King County and Seattle Public Utilities Source Control Program for the Lower Duwamish Waterway

June 2005 Progress Report

Department of Natural Resources and Parks Wastewater Treatment Division Seattle Public Utilities

KING COUNTY AND SEATTLE PUBLIC UTILITIES SOURCE CONTROL PROGRAM FOR THE LOWER DUWAMISH WATERWAY

June 2005 Progress Report

Prepared for:

U.S. Environmental Protection Agency, Region 10 Seattle, WA

And

Washington State Department of Ecology Bellevue, WA

Prepared by:

Seattle Public Utilities 700 5th Ave, Suite 4900 PO Box 34018 Seattle, WA 98124

And

King County Industrial Waste 130 Nickerson St, #200 Seattle, WA 98109

EXECUTIVE SUMMARY	1
BUSINESS INSPECTIONS	1
Source Tracing	
General observations and comparisons based on samples collected since January 2003	
PHTHALATE SOURCE STUDY.	
Spill Kit Incentive Program	
Residential Outreach Project	
NEXT STEPS	
INTRODUCTION	
OVERVIEW OF LOWER DUWAMICH WATERWAY WIRE SOURCE CONTROL ACTIVITIES	(
OVERVIEW OF LOWER DUWAMISH WATERWAY-WIDE SOURCE CONTROL ACTIVITIES.	
BUSINESS INSPECTIONS	
Summary for the January 2005-June 2005 Reporting Period	
SOURCE TRACING	
Key Manhole Samples	10
Sediment Trap Samples	10
Catch Basin Samples	11
Inline Sediment Samples	13
Source Sediment Comparisons	
PHTHALATE SOURCE STUDY	
Atmospheric Deposition Sampling	
MISCELLANEOUS SOURCE CONTROL ACTIVITIES	
Surface Water Quality Complaints	
Spill Kit Incentive Program	
Business Outreach	
Residential Outreach Project	
DIAGONAL/DUWAMISH EARLY ACTION SITE	
BUSINESS INSPECTIONS	
Key Findings	
SOURCE SAMPLING AND IDENTIFICATION	21
In-Line Sediment Traps	21
Catch Basin Samples	22
Inline Sediment Samples	22
Source Control Actions	
Diagonal Ave S CSO/SD Cleaning	
SLIP 4 EARLY ACTION SITE	24
BUSINESS INSPECTIONS	24
Source Tracing	
Sediment Trap Samples	
Inline Sediment Samples	
Georgetown Flume Investigation	
Catch Basin Samples	
FORMER SLIP 5 AND SLIP 6	
BUSINESS INSPECTIONS	
SOURCE TRACING	29
TERMINAL 117 EARLY ACTION SITE	30
SOURCE CONTROL ACTIONS	
Dallas Ave S Interim PCBs Cleanup	

TABLE OF CONTENTS

NORFOLK E	CARLY ACTION SITE	32
NEXT STEPS	5	33
BUSINESS I	NSPECTIONS	33
	ıl/Duwamish	
0		
	1117	
	reas in the LDW	
	MPLING	
	Fracing	
	te Source Study cific Source Control Actions	
-	ES	
	10	
TABLES Table 1.	Corrective actions requested by program area.	
Table 1. Table 2.	Most frequent corrective actions requested.	
Table 3.	Diagonal Ave S CSO/SD sediment trap results.	
Table 4.	Construction projects in the Lower Duwamish Waterway.	
Table 5.	Onsite catch basin sediment sample results.	
Table 6.	Right-of-way catch basin sediment sample results.	
Table 7.	Inline sediment sample results.	
Table 8.	Source sediment comparisons.	
Table 9.	Atmospheric deposition samples.	
Table 10.	Atmospheric flux deposition measurements relative to Beacon Hill station.	
Table 11.	Surface water quality complaints in the Lower Duwamish Waterway.	
Table 12.	Businesses that received spill kits during the January – June 2005 reporting period.	
Table 13.	Land use in the Diagonal Ave S CSO/SD service area.	
Table 14.	Condition of Georgetown flume.	
Table 15.	Active pipes entering Georgetown flume.	
Table 16.	Dallas Ave S and vicinity sample results.	
Table 17.	Dallas Ave S soil cleanup: Temporary stormwater treatment plant sample results.	
FIGURES		
Figure 1.	Lower Duwamish study area.	
Figure 2.	Outfalls in the Lower Duwamish Waterway.	
Figure 3.	Business inspected, March 2003 – June 2005.	
Figure 4.	Source sample locations in the Lower Duwamish Waterway.	
Figure 5.	Source sediment PCB comparisons.	
Figure 6.	Source sediment BEHP comparisons.	
Figure 7.	Wet/dry atmospheric deposition sampler.	
Figure 8.	Air deposition sampling stations.	
Figure 9.	Diagonal Ave S CSO/SD drainage basin boundary.	
Figure 10.	Land use in the Diagonal Ave S CSO/SD service area.	
Figure 11.	Business inspections in the Diagonal Ave S CSO/SD service area.	
Figure 12.	Diagonal Ave S CSO/SD sediment trap locations.	
Figure 13.	Catch basin samples collected in Diagonal Ave S CSO/SD service area.	
Figure 14.	Diagonal Ave S CSO/SD cleaning project.	
Figure 15.	Areas draining to Slip 4.	
Figure 16.	Business inspected in Slip 4, June 2004 – June 2005.	
Figure 17.	Slip 4 source sediment samples.	
Figure 18A.	Upper Georgetown flume.	

- Figure 18B. Lower Georgetown flume.
- Figure 19. Georgetown flume sediment sample locations and PCB results.
- Figure 20. Business inspected in Slip 5 and Slip 6.
- Figure 21. T117 drainage area.
- Figure 22. Sediment sample locations in the vicinity of T117 early action site.
- Figure 23. Dallas Ave S and vicinity street and yard sample locations.
- Figure 24. Dallas Ave S interim cleanup.
- Figure 25. Sediment sampling locations in Norfolk-MLK Way drainage system.

APPENDICES

Appendix A. Business inspection process and field form.

Appendix B. Data base output.

- Table B-1.Summary of inspections completed January 2005 June 2005.
- Table B-2.Site summary reports for all areas inspected (January 2005 June 2005 and March
2003 June 2005).
- Table B-3. Corrective actions requested (grouped by regulatory area), January 2005 June 2005.
- Table B-4.Corrective actions requested (grouped by basin and subbasin), January 2005 June2005.
- Table B-5. Site history by basin, January 2005 to June 2005.
- Table B-6. List of corrective actions requested, March 2003 June 2005.

Appendix C. Phthalate air monitoring information.

EXECUTIVE SUMMARY

The King County Wastewater Treatment Division and Seattle Public Utilities (SPU) are working together to reduce the amount of pollution discharged to public storm drains and sanitary/combined sewers that discharge to the Lower Duwamish Waterway, or LDW. The purpose of this source control program is to reduce the potential for waterway sediment to become recontaminated following cleanup. This work is a first step in finding active or possible sources of contaminants and then correcting the source.

This report describes the status of source control activities completed by King County and SPU from January 2005 through June 2005 as part of the Lower Duwamish Waterway Superfund cleanup. During this reporting period, King County and SPU completed the following activities:

- Conducted initial and follow-up inspections in the Diagonal Avenue South combined sewer overflow/storm drain (CSO/SD) service area, the Slip 4 early action site basin, and other areas draining to the former Slip 5 and Slip 6.
- Placed sediment traps in the Diagonal Ave S CSO/SD and Slip 4 storm drain systems and collected sediment samples from catch basins at business sites and public rights-of-way to aid pollutant source tracing.
- Inspected and collected samples in the Georgetown flume (discharges to Slip 4) to find out whether the flume is an active source of chemicals of concern to the waterway sediment.
- Conducted air monitoring at four locations in the LDW drainage basin to assess whether atmospheric deposition is a potential source of phthalates in stormwater runoff.
- Removed sediment from the Norfolk-ML King Way storm drain system.
- Conducted additional cleanup to control PCBs found in street dirt and yards next to the T117 early action site (Dallas Avenue South cleanup project).

Business Inspections

Inspections are being conducted under existing King County and Seattle code authorities. King County has primary authority to regulate industrial waste discharges to separated and combined sanitary sewers, moderate risk hazardous waste, and stormwater discharges in the unincorporated areas of King County. With the exception of stormwater discharges to the combined sewer, SPU has primary authority to regulate stormwater discharges in Seattle. King County and Seattle share authority to regulate stormwater discharges to the combined sewer.

By June 30, 2005, inspectors had completed 912 business inspections, 636 full on-site inspections and 276 screening inspections. Problems with spill prevention and control were most common (59 percent) followed by stormwater (26 percent), hazardous waste (14 percent), and industrial waste (1 percent).

Source Tracing

Source tracing sampling is designed to find sources by strategically collecting samples at key locations within the drainage/combined sewer service areas. Source tracing during this period

focused on sediment samples from in-line samples, from sediment traps installed in the stormdrain system, and from catch basins at businesses ("on-site") and in the public right-of-way.

Results of sediment samples were compared with the state sediment management standards (SMS). Although the SMS do not apply to storm drain sediments, they are used in this report to provide a rough indication of the storm drain sediment quality. The SMS establish two levels:

- Sediment quality standards (SQS): Concentrations below the SQS are expected to have no adverse effects on biological resources and no significant human health risk.
- Cleanup screening level (CSL): Minor effects level used to identify areas of potential concern.

Comparison of storm drain sediment from catch basins, sediment traps, and inline samples to SMS is considered conservative. If source sediment samples are below the sediment management standards, there is little chance of sediment offshore of the outfalls from becoming recontaminated to these levels. An exceedance of a sediment management standard, however, does not necessarily show that the sediment offshore of the outfall will exceed the standards, because particulates discharged from storm drains will mix with sediment in the waterway.

General observations and comparisons based on samples collected since January 2003

- Arsenic concentrations did not exceed the SQS in any of the samples. This finding suggests that storm drains are probably not a significant source of arsenic to the waterway sediment.
- Contaminant concentrations were generally higher in samples collected from on-site catch basins than in right-of-way samples.
- Although total petroleum hydrocarbons (TPH-oil) were frequently detected in the source sediment samples, polynuclear aromatic hydrocarbons (PAH) were found at relatively low concentrations. Sediment management exceedances usually occurred in onsite catch basin samples collected at gas stations and heavy equipment maintenance facilities (20 percent of the samples). PAH exceedances were less frequent in right-of-way samples (2 percent) and inline sediment samples (15 percent).
- Polycholorinated biphenyls (PCBs) were frequently detected, but rarely exceeded the SQS, except for inline sediment samples collected from the storm drains discharging to Slip 4.
- Bis(2-ethylhexyl)phthalate (BEHP) poses the most serious concern for recontamination in waterway sediment after cleanup. Concentrations frequently exceed the SMS in all types of sediment samples collected. The lowest BEHP concentrations are usually found in samples collected from catch basins in low- to medium-traffic streets (8 percent are greater than 3 times the CSL).

Phthalate Source Study

Phthalates, particularly BEHP, are chemicals of concern in most of the early action sites in the LDW. Their presence in the environment is an emerging issue of national and international scope and is beyond any one agency's capability to solve alone. In 2003 King County and SPU

joined with the City of Tacoma to test various commonly used products and materials to help find the source of these chemicals. This testing found only low levels of phthalates in liquid products but high levels of phthalates, particularly BEHP, in some solid products used in vehicles, including brake pads, serpentine belts, and tires. These solid products may be a source of phthalates to the waterway through either atmospheric deposition or direct deposition of worn product particles onto roadway surfaces and later wash off in stormwater runoff. Because of this finding, the phthalate source study continued with emphasis on evaluating whether atmospheric deposition contributes significant amounts of phthalates to sediments in the LDW.

Four rounds of samples were collected from January 2005 through May 2005 at four sampling stations in the LDW drainage area, three stations in the Duwamish valley and a fourth on Beacon Hill. The most significant finding is that BEHP concentrations were 0.75 to 3 times greater in the Duwamish valley stations than the Beacon Hill station.

As a quality control check, these results were compared with other studies. The results compared well with studies conducted within the same airshed and with other regions. The source control team will continue air deposition testing for the next year to evaluate the reproducibility of results and to do correlations with other atmospheric measurements (for example, particulate concentrations).

Spill Kit Incentive Program

As an incentive to improve on-site spill prevention and cleanup practices, SPU in 2004 began a program offering free spill kits to local businesses that make, store, use, or transport liquids onsite. The program is being administered by the Resource Venture, a program of the Greater Seattle Chamber of Commerce and the Environmental Coalition of South Seattle (ECOSS).

A total of 189 businesses located throughout the LDW study area received spill kits during this reporting period. During the next reporting period, the spill kit program will focus on the Norfolk basin to coincide with business inspection efforts.

Residential Outreach Project

Planning began in this reporting period for a community outreach strategy to empower residents in the Lower Duwamish study area to do their part to help prevent recontamination of sediments in the Duwamish Waterway. Activities in the planning stage include natural yard-care workshops, grant workshops, and distribution of car wash kits to charities.

Next Steps

King County and SPU inspectors will have a continuing presence in the Diagonal/Duwamish and Slip 4/Slip 5 drainage areas, focusing on higher-priority businesses. Inspections will also expand into other areas to support continuing and future early action area cleanups. Results from earlier inspections will be reviewed to identify sites that should be reinspected. Reinspections will be conducted by the jurisdiction with lead authority (that is, the King County Industrial Waste Program for industrial wastewater discharges and SPU for stormwater discharges). LDW source control inspections are scheduled to start in the Norfolk basin in August 2005.

Source tracing efforts will continue to focus on catch-basin and in-line sediment sampling to track sources of contaminants to the waterway sediment.

Wet-dry atmospheric deposition samples at the four stations in the LDW will continue with the addition of stations outside the urban area to serve as background.

INTRODUCTION

This report describes the status of source control activities completed by King County and Seattle Public Utilities (SPU) from January 2005 through June 2005 as part of the Lower Duwamish Waterway (LDW) Superfund cleanup. Most of the work during this reporting period focused on the East Waterway to support ongoing sediment remediation activities conducted by the Port of Seattle. The East Waterway is not part of the LDW Superfund site. This report describes only the work completed in the LDW.

Source control activities conducted during this reporting period are summarized below:

- Conducted initial inspections and follow-up inspections at businesses in the Diagonal Ave S CSO/SD service area, Slip 4 early action site and Slip 5/6.
- Deployed sediment traps in the Diagonal Ave S CSO/SD and Slip 4 storm drain systems, and collected sediment samples from catch basins on business sites and in public rightsof way to assist in pollutant source tracing.
- Inspected the Georgetown flume (discharges to Slip 4) to identify active pipes discharging to the flume and collected sediment samples to determine whether the flume is an ongoing source of chemicals of concern to the waterway sediment.
- Conducted air monitoring at four locations in the LDW to assess whether atmospheric deposition is a potential source of phthalates in stormwater runoff.
- Removed sediment from the Norfolk-MLK Way storm drain system.
- Conducted additional cleanup to control PCBs found in street dirt and yards adjacent to the T117 early action site (Dallas Ave S cleanup project).

This progress report is organized by geographic area. The first section provides an overall summary of work completed during the January 1, 2005 to June 30, 2005 reporting period and describes Lower Duwamish Waterway wide activities such as the phthalate source study. Subsequent sections describe source control activities in each of the 5 geographic areas where work occurred this reporting period.

OVERVIEW OF LOWER DUWAMISH WATERWAY-WIDE SOURCE CONTROL ACTIVITIES

To support Lower Duwamish Waterway (LDW) sediment remediation efforts, King County and SPU are working together to reduce the amount of pollution discharged to public storm drains and sanitary/combined sewers that discharge to the waterway. The purpose of this source control program is to reduce the potential for waterway sediment to become recontaminated to levels of concern following cleanup. King County and SPU are key members of the Lower Duwamish Source Control Working Group because each manages a portion of the public stormwater and wastewater systems that discharge to the Lower Duwamish Waterway.

King County operates the large interceptor sewers that convey municipal and industrial wastewater to the treatment plant located at West Point and the storm drain system in unincorporated King County. Seattle operates the local sanitary/combined sewers that collect wastewater and route it to the King County interceptor system, as well as the storm drains within the City of Seattle. The sanitary/combined sewer and storm drain service areas that discharge to the Lower Duwamish Waterway are shown in Figure 1. The sanitary/combined sewer and storm drains serve an area of about 19,800 and 9,100 acres, respectively.

As shown in Figure 2, a number of both public and private outfalls discharge to the LDW. Outfalls can generally be divided into the following categories.

- Public storm drains. Public storm drain systems collect and convey stormwater runoff from roadways and upland properties to the waterway.
- Private storm drains. Waterfront properties are generally served by private onsite drainage systems that discharge directly to the waterway. These systems are generally smaller than public storm drains and are owned and maintained by the private property owner.
- Combined sewer overflows (CSO). CSOs are located on the combined sewer system to release excess flows that occur during large storm events. Combined sewers collect both stormwater runoff and municipal/industrial wastewater. During large storm events, the capacity of the collection pipes can be exceeded due to the large amount of stormwater runoff entering the system. Overflow points are provided to prevent stormwater and wastewater from backing up and flooding roadways and local properties. CSOs can discharge directly to the waterway via a dedicated outfall pipe or via an outfall that is shared with a nearby storm drain system.
- Emergency overflows. Like CSOs, emergency overflows are relief points in the sanitary/combined sewer system. However, emergency overflows are not related to storm events. Instead, these overflows function to relieve backups that occur as a result of a pump station failure or obstruction in the conveyance system.
- Unknown outfalls. A number of piped outfalls of unknown origin discharge to the LDW. These outfalls are most likely private storm drains that serve waterfront properties, but may also include other systems such as industrial discharges.

Business Inspections

King County Industrial Waste and SPU are co-leads in the joint King County-Seattle program to inspect businesses in areas that discharge to the LDW through either the City-owned storm drain system or the combined sanitary/storm sewer system. Early action sites have the highest priority and within each early action site, inspections focus first on the separated storm drain basin followed by the combined sewer service area. The goal is to complete the business inspections before sediment cleanup begins. Separated storm drain basins are prioritized because storm drains discharge to the LDW on a regular basis (i.e., every time it rains), whereas combined sewer overflows discharge much less frequently, typically only during large storm events. The following agencies are participating on this project:

- King County Industrial Waste (KCIW): Wastewater Treatment Division.
- Seattle Public Utilities (SPU)
- King County Local Hazardous Waste Management: Water and Land Resources Division (KCHW)
- King County Local Hazardous Waste Management: Seattle-King County Public Health (KCPH).

Inspectors that worked on the project during the January 2005 through June 2005 reporting period are listed in below:

Seattle Public Utilities	King County Hazardous Waste
Tasha Bassett	Sue Hamilton
Ellen Stewart	Steve Joyce
Tanya Treat	Lisa Niehaus
Ryean-Marie Tuomisto	Ann Peacock
Savina Uzunow	Cheri Grasso
King County Industrial Waste Arnaud Girard Dave Haberman Jim Sifford	ECOSS Kevin Burrell ^a

a. ECOSS is providing technical support to businesses via SPU's spill kit program.

Inspections are being conducted under existing King County and Seattle code authorities. King County has primary authority in the industrial waste and hazardous waste areas, and stormwater discharges in unincorporated King County. SPU has primary authority to regulate stormwater discharges within the City limits. King County and Seattle share code authority to regulate stormwater discharges to the combined sewer. Because of overlapping and different authorities between the City and County regarding discharges to combined areas, project staff developed specific guidance for inspecting businesses in the combined areas. The goal for inspecting stormwater dischargers in combined areas is to minimize discharge of chemicals of concern to the combined sewer by preventing the accidental or deliberate discharge of concentrated products or wastes to the combined sewer. Inspection procedures are described in Appendix A.

Summary for the January 2005-June 2005 Reporting Period

A total of 10 initial inspections (9 full inspections and one screening inspection) and 27 followup inspections were completed between January 1, 2005 and June 30, 2005 in the LDW project area. Inspection locations are shown in Figure 3. A list of all sites inspected is provided in Appendix B, Table B-1.

Corrective actions were required at 8 of the 9 sites where full inspections were conducted this reporting period (see Table B-2 in Appendix B for details). As of June 30, 2005, 3 of these sites have made the required changes. A breakdown of all corrective actions requested within each program area (i.e., stormwater, industrial waste, hazardous waste, and spill prevention) is provided in Appendix B, Table B-3 and a list of numbers of corrective actions at each site is provided in Table B-4. A detailed list of corrective actions requested for each site is provided in Table B-5.

As of June 2005, inspectors have completed 912 business inspections (636 full inspections and 276 screening inspections. Table 1 summarizes the percentage of total corrective actions completed in the Lower Duwamish Waterway by individual program area for all inspections completed to date (March 2003 to June 2005). Problems with spill prevention and control are most common (42 percent) followed by stormwater (38 percent), hazardous waste (18 percent), and industrial waste (2 percent). The most frequently requested corrective actions are summarized in Table 2. Inadequate maintenance of onsite drainage facilities (57 percent of the sites where corrective actions were required) is the most common corrective action, followed by lacking proper spill prevention/cleanup materials (48 percent), inadequate spill cleanup materials present on site (41 percent), and inadequate employee training on spill prevention/cleanup procedures (39 percent). Corrective actions requested at all of the sites inspected to date are listed in Appendix B, Table B-6.

