Lower Duwamish Waterway Group

Port of Seattle / City of Seattle / King County / The Boeing Company

Memorandum

To: Lower Duwamish Waterway Group (LDWG)

From: Matt Salmon, Anne Fitzpatrick, Chuck Vita, John Ryan - AECOM

Subject: Estimated Emission Reduction from Reduced Truck Transportation in the Lower

Duwamish Waterway Corridor and Use of Lower Sulfur Fuels

Date: January 14, 2014

Introduction

As requested by LDWG to address a question from King County, this memorandum summarizes the analysis completed to estimate the changes in gas and particulate emissions in the Lower Duwamish Waterway (LDW) Corridor due to reduced truck transportation and the now required use of ultra-low sulfur diesel (ULSD) fuel.

Over the last decade, EPA has focused on reducing CO_2 , NO_X , SO_X , and PM_{10} emissions under the Diesel Emissions Reduction Act (DERA). CO_2 emissions are known to contribute to the green house gas effect. Emissions from SO_X and PM_{10} are known to contribute to health problems, while NO_X also "contributes to the formation of ozone and PM through chemical reactions." New national emission requirements are intended to reduce CO_2 by up to 20%, NO_X by up to 90%, and PM by up to 95% by the year 2030. SO_X emissions are reduced by the switch from low sulfur diesel to ULSD. Two major steps taken by the EPA to reduce emissions involve updating engines in equipment fleets and mandatory use of ULSD fuel (EPA 2010).

For this analysis, the LDW Corridor is defined as the neighborhoods between the LDW and the Burlington Northern Santa Fe (BNSF) Railroad transfer stations in Georgetown and SODO. Neighborhoods in the LDW Corridor that could be affected by local truck transportation of contaminated sediment include Georgetown, Harbor Island, SODO, and South Park. ¹

Method Assumptions

The analysis uses the same AECOM Sustainability Tool developed for the LDW Feasibility Study (FS), to compare three remedial cleanup alternatives, each with three different truck transportation options (see assumptions) for a total of nine scenarios. The three LDW remedial

Page 1 Prepared by AECON

¹ Local truck transportation from the LDW to the BNSF transfer stations.

alternatives being compared are the LDWG Key Elements (LDWG 2011), EPA Preferred Alternative (Alternative 5CPlus) as presented in the Proposed Plan (EPA 2013a), and FS Alternative 5R (AECOM 2012). The first two alternatives use a combination of active technologies (dredging, capping, and ENR) to achieve remedial goals. LDW FS Alternative 5R is a removal-focused alternative that relies on dredging technology to achieve remedial goals. Table 1 shows the acreage addressed by each technology under each cleanup alternative.

Truck Transportation Options. Project-generated truck transportation through the LDW Corridor is varied by reducing the volume of contaminated sediment transported by trucks to the transfer station(s). The truck transportation options are:

- ◆ Truck option 1 100% of sediment is trucked to transfer station (assumes no direct-to-rail facilities are available);
- ◆ Truck option 2 60% of sediment is trucked to transfer station (assumes 1 direct-to-rail facility is available); and
- ◆ Truck option 3 22% of sediment is trucked to transfer station (assumes 2 direct-to-rail facilities are available).

This analysis assumes that the portion of contaminated dredge material not being trucked to a transfer station will be directly loaded onto rail cars at a local transloading facility (e.g., similar to operations currently used at the facility operated by LaFarge).

Truck options were selected based on the availability of direct-to-rail facilities. 100% truck transportation assumes no direct-to-rail facility will be available. 60% truck transportation assumes one direct-to-rail facility will be available, reducing trucked material by 40%. The 22% truck transportation assumes that two direct-to-rail facilities will be available and only the material within the intertidal area (~22%) would be loaded directly to trucks using land-based equipment.

Transportation of dredged contaminated sediment from the LDW to the Roosevelt Landfill² assumes three steps in the transport process:

- 1. Transport of contaminated sediment from the LDW barge to the rail cars:
 - a. Trucking contaminated sediment over a 6-mile round-trip through the LDW Corridor from a transloading facility on the LDW to a BNSF transfer station located either in Georgetown or SODO. Contaminated sediment volumes transported through the LDW Corridor by truck will be either: 100% (Option 1), 60% (Option 2), or 22% (Option 3) of the total dredge volume.

² The Roosevelt Landfill in Washington State was identified in the FS as the most likely site for receiving excavated sediments from the LDW.

