	0.00122	0.1	0.00033	1.1E-05	0.0	0.18325	0.00611	0.1
Bicarbonate	61.0	72.82	1.19353	49.0	796.10	13.0488	97.8	89.23	1.46256	71.3	13.66	0.22396	70.6	371.73	6.09297	97.5
Chloride	35.5	0.9	0.02541	1.0	5.7	0.16106	1.2	3.2	0.09139	4.5	1.4	0.04005	12.6	2.6	0.07418	1.2
Nitrate-N	14.0	15.3	1.09231	44.9	0.0	0.00071	0.0	3.2	0.22917	11.2	0.3	0.01985	6.3	0.0	0.00114	0.0
Sulfate	96.1	5.9	0.1218	5.0	5.6	0.11743	0.9	12.8	0.26651	13.0	1.6	0.03331	10.5	3.7	0.07704	1.2
Total Anions (meq Total Ions (meq/L)	· ·		2.4 5.1			13.3 27.3			2.1 4.3			0.3 0.7			6.3 12.4	
Cation/Anion Rati			1.08			1.05			1.07			1.19			0.98	
Cation/Amon Kati	U		1.00			1.05			1.07			1.19			0.98	
Percent Difference			3.8			2.4			3.6			8.6			-1	
TRILINEAR DIA	GRAM DAT	4 														
sum (Ca, Mg, N	a+K)		2.63			13.70			2.20			0.38			6.03	
Calcium	-,			37.0			51.0			41.46			51.23			43.54
Magnesium				35.7			41.7			27.46			18.28			42.72
Sodium + Potas	sium			27.3			7.3			31.08			30.49			13.74
										100.0			100.0			
sum (SO₄, Cl, H	CO ₃ +CO ₃)		1.34			13.34			1.82			0.30			6.25	
Sulfate	<i>, , ,</i>			9.1			0.9			14.6			11.2			1.2
Chloride				1.9			1.2			5.0			13.5			1.2
Bicarbonate + C	arbonate			89.0			97.9			80.4			75.3			97.6
Dictitionate C	aconato			07.0			21.2			100.0			100.0			21.0
		L						1		100.0			100.0			

TABLE 9 CEDAR HILLS REGIONAL LANDFILL PERCHED ZONES MONITORING WELLS SUMMARY OF WAC 173-351 APPENDIX I INTRAWELL PREDICTION LIMIT VALUES (Data Collected from January 1, 2018 to March 31, 2018)