Illicit Connections and Discharges

One illicit connection to the Georgetown flume was discovered during this reporting period. In addition, two illicit discharges were discovered (one in Slip 5 and one in the Diagonal/Duwamish basin. Details are provided under the sections for each geographic area.

Industrial Wastewater Discharge Authorizations

All business inspections include a review of wastewater/process water production and disposal. Businesses discharging wastewater to the sanitary sewer without proper authorization from King County are referred to KCIW for additional review and issuance of a discharge authorization, as necessary. KCIW can issue four types of discharge authorizations depending on the type of business, the volume and characteristics of wastewater, and the potential risk to the wastewater collection and treatment system:

•	Significant discharge:	>25,000 gallons per day or federally regulated facility	
•	Major discharge:	Generally 5,000 – 25,000 gallons per day and facility is not	
		a federally regulated industry	
•	Minor discharge:	Generally 1,000 – 5,000 gallons per day and facility is not a	
		federally regulated industry	
•	Letter of authorization:	Generally <1,000 gallons per day and facility is not a	
		federally regulated industry.	

All of the sites inspected during this reporting period had the proper authorization to discharge to the sanitary sewer, as appropriate. No sites were referred to KCIW for review and issuance of a discharge authorization.

Source Tracing

Source tracing and identification sampling activities are being performed to support the source control efforts. Source tracing sampling is designed to identify sources by strategically collecting samples at key locations within the drainage/combined sewer service areas. Source identification sampling focuses on product testing to determine whether specific products contain chemicals that are a concern for waterway sediments.

Samples are collected at the following locations to identify sources of the chemicals of concern in the waterway sediment:

- Key manholes in the sanitary/combined sewer (wastewater)
- In-line sediment traps installed in the storm drain system (sediment)
- Onsite catch basins (sediment)
- Catch basins in the public right-of-way (sediment)
- Inline sediment collected from maintenance holes on the storm drain trunk lines (sediment).

With the exception of the key manhole samples, sediment rather than whole water samples are being collected. Sediment samples offer a number of advantages. First, because sediment is the affected media in the waterway, analysis of sediment source material is key to understanding how pollutants are transported to the waterway. Second, sediment that accumulates in the drainage system provides a measure of pollutant contributions over a longer time period (what has been deposited since the system was last cleaned), whereas water samples provide only a snapshot of a single storm event. Also, unlike whole water samples, sediment samples do not usually present detection limit problems for the analytical laboratory. Contaminants present in the sediment can usually be quantified, which makes it easier to evaluate and interpret the sample results. Finally, sediment samples are generally easier and less expensive to collect than whole water samples.

There are no regulatory standards for catch basin sediment, inline sediment, and sediment trap samples. Results were compared to the state sediment management standards (SMS) and the Washington State Model Toxics Control Act (MTCA) Method A cleanup standards. Although these standards do not apply to storm drain sediments, they are used in this report to provide a rough indication of the storm drain sediment quality. The SMS establish two levels:

- Sediment quality standards (SQS): Concentrations below the SQS are expected to have no adverse effects on biological resources and no significant human health risk.
- Cleanup screening level (CSL): Minor effects level used to identify areas of potential concern.

Comparison of storm drain sediment collected from catch basins, manholes, and sediment traps to SMS is considered conservative. If source sediment samples are below the SMS, there is little

chance of sediment offshore of the outfalls becoming recontaminated to these levels. However, an exceedance of a SMS does not necessarily indicate that the sediment offshore of the outfall will exceed standards, because sediment discharged from storm drain disperses in the receiving environment and mixes with sediment from other sources before depositing.

Total petroleum hydrocarbon (TPH) results from catch basin samples are compared to the MTCA cleanup levels to aid in assessing options for sediment disposal once it is removed from the catch basin.

Key Manhole Samples

No key manhole samples were collected during this reporting period. Samples collected during previous reporting periods did not contain sufficient concentrations of chemicals of concern to warrant additional sampling.

Sediment Trap Samples

In-line sediment traps consist of a small bracket mounted inside the collection system pipe that holds a wide-mouth sample bottle. The traps are installed for a period of 4 to 6 months to passively collect suspended particulate that passes by the site. Traps have been installed in the storm drain systems that discharge to Diagonal/Duwamish and Slip 4 early action sites, but at this time, results are only available for the Diagonal/Duwamish traps. Sampling results are displayed in Table 3 and sampling locations are shown in Figure 4. Key findings are summarized below:

- PCBs are infrequently detected and no samples exceed the sediment management standards.
- With the exception of zinc, metals concentrations are generally low. Zinc exceeded the SQS in about 70 percent of the samples and exceeded the CSL at Station ST1 during the first round of sampling. Only 1 of the 3 samples collected at ST2 and 1 of the 2 samples collected at both ST5 and ST6 exceeded the SQS. None of the other metals exceeded the SQS concentrations.
- BEHP continues to be the primary contaminant of concern in the Diagonal Ave S CSO/SD. Concentrations have exceeded the CSL in all samples collected to date from Stations ST2 (3 samples), ST3 (3 samples), and ST4 (1 sample). No exceedances were observed in the single sample collected from Station ST7. The two samples collected to date at Station ST5 (56-68 mg/kg OC) exceeded only the SQS. The approximately 300-acre drainage basin upstream of station ST5 is predominately residential. The basin at station ST7 (approximately 200 acres) contains a mixture of residential and industrial properties.
- Polynuclear aromatic hydrocarbon (PAH) concentrations are generally low. Only HPAH compounds exceeded the SQS or CSL, and only in 4 of the 16 samples collected to date (Stations ST2 and ST6).

Construction Projects

Sediment discharged from construction activities can affect the amount and quality of sediment collected in the traps. There were 48 major construction sites in the Lower Duwamish Waterway

that had active grading permits between January 2005 and June 2005 (Table 4). Major sites are defined as those with a cost of greater than \$5M reported to the Seattle Department of Planning and Development (DPD). Six sites are located in the storm drain portion of the Diagonal Ave S CSO/SD service area, the largest of which is Sound Transit's Light Rail transit facility located on Airport Way S and four are located in other drainage basins that discharge to the LDW (Norfolk, 7th Ave S, 1st Ave S, and SW Idaho St). The remaining 38 sites are located in the combined sewer service area and would not have impacted any of the samples.

Catch Basin Samples

Catch basin samples are grab samples of sediment that has accumulated in the catch basin sump. A catch basin is a storm drain structure that contains a sump to capture sediment and other debris before it can enter the collection system. Because many pollutants present in urban stormwater runoff tend to adhere to sediment, catch basins can also trap pollutants. The quality of sediment that accumulates in catch basins provides a measure of the quality of the stormwater runoff discharged to the drainage system since the catch basin was last cleaned. Catch basins must be cleaned on a regular basis to maintain their capacity to trap sediment and associated pollutants and prevent these materials from discharging to the downstream receiving water body.

During this reporting period, sediment samples were collected from 25 onsite (6 in the overall Lower Duwamish Waterway basin and 19 in the East Waterway basin), and 2 right-of-way catch basins (in the Diagonal/Duwamish and the overall LDW basins). Sample locations are shown in Figure 4. To date, a total of 49 onsite and 41 right-of-way catch basin samples have been collected in the Lower Duwamish Waterway study area. Results for all samples collected to date are provided in Tables 5 and 6.

In addition, sediment and soil samples were collected from 40 locations in the public right-ofway and adjacent properties near the T117 early action site. Samples included catch basin sediment, street dust, and soil samples from the public right-of-way and adjacent yards. Results for these samples are described in the section on T117.

Onsite Catch Basins

Onsite catch basin samples have been collected at sites of interest identified during the business inspections or simply at sites where sufficient sediment was available for chemical analysis. Most inspections during this reporting period were outside the LDW, in the East Waterway. Consequently, of the 25 onsite catch basin samples collected during this reporting period, only 6 are located in the LDW study area (Figure 4). EWW data are included in Table 5 for informational purposes, but are not included in the summary of key findings below (for all onsite catch basin samples collected to date):

- Arsenic (<10 40 mg/kg) was detected in about 48 percent of the LDW samples. Concentrations were all below the sediment management standards.
- Copper (30-6,300 mg/kg) and lead (10-2,010 mg/kg) exceeded the sediment standards in 6 (12 percent) and 7 (15 percent) of the LDW samples collected, respectively. All of the copper exceedances were above the cleanup screening level (CSL). For lead, five of the samples exceeded the CSL and seven exceeded the sediment quality standard (SQS). Most exceedances occurred in samples collected from automotive-related facilities (e.g.,

auto repair, gas station, and vehicle wash facilities). Other sites where samples exceeded standards included a manufacturing, a metal finishing, and a medical facility.

- Mercury (<0.06-1.82 mg/kg) was detected in about 71 percent of the samples, but exceeded the sediment management standards (SQS or CSL) in only 7 of the samples (15 percent).
- Zinc (55-2,720 mg/kg) exceeded the CSL in 9 samples (21 percent) and exceeded the SQS in 32 samples (67 percent)
- TPH-oil (52-77,000 mg/kg) exceeded the MTCA Method A cleanup level in 73 percent of the samples. The highest TPH-oil concentrations were measured at a vehicle steam-cleaning pad (71,000 mg/kg) and an oil recycling facility (77,000 mg/kg). TPH-diesel concentrations (15-34,000 mg/kg) were consistently lower than the oil levels and exceeded the MTCA cleanup level in about 36 percent of the samples.
- PAH compounds exceeded the SQS in only 10 of the onsite catch basin samples (20 percent). Elevated levels of PAHs were typically found in catch basins at heavy equipment maintenance facilities and gas stations.
- PCBs were detected in about 67 percent of the LDW samples at concentrations ranging from 16-6,600 µg/kg PCBs, but only two samples exceeded the CSL and four samples exceeded the SQS. Of the 31 samples where PCBs were detected, 29 percent were less than 0.1 µg/kg DW and 81 percent were less than 0.5 µg/kg DW.
- BEHP (10-2,700 mg/kg OC) exceeded the sediment management standards in all but 12 of the 43 samples collected. Most samples exceeded the CSL; 1 sample exceeded only the SQS. With the exception of the sample collected from the steam cleaning pad (2,700 mg/kg OC), the concentration of BEHP in most samples ranged from about 100-1,000 mg/kg OC.

Right-of Way Samples

Right-of-way samples have been collected from catch basins located in a wide variety of roadways to evaluate whether contaminant levels are related to traffic density. Sample locations are shown in Figure 4 and results are presented in Table 6. Results from the 2 samples collected during this reporting period were similar to those from the previous reporting period. Zinc, TPH-oil, and BEHP are the contaminants that most frequently exceeded the sediment management standards (or MTCA Method A for TPH). Key findings for all samples collected to date are summarized below:

• With the exception of zinc, metals concentrations rarely exceeded the sediment management standards. None of the samples exceeded the SQS for copper and only two of the 39 samples collected to date (0.87 and 1.17 mg/kg) have exceeded the SQS for mercury. Mercury was detected in less than half of the samples. Lead concentrations exceeded the CSL in 3 samples. Arsenic was detected in 34 percent of the samples, but did not exceed the sediment management standards. Concentrations ranged from 6-30 mg/kg. Zinc exceeded the SQS in 12 samples (29 percent), but none of the samples exceeded the CSL.

- TPH-oil (480-11,000 mg/kg) exceeded the MTCA Method A cleanup levels in about 60 percent of the samples. One sample collected from an industrial roadway (3,500 mg/kg) and one from a low traffic roadway (6,400 mg/kg) exceeded the MTCA cleanup level for TPH-diesel.
- PAH concentrations were generally low in the right-of-way catch basin samples. Only one sample (RCB38) exceeded an SQS for PAHs (fluoranthene and fluorene).
- PCBs were detected in about 68 percent of the samples and 2 percent exceeded the SQS. Concentrations generally ranged from 0.02 to 300 µg/kg DW (0.2 to 6.7 mg/kg OC). One sample (RCB37), located on S Stevens St east of Airport Way S (322 mg/kg OC), exceeded the CSL for PCBs. This and adjacent catch basins were cleaned in June 2005. SPU is currently working with adjacent property owners to investigate possible sources of PCBs in this area.
- Over 60 percent of the right-of-way samples exceeded either the CSL or the SQS for BEHP. The highest BEHP concentrations (460 and 502 mg/kg OC) occurred in two samples, one collected from an industrial roadway (RCB 1) and one from a high traffic arterial (RCB 36). BEHP concentrations were generally lower in samples collected from low to medium traffic roadways (15-110 mg/kg OC) compared to the higher traffic arterials (23-502 mg/kg OC). BEHP concentrations in freeway samples (18-277 mg/kg OC) were within the range observed in the high traffic arterial samples (23-502 mg/kg OC).

Inline Sediment Samples

Inline sediment samples are grab samples collected from manholes located on the drainage mainline and represent contributions from the entire drainage basin upstream of the sampling location. Inline sediment samples are usually collected prior to installing a sediment trap or prior to cleaning the drain to characterize the chemical quality of sediment in the storm drain system.

During this reporting period, SPU collected inline 24 sediment samples from various locations in the Diagonal Ave S CSO/SD, 7th Ave S storm drain in South Park, Slip 4 SD, Slip 4 EOF/SD (formerly called the Slip 4 CSO/SD), Georgetown flume, and the Norfolk-Martin Luther King Way, Jr., storm drain systems. Locations of all inline sediment samples collected to date are shown in Figure 4 and data are summarized in Table 7. Key findings are summarized below:

- With the exception of the Slip 4 drains (Georgetown flume, Slip 4 EOF/SD, and Slip 4 SD), PCB concentrations were generally low (below the SMS) in most of the drainage systems that were sampled. However, the samples from the drains discharging to Slip 4 (5 to 2,800 mg/kg OC) frequently exceeded the SMS for PCBs.
- BEHP concentrations exceeded the SMS in most drains (<1 to 900 mg/kg OC), but were generally lower in the Slip 4 drains (2 to 76 mg/kg OC).
- Arsenic and copper concentrations were below the SMS in all samples.
- Zinc exceedances of SMS occurred in all of the drains that were sampled, but were highest in the Norfolk-MLK Way (90 to 1,200 mg/kg) and Slip 4 drains (54 to 1,100 mg/kg).

Source Sediment Comparisons

Source to source comparisons are complicated by the limited number of samples collected and possible biases introduced by the different sampling strategies employed for each source type. For example, onsite catch basin samples were collected primarily where problems were suspected either because of the kinds of activities conducted onsite or because of specific problems identified during business inspections. SQS exceedances for each source type are summarized in Table 8. General observations and comparisons are described below:

- Arsenic concentrations did not exceed the SQS in any of the samples collected to date, which indicates that storm drains are probably not a significant source of arsenic to the waterway sediment.
- Contaminant concentrations are generally higher in samples collected from onsite catch basins compared to right-of-way samples. As shown in Table 8, onsite catch basin samples exhibit the most SQS exceedances for copper (12-22 percent), lead (15 percent), mercury (9-12 percent), zinc (67-76 percent), TPH-oil (72-81 percent), and PCBs (9-20 percent). SQS exceedances in right-of-way samples are infrequent, particularly for samples collected from low traffic streets where no exceedances were observed for arsenic, copper, mercury, and PCBs, and only 46 percent of the samples exceeded the MTCA Method A cleanup level for TPH-oil.
- Although TPH-oil is frequently detected in the source sediment samples (6 to 81 percent of samples), PAH compounds are found at relatively low concentrations (individual PAH compounds generally ranged from <1 to 50 mg/kg OC). Two of 41 right-of-way catch basins exceeded a SQS for a single PAH compound each (fluoranthene and fluorene) and 10 of 49 onsite catch basin samples exceeded CSL for multiple HPAH compounds. Sediment management exceedances generally occurred at gas stations and heavy equipment maintenance facilities. In addition, sediment collected from one fast food restaurant also exceeded the CSL for PAH compounds. Similarly, 8 of 52 inline sediment samples exceeded an SQS for 1 or more PAH compounds. Only 1 station exceeded a CSL (for multiple HPAH compounds).</p>
- PCBs are frequently detected (54 to 88 percent of samples), but rarely exceed the SQS (in less than 10 percent of the onsite catch basin samples and less than 5 percent of the right-of-way catch basin and sediment trap samples). Sediment collected from storm drains discharging to Slip 4 (Georgetown flume and King County Airport storm drain) contained the highest PCB concentrations (71 percent exceed the SQS). Figure 5 shows the relative distribution of PCB concentrations (mg/kg DW) measured in each type of source sediment sample. Onsite catch basins and catch basins in the Slip 4 drains contain the highest PCB concentrations (17 and 21 percent greater than 0.5 mg/kg DW, respectively and 9 and 19 percent greater than 1 mg/kg DW, respectively).
- BEHP poses the most serious concern for recontamination in waterway sediment after cleanup. Concentrations frequently exceed the sediment management standards in all of the samples collected (72 percent, 63 percent, 88 percent, and 63 percent in the onsite catch basins, right-of-way catch basins, sediment traps, and inline sediment samples, respectively (Table 8).

BEHP concentrations are generally higher in the onsite catch basin samples (10 to 1,000 mg/kg OC) than in the right-of-way samples (12 to 300 mg/kg OC). This difference is

illustrated in Figure 6, which shows the relative distribution of BEHP concentrations measured in each type of source sample. As shown in Figure 6, BEHP concentrations in 37 percent of the onsite samples are greater than 3 times the CSL (24 percent are greater than 5 times the CSL), compared to only about 12 to 14 percent in the right-of-way and inline sediment samples (5 percent are greater than 5 times the CSL). Sediment trap samples also exhibit relatively high PCB concentrations (38 and 13 percent of the samples are greater than 3 times the CSL, respectively). The lowest BEHP concentrations are generally found in samples collected from catch basins on low to medium traffic streets (8 percent are greater than 3 times the CSL).

Phthalate Source Study

Phthalates, particularly bis(2-ethylhexyl)phthalate (BEHP), are contaminants of concern in the majority of the early action sites in the Lower Duwamish Waterway. Phthalates are a class of industrial compounds commonly used as softeners in plastics, as solvents, as oil in vacuum pumps and electric capacitors and transformers, and as carriers for fragrances and pesticides. They have also been reported in personal care products (Houlihan et. al., 2002). BEHP is the most prevalent phthalate in the Duwamish sediments, and is a contaminant of concern at the majority of the early action sites, including the Duwamish/Diagonal, former Slip 5 at river mile 3.8, Slip 4, Trotsky, and Norfolk sites. BEHP is also frequently detected in stormwater and catch basin samples (USEPA 1983; Herrera 1998; Tacoma 1990; Tacoma 1999; Tacoma 2002).

Because they are a regional concern extending beyond the Duwamish Waterway, King County and SPU joined with the City of Tacoma in 2003 to test various commonly used products and materials to help identify the source of these chemicals. The intent of that testing was to use information about the phthalate content of common consumer products in conjunction with the source tracing efforts to identify specific sources of phthalates to the storm drains and the sanitary sewer. In addition, project staff hoped to identify specific products low in phthalates that they could recommend as replacement products to businesses and residents.

The results of the first round of product testing were reported in the previous progress report (King County and SPU, 2004). Testing of a variety of liquid and solids products found only low levels of phthalates in liquid products, but high levels of phthalates, particularly BEHP in brake pads, serpentine belts, and tires. These solid products may be a source of phthalates to the waterway via either atmospheric deposition or direct deposition of worn product particles onto roadway surfaces and subsequent wash off in stormwater runoff. The literature review also suggests that some vehicle fuel products, such as diesel, contain BEHP that may be released into the atmosphere in the exhaust (California Air Resources Board, 1997). Atmospheric deposition is suggested by the results from sampling phthalates on the Tacoma Dome roof.

Atmospheric Deposition Sampling

Based on the results from the product testing, the phthalate source study continued with emphasis on evaluating whether atmospheric deposition contributes significant amounts of phthalates to sediments in the Lower Duwamish through either direct deposition on the waterway or via stormwater runoff. The Phathalate Committee, consisting of staff from King County, Seattle Public Utilities, and City of Tacoma provided oversight for the investigations. The January 2005 Progress Report described methods selection and development. Passive deposition

samplers, which consist of a stainless steel bowl that drains into a glass bottle to collect both wet and dry deposition, were constructed and tested during this reporting period. A typical sampler is shown in Figure 7. This progress report provides the first results from these wet/dry deposition samplers. The complete technical memorandum including discussion of sampler preparation, installation and retrieval, analysis methods, results, and a comparison of data with phthalate air sampling elsewhere is included in Appendix C.

Staff from King County Industrial Waste collected Phase 1 samples and delivered them to the King County Environmental Laboratory for analysis. Four rounds of samples were collected from January 2005 through May 2005 at four sampling stations in the Lower Duwamish drainage area (Figure 8), three in the Duwamish Valley and one on Beacon Hill. The four stations (with owner/operator) are listed below:

- Beacon Hill (Washington State Department of Ecology)
- Duwamish (Puget Sound Clean Air Agency)
- Georgetown (Washington State Department of Ecology)
- South Park Community Center (Seattle Parks Department).