- b. The remaining portion will be loaded directly from the barge, docked alongside the transloading facility, to rail (eliminates the 6-mile truck trip through the LDW Corridor).
- 2. Rail transport of contaminated sediment comprising a 569-mile round-trip from the transfer station or transloading facility (i.e., LaFarge) to Roosevelt Landfill.³
- 3. Trucking contaminated sediment over a 6-mile round-trip from the BNSF transfer station to Roosevelt Landfill for final disposal.

Table 2 presents the volumes used in the analyses by technology and remedial alternative. The inputs to the sustainability tool are provided in Attachment 1. Only Step 1 is varied in this analysis; Steps 2 and 3 are held constant.

AECOM Sustainability Tool Update - Use of ULSD Fuel. Since submittal of the final LDW FS in October 2012, EPA has mandated ULSD in all on-road (e.g., trucks) and non-road equipment (e.g., railroad locomotives, tug boats, and construction equipment)⁴. Since the timing of the compliance was uncertain, the FS did not assume these requirements in its emissions analysis, and instead assumed the use of low sulfur diesel (LSD) fuel. The most recent version of the Sustainability Tool has been updated to take this requirement into account (i.e., maximum sulfur content of 15 parts per million [ppm] sulfur). For this analysis, all engines are also assumed to meet all new EPA emission standards (i.e., use newer Tier 4 engines or retrofit older ones to accept clean diesel technology) regardless of age. Besides adjusting for ULSD and assuming that all equipment will meet new emission standards, no other structural changes have been made to the tool and its calculations since finalization of the LDW FS. For reference, emission factors for all of the technologies are provided in Attachment 2.

Equipment Emission Factors. For a limited time, EPA is providing financial benefits/compensation under DERA to owners who upgrade equipment with clean diesel

⁴ EPA instituted use of low sulfur diesel fuel in two phases. The first phase was instituted in 2007 and required low sulfur diesel (i.e., maximum sulfur content of 500 ppm) to be used in all on-road and non-road diesel equipment (except ocean going vessels). The second phase was instituted in 2010 and required use of ULSD with a maximum sulfur content of 15 ppm (EPA 2004).

The 6-mile truck trip described in Step 1 does not vary. The distance is small compared to the entire 569-mile trip to the landfill, which is mostly by train. Because the BNSF transfer stations are located in close proximity to the LDW, it was assumed that any additional rail distance would be negligible. Therefore, rail transportation distance does not significantly increase as truck transport decreases. The transfer stations in Georgetown and SODO are approximately the same distance from the landfill as the potential LDW transloading facility sites.

emission reduction technology⁵, including particulate filters, crankcase ventilators, etc. to reduce NOx and PM_{10} emissions (EPA 2010).

EPA has mandated engine manufacturers to reduce emissions over the past decade through a tiered system, tier 1 to 4, with each tier requiring lower emissions. Final requirements (i.e., tier 4) take effect at 2014 year end for heavy duty truck, non-road, locomotive, and marine diesel engines (ARB and EPA 2013).

EPA is requiring almost all refineries and importers to produce only diesel fuel with a sulfur content not to exceed 15 ppm by 2013 year end. This requirement does not yet apply to the small class of transmix fuel, which is fuel formed by mixing during pipeline transport. The transmix fuel can only be used in approved older model locomotives and marine engines (EPA 2013b). However, older engines using transmix fuel are not used in this analysis for transportation of LDW sediments.

Emission factors used in this analysis assume that all engines use ULSD and meet all EPA emission requirements by the year 2015 (e.g., low emission vehicles, Tier 4 engines, clean diesel technology upgrades, etc.). In reality, not all engines may be able to meet this new requirement when construction begins and some older engines may be used for sediment remediation in the LDW. Therefore, this analysis represents a best-case estimate of reduced emissions.

Results

The switch from LSD fuel (assumed in the FS) to ULSD fuel using the new EPA engine and clean diesel technology requirements to calculate emissions, results in a slight decrease in CO_2 emission estimates, and a larger decrease in NO_X , SO_X and PM_{10} emissions as shown in Table 3. For example, CO_2 emissions were reduced from 59,000 to 54,000 metric tons (an approximately 8% reduction from the FS) while NO_X , SO_X , and PM_{10} emissions were reduced by 46%, 78%, and 58%, respectively compared to the FS calculations.

The estimated total and annual gas and particulate emissions for all nine scenarios (three remedial alternatives, three transport options for each) are shown in Table 4. A detailed breakdown of emission calculations by technology is provided in Attachment 3.