			,		,	,		,		(= 0 0			18 to March :	,=,					,		,	1		, ,
	Parameter	Tous,	Touin .	Total .	Tonal Daring	round Continu	Total C.	Tound	Colart Tolar	Ppper	Toug,	Toldel C	Touring	Toqu r	Total V	Total .	Minn	^{1,1} Dich	¹ ,1 Dicht	^{1,2} Dich,	cir.12.Dic.	Di an I Di an	Then, 12	Voethere Vigy Chock
Well	Units	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
											East P	erched Zon	e Wells											
MW-30A	Limit	0.001	0.001	0.0077	0.001	0.002	0.005	0.003	0.002	0.001	0.01	0.001	0.003	0.001	0.00307	0.0188	14.0	6.9	0.2	0.23	13.76	0.2	1.63	0.03
	Result	< 0.0003	0.000511	0.0043	< 0.0001	< 0.00005	0.000786	0.000076	0.00107	0.000153	0.000834	< 0.0005	< 0.00004	< 0.0001	0.00217	0.0016	15.3	1.48	< 0.1	< 0.1	1.94	< 0.1	0.753	< 0.01
MW-47	Limit	0.001	0.0113	0.0458	0.001	0.002	0.005	0.003	0.0105	0.00143	0.01	0.001	0.003	0.001	0.00307	0.168	0.024	0.89	0.2	0.16	5.3	0.2	0.2	8.64
	Result	< 0.0003	0.00407	0.0438	< 0.0001	< 0.00005	< 0.0002	0.000453	< 0.0002	< 0.0001	0.00237	< 0.0005	< 0.00004	< 0.0001	0.000135	< 0.0005	< 0.01	0.732	< 0.1	0.16	3.06	< 0.1	< 0.1	5.48
MW-62	MW-62 Limit 0.001 0.003 0.001 0.003 0.001 0.002 0.005 0.003 0.002 0.003 0.002 0.001 0.01 0.001 0.003 0.001 0.002 0.004 7.7 15.2 6.1 0.2 16.3 0.21 0.47 0.23																							
	Result	< 0.0003	0.000423	0.002	< 0.0001	< 0.00005	0.000502	0.0000998	0.000574	< 0.0001	0.000574	< 0.0005	< 0.00004	< 0.0001	0.00156	0.000557	3.21	1.44	< 0.1	< 0.1	4.08	< 0.1	0.12	< 0.01
South Solid Waste Area Wells																								
MW-101	Limit	0.001	0.028	0.0378	0.001	0.002	0.005	0.003	0.00416	0.00109	0.01	0.001	0.003	0.001	0.0039	0.00729	0.0593	0.21	0.2	0.22	0.23	0.2	0.2	0.96
	Result	< 0.0003	0.012	0.0222	< 0.0001	< 0.00005	0.00107	0.000367	0.000417	0.000129	0.00437	< 0.0005	< 0.00004	< 0.0001	0.000461	0.00161	0.016	0.13	< 0.1	0.204	0.238	< 0.1	< 0.1	0.34
Results grea	ater than Limit	Value in RE	D Bold																					

TABLE 10 CEDAR HILLS REGIONAL LANDFILL VOLATILE ORGANIC COMPOUND DETECTIONS IN PERCHED ZONE WELLS

Analyte	Site ID	Date	Sample ID	Sample Value (ug/L)
	East Perche	d Zone Wells		
1,1-Dichloroethane	MW-30A	2/7/2018	W30A180207-	1.48
	MW-47	2/6/2018	W47-180206-	0.732
	MW-62	2/7/2018	W62-180207-	1.44
1,2-Dichloroethane	MW-47	2/6/2018	W47-180206-	0.16 JT
A	EW 25	2/6/2018	EW25190206	12.7
Acetone	EW-25	2/6/2018	EW25180206-	12.7
Chloroethane	MW-47	2/6/2018	W47-180206-	0.249
emoroemune		2,0,2010		01217
cis-1,2-Dichloroethene	EW-25	2/6/2018	EW25180206-	0.226
	MW-30A	2/7/2018	W30A180207-	1.94
	MW-47	2/6/2018	W47-180206-	3.06
	MW-62	2/7/2018	W62-180207-	4.08
Dichlorodifluoromethane	MW-47	2/6/2018	W47-180206-	4.59
Trichloroethene	EW-25	2/6/2018	EW25180206-	0.242
	MW-30A	2/7/2018	W30A180207-	0.753
	MW-62	2/7/2018	W62-180207-	0.12 JT
Vinyl Chloride	MW-47	2/6/2018	W47-180206-	5.48
Villyr Chloride	IVI VV -4 /	2/0/2018	W47-180200-	3.48
_	South Solid Waste	Area Perched We	ells	
1,1-Dichloroethane	MW-101	2/6/2018	W101180206-	0.13 JT
-,				
1,2-Dichloroethane	MW-101	2/6/2018	W101180206-	0.204
Chloroethane	MW-101	2/6/2018	W101180206-	0.19 JT
cis-1,2-Dichloroethene	MW-101	2/6/2018	W101180206-	0.238
Vinyl Chloride	MW-101	2/6/2018	W101180206-	0.342
		1		
			1	
			1	
as Data Qualifier List for Qualifi			1	

(Data Collected from January 1, 2018 to March 31, 2018)

See Data Qualifier List for Qualifier Information.