Stations were selected to collect neighborhood-scale air deposition samples from different portions of the Lower Duwamish drainage area.

Table 9 presents calculated air deposition flux results corrected for blank contamination. Calculation of air deposition flux is a useful tool for evaluating the rate at which mass of a particular chemical is depositing on a terrestrial surface through the air pathway. The units of air deposition flux are mass per area per time (mass/area/time). The air deposition flux values calculated on Table 9 are in units of micrograms per meter squared per day (μ g/m²/day).

The results from Rounds 1, 2, and 4 are the most useful since the samplers were in the field for 26, 36, and 22 days, respectively. Round 3 samplers were in the field for only seven days of high rainfall (1.6 in), which allowed less opportunity for particulate mass to accumulate in the sampler. Analytical results are limited to the seven carcinogenic PAH, pyrene, benzo(g,h,i)perylene, and the six phthalate compounds. Analytical recoveries for the lower molecular weight PAH compounds (below pyrene-d10) were insufficient for inclusion in this analysis. Dry particulate material was observed in the stainless steel sample collectors (i.e., did not wash into the sample bottle during rainfall events). Therefore, wipe tests were conducted for some of the sampling rounds to collect the material that adhered to the sample bowl, thus providing a measure of total wet-dry deposition that accumulated during the sampling period.

Because BEHP concentrations were typically lowest at the Beacon Hill station, ratios of the BEHP concentration at the other 3 stations relative to the Beacon Hill station were developed to facilitate comparisons (Table 10). Results are summarized below:

- For Round 1, the results for PAH, benzyl butyl phthalate, and bis(2-ethylhexyl)phthalate at the Duwamish, Georgetown, and South Park Stations were approximately two to three times greater than the Beacon Hill Station.
- For Round 2, the results for PAH, benzyl butyl phthalate, and bis(2-ethylhexyl)phthalate at the Duwamish, Georgetown, and South Park Stations were approximately three to five times greater than the Beacon Hill Station. However, associated recoveries for the deuterated monitoring compounds added to the samplers were all less than 10 percent at

Beacon Hill. A review of the field notes for this site found that a small portion of aluminum foil was missing from the sampler apparatus when it was retrieved leading to the possibility that photodegradation decreased aqueous concentrations for this sample. Therefore, the Round 2 ratios for the three Duwamish Valley stations should be considered biased high.

- For Round 3, the limited results for PAH, benzyl butyl phthalate, and bis(2ethylhexyl)phthalate at the Duwamish, Georgetown, and South Park Stations were approximately equal to two-times (1x to 2x) those of the Beacon Hill Station.
- For Round 4, the results for PAH, benzyl butyl phthalate, and bis(2-ethylhexyl)phthalate at the Duwamish, Georgetown, and South Park Stations were approximately 0.75 to 2 times greater than the Beacon Hill Station.

BEHP concentrations at the three Duwamish Valley stations (Duwamish, Georgetown, and South Park) were greater than Beacon Hill during the winter sampling events (Rounds 1 and 2) than during the spring sampling events (Rounds 3 and 4). This finding is consistent with historic PSCAA data showing atmospheric particulate concentrations trending higher during fall/winter months than during spring/summer months. The amount of atmospheric particulates can be important because the carcinogenic PAH and larger molecular weight phthalates preferentially adsorb to the particulate phase. However, at this time, there is insufficient data to correlate atmospheric particulate concentrations.

As a quality control check Phase 1 results were compared with other studies. The LDW sample results (see Appendix C, Table C-4) compared well with studies conducted within the same airshed (i.e., Georgia Basin [Belzer, 2004] and Ecology studies) and with other regions (i.e., Great Lakes and Roskilde Fjord [Denmark] studies [Vikelsoe et al. 2001]). PAH values observed in LDW samples (0.006 to 0.28 $\mu g/m^2/day$) were comparable to the average values reported for the Georgia Basin airshed (0.004 to 0.36 $\mu g/m^2/day$). The BEHP values in the LDW (0.23 to 3.5 $\mu g/m^2/day$) were higher than the Georgia Basin average values (0.3 to 0.6 $\mu g/m^2/day$), but were comparable with the results from the Denmark study (0.068 to 2.16 $\mu g/m^2/day$). Further air deposition testing will allow the source control efforts to evaluate the reproducibility of results and to perform correlations with existing atmospheric measurements (e.g., particulate concentrations).

Miscellaneous Source Control Activities

Surface Water Quality Complaints

As shown in Table 11, between January 2005 and June 2005 SPU inspectors responded to 34 surface water quality complaints in the Lower Duwamish Waterway basin (20 complaints in the storm drain basin and 14 complaints in the combined sewer service area). Complaints are registered either from SPU's hotline number for citizens, or from internal or external agencies. The most common complaint involved automobile related fluids such as gasoline, diesel, oil, and battery acid (17). The remaining complaints involved a variety of materials including wash water, sewage, and general flooding. Twenty-seven of these complaints were resolved successfully, but the source of the problem could not be found for the other seven complaints, because the inspectors could not find any visible spill of material when responding to the complaint.

Spill Kit Incentive Program

A total of 189 businesses, located throughout the LDW study area, received spill kits during this reporting period (Table 12). During the next reporting period, the spill kit program will focus on the Norfolk basin to coincide with business inspection efforts.

In 2004, SPU began a program offering free spill kits to local businesses that manufacture, store, use, or transport liquids as an incentive to improve onsite spill prevention and cleanup practices. The kits contain two absorbent booms, sorbent pads, and a drain cover, as well as personal protective equipment. The program is being administered by the Resource Venture, a program of the Greater Seattle Chamber of Commerce and the Environmental Coalition of South Seattle (ECOSS). Participating businesses fill out a standard spill response plan available online at www.resourceventure.org/spillkit.htm and receive a standard spill kit or a rebate coupon for up to 60 percent off a customized spill kit. The spill plan contains information about business activities that have the potential to contaminate stormwater, contact names for staff responsible for responding to spills, and basic instructions about spill notification, response, cleanup, and disposal procedures. After the spill plan is completed, ECOSS delivers a spill kit to the business, offers technical assistance, and provides a laminated copy of the spill plan, facility map showing where the spill kit is stored, and a diagram showing how to dispose of hazardous and non-hazardous materials. The incentive program is available to all qualifying businesses in the City.

Business Outreach

King County developed source control posters to be distributed to businesses inspected as part of the Lower Duwamish Waterway source control program. The posters, which contain information about best management practices to control pollutants discharged to the sanitary sewer and storm drain systems, are currently undergoing internal review and are expected to be ready for distribution during the next reporting period. The purpose of the posters is to build on the work done during the inspections and to serve as an ongoing reminder to businesses that their activities can affect the Duwamish Waterway.

Residential Outreach Project

King County and SPU plan to implement a community outreach strategy to empower residents in the Lower Duwamish study area to do their part to help prevent recontamination of sediments in the Duwamish Waterway. The following list describes several community outreach projects with planning underway.

- 1. **Natural Yard Care workshops.** King County plans to begin residential outreach by targeting yard care practices in the Top Hat neighborhood of the Hamm Creek Watershed. The county studied non-point source pollution in this area in 1996 and 1998 Data from that research will provide a baseline for measuring the effectiveness of three Natural Home and Yard Care trainings being held this fall. Participants will learn what behaviors they need to adopt in their home and yards to protect water quality and understand the role they play in maintaining the health of their children and the Duwamish River.
- 2. **Grants Workshops**. The Grant Exchange is a clearinghouse of grant and technical assistance programs offered by the King County. Goals include protecting and enhancing the environment, increasing community stewardship, and providing expertise and

consultation to projects. The county is offering two Grant Exchange workshops in fall 2005. The South Park Community Center grant workshop will target non-English speaking people in the Lower Duwamish study area. Past grant recipients will set up displays and describe completed projects as examples of projects that are eligible for funding. Participants will be eligible to receive "instant grantification" if they choose to apply for grant funding during the workshop. The second grant workshop will be held in partnership with the Middle Green Coalition and target a broader, predominantly English speaking audience.

- 3. Charity car wash kits. Charity car wash kits divert soapy water and oils from vehicles away from stormwater run-off to wastewater treatment plants. King County is currently promoting Charity Car Wash Kit availability via the Web and a press release. At the Grants Workshop in South Park the county will provide grants for the kits and demonstrations on how to use them. A "how to use the kit" poster and handouts will be created for this event. The county is also loaning two kits to the Environmental Coalition of South Seattle (ECOSS), a member of the Duwamish River Cleanup-Up Coalition (DRCC). ECOSS will loan kits to the Duwamish community and train borrowers to use them properly. SPU also has charity car wash kits available to the public, one is currently located at Camp Long in West Seattle and one is at the Environmental Learning Center at Carkeek Park.
- 4. **Duwamish River Festival:** Primary sponsors for this August 13, 2005 event are the EPA, Ecology and DRCC. Both SPU and King County source control staff plan to participate and provide posters and demonstrations. King County source control outreach for this event include Wheels to Water shuttle enhancing citywide transit access to the event, with a special focus on serving the South Park and Georgetown neighborhoods. Natural Yard Care and Grant Exchange staff (see above) plan to provide information about these programs in both English and Spanish. A life-sized Bert the Salmon, symbolizing water quality and its link to the salmon survival will be present. The county will hand out Bert the Salmon Baseball cards describing the benefits of using charity car wash kits and other educational materials to the public.

DIAGONAL/DUWAMISH EARLY ACTION SITE

The Diagonal Ave S CSO/SD is the largest outfall in the Diagonal/Duwamish early action site. The combined sewer service area in the Diagonal Ave S CSO/SD system encompasses about 4,900 acres and the storm drain basin covers about 2,600 acres (Figure 9). Both systems share the same outfall. There are 7 separate combined sewer overflow points in the system, Seattle operates 6 and overflows from the King County system discharge to the Diagonal system at one location. Overflow locations within the Diagonal system are shown on Figure 9.

Locations on Figure 9 where the combined sewer service and storm drain service systems overlap are known as partially separated areas. In these areas, stormwater runoff can discharge to either the separated storm drain system or the combined system, depending how the individual storm drain inlets are plumbed.

Land use in the Diagonal service area is a mix of residential, commercial, and industrial properties. As shown in Figure 10, the western portion of the basin is predominately industrial and the eastern side is mostly residential. Commercial areas are generally located along the major transportation corridors, (e.g., Rainier Ave S and Beacon Ave S). Land use in the basin is summarized in Table 13.

Business Inspections

One new business was inspected in the Diagonal Ave S CSO/SD system between January 1, 2005 and June 30, 2005. In addition, 39 follow-up inspections were conducted to confirm that corrections requested during previous reporting periods had been completed. A list of sites inspected during this reporting period is provided in Appendix B, Table B-1. Summaries of inspections completed during this reporting period and since the source control program began in March 2003, are provided in Appendix B, Table B-2. Corrective actions requested during this reporting period are listed in Appendix B, Table B-4 (summarized by regulatory program area) and Table B-5 (lists individual corrective actions).

To date, staff have completed inspections at 817 sites (552 full inspections and 265 screening inspections). Inspection locations are shown in Figure 11. Corrective actions have been required at 360 of the 552 sites where full inspections were conducted (65 percent). Summaries of all corrective actions requested to date (organized by basin and regulatory program area) are provided in Appendix B, Table B-3. As of June 30, 2005 all of the sites where corrective actions were requested had achieved compliance.

Table 1 summarizes the percentage of total corrective actions requested by individual program area in the Diagonal Ave S CSO/SD basin for all inspections completed to date (March 2003 to June 2005). Problems with stormwater (39 percent) are most common, followed by spill prevention and control (38 percent), hazardous waste (21 percent), and industrial waste (2 percent). The most frequently requested corrective actions are summarized in Table 2. Inadequate maintenance of onsite drainage facilities (62 percent of the sites where corrective actions were required) is the most common corrective action, followed by lacking proper spill prevention/cleanup materials (44 percent), inadequate spill cleanup materials present on site (41 percent), and inadequate employee training on spill prevention/cleanup procedures (36 percent).

Corrective actions requested at all of the sites inspected to date are listed in Appendix B, Table B-6.

Key Findings

No significant sources of contaminants to the waterway were found during the business inspections. Instead, as described above, many small problems/corrective actions were identified at numerous businesses throughout the Diagonal Ave S CSO/SD basin. Key findings related to illicit connections and discharges, unauthorized discharges of industrial wastewater to the sanitary sewer, and presence of elevated levels of contaminants in onsite catch basin samples are described in the following sections.

Illicit Connections and Discharges

One illicit discharge was discovered in the Diagonal Ave S CSO/SD system during this reporting period (trash compactor waste discharge). The site has been asked to replumb the trash compactor area to the sanitary sewer.

SPU is continuing to work with Ralph's Concrete and Pumping where an illicit discharge was discovered during the June 2004 reporting period. Ralph's generally routes water used to rinse concrete trucks through a series of settling trays, trenches, and drums, and then recycles the water back into the concrete trucks. However, SPU discovered that Ralph's occasionally discharges excess concrete wastewater into the public right-of-way and the wastewater then enters the Diagonal drainage system at catch basins on Poplar Place S. SPU issued a Notice of Violation (NOV) to Ralph's on December 15, 2003 and referred the problem to Ecology on May 12, 2004 after 2 additional violations occurred. In December 2004, the City of Seattle filed a lawsuit in Seattle Municipal Court to enforce the NOV. Several pre-trial settlement hearings have occurred in an effort to gain compliance. King County approved plans for a pretreatment facility in March and issued a permit to discharge to the sanitary sewer on June 13, 2005. Ralph's is applying for City permits to construct the necessary site and drainage improvements. Once the permits are issued, Ralph's can begin constructing a new system to store, process, and treat their washwater before discharging to the sanitary sewer. Permission to discharge is conditioned on construction of the pretreatment plan according to approved plans and successful completion of preoperative inspection.

Source Sampling and Identification

In-Line Sediment Traps

Traps are installed at 7 sites in the Diagonal Ave CSO/SD system (Figure 12). Station locations were selected to isolate individual subbasins within the larger storm drain system. During this reporting period, sediment traps were removed and redeployed in March. A total of four rounds of sediment trap samples have been collected to date:

- Round 1: February 2003 August 2003
- Round 2: August 2003 February 2004
- Round 3: February 2004 August 2004
- Round 4: August 2004 March 2005.

SPU plans to continue to deploy traps over the next 2-3 years to track changes in suspended particulate quality that may occur as a result of source control activities. SPU is working to modify trap installations to improve sediment capture. Results from all four rounds of samples are discussed in the overview section (see Table 3).

Catch Basin Samples

Onsite Catch Basins

No onsite catch basin samples were collected in the Diagonal Ave S CSO/SD system during this reporting period. CB 19, which was sampled during the previous reporting period and contained elevated concentrations of metals (copper, lead, mercury, and zinc), TPH, and BEHP, was cleaned on April 19, 2005.

Right-of-Way Catch Basins

Sediment samples were collected from one catch basin in the public right-of-way during this reporting period (see Figure 13 and Table 6). ROW24 contained elevated concentrations of BEHP (389 mg/kg OC) and TPH heavy oil (14,000 mg/kg). Additional sampling was also conducted in the roadways around RCB37, which was found to contain elevated concentrations of PCBs during a previous reporting period (17.5 mg/kg DW). Subsequent testing conducted in August 2004 found elevated PCBs in other catch basins within the right-of-way and in adjacent parking lots (1.6 –7.0 mg/kg). SPU cleaned all catch basins in the public right-of-way in June 2005 and is working with adjacent property owners to identify possible sources.

Inline Sediment Samples

Diagonal Ave S CSO/SD

SPU collected a number of inline sediment samples from the Diagonal Ave S CSO/SD as part of drain cleaning activities conducted in 2002-2004. Sampling locations are shown in Figure 14 and sample results are summarized in Table 7. Chemicals exceeding SQS are summarized below:

- Lead and mercury: S Dakota St and Denver Ave S laterals (CSL)
- Zinc: S Dakota St, Duwamish Ave S, and Denver Ave S laterals (SQS only)
- PCBs: S Dakota St lateral (SQS only)
- BEHP: Mainline at multiple locations and S Dakota St, Duwamish Ave S, 1st Ave S, and Denver Ave S laterals (CSL and SQS exceedances).

Cleaning operations were completed in 2004 and verified by video inspection in early 2005.

Other Drains in Diagonal/Duwamish

In June 2005, SPU attempted to collect sediment samples from the S Nevada St and Diagonal Ave S storm drains that discharge to the Diagonal/Duwamish early action site. All the manholes in the right-of-way on S Nevada St were clean and could not be sampled. The last manhole upstream of the outfall was covered by a container and could not be inspected. Manholes on the Diagonal Ave S storm drain were located inside a locked fence and could not be accessed for sampling. During the next reporting period, SPU will coordinate with the two property owners involved to obtain access to sample the Diagonal and Nevada St drains.

Source Control Actions

Diagonal Ave S CSO/SD Cleaning

As reported in the previous progress report, the Diagonal Ave S CSO/SD mainline (between 1st Ave S and 4th Ave S and at Colorado Ave S), the SW Dakota St lateral (from S Industrial Way to 1st Ave S), and the downstream sections of the 1st Ave S lateral and the Denver Ave S lateral were cleaned between 2002 and 2004 (see Figure 14). SPU video-inspected the SW Dakota lateral in February 2005 to verify that sediment removal was complete. No further cleaning is needed.

SLIP 4 EARLY ACTION SITE

The combined sewer service area in the Slip 4 basin encompasses about 6,200 acres and the storm drain basin covers about 467 acres. There are no storm-related combined sewer overflow discharges to Slip 4. The City (pump station 44) and King County (East Marginal Way pump station) both maintain emergency overflows on pump stations that discharge to Slip 4, but these pump stations overflow infrequently. The City pump station has not overflowed in the past 5 years (when the City started maintaining pump station records) and the King County pump station has not overflowed in the last 20 years. Both pump stations are equipped with emergency generators. Because discharges from the combined sewer service area are infrequent, source control work in Slip 4 focused on the separated drainage system.

Areas draining to Slip 4 are shown in Figure 15. Four public storm drains (Slip 4 SD, Slip 4 EOF/SD, Georgetown flume, and the I-5 storm drain) and ten private storm drains discharge to Slip 4. Land use in the basin is primarily industrial/commercial. The Slip 4 SD, which drains the northern portion of the King County Airport, encompasses a large portion of the Slip 4 drainage area (290 acres). Emergency overflows from City pump station 44 also now discharge to this drain. The drainage system at the airport has been modified numerous times. In about 1985, runoff from approximately 90 acres at the north end of the airport that used to discharge to the Slip 4 EOF/SD was diverted to the Slip 4 SD (Striplin 2004). This diversion also included the emergency overflow from City pump station 44. The Slip 4 EOF/SD now drains only about 3 acres on the north end of the airport.

The Georgetown flume, constructed in the early 1900s, originally discharged cooling water from the Georgetown Steam Plant to the Duwamish Waterway. Cooling water discharges to the flume stopped in the 1960s when the steam plant was shut down (Striplin 2004). Prior to about 1985, numerous storm drains and pipes from adjacent properties were also plumbed to the flume. At one time, runoff from an estimated 90 acres in the north end of the airport (North Boeing Field) as well as industrial wastewater discharged to the flume. In 1985-1987, Seattle City Light plugged all pipes entering the flume, except one 15-inch pipe from a Boeing yard (Striplin 2004). The flume now drains an estimated 3 acres and also continues to receive industrial stormwater discharges from Boeing.

The I-5 drain collects runoff from approximately 1.5 miles of I-5 (80 acres), 22 acres of single family residential property located east of I-5, and 1-2 acres on the north end of the King County airport. The small private drains that discharge to Slip 4 also serve mostly industrial and commercial areas immediately adjacent to the slip (approximately 50 acres).

Business Inspections

Five new businesses were inspected in the Slip 4 basin between January 1, 2005 and June 30, 2004 (1 screening visit and 4 full site inspections). In addition, 9 follow-up inspections were conducted to confirm that corrections requested during previous reporting periods had been completed. A list of sites inspected during this reporting period is provided in Appendix B, Table B-1. Summaries of inspections completed during this reporting period and since the source control program began in January 2003, are provided in Appendix B, Table B-2. Corrective actions requested during this reporting period are listed in Appendix B, Table B-4 (summarized by regulatory program area) and Table B-5 (lists individual corrective actions).

To date, a total of 55 sites (all of the airport tenants, not including Boeing-lease facilities) have been inspected (46 full inspections and 9 screening inspections). Inspectors have not been able to access Boeing facilities. Inspection locations are shown in Figure 16. Thirty-five (64 percent) of the sites where full inspections have been conducted required some type of corrective action (see Table B-2, Appendix B).). Summaries of all corrective actions requested to date (organized by basin and regulatory program area) are provided in Appendix B, Table B-3. By June 2005, 88 percent of the sites with corrective actions requested have made the changes that were required.