All five emissions calculated (i.e., CO_2 , CO, NO_X , SO_X , and PM_{10}) slightly decreased as the percentage of sediment traveling by truck through the LDW Corridor changed, as shown in Attachment 3 in the row labeled "transportation." Reduced truck transportation (for the 6-mile local trip) results in only a small decrease in total emissions for CO_2 and SO_X , because of the contributions from the dredging equipment and rail transport. Thus, the reduction in emissions

⁵ According to newsletters, tug boat companies in Seattle, WA, including Harley Marine, Foss, and Crowley, have already begun to take advantage of upgrade incentives for converting their fleets to use ULSD.

from decreased truck use is insignificant (i.e., 1% or less) when compared to total emissions, and falls within the expected error of the emissions model.

The other emissions, CO, NO_X , and PM_{10} , did not see a noticeable reduction in their total emissions as the percentage of dredged sediment traveling by truck changed. This is because these emissions are driven by rail transportation and not by truck transportation. This is illustrated in Table 5 by the high emission factors for rail transport and the low emission factors for truck transport.

In conclusion, use of ULSD by cleanup project equipment and trucks operating in the LDW would reduce total project emissions as compared to project delivery with LSD. Reductions range from approximately 5% for CO_2 to almost 80% for SO_X . By comparison, reductions in local truck transport if more direct-to-rail transloading facilities were available would reduce emissions by less than 2% of the total emissions for CO_2 and SO_X .

References

- AECOM 2012. Lower Duwamish Waterway Final Feasibility Study. Submitted to the U.S. Environmental Protection Agency and the Washington State Department of Ecology. Prepared for the Lower Duwamish Waterway Group. October 31, 2012.
- ARB and EPA 2013. *Table 1. Air Resources Board and USEPA Off-Road Compression-Ignition (Diesel) Engine Standards. Excel Spreadsheet.* (www.arb.ca.gov/msprog/ordiesel/documents/Off-Road Diesel Stds.xls). Accessed November 30, 2013.
- EPA 2004. *Regulatory Announcement Clean Air Nonroad Diesel Rule*. EPA420-F-04-032. Office of Transportation and Air Quality. May 2004.
- EPA 2010. Second Report to Congress: Highlights of the Diesel Emissions Reduction Program. Energy Policy Act of 2005 Title VII, Subtitle G, Sections 791-797. Prepared by U.S. EPA's Office of Transportation and Air Quality. 2010.
- EPA 2013a. *Proposed Plan for the Lower Duwamish Waterway Superfund Site*. Environmental Protection Agency. February 28, 2013.
- EPA 2013b. Electronic Code of Federal Regulations, Subpart I Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel. Environmental Protection Agency. Accessed November 30, 2013.
- GREET 2012. Center for Transportation Research, Energy Systems Division. Argonne National Laboratory. 2012
- LDWG 2011. *Key Elements for Optimizing the Cleanup of the LDW Technical Memorandum.* Prepared by AECOM for the Lower Duwamish Waterway Group. August 1, 2011.

Table 1 Active Technology Assignment Areas - for Each Alternative

	Remedial Alternative								
Technology	LDWG Key Elements (Acres)	EPA Preferred Alternative (Acres)	LDW FS Alternative 5R (Acres)						
Dredge	38	64	143						
Partial Dredge and Cap	17	20	14						
Capping	17	24	_						
Enhanced Natural Recovery (ENR)	65	48	_						
Total Active Area	137	156	157						

Table 2 Volumes by Technology Used in the Sustainability Analysis

		Re	medial Alternat	ive
Technology		LDWG Key Elements (CY)	EPA Preferred Alternative (CY)	LDW FS Alternative 5R (CY)
Dredge Volume ^a		620,000	790,000	1,600,000
Total Material Placement Volumeb		480,000	360,000	590,000
Volume of sediment transported	Option 1 – 100%	620,000	790,000	1,600,000
by truck through LDW corridor to	Options 2 – 60%	372,000	474,000	960,000
BNSF transfer station(s) ^c	Option 3 – 22%	136,400	173,800	352, 000
Volume of sediment transported by	y train to landfill ^c	620,000	790,000	1,600,000
Final Truck Transportation Volume at Roosevelt Landfill from Rail ^c		620,000	790,000	1,600,000
Construction Period (Years)		5	7	17

Notes:

- ^a Includes sediment removed by dredging, including areas of partial dredging and capping. Assumes dredge cut prism volume, with performance contingency volumes.
- b Material placement includes sand and amendments placed as capping, ENR, stone armor material, dredge residuals management, and/or dredge footprint habitat restoration. Placement material is assumed to be transported to the LDW via barge.
- Transportation to Roosevelt Landfill for disposal assumes a round trip of 581 miles. The trip includes 6 miles of truck transport to a BNSF transfer station from the LDW, 569 miles of rail transport between Seattle and Roosevelt BNSF transfer stations, and 6 miles of truck transport from a BNSF transfer station to Roosevelt Landfill.