Table 11

Storm & Surface Water Monitoring Activities 1st Quarter 2018

Station ID	Date	Planned Acitvity	Sample ID	Comment
SW-GS1	2/7/2018	NPDES Permit Sample	SGS1180207P	
SW-SL3	2/12/2018	NPDES Permit Sample	SSL3180212P	
SW-GS1 ¹	2/16/2018	NPDES Permit Sample		Turbidity resample.
SW-N4	2/17/2018	NPDES Permit Sample	SN4-180207P	
SW-TD1	2/7/2018	Area 5 Top Deck Monitoring	STD1180207-	
SW-TD2 ¹	2/7/2018	Area 5 Top Deck Monitoring		No flow, no sample taken.
SW-TD4 ¹	2/7/2018	Area 5 Top Deck Monitoring		No flow, no sample taken.
SW-TD6 ¹	2/7/2018	Area 5 Top Deck Monitoring		No flow, no sample taken.
SW-TD2 ¹	3/14/2018	Area 5 Top Deck Monitoring		No flow, no sample taken.
SW-TD4 ¹	3/14/2018	Area 5 Top Deck Monitoring		No flow, no sample taken.
SW-TD6 ¹	3/14/2018	Area 5 Top Deck Monitoring		No flow, no sample taken.
Stream Gauges	1/22/2018	Monthly Stream Gauge Level Measurement		
Stream Gauges	2/5/2018	Monthly Stream Gauge Level Measurement		
Stream Gauges	3/21/2018	Monthly Stream Gauge Level Measurement		
Field Blank	2/12/2018	QA/QC Sample	SSL3180212F	
CSGP-C1	Weekly (minimum)	CSGP ² Permit Turbidity Measurement		Turbidity only
CSGP-C2	Weekly (minimum)	CSGP Permit Turbidity Measurement		Turbidity only
CSGP-C3	Weekly (minimum)	CSGP Permit Turbidity Measurement		Turbidity only
CSGP-C4	Weekly (minimum)	CSGP Permit Turbidity Measurement		Turbidity only

¹ No sample ID assigned, No sample collected.

² Construction Stormwater General Permit

TABLE 12 CEDAR HILLS LANDFILL SUMMARY OF ISGP* STORMWATER PERMIT EXCEEDANCES

(Data Collected from January 1, 2018 to March 31, 2018)

Parameter	Units	Sampling Location	Date	Value	Regulatory Limit	Туре
		No ISGP Stormw	vater Exceedances	for this Ouarte	er	

*ISGP - Industrial General Stormwater Permit

CEDAR HILLS LANDFILL SUMMARY OF CSGP^{*} STORMWATER PERMIT EXCEEDANCES (Data Collected from January 1, 2018 to March 31, 2018)

Parameter	Units	Sampling Location	Date	Value	Regulatory Limit	Туре
Turbidity	NTU	C1	01/30/18	50.5	25	Benchmark
Turbidity	NTU	C1	01/31/18	29.7	25	Benchmark
Turbidity	NTU	C1	02/02/18	56.5	25	Benchmark
Turbidity	NTU	C1	02/05/18	27.9	25	Benchmark
Turbidity	NTU	C1	03/26/18	56.1	25	Benchmark
Turbidity	NTU	C1	03/27/18	47.6	25	Benchmark
Turbidity	NTU	C1	03/29/18	30.1	25	Benchmark
Turbidity	NTU	C3	02/01/18	38.4	25	Benchmark
Turbidity	NTU	C3	02/02/18	190	25	Benchmark
Turbidity	NTU	C4	01/17/18	106	25	Benchmark
Turbidity	NTU	C4	01/18/18	86	25	Benchmark
Turbidity	NTU	C4	01/19/18	109	25	Benchmark
Turbidity	NTU	C4	01/23/18	64	25	Benchmark
Turbidity	NTU	C4	01/29/18	65.8	25	Benchmark
Turbidity	NTU	C4	01/30/18	65.9	25	Benchmark
Turbidity	NTU	C4	01/31/18	73.5	25	Benchmark
Turbidity	NTU	C4	02/01/18	86.8	25	Benchmark
Turbidity	NTU	C4	02/02/18	99.2	25	Benchmark
Turbidity	NTU	C4	02/05/18	79.3	25	Benchmark
Turbidity	NTU	C4	02/07/18	30.3	25	Benchmark