Table 1 summarizes the percentage of total corrective actions completed in the Slip 4 basin by individual program area for all inspections completed to date (March 2003 to June 2005). Problems with spill prevention and control (62 percent) are most common, followed by stormwater (26 percent), and hazardous waste (12 percent). The most frequently requested corrective actions are summarized in Table 2. Lack of a proper spill prevention/cleanup plan (73 percent of the sites where corrective actions were required) and inadequate employee training on spill prevention/cleanup procedures (67 percent) are the most common corrective action. Other common problems included lack of adequate spill control materials onsite (45 percent) and need for cleaning of onsite drainage facilities (39 percent). Corrective actions requested at all of the sites inspected to date are listed in Appendix B, Table B-6.

Source Tracing

Sediment Trap Samples

In March 2005, SPU installed sediment traps at the following (10) locations in the Slip 4 drainage basin (Figure 17):

- **T1** (MH 422): Slip 4/King County airport drain, downstream end of the north and central laterals combined.
- **T2 and T2A**: (MH356 and MH 482): Slip 4/King County airport drain, south lateral (downstream and upstream of Boeing lease property)
- **T3 and T3A** (MH361 and MH19C): Slip 4/King County airport drain, central lateral #1 (downstream and upstream of Boeing lease property).
- **T4 and T4A** (MH221A and MH229A): Slip4/King County airport drain, central lateral #2 (downstream and upstream of Boeing lease property)
- **T5 and T5A** (MH363 and MH178): Slip 4/King County airport drain, north lateral (downstream and upstream of Boeing lease property)
- T6: I-5 storm drain located at the intersection of S Hardy St and Airport Way S.

Traps will be removed in August 2005 and re-deployed for the winter season.

Inline Sediment Samples

Prior to installing the sediment traps, inline sediment samples were collected from four stations in the Slip 4 EOF/SD and the Slip 4 SD (serves the north end of the King County Airport) drains wherever sufficient sediment was present for chemical analysis. Sampling locations are shown in Figure 17 and data are summarized in Table 7. Sample splits were provided to The Boeing Company. Table 7 includes the results for both split samples. Unlike other storm drains

sampled in the LDW, sediment collected from the Slip 4 drains frequently exceeded the CSL for PCBs. PCB concentrations ranged from 310 to 31,000 μ g/kg DW (7.1 to 2,800 mg/kg OC). Only 1 sample (one split from the Slip 4 SD at Manhole 363) did not exceed the CSL. Mercury (1 station) and zinc (2 stations) also exceeded the SQS in the Slip 4 SD. In addition, BEHP concentrations (25 to 76 mg/kg OC), although exceeding SQS, were generally lower than the concentrations found in other drains in the LDW.

Georgetown Flume Investigation

During this reporting period, SPU initiated an investigation to evaluate the condition of the flume and identify ongoing discharges to the flume. Activities completed include:

- Surveyed and mapped the locations of all pipes (active and inactive) entering the flume.
- Inspected and evaluated the condition of the flume.
- Collected sediment samples at select locations along the flume.

The flume consists of a combination of pipes and wood or concrete-lined flumes that run about 2,500 feet across the north end of the King County Airport from the Georgetown steam plant to Slip 4. Flume features are summarized below:

•	Steam plant to Station 250 (ft):	60-inch tunnel
•	Station 250 to 370:	concrete-lined flume
•	Station 370 to 830:	twin 42-inch pipes
•	Station 830 to 2,075:	wood-lined flume
•	Station 2,075 to 2,500 (Slip 4):	72-inch CMP pipe.

The open sections of the flume were visually inspected and two of the piped sections were videoinspected in April 2005. The tunnel section could not be video-inspected due to high water levels. SPU is evaluating whether the tunnel can be de-watered to allow video inspection. The condition of each section of the flume is described in Table 14.

Of the 25 pipes entering the flume, only 6 appear to be active (Figure 18). The rest have been capped or plugged. Information on the uncapped pipes is provided in Table 15. One illicit connection, a 3-inch ABS plastic pipe from a wash sink, floor drain, and laundry at an adjacent motel was found during the inspection. The motel's septic system does not have adequate capacity to handle the flow from the laundry and connection to the sanitary sewer would be expensive. The motel has stopped discharging to the flume. The wash sink was moved to another location that is plumbed to the septic system and the floor drain has been plugged. The outlet from the laundry has also been plugged and they now send laundry offsite for cleaning.

Sediment samples were collected along the flume at 5 roughly equally spaced transects and in the vicinity of 5 pipes (4 active and 1 plugged pipe). Sampling locations are shown in Figure 19 and sample results are provided in Table 7.

Lead and zinc concentrations exceeded the SQS at Station P3, the 15-inch pipe entering the south side of flume at the downstream end of the tunnel section (501 mg/kg and 766 mg/kg, respectively). This pipe is now plugged, but was active when City Light surveyed the flume in

1985. It collected runoff from about 1.5 acres of industrial property in the northeast corner of the King County Airport. Zinc concentrations also exceeded the CSL in the sample collected at the upstream end of the flume (T4), in the condenser pit at the steam plant (1,130 mg/kg). TPH-oil concentrations were also elevated at this location (9,700 mg/kg) and in the ditch located on the east side of S Myrtle St (3,000 mg/kg, Station P5).

PCB concentrations exceeded the SQS at multiple locations along the flume. Sample results are summarized in Table 7. The highest concentration (92 mg/kg or 1,700 mg/kg OC, Aroclor 1254) was observed in the flume adjacent to the 15-inch pipe entering the south side of the flume at the downstream end of the tunnel (Station P3). The transect located about 650 feet downstream of this pipe (T3) also contained elevated concentrations of PCBs (3.9 mg/kg or 170 mg/kg OC, Aroclor 1254).

Other flume samples (T4, T5, P1, P2) exceeded the SQS for PCBs, but contained a mixture of Aroclor 1248, 1254, and 1260 or Aroclor 1254 and 1260. The ditch on the east side of S Myrtle St exceeded the SQS for PCBs, but contained only Arcolor 1260 (1.5 mg/kg or 22 mg/kg OC). Samples collected from the two transects located in the lower end of the flume (T1 and T6, below S Myrtle St) were below 1 mg/kg PCBs (0.33 and 0.4 mg/kg, respectively) and did not exceed the SQS.

Catch Basin Samples

No catch basin samples were collected in Slip 4 this reporting period. King County Airport has cleaned the catch basins around the maintenance building that were found to contain elevated levels of copper (5,660-6,6320 mg/kg), zinc (3,420-3,530 mg/kg), and BEHP (90-290 mg/kg OC) during the last reporting period. In addition, the airport is working to install outlet traps on appropriate catch basins.

FORMER SLIP 5 AND SLIP 6

Source control activities during this reporting period also covered areas on the King County Airport that drain to the LDW at the location of the former Slip 5 (early action site at river mile 3.8) and Slip 6. Inspectors were already working on the airport property for the Slip 4 early action site, therefore King County and SPU elected to inspect all of the airport tenants and facilities at one time. The middle portion of the airport (237 acres) drains to the LDW at the location of the former Slip 5 (which has been filled) via a 48-inch diameter storm drain. This outfall also serves as the emergency overflow for City pump station 45 on the City's sanitary sewer system. Pump station 45 has not overflowed in the last 5 years, since the City started maintaining pump station records. The southern portion of the airport (approximately 70 acres) drains to Slip 6 via a 24-inch diameter storm drain.

Business Inspections

One new business was inspected in the Slip 5 and 6 basins between January 1, 2005 and June 30, 2004. In addition, 6 follow-up inspections were conducted to confirm that corrections requested during previous reporting periods had been completed. A list of sites inspected during this reporting period in Appendix B, Table B-1. Summaries of inspections completed during this reporting period and since the source control program began in January 2003, are provided in Appendix B, Table B-2. Corrective actions requested during this reporting period are listed in Appendix B, Table B-4 (summarized by regulatory program area) and Table B-5 (lists individual corrective actions).

To date, a total of 34 sites have been inspected in Slip 5/6 (32 full inspections and 2 screening inspections). Inspection locations are shown in Figure 20. Corrective action(s) were required at 13 of the 34 sites where full inspections were conducted. As of June 2005, 12 of the sites where corrective actions were requested (92 percent) have achieved compliance.

Table 1 summarizes the percentage of total corrective actions completed in the Slip 5/6 basin by individual program area for all inspections completed to date (March 2003 to June 2005). Problems with spill prevention and control (76 percent) are most common, followed by stormwater (15 percent), and hazardous waste (9 percent). The most frequently requested corrective actions are summarized in Table 2. Lack of a proper spill prevention/cleanup plan (92 percent of the sites where corrective actions were required) is the most common corrective action. Other common problems included lack of adequate spill control materials onsite (62 percent), inadequate employee training on spill prevention/cleanup procedures (46 percent) and improper storage of hazardous products and waste material (23 percent). Corrective actions requested at all of the sites inspected to date are listed in Appendix B, Table B-6.

Illicit Connections and Discharges

One illicit discharge was discovered in the Slip 5 basin during this reporting period (washwater from an airplane wash area). King County Airport has asked the facility to stop washing airplanes at this location and the business has covered the catch basin with a steel plate.

Source Tracing

No catch basin samples were collected in Slips 5 and 6 during this reporting period. The two catch basins sampled during last reporting period that contained elevated concentrations of chemicals (CB40 and CB41b) have not yet been cleaned. The airport is investigating lease agreements to determine who is responsible for cleaning CB40 and there was not enough material remaining in CB41b after the sample was collected to warrant cleaning.

TERMINAL 117 EARLY ACTION SITE

The Terminal 117 (T117) early action site is located in the South Park neighborhood on the west side of the Lower Duwamish Waterway just south of the 16th Ave S Bridge. The upland areas draining to T117 are located in an area of South Park that lacks a formal drainage system. Because the streets were in poor condition, stormwater runoff typically ponded in the right-of-way or ran off onto adjacent properties. The total area draining to the T117 early action site is estimated at about 5 acres (Figure 21) and consists of the now vacant Terminal 117 property owned by the Port of Seattle (former Malarkey Asphalt site), 3 small residential properties, an oil recycling facility that is in the process of being demolished (Basin Oil), a chocolate factory, and about 3 blocks of roadway (S Donovan St, 17th Ave S, and Dallas Ave S). The South Park marina is located on the waterfront on the north side of T117. Surface runoff from these two properties discharges to the Duwamish Waterway via private storm drains.

Until recently, most of the runoff from the approximately 1.8-acre upland area either entered a catch basin at the south end of the Port's T117 property or sheet flowed across T117 and entered the Port's drainage system that discharges to the Duwamish Waterway. As a result of an interim source control action completed by the City of Seattle in December 2004, runoff from most upland areas outside of the Port property is now collected and discharged to the City's combined sewer system. Runoff from a portion of the hillside along the south side of S Donovan St continues to discharge to the Port's drainage system.

Source Control Actions

Dallas Ave S Interim PCBs Cleanup

During this reporting period, SPU conducted additional work to contain PCBs present in the 16th Ave S street right-of-way and properties at 8601 and 8609 17th Ave S and 8603 Dallas Ave S. PCBs were originally discovered in August 2004, as part of routine source sampling efforts conducted to identify potential sources to the T117 early action site. An interim cleanup action was completed in December 2004 (see previous progress report for details) to contain the PCBs present in the rights-of-way along Dallas Ave S, 17th Ave S, and S Donovan St. Work in the yards and private properties was delayed until after the wet season to minimize disruption to the property owners.

Locations for all samples collected to date are shown in Figures 22 and 23 and results are summarized in Table 16. Concentrations in street dirt were as high as 9.2 mg/kg PCBs DW (found in a catch basin located on 17th Ave S). Soil beneath the roadway contained as much as 66 mg/kg PCBs DW and soil collected from the public right-of-way immediately adjacent to the roadway contained up to 93 mg/kg PCBs DW. The cleanup level in soil for unrestricted use under the Washington State Model Toxics Control Act is 1 mg/kg PCBs.

In June 2005, a total of 790 tons (approximately 525 CY) of PCB-contaminated soil was removed from the properties at 8601 and 8609 17th Ave S, and 8603 Dallas Ave S, as well as along the west edge of 16th Ave S between Dallas Ave S and S Cloverdale St. Cleanup along 16th Ave S was conducted because PCBs were found in street dust along the edge of the pavement in March 2005 as part of additional site characterization work conducted by SPU.

Verification samples were collected from the bottom of the excavated area to confirm that PCBs were below the MTCA 1 mg/kg cleanup level. Verification samples consisted of composites comprised of 9 grab samples collected from approximately 12-foot by 12-foot grids. Verification samples were screened in the field using an EnsysTM PCB test kit prior to backfill and submitted to an analytical laboratory for confirmation. Only 1 of the 51 confirmation samples (4 mg/kg) exceeded the state cleanup level. SPU will re-excavate this area in early August to remove the remaining PCB-contaminated soil. Locations and descriptions of interim cleanup actions completed to date are shown on Figure 24.

The temporary stormwater collection system installed in December 2004 remains in place and all runoff from the 1.8 acre site is discharged to the combined sewer. SPU obtained a discharge authorization from King County Industrial Wastewater to discharge to the sewer system. The treatment system was removed in April 2005 after stormwater sampling confirmed that PCBs in runoff were below the discharge limits specified in the discharge authorization with King County Industrial Waste. Sample results are summarized in Table 17. SPU continues to collect monthly stormwater samples as required by King County. Since April, PCBs have not been detected (at $0.1 \mu g/L$ detection limit) in any of the stormwater samples.

In March 2005, SPU collected sediment samples from 3 of the 5 new catch basins installed in the roadway during the December 2004 interim cleanup, where there was sufficient sediment to analyze (two catch basins located at the northeast end of 17th Ave S and one on Dallas Ave S across from south entrance to the Basin Oil property. All three samples contained PCBs (1260) at concentrations greater than 1 mg/kg (3.9 to 23 mg/kg). It is not clear whether the PCB-contaminated soil entered the catch basins during the December 2004 cleanup/construction activities or from adjacent soils that were not capped/removed during the interim cleanup project. SPU cleaned all of the new catch basins in June 2005 and will resample these catch basins in the next 6-12 months (after sufficient sediment has accumulated) to determine whether PCBs are present.

The temporary stormwater collection system will remain in place until the final cleanup is completed. SPU is currently working to develop a cleanup plan for the public right-of-way. Final cleanup is currently scheduled to occur in 2007.

NORFOLK EARLY ACTION SITE

LDW source control work is scheduled to start in the Norfolk basin August 2005. However, in early 2005 SPU began developing a capital improvement project (CIP) to correct drainage problems in the drainage system in the Norfolk-Martin Luther King, Jr. Way S subbasin (Norfolk-MLK Way). The Norfolk-MLK Way system serves approximately 224 acres of mixed residential, commercial, and industrial property on the southeast end of the LDW surface drainage basin.

As part of this CIP project, accumulated sediment was removed from the piped section of the drainage system and samples were collected to evaluate disposal options. As of July 2005, 1,900 of the 2,200 LF scheduled to be cleaned to restore system capacity has been completed. The remaining 300 LF will be cleaned in August 2005. Cleaning and sampling locations are shown in Figure 24 and sample results are summarized in Table 7. Zinc (90 to 1,200 mg/kg) and BEHP (119 to 406 mg/kg OC) were the only to chemicals that exceeded SQS. TPH-oil (200 to 7,600 mg/kg) also exceeded the MTCA Method A cleanup levels at most of the sampling stations.

NEXT STEPS

King County and SPU intend to continue the joint business inspection and source tracing efforts to support the Lower Duwamish Waterway Superfund investigation. SPU and King County Industrial Waste are planning an outreach program to reach businesses in the Diagonal/Duwamish Basin. Potential outreach activities include educational seminars and posters mailed to all businesses inspected. The intent is to provide ongoing reminders to businesses of how their practices can affect the Duwamish Waterway.

Business Inspections

The joint business inspection program has been successful in reaching businesses that discharge to the LDW via the publicly-owned storm drain or the combined sewer systems. King County and SPU will have a continuing presence in the Diagonal/Duwamish and Slip 4, 5, and 6 areas, focusing on higher priority businesses and will also expand into other areas to support ongoing and future early action area cleanups.

Diagonal/Duwamish

Inspectors will complete follow-up inspections in the Diagonal/Duwamish early action area to ensure that problems found during previous inspections are corrected. Some businesses in the area (those that were inspected during the early part of the first reporting period) have not been inspected in over a year. Results from previous inspections will be reviewed to identify sites that should be re-inspected. Re-inspections will be conducted by the jurisdiction with lead authority (i.e., KCIW for industrial wastewater discharges and SPU for stormwater discharges).

Slip 4

The Boeing Company owns most of the sites remaining to be inspected in the Slip 4 early action area. Boeing has not allowed county and city inspectors to inspect their facilities and has requested that only Ecology inspectors or other inspectors with direct permit authority inspect Boeing facilities. King County and SPU will support Ecology to facilitate these inspections. The County and City will also conduct follow up inspections at the other businesses in Slip 4 to ensure that all required corrective actions are implemented.

Terminal 117

SPU inspectors will conduct a joint inspection with Ecology at the South Park marina. Runoff from the marina discharges directly to the waterway.

Other Areas in the LDW

King County, SPU, and other members of the Lower Duwamish source control work group are developing a work plan to coordinate future source control activities. The goals are to support upcoming early action site cleanups by ensuring that the source control work is underway on schedule with cleanup activities, to schedule future work that may be needed outside the existing early action sites, and to identify resources needed for future source control efforts. During the

next reporting period, inspectors will begin working in other early action areas in the Lower Duwamish Waterway:

- Norfolk early action site
- Early action site at river mile 3.8 in the vicinity of the former Slip 5 (areas outside the King County Airport that have not yet been inspected)
- Trotsky early action site.

Source Sampling

Source Tracing

Source tracing efforts will continue to focus on catch basin and in-line sediment sampling to track sources of contaminants to the waterway sediment. Work planned for the next reporting period includes:

- Continue sampling the 7 sediment trap installations in the Diagonal Ave S CSO/SD system and the 10 traps installed in the Slip 4 basin.
- Begin resampling select onsite catch basins in the Diagonal/Duwamish early action site to
 assess whether source control actions have been effective in reducing pollutants
 discharged to the storm drain system. Catch basins were typically cleaned as part of the
 source control work identified during previous inspections. It has been 1-2 years since
 the first round of onsite samples were collected and these catch basins should now
 contain sufficient sediment for chemical analysis.
- Collect sediment samples from the other public storm drains discharging to the Lower Duwamish Waterway in the vicinity of the Diagonal/Duwamish early action site (S Nevada St and the Diagonal Ave S storm drains) to determine whether these drainage systems may be contributing contaminants to the waterway sediment. Sampling was not successful during this reporting period. SPU will coordinate with property owners to gain access to the manholes on these lines.
- Begin source sampling/tracing in the areas draining to the Norfolk early action area.

Phthalate Source Study

King County will continue collecting wet-dry atmospheric deposition samples at the four stations in the LDW and at other stations outside the urban area to serve as background. The City of Tacoma has also agreed to participate in the effort by collecting atmospheric deposition samples along with the stormwater runoff samples from one drainage basin in the Thea Foss Waterway. Tacoma routinely collects stormwater samples from the 7 major city-owned storm drains in the Thea Foss Waterway to support ongoing Superfund cleanup activities. Phthalates, particularly BEHP, are a chemical of concern in waterway sediment. It is anticipated that coordinating atmospheric deposition and stormwater runoff sampling will help to develop an understanding of how BEHP enters the waterway.

Site-Specific Source Control Actions

Dallas Ave Cleanup

SPU has hired a consultant to develop cleanup and site restoration plans for the road rights-ofway along Dallas Ave S, S Donovan St, and 17th Ave S. During the next reporting period, SPU will begin developing plans for the final cleanup. Cleanup will be conducted under SPU's capital improvement program. Work will involve evaluating cleanup options, working with regulatory agencies, and completing the internal business plan needed to obtain funding for the project. Final cleanup in the right-of-way is currently scheduled to occur in 2007.

REFERENCES

Belzer, Wayne. 2004. "Atmospheric Concentrations and Depositions in the Georgia Basin Airshed." *In* T.W. Droscher and D.A. Fraser (eds). Proceedings of the 2003 Georgia Basin/Puget Sound Research Conference. CD-ROM or Online. Available: <u>http://www.psat.wa.gov/Publications/03_proceedings/start.htm</u> [February 2004]

California Air Resources Board. 1997. Toxic air contaminant identification list summaries---Diesel exhaust, Sacramento, CA.

EMR. 2001. Stormwater pollution prevention plan. Prepared for Basin Oil Company by Environmental Management Resources, Inc., Redmond, WA.

Herrera. 1998. Henderson/M.L. King CSO Control Project monitoring report. Prepared by Herrera Environmental Consultants, Inc. for King County Department of Natural Resources Water Pollution Control Division, Seattle, WA.

Houlihan, J., Brody, C., and B. Schwan. 2002. Not too pretty: Phthalates, beauty products, and the FDA. Environmental Working Group, Washington, D.C.

Striplin. 2004. Lower Duwamish Waterway, Slip 4 early action area: Summary of existing information and identification of data gaps. Prepared for Seattle City Light by Striplin Environmental Associates, Olympia, WA.

Tacoma. 1990. Surface water quality study final report. City of Tacoma, Department of Public Works Sewer Utility, Tacoma, WA.