 Table 3
 Comparison of Emissions between Low Sulfur and Ultra Low Sulfur Diesel Fuels

	LDW FS Alt	ternative 5R	
Emission	Low Sulfur Diesel (metric tons)	Ultra Low Sulfur Diesel (metric tons)	Percent Reduction in Emissions
CO ₂	59,000	54,000	8%
СО	160	142	11%
NO _X	1,200	646	46%
SO _X	28	6	78%
PM ₁₀	50	21	58%

Table 4 Emission Results in Metric Tons

		Alternative:	LDW	/G Key Eleme	ents	EPA Pr	eferred Alter	native	LDW	LDW FS Alternative 5R			
Truck T	ransport	ation Option:	Option 1	Option 2	Option 3	Option 1	Option 2	Option 3	Option 1	Option 2	Option 3		
	CO ₂	metric tons	23,200	23,000	22,800	27,300	27,100	26,900	54,000	53,600	53,200		
	СО	metric tons	61	61	61	72	72	72	142	142	142		
Total Emissions	NO _x	metric tons	279	279	279	327	327	327	646	646	645		
	SO _x	metric tons	2	2	2	3	3	3	6	6	5		
	PM ₁₀	metric tons	9	9	9	11	11	11	21	21	21		
	CO ₂	metric tons	4,630	4,600	4,570	3,890	3,870	3,840	3,180	3,150	3,130		
	СО	metric tons	12.3	12.3	12.3	10.3	10.3	10.3	8.4	8.4	8.3		
Annual Emissions	NO _x	metric tons	55.8	55.8	55.8	46.7	46.7	46.6	38.0	38.0	38.0		
255.0115	SO _x	metric tons	0.48	0.47	0.47	0.40	0.40	0.39	0.33	0.32	0.32		
	PM ₁₀	metric tons	1.89	1.89	1.88	1.55	1.55	1.55	1.26	1.26	1.26		

Notes:

- 1. Option 1 assumes 100% of dredged sediment is trucked from the LDW to a Seattle based BNSF Transfer Station. (assumes no direct-to-rail facilities are available)
- 2. Option 2 assumes 60% of dredged sediment is trucked from the LDW to a Seattle based BNSF Transfer Station. (assumes 1 direct-to-rail facilities are available)
- 3. Option 3 assumes 22% of dredged sediment is trucked from the LDW to a Seattle based BNSF Transfer Station. (assumes 2 direct-to-rail facilities are available)
- 4. Annual emission calculations are based on construction periods of 5, 7, and 17 years for the LDWG Key Elements, EPA Preferred Alternative, and LDW FS Alternative 5R, respectively.

Table 5 Ultra Low Sulfur Diesel Emission Factors Used for Transportation

Source	Emission	ULSD Factor (lb/gal)
	CO ₂	23.701
Truck	CO	0.004
Transportation	NO _x	0.013
(GREET 2012)	SO _x	0.003
	PM ₁₀	0.001
	CO ₂	23.567
Train	CO	0.062
Transportation	NO _x	0.318
(GREET 2012)	SO _x	0.002
	PM ₁₀	0.008

1. These emission factors account for 100% use of ULSD in equipment that meets meet all EPA emission requirements by the year 2015 (e.g., Tier 4 engines, clean diesel technology upgrades, etc.).

Last revised by MLS an AGF 1/13/14 and checked by KAP 1/13/14
Saved: P:\ENV\PROJECTSW\LowerDuwamish\Research & Guidance\Short term effectiveness\LDWG Truck GSR Comparison