*CSGP - Construction General Stormwater Permit

TABLE 13 CEDAR HILLS REGIONAL LANDFILL VOLATILE ORGANIC COMPOUND DETECTIONS IN BLANKS

(Data Collected from January 1, 2018 to March 31, 2018)

Analyte	Site ID	Date	Sample ID	Sample Value (ug/L)
2-Butanone	FIELD BLANK	02/06/18	EW25180206F	1.1 JT
Acetone	FIELD BLANK	02/06/18	EW25180206F	16.7

See Data Qualifier List for Qualifier Information.

Table 14Groundwater Quality Criteria

		CASN	Ground Water Quality Criteria	
[.	Analyte PRIMARY AND SECONDARY CONTAM	CAS No. MINANTS AND RA	Criterion*	
•	FRIMART AND SECONDART CONTAM	MINAN IS AND KA	DIONOCLIDES	
	A. Primary Contaminants			
	р. :	- / / 0 - 0	1.0	a
	Barium	7440-39-3	1.0	mg/L
	Cadmium	7440-43-9	0.005	mg/L
	Chromium	7440-47-3	0.05	mg/L
	Lead	7439-92-1	0.015	mg/L
	Mercury	7439-97-6	0.002	mg/L
	Selenium Silver	7782-49-2	0.01	mg/L
		7440-22-4	0.05	mg/L
	Fluoride Nitrate	16984-48-8	4.0 10.0	mg/L
	Endrin	14797-55-8	0.2	mg/L
		72-20-8	40	ug/L
	Methoxychlor	72-43-5	200	ug/L
	1,1,1-Trichloroethane	71-55-6	200 70	ug/L
	2,4-D	94-75-7	100	ug/L
	2,4,5-TP	93-72-1		ug/L
	Total Coliforms		1/100	mL
	B. Secondary Standards			
	Copper	7440-50-8	1.0	mg/L
	Iron	7439-89-6	0.3	mg/L
	Manganese		0.05	-
	Zinc	7439-96-5 7440-66-6	0.05 5.0	mg/L mg/I
	Chloride			mg/L
		16887-00-6	250	mg/L
	Sulfate	14808-79-8	250	mg/L
	Total Dissolved Solids		500	mg/L
	Foaming Agents		0.5	mg/L
	pH	12408-02-5	6.5-8.5	units
	Corrosivity		non-corrosive	
	Color		15	units
	Odor-Threshold		3	units
	C. Radionuclides and Radioactivity			
	Gross Alpha particle activity		15	pCi/L
	Gross Beta particle activity		50	pCi/L
	Tritium	10028-17-8	20,000	pCi/L
	Strontium	7440-24-6	8	pCi/L
	Radium 226 & Radium 228		5	pCi/L
	Radium 226	13982-63-3	3	pCi/L
I.	CARCINOGENS			
				æ
	1,1-Dichloroethane	75-34-3	1	ug/L
	1,2-Dichloroethane	107-06-2	0.5	ug/L
	1,2-Dichloropropane	78-87-5	0.6	ug/L
	1,2-Dimethylhydrazine	540-73-8	60	ug/L
	1,2-Diphenylhydrazine	122-66-7	0.09	ug/L
	1,3-Dichloropropene tot.	542-75-6	0.2	ug/L
	1,4-Dichlorobenzene	106-46-7	4	ug/L
	1,4-Dioxane	123-91-1	7	ug/L
	2,3,7,8-Tetrachlorodibenzo-p-dioxin	1746-01-6	0.0000006	ug/L
	2,4,6-Trichlorophenol	88-06-2	4.0	ug/L
	2,4-Dinitrotoluene	121-14-2	0.1	ug/L
	2,4-Toluenediamine	95-80-7	0.002	ug/L
	2,6-Dinitrotoluene	606-20-2	0.1	ug/L
	2-Methoxy-5-nitroanaline	99-59-2	2.0	ug/L
	2-Methylanaline	95-53-4	0.2	ug/L
	2-Methylanaline hydrochloride	636-21-5	0.5	ug/L
	3,3'-Dichlorobenzidine	91-94-1	0.2	ug/L
	3,3'-Dimethoxybenzidine	119-90-4	6.0	ug/L
	3,3-Dimethylbenzidine	119-93-7	0.007	ug/L
	4,4'-Methylene bis(N,N'-dimethyl) aniline	101-61-1	2.0	ug/L
	4-Chloro-2-methyl analine	95-69-2	0.1	ug/L
	4-Chloro-2-methyl analine hydrochloride	3165-93-3	0.2	ug/L
	Acrylamide	79-06-1	0.02	ug/L
	Acrylonitrile	107-13-1	0.07	ug/L
	Aldrin	309-00-2	0.005	ug/L
	Aniline	62-53-3	14	ug/L
	Aramite	140-57-8	3	ug/L
				-
	Arsenic	7440-38-2	() ()()())5	
	Arsenic Azobenzene	7440-38-2 103-33-3	0.00005 0.7	mg/L ug/L