Tacoma. 1999. Round 3 data evaluation and predesign report, Appendix L, Thea Foss and Wheeler-Osgood Waterways, City of Tacoma, WA.

Tacoma. 2002. August 2001-2002 annual report. Thea Foss and Wheeler-Osgood Waterways stormwater monitoring, City of Tacoma, WA.

Tacoma. 2003. Phthalate source study phase II, Thea Foss Waterway sub-watershed sampling and analysis plan. City of Tacoma, Environmental Services, Science & Engineering, Tacoma, WA.

Turner, D. June 17, 2004. Personal communication (phone conversation with Barbara Badger, King County Industrial Waste). The Boeing Company, Seattle, WA.

USEPA. 1983. Final report of the National Urban Runoff Program. U.S. Environmental Protection Agency, Water Planning Division, Washington, D.C.

Viekelsoe, J., P. Fauser, P.B. Sorensen, and L. Carlsen. 2001. Phthalates and nonylphenols in Roskilde Fjord. A field study and mathematical modeling of transport and fate in water and sediment. NERI Technical Report No. 339. National Environmental Research Institute, Roskilde, Denmark.

TABLES

Table 1. Corrective actions requested by program area.March 2003 - June 2005^a

		Percent of Total Correc	tive Actions		Total # of
	Stormwater	Spill Prevention/Cleanup	Hazardous Waste	Industrial Waste	Corrective Actions
Diagonal CSO/SD	39	38	21	2	1,155
Slip 4	26	62	12	0	98
Slip 5/6	15	76	9	0	34
East Waterway	40	46	12	1	327
Other Duwamish	31	50	19	0	26
Overall	38	42	18	2	1,640

a. All inspections completed to date for the Lower Duwamish Waterway source control program.

Table 2. Most frequent corrective actions requested.

March 2003 - June 2005^a

Corrective Action		Percer	tage of sites wi	th corrective	e action	
	Diagonal CSO/SD	Slip 4	Slip 5/6	EWW	Other Duwamish	Overall
Drainage facility needs cleaning	62	39	8	54	20	57
Facility lacks proper spill prevention/cleanup plans/procedures	44	73	92	48	100	48
Inadequate spill cleanup materials available onsite	41	45	62	39	80	41
Inadequate employee traininag on spill prevention/cleanup practices	36	67	46	40	80	39
Improper storage of hazardous products and waste materials	25	15	23	13	40	22
Improper hazardous waste disposal	19	15	0	8	0	16
Improper outdoor storage of non-hazardous materials/products	13	15	0	5	80	12
Total number of sites	365	33	13	119	5	535

a. All inspections completed to date for the Lower Duwamish Waterway source control program.

Table 3. Diagonal Ave CSO/SD Sediment Trap Results.

	SQS	CSL	ST1 E Marginal/S	ST1 E Marginal/S	ST1 E Marginal/S	ST1 E Marginal/S	ST2 Airport Way/6th		ST2 Grab in pipe		ST 2 (bottle #1)	(ST2 bottle #2)	ST2 Airport Way/6t	า	ST2 Airport	
			Oregon Round 1	Oregon Round 2	Oregon Round 3	Oregon Round 4	Ave S Round 1				Round 2		Round 2	Ave S Round S		Vay/6th Ave S Round 4	
Date deployed			02/01/03	08/21/03	03/11/04	07/30/04	02/01/03				Round 2		Round 2	03/11/04		07/30/04	
Date removed			08/21/03	02/18/04	07/30/04	03/14/05	08/21/03		08/21/03		03/11/04		03/11/04	07/30/04		03/09/05	
TOC (percent)			17	10	7.81	8.17	4.5		2.1		4.6		3.5	7.46		8.42	
Metals (mg/kg DW)				10	7.01	0.17	4.0		2.1		4.0		0.0	1.50	,	0.42	
As	57	93	10 U	10 U	20 U	10	7	U	30	U	50	U	8	U 10) U	9	U
Cu	390	390	298	120	215	144	89.9	•	78	U	146	0	34.1	136		93.2	Ū
Pb	450	530	244	121	160	126	76		100		210		39	41		111	
Hg	0.41	0.59	0.3	0.20	0.20	0.27		U	0.02	U		U		U 0.1			U
Zn	410	960	1,050	445	638	435	282	•	159		735	0	162	184		465	Ū
			.,														
LPAH (mg/kg OC)	10		44 11		0.11	07.1			0		-		0			40	
Acenapthene	16	57	11 U	0.6 J				U	2		5		3		0	10	
Acenaphthylene	66	66	11 U	1.0	3 U	0.7 L		U	2	U	5			U 1	0	1	U
Anthracene	220	1,200	11 U	0.8 J	3 U	0.7 L			2	U	5			U 2	-	23	
Fluorene	23	79	11 U	0.8 J	3 U	0.7 L			2	U		U		U 1	U	9	
Naphthalene	99	170	11 U	1.0	3 U	0.7 L		U	2	U		U		U 1	•	2	J
Phenanthrene	100	4,480	19	5.9	22	1.1	36		6		22		12	17		83	
HPAH (mg/kg OC)						. –			_				-				
Benzo(a)anthracene	110	270	11 U	3.4	11	0.7			5		18		8	10		56	
Benzo(a)pyrene	99	210	35	11.0	29	2.3			10		65		25	27		143	
Benzo(b)fluoranthene ^a	230	450	14	3.4	15	1.0			5		24		9	11		32	
Benzo(k)fluoranthene			18	6.1	23	1.2	29		6		30		12	15)	67	
Benzo(g,h,i)perylene	31	78	11 U	1.0	2.8	0.7	2		2	U	5		3	•		5	
Chrysene	110	460	14	6.3	15	0.5	40		6		24		9	11	_	49	
Dibenzo(a,h)anthracene	12	33	11 U	3.7	13 U			U	4	U		U	9	10		45	
Fluoranthene	160	1,200	11	2	9	0.8	3		2		10		5	Ę		23	
Indeno(1,2,3-c,d)pyrene	34	88	32 U	9.5	31	1.8	J 53		10		30		13	21		101	
Pyrene	1,000	1,400	11	1.7	8	0.6	5		2		10		6	Ę	5	24	
Phthalates (mg/kg OC)								_		_							
Bis(2-ethylhexyl)phthalate	47	78	394	87	294	12.2 E		E	133		283		40	113		118	
Butylbenzylphthalate	4.9	64	17	3.9	23	0.7 l			2		10		4.0		U	8	
Diethylphthalate	61	110	11 U	1.0 U				U	2	U		U		U 1	-	2	
Dimethylphthalate	53	53	11 U	1.0 U		0.7 l			2	U	-	U		U 1	-	2	
Di-n-butylphthalate	220	1,700	11 U	1.3	5	0.7 l				U	5	U	3		U	2	U
Di-n-octylphthalate	58	4,500	21	7.1	22	1.0	8		2	U	19		4		U	3	
PCBs (mg/kg OC)	12	64															
Aroclor 1016			0.12 U	0.2 U					0.90		0.43		0.57		'U	0.2	
Aroclor 1242			0.12 U	0.2 U					0.90		0.43		0.57		'U	0.2	U
Aroclor 1248			0.12 U	0.2 U				U	0.90	U		Р			'U	0.9	
Aroclor 1254			0.50	2.3	0.85	2.4	2.13		1.71		0.98			J 0.29		1.0	
Aroclor 1260			0.12 U	6.3	1.04	2.3	0.53		0.90		0.67				U	1.1	
Aroclor 1221			0.24 U	0.2 U					1.81		0.43				'U	0.2	
Aroclor 1232			0.12 U	0.2 U				U	0.90	U	0.43	U			'U	0.2	U
Total PCBs			0.50	8.6	1.88	4.77	2.13		1.71		2.46		2.71	0.29		1.8	
TPH (mg/kg)	M	TCA A															
Diesel		2,000	620	NA	840	94	88		50		370			U 32		52	
Motor Oil		2,000	1,100	NA	3,200	380	230		110		2,400		570	120		290	

Exceeds CSL or MTCA Method A Cleanup Level for unrestricted use

Exceeds SQS

a. SMS for total benzofluoranthenes

U = Chemical not detected at the reported concentration.

Y = Chemical not detected at the reported concentration. The reporting limit is raised due to chromatographic interference.

J = Estimated value. Concentration is below the laboratory's reporting limit for that compound.

Table 3. Diagonal Ave CSO/SD Sediment Trap Results.

			ST3	ST3		ST3	ST4		ST5		ST5	S	T6 :	ST6	ST7
	SQS	CSL	S Forest	S Forest		S Forest	MLK Wy/S		S		S	S Bu		Bush	S Dakota/6th
							Winthrop St		College/Rainier		College/Rainier	PI/Rain	ier PI/Rai	inier	Ave S
			Round 1	Round 2		Round 4	Round 4		Round 1		Round 4	Roun	d1 Rou	nd 4	Round 2
Date deployed			02/01/03	10/13/03		07/30/04	07/30/04		02/01/03		07/30/04	02/01/	03 07/3	0/04	10/13/03
Date removed			08/21/03	03/11/04		03/14/05	03/09/05		08/21/03		03/10/05	08/21/	03 03/1	1/05	02/18/04
TOC (percent)			6.7	1.8		8.28	3.72		13		1.97			11.3	6.9
Metals (mg/kg DW)															
As	57	93	9	U 7	U	10	U 8		6	U	14		8 U	10 U	9
Cu	390	390	138	69		164	52.7		136		32.5	2	31	100	62.6
Pb	450	530	128	102		156	64		175		29		00	122	61
Hg	0.41	0.59	0.07	0.07		0.2	0.07	U	0.10		0.05 U			0.13	0.06 U
Zn	410	960	653	433		662	418		479		164	9	44	399	262
LPAH (mg/kg OC)															
Acenapthene	16	57	2	U 4	U	6	U 3		1	U	3 U		9 U	2 J	1 J
Acenaphthylene	66	66	2		U		U 2	U	1	U	3 U		9 U	2 U	1 U
Anthracene	220	1,200	3	4	U		U 6	5	1	U	3 U		9 U	6	1 U
Fluorene	23	79	-	U 4	U		U 5		1	U	3 U		9 U	3	1 J
Naphthalene	99	170	9	4	U		U 1	.1	1		3 U		9 U	2 U	1 U
Phenanthrene	100	4,480	16	11	Ŭ	31	32	U	4	Ŭ	9		49	42	4
HPAH (mg/kg OC)	100	1,100	10			•	02		-		Ū				-
Benzo(a)anthracene	110	270	11	6		8	12		3		5		27	26	2
Benzo(a)pyrene	99	210	24			47	40		8		18		76	88	-
Benzo(b)fluoranthene ^a	230	450	5	7		11	13		4		7		39	27	2
Benzo(k)fluoranthene	200	400	15	, 11		18	16		4		9		42	35	3
Benzo(g,h,i)perylene	31	78		U 4		6	2		4		3		9	3	5 1 J
Chrysene	110	460	6	7		10	10		6		5		39	38	2
Dibenzo(a,h)anthracene	12	33	-	U 6	U	10		U	4	U	6 U		28	27	2 U
Fluoranthene	160	1,200	2	5	Ŭ	8	4	Ũ	2	Ŭ	3		14	10	1
Indeno(1,2,3-c,d)pyrene	34	88		U 11	J	29	30		- 7		11 J		68	56	- 4 J
Pyrene	1,000	1,400	2	4	Ũ		4		4		3		16	12	1
Phthalates (mg/kg OC)	.,	.,	_			-	•				•				
Bis(2-ethylhexyl)phthalate	47	78	269	E 256		193	89		68	- 1	56	3	50	115	35
Butylbenzylphthalate	4.9	64	30	7		12	6.5		3	- 1	10		28	9	3
Diethylphthalate	61	110	2	U 4	υ		U 2		1	υ	3 U		9 U	2 U	1 U
Dimethylphthalate	53	53	2	15			U 2		2		3 U		9	2 U	1 U
Di-n-butylphthalate	220	1,700	2		U		U 2.2		6		3 U		9 U	3	1 U
Di-n-octylphthalate	58	4,500	58			16	4.8		3		3 U		31	6	3
PCBs (mg/kg OC)	12	64													
Aroclor 1016			0.30	U 1.11	U	0.2	U 1	U	0.15	U	1 U	0.	16 U	0.2 U	0.28 U
Aroclor 1242			0.30	U 1.11	U	0.2		U	0.15	U	1 U	0.	16 U	0.2 U	0.28 U
Aroclor 1248			0.30		U	0.7			0.15	U	1 U		16 U	0.2 U	0.28 U
Aroclor 1254			1.94	2.78		0.2	U 2.6		1.0		3.2	0.	70	0.5 Y	1.4
Aroclor 1260			0.30			0.2			0.15	U	1 U		16 U	1.4 Y	0.28 U
Aroclor 1221			0.58			0.2			0.30	U	1 U		32 U	0.2 U	0.28 U
Aroclor 1232			0.30		U	0.2		U	0.15	U	1 U	0.	16 U	0.2 U	0.28 U
Total PCBs			1.94	4.06		2.1			1.0		3.2	0.	70	2.8 U	1.4
TPH (mg/kg)	М	TCA A													
Diesel		2,000	560	380		140	79		600		140			140	NA
Motor Oil		2,000	1,400	1,200		640	330		1,200		750	1	NA .	680	NA

Table 4. Construction projects in the Lower Duwamish Waterway.January - June 2005

Project	Basin	Address	Use
2301075	Combined sewer	00901 12TH AV	CONSTRUCT SECOND-STORY ADDITION, ALTER 1ST AND 2ND FLOORS
2301697	Combined sewer	02701 15TH AV S	GRADING ONLY FOR SITE REMEDIATION PER PLAN
2105164	Combined sewer	03213 HARBOR AV SW	PHASE II, CONSTRUCT 5 STORY PLUS BASEMENT MIXED USE
2302552	Combined sewer	06550 32ND AV SW	PHASE I HIGH POINT: MASSIVE GRADING AND CLEARING INCLUDING DRAINAGE
2208351	Combined sewer	03815 OTHELLO ST	CONSTRUCT & OCCUPY A FOUR-STORY MIXED USE
2301282	Combined sewer	07501 M L KING JR WY S	CONSTRUCT & OCCUPY 14 LOW INCOME BLDGS, 4 SRS, 5 APTS, 5 TOWNHOMES
2302571	Combined sewer	00710 ROY ST	FOUR DUPLEX TOWNHOMES, 2 12-UNIT APARTMENTS
2301283	Combined sewer	07610 40TH AV S	CONSTRUCT & OCCUPY 7 LOW INCOME HOUSING BLDGS (4 SFRS, 2 TOWNHOUSES, 1 APT
2301836	Combined sewer	07405 ROCKERY DR S	CONSTRUCT & OCCUPY FOUR SFR'S, ONE TRIPLEX, 1 APT, 3 TOWNHOMES
2308300	Combined sewer	03642 33RD AV S	GRADING OF APPROXIMATELY 3500 CUBIC YARDS OF
2301837	Combined sewer	07643 ROCKERY DR S	CONSTRUCT & OCCUPY FOUR SINGLE-FAMILY RESIDENCES 2 TRIPLEXES 3 TOWNHOMES
2205112	Combined sewer	04515 M L KING JR WY S	CONSTRUCT 4-STORY MIXED USE BUILDING AS LOW-INCOME HOUSING
2207892	Combined sewer	00500 17TH AV	CONSTRUCTION ADDITION & SUBSTANTUAL ALTERATIONS
2303753	Combined sewer	04515 29TH AV S	CONSTRUCT 3 STORY APARTMENT (BLDG 79) AND 4 STORY APT COMMUNITY CENTER
2302636	Combined sewer	02916 COLUMBIAN WY	CONSTRUCT 4 STORY MIXED USE BUILDING AND OCCUP
2308375	Combined sewer	03512 JUNEAU ST	CONSTRUCT 26 UNIT APT. BUILDING W/ PARKING BELOW
2308483	Combined sewer	03701 KENYON ST	CONSTRUCT SCHOOL AND GYM ADDITION TO EXISTING GYM
2304855	Combined sewer	06107 FOUNTAIN ST	GRADING AND DRAINAGE FOR ACCESS ROAD PER PLAN
2307694	Combined sewer	06020 LANHAM PL SW	CONSTRUCT 9 BLDGS,6 TOWNHOUSE;3 APTS
2403517	Combined sewer	07605 39TH AV S	HOLLY PARK - GRADING (APPROX 11,000 C.Y.), ROCKERY AND DRAINAGE
2306712	Combined sewer	01702 24TH AV	DEMO SFR - EST USE WITH 2 DUPLEX TOWNHOMES
2305817	Combined sewer	07345 DELRIDGE WY SW	SUBSTANTIAL ALTERATION TO EXISTING RETAIL STORE;
2307693	Combined sewer	05910 32ND AV SW	CONSTRUCT 10 BLDGS,5 APT, 5 TOWNHOME,
2404074	Combined sewer	03801 HOLLY PARK DR	GRADING APPROX 3500 C.Y. OF BLOCK 5, HOLLY PARK
2307684	Combined sewer	05910 HIGH POINT DR SW	CONSTRUCT 20 BLDGS, 2-SFR, 7-APTS, 11 TOWNHOUSES
2307682	Combined sewer	06338 HIGH POINT DR SW	CONSTRUCT 14 BUILDINGS, 5 APTS, 9 DUPLEXES
2307681	Combined sewer	06327 HIGH POINT DR SW	CONSTRUCT 13 BLDGS; (10) TOWNHOUSES, 1 APT, 2 SFRS
2405843	Combined sewer	04418 SHELL ST	CUT AND FILL ON 4 LOTS AS PREPARATION TO CONSTRUCT HOUSE
2402223	Combined sewer	06025 LANHAM PL SW	CONSTRUCT & OCCUPY 36-UNIT APARTMENT, PER PLAN.
2307689	Combined sewer	06300 30TH AV SW	CONSTRUCT 15 BUILDINGS, (5)SINGLE FAMILY RESIDENCE 10 TOWNHOMES

Table 4. Construction projects in the Lower Duwamish Waterway.January - June 2005

Project	Basin	Address	Use
2206001	Combined sewer	04408 DELRIDGE WY SW	CREATE 36 ARTIST STUDIO DWELLINGS FROM EXISTING SCHOOL
2401795	Combined sewer	03201 GRAHAM ST	LOW INCOME HOUSING: CONSTRUCT AND OCCUPY A 75 UNIT APARTMENT BUILDING
2206982	Combined sewer	03400 HARRISON ST	CONSTRUCT NEW K-5 GRADE PRIVATE SCHOOL, GYMNASIUM
2203437	Combined sewer	06901 SYLVAN WY SW	GRADE APPROXIMATELY 200,000 CUBIC YARDS OF MATERIAL INCL. REMEDIATION
2201799	Combined sewer	07322 RAINIER AV S	CONSTRUCT SIX RESIDENTIAL STRUCTURES COMPRISING 41 DWELLING UNITS
2407953	Combined sewer	06860 HOLLY PARK DR S	ESTABLISH TOWNHOUSE USE. CONSTRUCT 3-STORY TRIPLEX AND 3-STORY 4-PLEX
2408955	Combined sewer	04925 CORSON AV S	NEW PUBLIC SCHOOL CONVERT GYM TO CLASSRMS & PARTITN ALTS AT BLDG#1 &
2307518	Combined sewer	00901 12TH AV	SUBSTANTIAL ALT FOR CONVERT WAREHOUSE TO BLACKBOX THEATRE AND WORKSHOPS
2401079	Storm drain (Diagonal)	01423 31ST AV S	CONSTRUCT RETAINING WALL AND GRADE FOR DRIVEWAY;
2409565	Storm drain (Diagonal)	03100 AIRPORT WY S	GRADING TO CREATE ACCESS ROAD & PARKING INCLUDING
2401582	Storm drain (7th Ave S)	09401 MYERS WY S	CONSTRUCT JOINT TRAINING FACILITY (PHASE I SHORING, GRADING & FOUNDATION)
2107959	Storm drain (Diagonal)	03407 AIRPORT WY S	SOUND TRANSIT CONSTRUCT A FOUR-STORY OPERATIONS & MAINTENANCE FACILITY
2400594	Storm drain (Diagonal)	04401 4TH AV S	DEMOLISH EXISTING BUILDINGS. CONSTRUCT MIXED USE
2308462	Storm drain (Diagonal)	02302 YESLER WY	SEATTLE PUBLIC LIBRARY CONSTRUCT 7900SF 1-STORY + BASEMENT ADDITION
2308739	Storm drain (Diagonal)	03100 AIRPORT WY S	SUBST ALT. TO CHANGE USE FROM MFGRING TO WAREHOUSE
2206735	Storm drain (LDW)	06000 16TH AV SW	CONSTRUCT MULTISTORY CLASSROOM WITH LABS
2402063	Storm drain (LDW)	09400 OLSON PL SW	GRADING AND PAVING FOR CLUSTER DEVELOPMENT PER PLN
2400964	Storm drain (Norfolk)	02456 OTHELLO ST	CUT AND FILL APPROXIMATELY 400 CUBIC YARDS OF SOIL

Table 5. Onsite catch basin sediment sample results.