Attachments

Attachment 1 - AECOM Sustainability Tool Inputs

Attachment 2 - Technology Emission Factors Applicable for Year 2015

Attachment 3 - Emissions by Technology, Remedial Alternative, and Truck Miles

Attachment 1 – AECOM Sustainability Tool Inputs

	1 DREDGING										
Description	Equipment	Units	LDWG Key Elements - Option 1	LDWG Key Elements - Option 2	LDWG Key Elements - Option 3	EPA Preferred Alternative - Option 1	EPA Preferred Alternative - Option 2	EPA Preferred Alternative - Option 3	LDW FS Alternative 5R - Option 1	LDW FS Alternative 5R - Option 2	LDW FS Alternative 5R - Option 3
Volume removed below -10 ft	Barge-mounted derrick crane	су	465,000	465,000	465,000	592,500	592,500	59:2,500	1,200,000	1,200,000	1,200,000
Volume removed above -10 ft	Barge-mounted backhoe	су	155,000	155,000	155,000	197,500	197,500	197,500	400,000	400,000	400,000
	Barge-mounted derrick crane	gal/hr	25	25	25	25	25	25	25	25	25
Fuel consumption	Barge-mounted backhoe	gal/hr	10.6	10.6	10.6	10.6	10.6	10.6	10.6	10.6	10.6
	Survey boat	gal/hr	8	8	8	8	8	8	8	8	8
Dredging rate	Barge-mounted derrick crane	cy/hr	55	55	55	55	55	55	55	55	55
	Barge-mounted backhoe	cy/hr	39	39	39	39	39	39	39	39	39
Total time required for survey operation	Survey boat	hr	596	596	596	760	760	760	1,588	1,588	1,588

	2 TRANSLOADING										
Description	Equipment	Units	LDWG Key Elements - Option 1	LDWG Key Elements - Option 2	LDWG Key Elements - Option 3	EPA Preferred Alternative - Option 1	EPA Preferred Alternative - Option 2	EPA Preferred Alternative - Option 3	LDW FS Alternative 5R - Option 1	LDW FS Alternative 5R - Option 2	LDW FS Alternative 5R - Option 3
Volume transloaded	Tug	су	620,000	620,000	620,000	790,000	790,000	790,000	1,600,000	1,600,000	1,600,000
Offloading volume material to lined containers	Derrick crane	су	620,000	620,000	620,000	790,000	790,000	79/0,000	1,600,000	1,600,000	1,600,000
Fuel consumption	Tug full engine	gal/hr	85	85	85	85	85	85	85	85	85
Fuel consumption	Derrick crane	gal/hr	25	25	25	25	25	25	25	25	25
Distance from the site to the offloading area	Tugs	miles	9.2	9.2	9.2	9.2	9.2	9.2	9.2	9.2	9.2
Speed	Tugs	miles/hr	4.6	4.6	4.6	4.6	4.6	4.6	4.6	4.6	4.6
Barge capacity	Barge	СУ	1,600	1,600	1,600	1,600	1,600	1,600	1,600	1,600	1,600
Offloading rate by derrick crane	Derrick crane	cy/hr	110	110	110	110	110	110	110	110	110
Number of water equipment operators	_	worker	3	3	3	3	3	3	3	3	3
Number of construction equipment operators	_	worker	3	3	3	3	3	3	3	3	3

				3 TI	RANSPORTATION						
Description	Equipment	Units	LDWG Key Elements - Option 1	LDWG Key Elements - Option 2	LDWG Key Elements - Option 3	EPA Preferred Alternative - Option 1	EPA Preferred Alternative - Option 2	EPA Preferred Alternative - Option 3	LDW FS Alternative 5R - Option 1	LDW FS Alternative 5R - Option 2	LDW FS Alternative 5R - Option 3
	Truck in LDW	су	620,000	372,000	136,400	790,000	474,000	17:3,800	1,600,000	960,000	352,000
	Truck at landfill	су	620,000	620,000	620,000	790,000	790,000	79/0,000	1,600,000	1,600,000	1,600,000
Volume transported	Railcar to landfill	су	620,000	620,000	620,000	790,000	790,000	79/0,000	1,600,000	1,600,000	1,600,000
	Tug clean capping material to the site	су	480,000	480,000	480,000	360,000	360,000	36/0,000	590,000	590,000	590,000
	Truck in LDW (one way)	miles	3	3	3	3	3	3	3	3	3
Dictance	Truck at landfill (one way)	miles	3	3	3	3	3	3	3	3	3
Distance	Train (total distance)	miles	568.6	568.6	568.6	568.6	568.6	5.68.6	568.6	568.6	568.6
	Truck	gal/miles	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
Fuel consumption	Train	gal/miles	0.22	0.22	0.22	0.22	0.22	0.22	0.22	0.22	0.22
	Tug	gal/hr	85	85	85	85	85	85	85	85	85
Lood consoity	Truck	су	20	20	20	20	20	20	20	20	20
Load capacity	Railcar	су	67	67	67	67	67	67	67	67	67
Transportation rate	Tug	cy/hr	122.7	122.7	122.7	122.7	122.7	1:22.7	122.7	122.7	122.7
Crood	Truck	miles/hr	40	40	40	40	40	40	40	40	40
Speed	Train	miles/hr	50	50	50	50	50	50	50	50	50