Table 14Groundwater Quality Criteria

	Ground Water Quality Criteria Criterion*	CAS No.	Analyte		
ug/L	0.0004	92-87-5	Benzidine		
ug/L ug/L	0.008	50-32-8	Benzo(a)pyrene		
ug/L	0.007	98-07-7	Benzotrichloride		
ug/L	0.5	100-44-7	Benzyl chloride		
ug/L	6	117-81-7	Bis(2-ethylhexyl)phthalate		
ug/L	0.07	111-44-4	Bis(chloroethyl)ether		
ug/L	0.0004	542-88-1	Bis(chloromethyl)ether		
ug/L	0.3	75-27-4	Bromodichloromethane		
ug/L	5	75-25-2	Bromoform		
ug/L	5	86-74-8	Carbazole		
ug/L	0.3	56-23-5	Carbon Tetrachloride		
ug/L	0.06	5103-71-9	Chlordane		
ug/L	0.5	124-48-1	Chlorodibromomethane		
ug/L	7	67-66-3	Chloroform		
ug/L	30	1897-45-6	Chlorthalonil		
ug/L	0.3	50-29-3, 72-55-9, 72-54-8	DDT (includes DDE and DDD)		
ug/L	1	2303-16-4	Diallate		
ug/L ug/L	0.3	62-73-7	Dichlorovos		
ug/L ug/L	0.005	60-57-1	Dieldrin		
ug/L ug/L	0.009	1937-37-7	Direct Black 38		
ug/L ug/L	0.009	2602-46-2	Direct Blue 6		
ug/L ug/L	0.009	16071-86-6	Direct Brown 95		
ug/L ug/L	8	106-89-8	Epichlorohydrin		
0	2	140-88-5	Ethyl acrylate		
ug/L	2 0.001		Ethylene dibromide		
ug/L		106-93-4 96-45-7	5		
ug/L	2		Ethylene thiourea		
ug/L	20	133-07-3	Folpet		
ug/L	0.02	67-45-8	Furazolidone		
ug/L	0.002	531-82-8	Furium		
ug/L	3	60568-05-0	Furmecyclox		
ug/L	0.02	76-44-8	Heptachlor		
ug/L	0.009	1024-57-3	Heptachlor epoxide		
ug/L	0.05	118-74-1	Hexachlorobenzene		
ug/L	0.001	319-84-6	Hexachlorocyclohexane (alpha)		
ug/L	0.05	608-73-1	Hexachlorocyclohexane (technical)		
ug/L	0.00001	34465-46-8	Hexachlorodibenzo-p-dioxin, mix		
ug/L	0.03	302-01-2/10034-93-2	Hydrazine/hydrazine sufate		
ug/L	0.06	58-89-9	Lindane		
ug/L	5	75-09-2	Methylene Chloride		
ug/L	0.05	2385-85-5	Mirex		
ug/L	0.06	59-87-0	Nitrofurazone		
ug/L	0.03	1116-54-7	N-Nitrosodiethanolamine		
ug/L	0.0005	55-18-5	N-Nitrosodiethylamine		
ug/L	0.002	62-75-9	N-Nitrosodimethylamine		
ug/L	0.02	924-16-3	N-Nitroso-di-n-butylamine		
ug/L	0.01	621-64-7	N-Nitroso-di-n-propylamine		
ug/L	17.0	86-30-6	N-Nitrosodiphenylamine		
ug/L	0.004	10595-95-6	N-Nitroso-N-methylethylylamine		
ug/L	0.04	930-55-2	N-Nitrosopyrrolidine		
ug/L	3	88-73-3	o-Chloronitrobenzene		
ug/L	0.005	95-54-5	o-Phenylenediamine		
ug/L	0.2	95-53-4	o-Toluidine		
ug/L	0.004	5216-25-1	p,a,a,a-Tetrachlorotoluene		
ug/L	0.01		PAHs [Benzo(a)pyrene]		
ug/L	0.01	59536-65-1	PBBs		
ug/L	0.01	27323-18-8	PCBs c		
ug/L	5	100-00-5	p-Chloronitrobenzene		
ug/L	0.01	75-56-9]	Propylene oxide		
ug/L	0.8	127-18-4	Tetrachloroethylene		
ug/L	0.08	8001-35-2	Toxaphene c		
ug/L	3	79-01-6	Trichloroethylene (TCE)		
ug/L	2.0	512-56-1	Trimethyl phosphate		
ug/L	0.02	75-01-4	Vinyl chloride		
			NOTES: pCi/L=picocuries per liter		
			mg/L=milligrams per liter		
			· · · ·		
	ards	3-200 WAC Water Quality Stand			
	ards		ug/L=micrograms per liter *Ground Water Quality Criteria=17 for Ground Waters of the S		