Source	Sample	Location	Date	Drainage	As	Cu	Pb	Hg	Zn	TPH-Diesel	TPH-Oil	PCBs	PCBs	BEHP ^a	BEHP ^a
	ID		Sampled	Basin	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(ug/kg DW)			(mg/kg OC)
Auto repair	CB7	2006 Rainier Ave S	10/15/03	Diag/Duw	10 U	647	1,220	0.1	1,150	9,900	13,000	48	0.28	140,000	824
Auto repair	CB9	820 S Charlestown	01/22/04	Diag/Duw	20	177	105	0.06 U	294	50 U		97	3.59	2,200	81
Auto repair	CB13	1410 Airport Way S	01/23/04	Diag/Duw	12	96	127	0.09	432	51	300	690	20.9	4,500	136
Auto repair	CB19	5022 Rainier Ave S	02/12/04	Diag/Duw	25	405	1,530	1.82	1,170	3,800	16,000	289	2.63	53,000	482
Auto repair	CB45	6518 Ellis Ave. S	12/22/04	Slip 4	20	6,320	481	0.3	3,420	950	4,700	470	4.83	8,800	90
Auto repair	CB46	6518 Ellis Ave. S	12/22/04	Slip 4	20	5,660	396	0.2	3,530	1,900	4,600	680	6.54	30,000	288
Auto repair	CB53b	8603 Dallas Ave S	03/16/05	LDW	NA	NA	NA	NA	NA	NA	NA	6,300	NA	NA	NA
Gas station	CB10	852 Rainier Ave. S	01/22/04	Diag/Duw	8 U	87	96	0.07	250	930	2,000	17 U	0.11 U	1,500	10
Gas station	CB23	4800 Beacon Ave S	03/15/04	Diag/Duw	7	87	73	0.07 U	501	800	3,900	20 U	0.24 U	3,400	40
Gas station	CB26	2220 E Union St	03/15/04	Diag/Duw	20	184	699	1.7	1,470	8,700	29,000	940	3.62	64,000	246
Gas station	CB27a	2220 E Union St	03/15/04	Diag/Duw	10	92	109	0.1	396	5,200	22,000	141	1.66	33,000	388
Gas station	CB29	700 12th Ave	04/07/04	Diag/Duw	10 U	261	164	0.09 U	668	5,000	21,000	29 J	0.26 J	63,000	558
Grocery stores	CB15	2901 Rainier Ave S	02/09/04	Diag/Duw	9	142	476	0.06 U	98.3	380	3,900	19 U	0.48 U	380	10
Grocery stores	CB18	5041 Wilson Ave S	02/12/04	Diag/Duw	7	80	55	0.22	359	680	5,700	19 U	0.21 U	20,000	225
Grocery stores	CB25	3820 Rainier Ave S	03/15/04	Diag/Duw	10	187	152	0.2	912	2,900	15,000	39	0.24	120,000	750
Manufacturing	CB1	3414 4th Av S	08/21/03	Diag/Duw	10 U	161	125	0.3	1,100	NA	NA	160	0.62	19,000 E	100 B
Manufacturing	CB22	3711 S Hudson St	03/02/04	Diag/Duw	20 U	520	151	0.16	433	190	920	3,200	267	410	34
Manufacturing	CB31	3901 9th Ave S	05/06/04	Diag/Duw	20 U	186	231	0.12	590	200	670	128	3.47	460	12
Misc retail	CB12	3701 7th Ave S	01/23/04	Diag/Duw	10 U	181	97	0.1	603	41	270	41	0.61	6,600	99
Misc retail	CB16	4801 Rainier Ave S	02/09/04	Diag/Duw	9	56	63	0.1	237	670	2,900	51	1.06	11,000	229
Misc retail	CB20	4580 Beacon Ave S	02/12/04	Diag/Duw	10	184	277	1.16	754	2,300	8,900	194	1.94	99,000	990
Misc retail	CB28	1018 E Seneca St	03/26/04	Diag/Duw	10 U	254	327	0.2	677	440	3,100	18 J	0.13 J	14,000	103
Oil recycling	CB41	8661 Dallas Ave S	08/19/04	T117	20 U	134	428	0.11	711	72,000	77,000	350	2.59	84,000	622
Oil recycling	CB42	8661 Dallas Ave S	08/19/04	T117	20 U	173	98	0.08	830	3,900	17,000	140	2.42	41,000	708
Other	CB4	828 S Poplar Place	09/08/03	Diag/Duw	20 U	135	47	0.08 U	360	1,800	6,300	19 U	1.12 U	32,000	941
Other	CB5	828 S Poplar Place	09/10/03	Diag/Duw	20 U	147	51	0.2 U	412	2,600	9,200	20 U	0.27 U	67,000	447
Other	CB11	5005 3rd Ave S	01/23/04	Diag/Duw	40	325	445	0.68	3,940	370	2,100	255 P	4.11 P	6,200	100
Other	CB24	3515 S Alaska St	03/15/04	Diag/Duw	11	172	299	0.2	699	730	5,700	71 Y	0.92 Y	12,000	156
Other	CB30	910 Boylston Ave	04/30/04	Diag/Duw	11	79	2,010	0.84	257	620	2,800	259	3.15	11,000	134
Other	CB40	7585 Perimeter Rd S	08/04/04	Slip 5	6 U	92	90	0.61	271	600	2,300	6,600	154	5,500	185
Other	CB44	1015 S Myrtle St.	12/08/04	Slip 4	12	142	123	0.12	524	85	790	180	0.73	10,000	41
Other	CB48	6605 13th Ave S	02/02/05	Slip 4	12	52	343	0.32	657	98	210	250	15.9	88	6
Other	CB49	4209 W Marginal Way	02/04/05	LDW	7 U	NA	36	0.06 U	NA	NA	NA	NA	N/A	NA	NA
Other	CB50	4209 W Marginal Way	02/04/05	LDW	10 U	NA	47	0.09 U	NA	NA	NA	NA	N/A	NA	NA
Other	CB51	4209 W Marginal Way	02/04/05	LDW	10	NA	99	0.12	NA	NA	NA	NA	N/A	NA	NA
Other	CB52	4209 W Marginal Way	02/04/05	LDW	11	NA	127	0.13	NA	250	1,700	223	4.35	3,900	76
Restaurant	CB27b	950 E Madison St	03/26/04	Diag/Duw	20 U	137	88	0.1 U	537	6,600	9,400	68 J	0.47 J	140,000	596
Restaurant	CB32	3820 Rainier Ave S	05/24/04	Diag/Duw	20 U	194	131	0.2 U	874	770	3,000	20 U	0.10 U	34,000	164
Restaurant	CB38	2822 Rainier Ave S	06/25/04	Diag/Duw	7 U	66.2	54	0.08	209	960	3,300	220	3.44	5,000	78
Transportation	CB3	635 S Edmunds St	09/05/03	Diag/Duw	6 U	29.6	10	0.05 U	54.9	15	52	39 U	8.30 U	130	28
Transportation	CB8	5200 E Marginal Wy	11/04/03	Diag/Duw	13	275	205	0.10	603	2,000	4,500	1,000	10.9	71,000	772
Transportation	CB34	12100 E Marginal Wy	05/24/04	b	8 U	99	110	0.07 U	833	430	2,400	16	0.21 U	4,200	45
Transportation	CB35	12100 E Marginal Wy	05/24/04	b	8 U	79	87	0.1	382	4,000	2,700	20 U	0.22 U	11,000	123
Transportation	CB36	12100 E Marginal Wy	05/24/04	b	8 U	201	152	0.07 U	420	5,300	14,000	20 U	0.19 U	24,000	226
Transportation	CB33	3820 6 Ave. S	05/24/04	Diag/Duw	20	118	82	0.09	924	900	3,100	58	0.51	9,900	87
Transportation	CB37	North side Slip 4	06/22/04	Slip 4	20 U	173	250	0.08	1,220	180	650	20 U	0.42 U	1,600	34
Transportation	CB41b	SW Corner of KC Airport	09/10/04	Slip 6	8 U	92	232	0.17	740	8,000	19,000	51 U	0.50 U	3,300	33
Vehicle/equip wash		4429 Airport WY S	08/21/03	Diag/Duw	40 U	1,520	1,110	0.5	2,720	34,000	71,000	20 U	0.53 U	200,000 E	
Vehicle/equip wash	h CB21	3151 Rainier Ave S	03/20/04	Diag/Duw	8	194	97	0.06 U	305	1,900	4,900	19 U	0.40 U	17,000	354
Auto repair	CB58	2901 6th Ave S	03/03/05	EWW	100 U	3,260	280	0.34	660	2,200	6,100	200	2.98	16,000	238
Auto repair	CB59	3626 Colorado Ave S	03/03/05	EWW	40 U	5,010	600	0.18	1,070	1,800	6,900	760	10.4	19,000	260
Auto repair	CB60	1961 4th Ave S	03/17/05	EWW	11	303	170	0.08	939	12,000	30,000	320 Y	2.88 Y	160,000	1441
Auto repair	CB67	2513 11th Ave SW	03/30/05	EWW	9	154	48	0.06 U	312	1,400	6,000	100 Y	1.55 Y	18,000 E	
	CB54	2461 4th Ave S	02/09/05	EWW	10	216	184	0.34	977	2,100	3,600	174 P	1.94	25,000	279

Table 5. Onsite catch basin sediment sample results.

Source	Sample	Location	Date	Drainage	As	Cu	Pb	Hg	Zn	TPH-Diesel	TPH-Oil	PCBs	PCBs	BEHP ^a	BEHP ^a
	ID		Sampled	Basin	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(ug/kg DW)	(mg/kg OC)	(ug/kg DW)	(mg/kg OC)
Gas station	CB55	2461 4th Ave S	02/09/05	EWW	10	263	183	0.29	950	520	2,600	114 P	1.07	18,000	168
Manufacturing	CB53	2535 Airport Way S	02/09/05	EWW	12	480	177	0.1	828	230	1,000	51	1.40	14,000	386
Manufacturing	CB57	2940 6th Ave S	03/03/05	EWW	10	322	133	0.11	557	250	1,600	76	1.10	15,000	217
Manufacturing	CB62	3623 E Marginal Way S	03/18/05	EWW	20 U	452	354	0.19	1,320	1,600	6,000	1,700 Y	28.7 Y	23,000	388
Manufacturing	CB66	3629 Duwamish Ave S	03/25/05	EWW	13	217	498	0.28	814	6,800	19,000	140 Y	1.22 Y	22,000	191
Manufacturing	CB68	1002 SW Spokane St.	04/28/05	EWW	10 U	414	142	0.1 U	1,600	640	2,500	67	0.84	8,800 B	111 B
Misc retail	CB63	S Hanford and E Marginal Way	03/18/05	EWW	30	437	336	0.5	1,510	2,900	14,000	820	5.62	59,000	404
Misc retail	CB64	S Hanford and E Marginal Way	03/18/05	EWW	30	495	452	0.5	1,690	3,400	17,000	1,110	8.47	62,000	473
Misc retail	CB65	3419 11th Ave SW	03/22/05	EWW	10	602	207	0.27	869	950	3,900	2,110	24.3	19,000	218
Other	CB56	1919 4th Ave S	02/09/05	EWW	10	122	61	0.13	602	2,000	3,300	29	0.25	10,000	88
Other	CB61	2445 3rd Ave S	03/18/05	EWW	10	44	33	0.08	152	930	3,000	87	0.94	7,500	81
Transportation	CB69	POS Terminal 18	05/25/05	EWW	10 U	127	102	0.09	2,730	1,000	4,900	20 J	0.12 J	20,000	118
Transportation	CB70	POS Terminal 18	05/25/05	EWW	11	332	181	0.11	1,880	800	5,100	44	0.44	11,000	110
Transportation	CB71	POS Terminal 18	05/25/05	EWW	8	197	120	0.07	1,370	790	4,500	58 JP	1.04 JF	5,300	95
SQS						390	450	0.41	410	NA	NA		12	NA	47
CSL						390	530	0.59	960	NA	NA		65	NA	78
MTCA Method A ^c						NA	250	2	NA	2,000	2,000	1,000	NA	NA	NA
MTCA Method A ^d						NA	1,000	2	NA	2,000	2,000	10,000			

Thea Foss basin (Tacoma)

uto repair/supplies (7)	Mean	58,371
	Range	(2,600 - 340,000)
	Min	2,600
	Max	340,000
	General Tire	23,000
	Service Master	2,600
	Eagle Tire	340,000
	Maaco Autobody	7,200
	Osborne Cadillac	6,800 UJ
	Tacoma Dodge	19,000
	Pacific Motoring	10,000
st food (2)	Mean	74,000
	Range	(48,000 - 100,000)
	Min	48,000
	Max	100,000
	Jack in Box	48,000
	McDonalds	100,000
ehicle/equip wash (1)		24,000
	Brown Bear	24,000
sc retail (3)	Mean	14,100
	Range	(1,800 - 35,000)
	Min	1,800
	Max	35,000
	Keller plumbing	1,800
	Washington Floral	5,500
	American Linen	35,000
anufacturing (6)	Mean	106,083
	Range	(9,100 - 580,000)
	Min	9,100
	Max	580,000
	Pickering	9,400
	Tacoma News	10,000
	Atlas Foundry	9,100

Table 5. Onsite catch basin sediment sample results.

Source	Sample Location	Date Sampled	Drainage Basin	As (mg/kg)	Cu (mg/kg)	Pb (mg/kg)	Hg (mg/kg)	Zn (mg/kg)	TPH-Diesel (mg/kg)	TPH-Oil (mg/kg)	PCBs (ug/kg DW)	PCBs (mg/kg OC)	BEHP ^a (ug/kg DW)	BEHP ^a (mg/kg OC)
		Totem Marina												(
					United Pipe	9							13,000	
		Ideal Machine 15,000												

a. Bis(2-ethylhexyl)phthalate

b. Upstream of Lower Duwamish study area.

c. MTCA Method A soil cleanup level for unrestricted use.

d. MTCA Method A soil cleanup level for industrial use.

Exceeds SQS

Exceeds CSL or MTCA Method A Cleanup Level (TPH)

U = Chemical not detected at concentration shown.

Y = Chemical not detected at concentration shown. Reporting limit raised due to background interference.

J = Concentration is less than the reporting limit.

P = High RPD on dual column analyses, without obvious interference.

Table 6. Right-of-way catch basin sediment sample results.

Road Type	Station ID	Date	Drainage	As	Cu	Pb	Hg	Zn	TPH-Diesel	TPH-Oil	PCBs	PCBs	BEHP ^a	BEHP ^a
		Sampled	Basin	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)		(ug/kg DW)	(mg/kg OC)	(ug/kg DW)	(mg/kg OC)
Freeway	RCB30	05/26/04	LDW	10 U	46.2	20	0.06 U	171	130	630	19 U	0.63 U	3,200	107
Freeway	RCB31	05/26/04	LDW	20 U	185	157	0.07	552	150	660	117	4.74	1,100	18
Freeway	RCB32	05/26/04	LDW	10 U	97.5	126	0.09 U	305	150	690	138	1.82	21,000	277
High traffic arterial	RCB2	02/22/04	Diag/Duw	10	40.1	121	0.07 U	137	270	1,600	30	0.55	2,900	53
High traffic arterial	RCB3	02/22/04	Diag/Duw	7	48.8	78	0.07 U	179	200	1,400	19 U	0.37 U	2,400	46
High traffic arterial	RCB7	03/03/04	Diag/Duw	6	55.1	374	0.06 U	142	210	1,600	20 U	0.83 U	2,100	88
High traffic arterial	RCB10	03/15/04	Diag/Duw	10 U	183	109	0.1 U	589	630	4,600	54	0.96	28,000	280
High traffic arterial	RCB11	03/15/04	Diag/Duw	10 U	117	92	0.07 U	243	540	3,000	19 U	0.14 U	3,200	23
High traffic arterial	RCB12	04/07/04	Diag/Duw	10 U	112	77	0.1 U	384	540	3,000	50 J	0.86 J	5,600	96
High traffic arterial	RCB13	04/07/04	Diag/Duw	20	172	163	0.17	567	1,200	7,800	161	1.67	17,000	177
High traffic arterial	RCB15	04/07/04	Diag/Duw	10	157	145	0.2	781	1,400	9,100	303	3.68	18,000	219
High traffic arterial	RCB17	04/16/04	Diag/Duw	9	137	146	0.15	534	1,400	7,200	231	3.04	12,000	158
High traffic arterial	RCB18	04/16/04	Diag/Duw	9 U	229	137	0.13	575	1,700	8,500	248	2.51	14,000	141
High traffic arterial	RCB19	04/16/04	Diag/Duw	7 U	71.9	64	0.05 U	252	470	2,600	64	1.48	5,900	137
High traffic arterial	RCB20	04/16/04	Diag/Duw	10 U	164	206	0.2	759	1,800	11,000	187	1.31	24,000	168
High traffic arterial	RCB21	04/16/04	Diag/Duw	7 U	38.4	39	0.07 U	132	390	2,500	19 U	0.31 U	4,300	70
High traffic arterial	RCB27	04/21/04	Diag/Duw	7 U	159	111	0.06 U	335	560	2,400	22	0.37	12,000	201
High traffic arterial	RCB33	06/30/04	Diag/Duw	10 U	149	60	0.06 U	674	190	1,100	53	2.24	740	31
High traffic arterial	RCB34	06/30/04	Diag/Duw	8 U	134	89	0.08	488	1,200	6,100	114	0.63	16,000	152
High traffic arterial	RCB35	06/30/04	Diag/Duw	8 U	120	193	0.1	358	420	2,100	142	1.49	8,000	84
High traffic arterial	RCB36	06/30/04	Diag/Duw	15	751	152	1.17	505	1,800	6,000	290 Y	3.03 Y	48,000	502
High traffic arterial	RCB37	06/30/04	Diag/Duw	7 U	58.5	62	0.06 U	189	220	1,200	17,500 c	322	8,300	153
High traffic arterial	RCB39	06/30/04	Diag/Duw	7 U	113	61	0.06 U	213	640	3,500	160	3.50	4,400	96
High traffic arterial	RCB40	06/30/04	Diag/Duw	5 U	70.4	99	0.04 U	207	140	850	20 U	0.72 U	980	35
Industrial	RCB1	02/20/04	Diag/Duw	9	112	1,370	0.87	364	3,500	4,000	670	6.70	46,000	460
Industrial	RCB16	04/07/04	Diag/Duw	12	154	105	0.19	698	1,400	8,000	293	4.13	14,000	197
Industrial	RCB29	05/07/04	Diag/Duw	9 U	134	106	0.26	334	130	480	68	1.53	1,400	32
Industrial	RCB43	02/04/05	LDW	20 U	NA	118	0.09	NA	190	1,100	158	2.06	920	20
Low traffic mix	RCB8	03/03/04	Diag/Duw	9	75.3	54	0.07 U	223	320	3,000	19	0.24	8,600	110
Low traffic mix	ROW24	01/14/05	Diag/Duw	9	84.4	19	0.06 U	185	6,400	14,000	58 U	0.47 U	18,000	389
Low traffic res	RCB4	02/22/04	Diag/Duw	30	167	245	0.30	851	460	1,600	20 U	0.17 U	3,600	30
Low traffic res	RCB5	02/22/04	Diag/Duw	30	66.6	197	0.32	362	260	2,400	40 J	0.36 J	2,400	22
Low traffic res	RCB22	04/16/04	Diag/Duw	6 U	97.2	65	0.06 U	176	230	1,500	21 J	0.45 J	3,100	66
Low traffic res	RCB23	04/21/04	Diag/Duw	10 U	81.6	180	0.12	277	690	2,500	45 J	0.42 J	8,700	81
Low traffic res	RCB28	04/21/04	Diag/Duw	10 U	76.9	131	0.2	313	140	910	36	0.29	4,100	33
Medium traffic	RCB6	03/03/04	Diag/Duw	7 U	46.4	46	0.06 U	176	380	2,800	19 U	0.40 U	4,000	85
Medium traffic	RCB9	03/03/04	Diag/Duw	10	42.5	53	0.04 U	151	160	1,900	20 U	0.43 U	970	21
Medium traffic	RCB24	04/21/04	Diag/Duw	8 U	41.4	316	0.31	226	400	1,400	25	0.34	1,100	15
Medium traffic	RCB25	04/21/04	Diag/Duw	7 U	53.1	25	0.07 U	120	290	1,200	19 U	0.34 U	1,900	34
Medium traffic	RCB26	04/21/04	Diag/Duw	6 U	40.2	136	0.06 U	84.7	1,800	4,500	19 U	0.29 U	1,300	20
Medium traffic	RCB41	06/30/04	Diag/Duw	8 U	83.2	120	0.07 U	223	260	1,200	133 J	1.27 J	2,800	27
Thea Foss (Tacoma)													
Residential	-												4,825	
(8 samples)													(2,000 - 10,000)	
Commercial													21,000	

Residential									4,825	
(8 samples)								(2,000 - 10,000)	
Commercial									21,000	
(5 samples)								(2,100 - 67,000)	
Industrial									13,250	
(14 samples)								(2,300 - 34,000)	
SQS	390	450	0.41	410	NA	NA	NA	12	NA	47
CSL	390	530	0.59	960	NA	NA	NA	65	NA	78
MTCA Level A ^b	NA	250	2	NA	2,000	2,000	1,000	NA	NA	NA
MTCA Level A ^c	NA	1,000	2	NA	2,000	2,000	10,000	NA	NA	NA

a. Bis(2-ethylhexyl)phthalate

b. MTCA Method A soil cleanup level for unrestricted use.

c. Cleaned 6/05.

c. MTCA Method A soil cleanup level for industrial use.