	4 SEDIMENT CAPPING										
Description	Equipment	Units	LDWG Key Elements - Option 1	LDWG Key Elements - Option 2	LDWG Key Elements - Option 3	EPA Preferred Alternative - Option 1	EPA Preferred Alternative - Option 2	EPA Preferred Alternative - Option 3	LDW FS Alternative 5R - Option 1	LDW FS Alternative 5R - Option 2	LDW FS Alternative 5R - Option 3
Volume placed below - 10 ft	Barge-mounted derrick crane	су	336,000	336,000	336,000	252,000	252,000	25:2,000	413,000	413,000	413,000
i i	Precision excavator	су	72,000	72,000	72,000	54,000	54,000	54,000	88,500	88,500	88,500
Volume placed above - 10 ft	Precision excavator	СУ	72,000	72,000	72,000	54,000	54,000	54,000	88,500	88,500	88,500
	Barge-mounted derrick crane	gal/hr	25	25	25	25	25	25	25	25	25
Fuel consumption	Precision excavator	gal/hr	10.6	10.6	10.6	10.6	10.6	110.6	10.6	10.6	10.6
	Survey boat	gal/hr	8	8	8	8	8	8	8	8	8
C = Capping placement rate (>0)	Barge-mounted derrick crane	cy/hr	163	163	163	163	163	163	163	163	163
3, 11, 11, 11, 11, 11, 11, 11, 11, 11, 1	Precision excavator	cy/hr	128	128	128	128	128	128	128	128	128
Total time required for survey operation	Survey boat	hr	350	350	350	262	262	262	429	429	429

	5 MISCELLANEOUS										
Description	Equipment	Units	LDWG Key Elements - Option 1	LDWG Key Elements - Option 2	LDWG Key Elements - Option 3	EPA Preferred Alternative - Option 1	EPA Preferred Alternative - Option 2	EPA Preferred Alternative - Option 3	LDW FS Alternative 5R - Option 1	LDW FS Alternative 5R - Option 2	LDW FS Alternative 5R - Option 3
Volume	Loader	су	620,000	620,000	620,000	790,000	790,000	7910,000	1,600,000	1,600,000	1,600,000
Volume	Dozer	су	0	0	0	0	0	0	0	0	0
Fuel consumption	Loader	gal/hr	7	7	7	7	7	7	7	7	7
Fuel consumption	Dozer	gal/hr	0	0	0	0	0	0	0	0	0
Evacuation rate	Loader	cy/hr	200	200	200	200	200	200	200	200	200
Excavation rate	Dozer	cy/hr	70	70	70	70	7	70	70	70	70

NOTES

<u>Distance</u>: Average distance is the total distance travelled; one way is the distance of the landfill from the site (will be doubled for calculations).

Attachment 2 – Technology Emission Factors⁶ Applicable for Year 2015

1 DREDGING										
References	Description	Units	Value							
	Emission factor for CO ₂	lb/gal	23.586							
GREET – Barge Transportation, Diesel - Center for	Emission factor for CO	lb/gal	0.067							
Transportation Research, Energy Systems Division, Argonne National Laboratory, 2012	Emission factor for NOx	lb/gal	0.334							
	Emission factor for SO _x	lb/gal	0.002							
	Emission factor for PM ₁₀	lb/gal	0.012							
	Emission factor for CO ₂	lb/gal	23.557							
GREET – Stationary Engine, Diesel - Center for	Emission factor for CO	lb/gal	0.070							
Transportation Research, Energy Systems Division,	Emission factor for NO _x	lb/gal	0.140							
Argonne National Laboratory, 2012	Emission factor for SO _x	lb/gal	0.002							
	Emission factor for PM ₁₀	lb/gal	0.012							

2 TRANSLOADING										
References	Description	Units	Value							
	Emission factor for CO ₂	lb/gal	23.586							
GREET – Barge Transportation, Diesel - Center for	Emission factor for CO	lb/gal	0.067							
Transportation Research, Energy Systems Division,	Emission factor for NO _x	lb/gal	0.334							
Argonne National Laboratory, 2012	Emission factor for SO _x	lb/gal	0.002							
	Emission factor for PM ₁₀	lb/gal	0.012							

⁶ Emission factors assume that all engines use ULSD and meet all EPA emission requirements by the year 2015 (e.g., Tier 4 engines, clean diesel technology upgrades, etc.)