TABLE 15 CEDAR HILLS LANDFILL INDUSTRIAL STORMWATER GENERAL PERMIT

BENCHMARKS and EFFLUENT LIMITS

Parameter	Units	Minimum Sampling Frequency	Benchmark	Effluent Limit		
				Monthly Average	Daily Maximum	
рН	Std. Units	Quarterly	5.0 to 9.0	6.0 to 9.0		
Turbidity	NTU	Quarterly	25			
Oil Sheen	Yes/No	Quarterly	None Visible			
Copper, Total	ug/L	Quarterly	14			
Zinc, Total	ug/L	Quarterly	117	110	200	
BOD	mg/L	Quarterly		37	140	
TSS	mg/L	Quarterly		27	88	
Ammonia-N	mg/L	Quarterly		4.9	10	
Alpha Terpineol	ug/L	Quarterly		16	33	
Benzoic Acid	ug/L	Quarterly		71	120	
4-Methylphenol*	ug/L	Quarterly		14	25	
Phenol	ug/L	Quarterly		15	26	

* Analytical result reported as the total of 3-Methylphenol (CAS RN 108-39-4) and 4-Methylphenol (CAS RN 106-44-5)

TABLE 16 CEDAR HILLS REGIONAL LANDFILL LABORATORY DATA REVIEW - SUSPECT DATA ALL MATRICES

Parameter	Units	Well ID	Sample Date	Sample ID	Sample Value	Cause of Unuseability
Acetone	ug/L	Field Blank	2/6/2018	EW25180206F	16.7	Blank Contamination

(Data Collected from January 1, 2018 to March 31, 2018)