Exceeds SQS Exceeds CSL or MTCA Method A Cleanup Level (TPH) U = Chemical not detected at concentration shown.

Y = Chemical not detected at concentration shown.

Reporting limit raised due to background interference.

J = Concentration is less than the reporting limit.

ID Samples (mg/sq) (mg														
interfacture interfacture Norther Lift, K.Y. Wys, D3° outbill to dittel to	Sample	Location	Date	As	Cu	Pb	Hg			TPH-Oil	PCBs	PCBs	BEHP ^a	BEHP ^a
MH1* Metrols-MLK Ways 50 37 outfall bolth. 100103 20 147 217 0.4 1150 2300 5300 79 1.1 24,000 333 MH2* Due of MH 1001103 10 153 163 0.2 1660 2300 7600 103 15 24,000 333 MH3* Midgicent to wash pad at 992,001 h/w 5 (207) 0.100103 10 153 163 0.2 847 NA NA NA NA 110 17.2 25,000 430 0.6 5,600 113 MH4* MH4 King Jr Vy S and threway, MV corner 001103 8 73 66 0.05 3,57 1,00 3600 43 0,9 6,800 143 MH5 Biask attoring it stored dool MAK Jr Way S 10010103 8 73 66 0.05 1,40 1,40 1,40 1,40 1,40 1,40 1,40 1,40 1,40 1,40 1,40 1,40 1,40 1,40 1,40 <td></td> <td></td> <td>Sampled</td> <td>(mg/kg)</td> <td>(mg/kg)</td> <td>(mg/kg)</td> <td>(mg/kg)</td> <td>(mg/kg)</td> <td>(mg/kg)</td> <td>(mg/kg) g</td> <td>/kg_DW)</td> <td>(mg/kg OC)</td> <td>(ug/kg DW)</td> <td>(mg/kg OC)</td>			Sampled	(mg/kg) g	/kg_DW)	(mg/kg OC)	(ug/kg DW)	(mg/kg OC)						
MH2 Duppe of MH1 1001/03 20 161 261 0.2 1.300 7650 103 1.5 24.000 250 MH3 MH adjacent to wash pind at 8682 40H Ave S (30 ⁺) 0.0103 1.0 131 226 0.2 347 NA NA 1.0 250.00 260 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 430 0.9 6.800 111 118 198 0.33 6.500 100 111 118 198 0.33 6.20 6.80 1.1 680 314 MH7 MH K, King Jr, Wy S and S Kardik S, NE come 100103 10 149 246 0.06 90 NA														
MH2 ⁺ MH4 MH4 <t< td=""><td></td><td>•</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		•												
bH/3 MH algoent to wash pad at 9892 400 Ave S (36°). 03/1605 10 131 226 0.2 847 NA NA NA 110 1.7 26,000 419 MH-4 MH M, King Jr W, S and dreway, W corner 100/103 8 U 7.48 82 0.01 416 1.00 5.600 419 MH-2 MH King Jr W, S and dreway, W corner 100/103 120 147 2.17 0.4 1.15 NA		•												
bH+ MH ML Kng J, Wy S and driveway, NW concer 100103 8 0 65.7 79 0.9 446 1.400 2500 43 0.9 5.600 146 MH-S MH Kng J, Wy S and driveway, NW conce 0.7160.6 8 0 74.8 82 0.41 5.800 3500 43 0.9 5.800 144 MH-S MH Sibick scandingt isocial actionation and driveway, NW concel 0.71013 12 147 0.4 1150 N.N NA		MH adjacent to wash pad at 9892 40th Ave S (36")	10/01/03		153	183			2,200			1.0	25,000	309
MH4 MH4 Kroj JrWy S and driversay, NW corner 0316065 B U 748 82 0.11 445 NA 28 0.5 22.000 443 MH5 MH5 Corner 8001 MLV, IW wy S 1001103 120 147 217 0.4 1500 NA NB NB NB S00 S00 S00 S00 S00 <td></td> <td>MH adjacent to wash pad at 9892 40th Ave S (36")</td> <td>03/16/05</td> <td>10</td> <td>131</td> <td>226</td> <td>0.2</td> <td>847</td> <td>NA</td> <td>NA</td> <td>110</td> <td>1.7</td> <td>26,000</td> <td>406</td>		MH adjacent to wash pad at 9892 40th Ave S (36")	03/16/05	10	131	226	0.2	847	NA	NA	110	1.7	26,000	406
MH-B MH-B Each 961 MLK µr Mys 100/103 12 147 0.4 145 0.5 0.6 0.6 0.7 1.000 9720 143 0.9 6,600 143 MH-B Block andgrist for date goot MLK Jr 100/103 11 118 198 0.33 657 660 1.700 NA <		MH ML King Jr Wy S and driveway, NW corner	10/01/03	8 U	55.7	79	0.09	416	1,400	2,900	43	0.9	5,600	119
NHE Black sandgring stored at 901 MLK Jr Way S 10/01/03 120 147 217 0.4 1153 NA	MH4 ^e	MH ML King Jr Wy S and driveway, NW corner	03/16/05	8 U	74.8	82	0.11	415	NA	NA	25	0.5	22,000	444
MH6 Norfok ditch opp. fueling pad at 9892 40th Ave S 100/103 11 118 198 0.33 627 660 1.700 NA	MH5 ^e	MH SE corner 9901 MLK Jr Way S	10/01/03	8	73	66	0.06	357	1,800	3,600	43 J	0.9	6,800	148
MH7" MHAL King J. Wy Sand S Mortek SL NE comer 10/2003 20.0 91.1 91.1 91.0 127 88 300 25 1.1 660 31 Norfold:21 WSDOT pond: Inst cell 09/3004 10 149 246 16 0.05 90 NA N4 10 16 400 580 108 2.0 720 13 Norfold:21 WSDOT pond: Inst cell 09/3004 7 U 39.9 38 0.06 108 43 200 2.0 720 13 South Park ere RCB44 2nd Ave S ditch ids of divgagte 04/1305 23 105 87 0.07 394 3000 3100 22.0 7.800 160 MH20 ThA ve S SD-MH at S Riversite St and S holden SI 04/1305 20 175 151 0.17 547 2.900 2.400 5.7 6.400 63 MH21 ThA ve S SD-MH at S230 Sth Ave S 04/1305 20 129 119 0.2	MH5	Black sand/grit stored at 9901 MLK Jr Way S	10/01/03	120	147	217	0.4	1,150	NA	NA	NA	NA	NA	NA
MH/T MH ML King Jr Wy S and S Norlick St, NE come 0.31/6005 6 U 24.6 16 0.05 U 90 NA NA 19 U 16 U 400 33 Norlick2U WSDOT pond: first ell 0.930.004 7 U 33.9 38 0.06 108 43 200 40 2.4 20 U 11 South Park area RCE44 20 Ve S ditch u's of lidegate 04/13005 21 98.8 113 0.06 444 54.00 250 4.5 1.600 23 NH20 7 M Ave S Stol-MH at Shverside Stand S Holden St. 04/13005 20 175 161 0.07 334 53.00 122 2.5 7.800 163 NH20 7 M Ave S Stol-MH at Shverside Stand S Holden St. 04/13005 20 176 161 0.17 547 2.900 4.40 57.00 2.900 4.40 57.00 18.00 3.00 122 2.5 7.800 18.00 3.00 122 2.900 4.40 57.00 120.0 1.900 19.0	MH6	Norfolk ditch opp. fueling pad at 9892 40th Ave S	10/01/03	11	118	198	0.33	627	650	1,700	NA	NA	NA	NA
Norfalk21 WSDOT pond: field and soule (at outlet SPU drain) 09/3004 10 149 245 0.18 6651 140 580 108 2.0 720 13 Norfalk21 WSDOT pond: head of swale (at outlet SPU drain) 09/3004 7 0 39.9 38 0.06 108 43 200 40 2.4 20 U 11 South Park and CRCH4 2nd Ave S ditch is of of we separator at 0.41/3005 21 15 87 0.07 344 3300 122 2.5 7,800 8300 122 7,800 8300 122 2.5 7,800 8300 143 140 <	MH7 ^e	MH ML King Jr Wy S and S Norfolk St, NE corner	10/02/03	20 U	51.1	51	0.05 U	127	88	300	25	1.1	680	31
Norfalk21 WSDOT pont: frist cell 09/3004 10 149 246 0.18 6651 140 580 108 2.0 720 13 Norfalk21 WSDOT pont: frist cell 09/3004 7 0 39.9 38 0.06 108 43 200 40 2.4 20 U 1 South Park area RCB44 2nd Ave S dith id of of ow separator at 04/1305 11 98.8 113 0.06 444 3400 250 4.5 1.600 29 160 3400 122 2.5 7.800 160 3400 122 2.5 7.800 180 440 5.7 6.400 83 160 140 840 300 128 1.900 119 1.9 6.100 3100 150 2.1 180 2.2 7.5 1.900 119 1.9 6.100 3100 1.900 119 1.9 6.100 310 30 32.2 300 30 32.2 300 <td>MH7^e</td> <td>MH ML King Jr Wy S and S Norfolk St, NE corner</td> <td>03/16/05</td> <td>6 U</td> <td>24.6</td> <td>16</td> <td>0.05 U</td> <td>90</td> <td>NA</td> <td>NA</td> <td>19 L</td> <td>J 1.6 U</td> <td>400</td> <td>33</td>	MH7 ^e	MH ML King Jr Wy S and S Norfolk St, NE corner	03/16/05	6 U	24.6	16	0.05 U	90	NA	NA	19 L	J 1.6 U	400	33
South Park area South Park area RC644 2nd Ave S ditch u's of didegate 04/13/05 11 98.8 113 0.06 444 3(100) 250 4.5 1.600 29 NH207 7th Ave S 310-Mit u's of lidegate 04/13/05 22 175 151 0.17 547 2,900 2,900 440 5.7 6,400 83 NH217 7th Ave S SD-MH at SNerside St and S Holden St 04/13/05 20 129 119 0.2 575 1,900 1,900 119 1.9 6,100 937 Slip 4 drainage basin 4 20 129 119 0.2 575 1,900 119 1.9 6,100 937 Slip 4 drainage basin 4 20 163.4 0.2 377 83 380 1,820 P 30 2,000 30 2,000 30 2,000 30 2,000 30 2,000 30 2,000 30 2,1600 1,000 <td></td> <td></td> <td>09/30/04</td> <td>10</td> <td>149</td> <td>245</td> <td>0.18</td> <td>651</td> <td>140</td> <td>580</td> <td>108</td> <td>2.0</td> <td>720</td> <td></td>			09/30/04	10	149	245	0.18	651	140	580	108	2.0	720	
RCB44 2nd Ave S ditch d/s of o/w separator at 04/13/05 11 98.8 113 0.06 444 3100 3100 220 4.5 1,600 29 MH20 ⁰ 7th Ave S SD-MH at S Riverside St and S Holden St 04/13/05 20 175 151 0.17 547 2,900 2,900 440 6.7 6,400 83 MH20 ¹⁷ 7th Ave S SD-MH at S Riverside St and S Morro St 04/13/05 20 129 119 0.2 515 3,100 190 2.1 3,600 43 MH22 7th Ave S SD-MH at S Riverside St and S Morro St 04/13/05 20 129 119 0.2 515 1,900 119 1.9 6,400 43 Silp 4 drainage basin ^d 119 0.2 517 1,800 180 10 2,800 43 2,000 30 1,600 20 1,600 20 1,600 2,000 30 2,000 30 2,000 30 2,000 30 2,000 30 2,000 30 2,000 30 2,000 30 2,000 <td< td=""><td>Norfolk21</td><td>WSDOT pond: head of swale (at outlet SPU drain)</td><td>09/30/04</td><td>7 U</td><td>39.9</td><td>38</td><td>0.06</td><td>108</td><td>43</td><td>200</td><td>40</td><td>2.4</td><td>20 </td><td>J 1U</td></td<>	Norfolk21	WSDOT pond: head of swale (at outlet SPU drain)	09/30/04	7 U	39.9	38	0.06	108	43	200	40	2.4	20	J 1U
RCB44 2nd Ave S ditch dis of o/w separator at 04/1306 11 98.8 113 0.06 444 3100 3100 220 4.5 1,600 29 MH20 ⁴ 7th Ave S SD-MH at S Riverside St and S Holden St 0.4/1305 20 105 87 0.07 394 3900 122 2.5 7,800 180 MH21 7th Ave S SD-MH at S Riverside St and S Monce St 0.4/1305 20 175 151 0.17 547 2,900 2,900 440 5.7 6,400 83 MH22 7th Ave S SD-MH at S Riverside K at 8230 Bh Ave S 0.4/1305 20 129 119 0.2 575 1,900 119 1.9 6,400 43 Silp 4 drainage basin ^d 219 02 2377 88 380 1,820 P 30 1,500 25 50 0.9 32 200 1,000 32 800 73 344 302 300 1,20 P 30 1,500 25 50 0.99 32 120 270 1,400 32 800 <td< td=""><td></td><td>· · · · ·</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>		· · · · ·												
RC645 2nd Ave S 2ith us of tidegate 04/13/05 23 105 87 0.07 394 3,900 3,900 122 2.5 7,800 (f30) MH20 ⁰ ThA we S SD-MH at SN wrstels Stand S Holens St 04/13/05 20 175 151 0.17 547 2,900 2,200 2,200 440 5.7 6,400 43 MH22 ThA we S SD-MH at SN wrstels Stand S Holens St 04/13/05 20 129 119 0.2 575 1,900 119 1.9 6,100 97 Silp 4 drainage basin ^d	South Par	k area												
NH20" Tha Ave S SDMH at SR/verside St and S Monroe St 04/13/05 20 175 151 0.17 547 2 900 2400 5.7 6,400 83 NH20 Tha Ave S SDMH at SR Monroe St 04/13/05 30 148 130 0.2 515 3.100 3100 2100 119 1.90 2.1 3.800 433 MH20 ThA Ave S SDMH at 8230 5th Ave S 04/13/05 20 129 119 0.2 575 1.900 119 1.90 5.1 6,100 971 Silp 4 drainage basin " 2110 0.216/05 20 18.2 142 0.2 411 40 190 1,930 1.000 30 2,000 30 2,000 30 2,000 30 2,000 30 2,000 30 2,000 30 2,000 30 2,000 30 2,000 30 2,000 30 2,000 30 2,000 30 2,160 5,16 1,000 310	RCB44	2nd Ave S ditch d/s of o/w separator at	04/13/05	11	98.8	113	0.06				250	4.5	1,600	29
MH21 Tin Ave S SDMH at 7th Ave S and S Monroe St 04/13/05 20 148 130 0.2 515 3/100 190 2.1 3.800 43 MH22 Th Ave S SDMH at 820 5th Ave S 04/13/05 20 129 119 0.2 575 1,900 119 1.9 6,100 97 Sip 4 drainage basin ^d State State <ths< td=""><td>RCB45</td><td>2nd Ave S ditch u/s of tidegate</td><td>04/13/05</td><td>23</td><td>105</td><td>87</td><td>0.07</td><td>394</td><td>3,900</td><td>3,900</td><td>122</td><td>2.5</td><td>7,800</td><td>160</td></ths<>	RCB45	2nd Ave S ditch u/s of tidegate	04/13/05	23	105	87	0.07	394	3,900	3,900	122	2.5	7,800	160
MH22 7th Ave S SD-MH at 8230 5th Ave S 04/13/05 20 129 119 0.2 575 1,900 119 1.9 6,100 972 Silp 4 drainage basin ⁴ MH100 MH100 on Silp 4 EOF/SD (24") 02/16/05 20 88.9 134 0.2 377 88 380 1,820 P 30 1,500 25 Sile 7.4 MH20 on Silp 4 EOF/SD (24") 02/16/05 20 182.0 120 120 120 120 100 92 800 73 SiL4.715 MH303 on KC airport SD 02/16/05 9 64.1 51 0.48 208 120 210 1430 7.7 33 430 33 33 34.47 MH223 on KC airport SD 02/16/05 8 45.1 110 0.7 272 47 190 7.000 920 500 66 45.0 130 20.0 1,000 5.4 50.0 7.1 1,300 310 97.1 1,300 310 97.	MH20 ^g	7th Ave S SDMH at S Riverside St and S Holden St	04/13/05	20	175	151	0.17	547	2,900	2,900	440	5.7	6,400	83
Silp 4 drainage basin 4 MH100 MH100 on Slip 4 EOF/SD (24") 02/16/05 20 88.9 134 0.2 377 88 380 1,820 P 30 1,500 25 MH100 MH100 on Slip 4 EOF/SD (24") 02/16/05 20 102.0 142 0.2 411 40 190 1,980 30 2,000 30 30 2,000 30 30 2,000 30 30 2,000 30 30 34 2,000 30<		7th Ave S SDMH at 7th Ave S and S Monroe St	04/13/05				0.2			3,100			3,800	
MH100 on Slip 4 EOF/SD (24") 02/16/05 20 88.9 134 0.2 377 88 380 1.820 P 30 1.600 25 MH100 MH100 on Slip 4 EOF/SD (24") 02/16/05 20 102.0 142 0.2 411 40 190 1,980 30 2,000 30 SL4-14 MH221A on KC airport SD 02/16/05 12 38.5 50 0.09 332 120 210 1,490 149 760 78 SL4-15 MH363 on KC airport SD 02/16/05 8 45.1 110 0.7 272 47 190 7,000 920 500 66 SL4-15 MH363 on KC airport SD 02/16/05 30 85.5 155 0.07 130 200 1000 9 2,793 430 39 SL4-14A MH229A on KC airport SD 02/16/05 30 85.5 155 0.07 1,301 200 1,000 56.00 144 2,200 55	MH22	7th Ave S SDMH at 8230 5th Ave S	04/13/05	20	129	119	0.2	575	1,900	1,900	119	1.9	6,100	97
MH100 on Slip 4 EOF/SD (24") 02/16/05 20 88.9 134 0.2 377 88 380 1,820 P 30 1,500 25 MH100 MH100 nSlip 4 EOF/SD (24") 02/16/05 20 102.0 142 0.2 411 40 190 1,980 30 2,000 30 SL4-14 MH221A on KC airport SD 02/16/05 12 38.5 50 0.09 332 120 210 1,490 149 760 78 SL4-15 MH363 on KC airport SD 02/16/05 9 64.1 51 0.48 208 120 2600 73 SL4-15 MH363 on KC airport SD 02/16/05 8 45.1 110 0.7 272 47 190 7,000 920 500 66 SL4-174A MH229A on KC airport SD 02/16/05 30 85.5 155 0.07 1,330 200 1,000 7.4 1,300 30 8.4 2,000 56 144 2,200 55 11 Georgetown flume athead culv under E Marginal Wa 03/24/05 7 U 20.2		_												
IMH 100 MH 100 on Sip 4 EOF/SD (24") 02/16/05 20 102.0 142 0.2 411 40 190 1,800 30 2,000 30 SL4-14 MH221A on KC airport SD 02/16/05 12 38.5 50 0.09 532 120 270 1,400 149 760 78 SL4-15 MH363 on KC airport SD 02/16/05 9 64.1 51 0.48 208 120 680 31,000 9 2703 430 39 SL4-15 MH363 on KC airport SD 02/16/05 8 45.1 110 0.72 272 47 190 7.00 920 500 666 SL4-15 MH363 on KC airport SD 02/16/05 30 85.5 155 0.07 1180 200 1,000 5,660 144 2,200 55 SL4-14 MH229A on KC airport SD 02/16/05 30 85.5 155 0.07 1,160 200 1,000 5,660 144 2,200 55 T1 Georgetown flume at head culv under E Marginal Wa 03/24/05														
SL4-14 MH221A on KC airport SD 02/16/05 20 126 94 0.09 572 120 270 1,000 92 800 73 SL4-14 MH221A on KC airport SD 02/16/05 12 38.5 50 0.09 332 120 210 1,490 149 760 76 SL4-15 MH363 on KC airport SD 02/16/05 8 45.1 110 0.72 272 47 190 7,000 920 500 66 SL4-15 MH323 on KC airport SD 02/16/05 30 69.7 120 0.07 699 110 30 310 P 7.1 1,300 300 85.5 155 0.07 1,130 200 1,000 5,600 144 2,200 55 SL4-14A MH229A on KC airport SD 02/16/05 30 85.5 155 0.07 1,130 200 1,000 5,600 144 2,200 55 SL4-14A MH229A on KC airport SD 02/16/05 7 <u< td=""> 18.5 14 0.05 U 54 21 99 66<td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></u<>														
SL4-T4 MH221A on KC airport SD 02/16/05 12 38.5 50 0.09 332 120 210 1.490 149 760 76 SL4-T5 MH363 on KC airport SD 02/16/05 8 45.1 110 0.07 272 47 190 7.000 920 500 66 SL4-T5 MH323 on KC airport SD 02/16/05 8 45.1 110 0.07 699 110 380 310 P 7.1 1,300 30 SL4-T5 MH329 on KC airport SD 02/16/05 30 69.7 120 0.07 699 110 380 310 P 7.1 1,300 30 SL4-T4A MH229A on KC airport SD 02/16/05 30 85.5 155 0.07 1,4130 200 1,600 5.60 144 2,200 55 T1 Georgetown flume d/s culv under S Myrtle St 03/24/05 7 0 2.2 15 0.05 U 61 19 70 65 5.6 140 10 13 Georgetown flume d/3 twin pipe outlets 03/25/05 7 0														
SL4-T5 MH363 on KC airport SD 02/16/05 9 64.1 51 0.48 208 120 680 31.000 P 2.793 430 39 SL4-T5 MH363 on KC airport SD 02/16/05 8 45.1 110 0.7 272 47 190 7,000 920 500 66 SL4-T4A MH229A on KC airport SD 02/16/05 30 85.5 155 0.07 1130 200 1,000 5,600 144 2,200 55 T1 Georgetown flume at head culv under E Marginal Wa 03/24/05 7 U 18.5 14 0.05 U 54 21 99 66 4.6 140 10 T5 Dupe of T2 03/24/05 7 U 20.2 15 0.05 U 61 19 70 65 5.6 140 12 2.000 173 Georgetown flume 40's twip pie outlets 03/24/05 7 U 20.2 15 0.05 U 61 19 70 65 5.6 140 12 13 Georgetown flume 40's twip pie outlets 03/24/05 7 U 54.														
SL4-T5 MH363 on KC airport SD 02/16/05 8 45.1 110 0.7 272 47 190 7,000 920 500 66 SL4-T4A MH229A on KC airport SD 02/16/05 30 69.7 120 0.07 699 110 380 310 P 7.1 1,300 30 SL4-T4A MH229A on KC airport SD 02/16/05 30 85.5 155 0.07 1130 200 1,000 5,600 144 2,200 55 T1 Georgetown flume at head culv under E Marginal Wa 03/24/05 7 U 18.5 14 0.05 U 54 21 99 66 4.6 140 10 T5 Dupe of T2 03/24/05 7 U 20.2 15 0.05 U 61 19 70 65 5.6 140 10 T3 Georgetown flume 40' d/s twin pipe outlets 03/24/05 7 U 24.6 263 0.41 180 84 460 3,900 173 580 26 T4 Georgetown flume 40' d/s twin pipe outlets 03/25/05 7 U		•												
SL4-T4A MH229A on KC airport SD 02/16/05 30 69.7 120 0.07 699 110 380 310 P 7.1 1,300 30 SL4-T4A MH229A on KC airport SD 02/16/05 30 85.5 155 0.07 1,130 200 1,000 5,600 144 2,200 55 T1 Georgetown flume at head culv under S Myrtle St 03/24/05 7 U 18.5 14 0.05 U 54 21 99 66 4.6 140 10 T5 Dupe of T2 03/24/05 7 U 18.5 14 0.05 U 54 19 70 65 5.6 140 12 T3 Georgetown flume 40' d/s twin pipe outlets 03/25/05 7 U 54.6 263 0.41 180 84 460 3,900 173 580 26 T4 Georgetown flume u/s end at steamplant 03/25/05 7 V 79.6 61 0.08 240 120 670 400 15 2,000 75 P1 Georgetown flume		•												
SL4-T4A MH229A on KC airport SD 02/16/05 30 85.5 155 0.07 1,130 200 1,000 5,600 144 2,200 55 T1 Georgetown flume at head culv under E Marginal Wa 03/24/05 T1 63.2 99 0.1 218 36 140 330 8.4 2,000 51 T2 Georgetown flume at head culv under S Myrtle St 03/24/05 7 U 18.5 14 0.05 U 54 21 99 66 4.6 140 10 T5 Dupe of T2 03/24/05 7 U 20.2 15 0.05 U 61 19 70 65 5.6 140 12 T4 Georgetown flume 40' d/s twin pipe outlets 03/24/05 7 U 79.6 61 0.08 2400 97.00 3,740 43 210 2 16 Georgetown flume u/s E Marginal (MH100) 03/25/05 7 U 79.6 61 0.08 2400 97.00 3,740 43 210 2 17 120 17 120 17 120 17 120 <td></td>														
T1 Georgetown flume at head culv under E Marginal Wa 03/24/05 11 63.2 99 0.1 218 36 140 330 8.4 2,000 51 T2 Georgetown flume d/s culv under S Myrtle St 03/24/05 7 U 18.5 14 0.05 U 54 21 99 66 4.6 140 10 T5 Dupe of T2 03/24/05 7 U 20.2 15 0.05 61 19 70 65 5.6 140 12 Georgetown flume 40' d/s twin pipe outlets 03/24/05 7 U 20.2 15 0.05 61 19 70 65 5.6 140 12 T4 Georgetown flume u/s end at steamplant 03/24/05 40 314 590 1.7 1,130 2,300 9,700 3,740 43 210 2 T6 Georgetown flume u/s E Marginal (MH100) 03/25/05 7 U 79.6 61 0.08 240 120 670 4400 15 2,000 75 P1 Georgeto		•												
T2 Georgetown flume d/s culv under S Myrtle St 03/24/05 7 U 18.5 14 0.05 U 54 21 99 66 4.6 140 10 T5 Dupe of T2 03/24/05 7 U 20.2 15 0.05 U 61 19 70 65 5.6 140 12 T3 Georgetown flume 40' d/s twin pipe outlets 03/24/05 7 U 54.6 263 0.41 180 84 460 3.900 173 580 26 T4 Georgetown flume u/s end at steamplant 03/24/05 40 314 J 590 J 1.7 1,130 2,300 9,700 3,740 43 210 2 T6 Georgetown flume u/s E Marginal (MH100) 03/25/05 7 U 70 61 0.08 240 120 670 400 15 2,000 75 P1 Georgetown flume at 8" pipe 20' u/s S Myrtle St 03/25/05 7 U 18 16 0.05 U 61 14 66 120 17 120 17 P2 Georgetown flume at 8" pipe 85' u/s S Myrtle St <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>														
T5 Dupe of T2 03/24/05 7 U 20.2 15 0.05 U 61 19 70 65 5.6 140 12 T3 Georgetown flume 40' d/s twin pipe outlets 03/25/05 7 U 54.6 263 0.41 180 84 460 3,900 173 580 26 T4 Georgetown flume u/s end at steamplant 03/25/05 7 U 79.6 61 0.08 24/00 97/00 3740 43 210 2 T6 Georgetown flume u/s end at steamplant 03/25/05 7 U 79.6 61 0.08 240 120 670 400 15 2,000 75 P1 Georgetown flume at 8" pipe 20' u/s S Myrtle St 03/25/05 7 U 18 16 0.05 U 61 14 66 120 17 120 17 P2 Georgetown flume at 8" pipe 45' u/s S Willow St 03/25/05 13 56.6 69 0.18 238 63 360 780 32 560 23 P3 Georgetown flume at 8" pipe 45' d/s S Myrtle St 03/24/05		8												
T3 Georgetown flume 40' d/s twin pipe outlets 03/25/05 7 U 54.6 263 0.41 180 84 460 3,900 173 580 26 T4 Georgetown flume u/s end at steamplant 03/24/05 40 314 J 590 J 1.7 1,130 2,300 9,700 3,740 43 210 2 T6 Georgetown flume u/s E Marginal (MH100) 03/25/05 7 U 79.6 61 0.08 240 120 670 400 15 2,000 75 P1 Georgetown flume at 8" pipe 20' u/s S Myrtle St 03/25/05 7 U 18 16 0.05 U 61 14 66 120 17 120 17 P2 Georgetown flume at 8" pipe 35' u/s S Willow St 03/25/05 13 56.6 69 0.18 238 63 360 780 32 560 23 P3 Georgetown flume at 8" pipe 45' d/s S Myrtle St 03/24/05 6 U 12.8 10 0.06 U 53 9 61 38.3 5.0 140 18 P5 Georgetown flume		· · ·												
T4 Georgetown flume u/s end at steamplant 03/24/05 40 314 J 590 J 1.7 1,130 2,300 9,700 3,740 43 210 2 T6 Georgetown flume u/s E Marginal (MH100) 03/25/05 7 U 79.6 61 0.08 240 120 670 400 15 2,000 75 P1 Georgetown flume at 8" pipe 20' u/s S Myrtle St 03/25/05 7 U 18 16 0.05 U 61 14 66 120 17 120 17 P2 Georgetown flume at 8" pipe 85' u/s S Willow St 03/25/05 13 56.6 69 0.18 238 63 360 780 32 560 23 P3 Georgetown flume at 8" pipe 45' d/s S Myrtle St 03/24/05 6 U 12.8 10 0.06 U 53 9 61 38.3 5.0 140 18 P5 Georgetown flumeditch on S Myrtle St 03/24/05 10 U 95.1 73 0.08 195 1,600 3,000 1,500 22 3,800 55 Diagonal Ave S CSO/SD drainage bas														
T6 Georgetown flume u/s E Marginal (MH100) 03/25/05 7 U 79.6 61 0.08 240 120 670 400 15 2,000 75 P1 Georgetown flume at 8" pipe 20' u/s S Myrtle St 03/25/05 7 U 18 16 0.05 U 61 14 66 120 17 120 17 P2 Georgetown flume at 8" pipe 85' u/s S Willow St 03/25/05 13 56.6 69 0.18 238 63 360 780 32 560 23 P3 Georgetown flume at 15" pipe (plugged) at d/s end tu 03/25/05 20 133 501 1.0 766 250 1,100 92,000 1,746 2,100 40 P4 Georgetown flume at 8" pipe 45' d/s S Myrtle St 03/24/05 6 U 12.8 10 0.06 U 53 9 61 38.3 5.0 140 18 P5 Georgetown flumeditch on S Myrtle St 03/24/05 10 U 95.1 73 0.08 195 1,600 3,000 1,500 22 3,800 55 Diagonal														
P1 Georgetown flume at 8" pipe 20' u/s S Myrtle St 03/25/05 7 U 18 16 0.05 U 61 14 66 120 17 120 17 P2 Georgetown flume at 8" pipe 85' u/s S Willow St 03/25/05 13 56.6 69 0.18 238 63 360 780 32 560 23 P3 Georgetown flume at 15" pipe (plugged) at d/s end tui 03/25/05 20 133 501 1.0 766 250 1,100 92,000 1,746 2,100 40 P4 Georgetown flume at 8" pipe 45' d/s S Myrtle St 03/24/05 6 U 12.8 10 0.06 U 53 9 61 38.3 5.0 140 18 P5 Georgetown flumeditch on S Myrtle St 03/24/05 10 U 95.1 73 0.08 195 1,600 3,000 1,500 22 3,800 55 Diagonal Ave S CSO/SD drainage basin MP Mouth of pipe 01/25/02 14 U 38 130 0.34 U 220 NA NA NA NA M1 Mainline W of E														
P2 Georgetown flume at 8" pipe 85' u/s S Willow St 03/25/05 13 56.6 69 0.18 238 63 360 780 32 560 23 P3 Georgetown flume at 15" pipe (plugged) at d/s end tu 03/25/05 20 133 501 1.0 766 250 1,100 92,000 1,746 2,100 40 P4 Georgetown flume at 8" pipe 45' d/s S Myrtle St 03/24/05 6 U 12.8 10 0.06 U 53 9 61 38.3 5.0 140 18 P5 Georgetown flumeditch on S Myrtle St 03/24/05 10 U 95.1 73 0.08 195 1,600 3,000 1,500 22 3,800 55 Diagonal Ave S CSO/SD drainage basin MP Mouth of pipe 01/25/02 14 U 38 130 0.34 U 220 NA NA NA NA NA M1 Mainline W of E Marginal 01/25/02 14 U 38 130 0.31 U 250 77 420 62 U 16 U 1,000 264 M2 Mainline at														
P3 Georgetown flume at 15" pipe (plugged) at d/s end tui 03/25/05 20 133 501 1.0 766 250 1,100 92,000 1,746 2,100 40 P4 Georgetown flume at 8" pipe 45' d/s S Myrtle St 03/24/05 6 U 12.8 10 0.06 U 53 9 61 38.3 5.0 140 18 P5 Georgetown flumeditch on S Myrtle St 03/24/05 10 U 95.1 73 0.08 195 1,600 3,000 1,500 22 3,800 55 Diagonal Ave S CSO/SD drainage basin 01/25/02 14 U 38 130 0.34 U 220 NA NA NA NA NA NA MP Mouth of pipe 01/25/02 14 U 38 130 0.31 U 250 77 420 62 U 16 U 1,000 264 M2 Mainline at E Marginal Way S 01/25/02 13 U 43 140 0.31 U 240 63 560 63 U 12 U 860 160														
P4 Georgetown flume at 8" pipe 45' d/s S Myrtle St 03/24/05 6 U 12.8 10 0.06 U 53 9 61 38.3 5.0 140 18 P5 Georgetown flumeditch on S Myrtle St 03/24/05 10 U 95.1 73 0.08 195 1,600 3,000 1,500 22 3,800 55 Diagonal Ave S CSO/SD drainage basin MP Mouth of pipe 01/25/02 14 U 38 130 0.34 U 220 NA		· · ·												
P5 Georgetown flumeditch on S Myrtle St 03/24/05 10 U 95.1 73 0.08 195 1,600 3,000 1,500 22 3,800 55 Diagonal Ave S CSO/SD drainage basin MP Mouth of pipe 01/25/02 14 U 38 130 0.34 U 220 NA NA NA NA NA NA M1 Mainline W of E Marginal 01/25/02 12 U 39 37 0.31 U 250 77 420 62 U 16 U 1,000 264 M2 Mainline at E Marginal Way S 01/25/02 13 U 43 140 0.31 U 240 63 560 63 U 12 U 860 160														
Diagonal Ave S CSO/SD drainage basin MP Mouth of pipe 01/25/02 14 U 38 130 0.34 U 220 NA NA <td></td> <td>55</td>														55
MP Mouth of pipe 01/25/02 14 U 38 130 0.34 U 220 NA NA <t< td=""><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td>•</td><td></td><td>•</td><td></td><td>, -</td><td></td></t<>			-						•		•		, -	
MP Mouth of pipe 01/25/02 14 U 38 130 0.34 U 220 NA NA <t< td=""><td>Diagonal A</td><td>Ave S CSO/SD drainage basin</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Diagonal A	Ave S CSO/SD drainage basin												
M2 Mainline at E Marginal Way S 01/25/02 13 U 43 140 0.31 U 240 63 560 63 U 12 U 860 160			01/25/02	14 U	38	130	0.34 U	220	NA	NA	NA	NA	NA	NA
		Mainline W of E Marginal	01/25/02	12 U	39	37	0.31 U	250	77	420	62 L	J 16 L	1,000	
M2a Dupe of M2 01/25/02 12 U 33 33 0.3 U 200 69 430 61 U 11 U 5,100 882	M2a	Dupe of M2	01/25/02	12 U	33	33	0.3 U	200	69	430	61 L	J 11 U	5,100	882