3 TRANSPORTATION								
References	Description	Units	Value					
	Emission factor for CO ₂	lb/gal	23.701					
GREET – Truck Transportation, Diesel - Center for	Emission factor for CO	lb/gal	0.004					
Transportation Research, Energy Systems Division, Argonne National Laboratory, 2012	Emission factor for NO _x	lb/gal	0.013					
	Emission factor for SOx	lb/gal	0.003					
	Emission factor for PM ₁₀	lb/gal	0.001					
	Emission factor for CO ₂	lb/gal	23.567					
GREET – Train Transportation, Diesel - Center for	Emission factor for CO	lb/gal	0.062					
Transportation Research, Energy Systems Division, Argonne National Laboratory, 2012	Emission factor for NO _x	lb/gal	0.318					
	Emission factor for SOx	lb/gal	0.002					
	Emission factor for PM ₁₀	lb/gal	0.008					
	Emission factor for CO ₂	lb/gal	23.586					
GREET – Barge Transportation, Diesel - Center for	Emission factor for CO	lb/gal	0.067					
Transportation Research, Energy Systems Division,	Emission factor for NOx	lb/gal	0.334					
Argonne National Laboratory, 2012	Emission factor for SOx	lb/gal	0.002					
	Emission factor for PM ₁₀	lb/gal	0.012					

4 SEDIMENT CAPPING								
References	Description	Units	Value					
GREET – Stationary Engine, Diesel - Center for Transportation Research, Energy Systems Division, Argonne National Laboratory, 2012	Emission factor for CO ₂	lb/gal	23.557					
	Emission factor for CO	lb/gal	0.070					
	Emission factor for NO _x	lb/gal	0.140					
	Emission factor for SO _x	lb/gal	0.002					
	Emission factor for PM ₁₀	lb/gal	0.012					
	Emission factor for CO ₂	lb/gal	23.586					
GREET – Barge Transportation, Diesel - Center for Transportation Research, Energy Systems Division, Argonne National Laboratory, 2012	Emission factor for CO	lb/gal	0.067					
	Emission factor for NO _x	lb/gal	0.334					
	Emission factor for SO _x	lb/gal	0.002					
	Emission factor for PM ₁₀	lb/gal	0.012					

5 MISCELLANEOUS								
References	Description	Units	Value					
GREET – Stationary Engine, Diesel - Center for Transportation Research, Energy Systems Division, Argonne National Laboratory, 2012	Emission factor for CO ₂	lb/gal	23.557					
	Emission factor for CO	lb/gal	0.070					
	Emission factor for NO _x	lb/gal	0.140					
	Emission factor for SO _x	lb/gal	0.002					
	Emission factor for PM ₁₀	lb/gal	0.012					

Attachment 3 – Emissions by Technology, Remedial Alternative, and Truck Miles

Technology	Technology Description	Emissions (in metric tons)	LDWG Key Elements			EPA Preferred Alternative			LDW FS Alternative 5R		
			Option 1	Option 2	Option 3	Option 1	Option 2	Option 3	Option 1	Option 2	Option 3
		CO ₂	2,708	2,708	2,708	3,452	3,452	3,452	6,985	6,985	6,985
	Dredging Equipment	CO	8	8	8	10	10	10	21	21	21
		NO _x	16	16	16	21	21	21	42	42	42
		SO _x	0.28	0.28	0.28	0.36	0.36	0.36	0.72	0.72	0.72
Drodaina		PM ₁₀	1	1	1	2	2	2	4	4	4
Dredging		CO ₂	51	51	51	65	65	65	136	136	136
	Bathymetric Survey	CO	0.14	0.14	0.14	0.18	0.18	0.18	0.38	0.38	0.38
	of Dredging	NOx	0.72	0.72	0.72	0.92	0.92	0.92	1.92	1.92	1.92
	Footprint	SO _x	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
		PM ₁₀	0.03	0.03	0.03	0.03	0.03	0.03	0.07	0.07	0.07
		CO ₂	1,411	1,411	1,411	1,796	1,796	1,796	3,638	3,638	3,638
	Transloading Tug	CO	4	4	4	5	5	5	10	10	10
	transport of Dredge	NO _x	20	20	20	25	25	25	52	52	52
	Sediment	SO _x	0	0	0	0	0	0	0	0	0
Translanding		PM ₁₀	1	1	1	1	1	1	2	2	2
Transloading		CO ₂	1,506	1,506	1,506	1,919	1,919	1,919	3,892	3,892	3,892
		CO	4.26	4.26	4.26	5.44	5.44	5.44	11.02	11.02	11.02
	Offloading barge with derrick crane	NO _x	21	21	21	27	27	27	55	55	55
	With definion starte	SO _x	0.15	0.15	0.15	0.20	0.20	0.20	0.40	0.40	0.40
		PM ₁₀	0.77	0.77	0.77	0.98	0.98	0.98	1.98	1.98	1.98
		CO ₂	400	240	88	508	306	112	1,034	621	227
	Truck Transport in LDW Corridor to transfer facility	CO	0.08	0.05	0.02	0.10	0.06	0.02	0.20	0.12	0.04
Transportation		NO _x	0.22	0.13	0.05	0.29	0.17	0.06	0.58	0.35	0.13
		SO _x	0.05	0.03	0.01	0.06	0.04	0.01	0.13	0.08	0.03
		PM ₁₀	0.02	0.01	0.00	0.02	0.01	0.00	0.04	0.03	0.01

Technology	Technology Description	Emissions (in metric tons)	LDWG Key Elements			EPA Preferred Alternative			LDW FS Alternative 5R		
			Option 1	Option 2	Option 3	Option 1	Option 2	Option 3	Option 1	Option 2	Option 3
		CO_2	12,156	12,156	12,156	15,513	15,513	15,513	31,434	31,434	31,434
		СО	32	32	32	41	41	41	83	83	83
	Rail Transport to Roosevelt	NO _x	164	164	164	209	209	209	424	424	424
	rooseven	SO _x	1.24	1.24	1.24	1.58	1.58	1.58	3.20	3.20	3.20
		PM ₁₀	4.24	4.24	4.24	5.40	5.40	5.40	10.93	10.93	10.93
		CO ₂	400	400	400	508	508	508	1,034	1,034	1,034
		СО	0.08	0.08	0.08	0.10	0.10	0.10	0.20	0.20	0.20
Transportation (continued)	Truck Transport at Roosevelt Landfill	NO _x	0.22	0.22	0.22	0.29	0.29	0.29	0.58	0.58	0.58
(commuca)	NOOSCVCII Landiiii	SO _x	0.05	0.05	0.05	0.06	0.06	0.06	0.13	0.13	0.13
		PM ₁₀	0.02	0.02	0.02	0.02	0.02	0.02	0.04	0.04	0.04
		CO ₂	3,556	3,556	3,556	2,667	2,667	2,667	4,373	4,373	4,373
	Tug Transport of	CO	10	10	10	8	8	8	12	12	12
	Clean Aggregate to the Site	NO _x	50	50	50	38	38	38	62	62	62
		SO _x	0.36	0.36	0.36	0.27	0.27	0.27	0.44	0.44	0.44
		PM ₁₀	2	2	2	1	1	1	2	2	2
	Placing Capping Material	CO ₂	676	676	676	508	508	508	835	835	835
		CO	2.00	2.00	2.00	1.50	1.50	1.50	2.46	2.46	2.46
		NO _x	4.04	4.04	4.04	3.03	3.03	3.03	4.94	4.94	4.94
		SO _x	0.07	0.07	0.07	0.05	0.05	0.05	0.09	0.09	0.09
		PM ₁₀	0.34	0.34	0.34	0.26	0.26	0.26	0.42	0.42	0.42
Capping	Bathymetric Survey of Material Placement Footprint	CO ₂	30	30	30	22	22	22	37	37	37
		CO	0.08	0.08	0.08	0.06	0.06	0.06	0.10	0.10	0.10
		NO _x	0.42	0.42	0.42	0.32	0.32	0.32	0.52	0.52	0.52
		SO _x	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
		PM ₁₀	0.02	0.02	0.02	0.01	0.01	0.01	0.02	0.02	0.02
	Front-End Loader Used at Transloading Facility to Load Containers.	CO ₂	232	232	232	295	295	295	599	599	599
		СО	0.68	0.68	0.68	0.87	0.87	0.87	1.77	1.77	1.77
Miscellaneous		NO _x	1.38	1.38	1.38	1.76	1.76	1.76	3.57	3.57	3.57
		SO _x	0.02	0.02	0.02	0.03	0.03	0.03	0.06	0.06	0.06
		PM ₁₀	0.12	0.12	0.12	0.15	0.15	0.15	0.30	0.30	0.30