Table 7. Inline sediment sample results.

Sample	Location	Date	As	Cu	Pb	Hg	Zn F	PH-Diesel	TPH-Oil	PCBs	PCBs	BEHP ^a	BEHP ^a
ID .		Sampled	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg) g	/kg DW)	(mg/kg OC)	(ug/kg DW)	(mg/kg OC)
MH15	Mainline at E Marginal Way S	02/18/04	6 U	32.7	15	0.05 U	155	85	390	19 U	5 U	630	49
MH16	Dupe of MH 15	02/18/04	17	49.6	27	0.1	233	80	380	19 U	2 U	580	60
M3 ^f	Mainline at Colorado Ave S	01/28/02	12 U	34	18	0.3 U	170	82	420	60 U	13 U	670	125
M4 ^f	Mainline at 2nd Ave S	01/25/02	12 U	24	47	0.29 U	280	37	360	59 U	15 U	330	86
MH14 ^f	Mainline at SCL yard	02/18/04	7 U	28.9	119	0.05 U	119	62	380	20 U	3 U	390	62
M5 ^f	Mainline at 4th Ave S	01/28/02	11 U	160	23	0.28 U	130	28 U	470	56 U	9 U	710	113
T2 ^f	Dakota lateral at 2nd Ave S	1/25/2002	12	30	16	0.3 U	85	30	150	60 U	11 U	230	43
T2b ^f	Dakota lateral at 4th Ave S	02/28/02	16 U	81	130	0.4 U	230	680	2,700	940	35.6	3,800	144
MH21 ^f	Dakota lateral below 2nd Ave S	10/29/04	22	269	4,910	1.75	463	370	1,200	91	2.2	NA	NA
SED1 ^f	Sediment removed (vactor pit sample)	11/01/04	10	173	256	0.42	457	570	2,700	117	2	9,800	145
SED2 ^f	Sediment removed (vactor pit sample)	11/01/04	8	106	147	0.12	332	400	2,100	140	2	5,300	94
SED3 ^f	Sediment removed (vactor pit sample)	11/01/04	9 U	113	277	0.49	352	340	1,600	17	0.2	3,400	35
T3a ^f	Duwamish lateral at RR	02/28/02	23	280	200	0.58 U	460	6,300	9,100	380	5.2	8,900	121
MH18 ^f	Duw lateral at 6th and Snoqualmie	02/18/04	9	152	538	1.02	293	390	1,900	470	4.9	3,100	33
T6b ^f	Denver lateral at S Alaska St	02/28/02	14 U	94	100	0.36 U	580	180 U	13,000	480	8.4	5,300	93
MH17 ^f	1st Ave S lateral at RR	02/18/04	7	94.9	70	0.08	296	310	1,500	20 U	0.5 U	2,500	61
T8b ^f	1st Ave S lateral at S Andover St	02/28/02	13 U	56	120	0.33 U	410	170 U	2,300	67 U	3 U	5,500	278
East Wat	terway basin												
MH30	SW Florida St SD (36") near outfall	05/25/05	12	135	142	0.12	1,380	1,200	3,600	88	1.2	5,600	76
MH31	SW Lander St SD (15") near outfall	05/25/05	7	46.2	48	0.06	280	150 U	790	150	11	420	30
SQS			57	390	450	0.41	410				12		47
CSL			93	390	530	0.59	960				65		78
MTCA Me								2,000	2,000	1,000			
MTCA Me	ethod A ^c							2,000	2,000	10,000			

Exceeds CSL or MTCA Method A Exceeds SQS

U = Chemical not detected at reported concentration.

J = Estimated value. Measured concentration is below laboratory reporting limit.

P = High RPD for dual column GC analyses without obvious interference.

- a. For non-restricted use.
- c. For industrial soil.
- d. Field splits collected at each station.
- e. Sediment removed by SPU June-July 2005.
- f. Sediment removed by SPU 2003-2005.

g. Other compounds detected: 2,4-dinitrotolune (29 mg/kg), n-nitrosodiphenylamine (24 mg/kg), and di-nbutylphthalate (37 B mg/kg).

 Table 8.
 Source sediment comparisons.

	Sediment Quality Standard or MTCA Method A Exceedances (Percent) ^a								
	ROW CBs (low traffic) ^b	ROW CBs (high traffic) ^c	ROW CBs (all samples)	Onsite CBs LDW	Onsite CBs All ^d	Sediment Traps ^e	Inline Sediment ^e		
Arsenic	0	0	0	0	0	0	0		
Copper	0	0	0	12	22	0	0		
Lead	8	5	7	15	15	0	6		
Mercury	0	5	5	15	10	0	10		
Zinc	8	43	29	70	76	69	41		
TPH-oil	46	71	56	77	82	6	35		
BEHP	38	81	63	67	76	88	63		
PCBs	0	5	2	9	8	0	20 ^g		
Number of samples	13	21	41	45	63	16	51		

CB = catch basin

BEHP = Bis(2-ethylhexyl)phthalate

LDW = Lower Duwamish Waterway

a. MTCA Method A for TPH-oil, SQS for all other parameters

b. Right-of-way catch basin in low-medium traffic streets

c. Right-of-way catch basin in high traffic arterials

d. Includes catch basins in East Waterway

e. 7 traps in the Diagonal Ave S CSO/SD drainage basin (4 rounds of samples)

f. Sediment collected from manholes located on a storm drain mainline or lateral.

g. Lower Duwamish study area/all samples collected, including East Waterway

h. All in Slip 4 drains.

		Rou	und 1				Round 2				Rou	und 3					Roi	und 4			
Station	Beacon Hill	Duwamish	Duwamish	Duwamish	Beacon Hill	Duwamish	Duwamish	Georgetown	S. Park CC	Beacon Hill	Duwamish	Georgetown	S. Park CC	Beacon Hill	Beacon Hill	Duwamish	Duwamish	Georgetown	Georgetown	S. Park CC	S. Park CC
Station ID	BW	CE	CE	CE	BW	CE	CE	DZ	SPCC	BW	CE	DZ	SPCC	BW	BW	CE	CE	DZ	DZ	SPCC	SPCC
Sample Type	Sample	Sample	Duplicate	Duplicate	Sample	Sample	Duplicate	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample
Start Date	1/20/2005	1/20/2005	1/20/2005	1/20/2005	2/15/2005	2/15/2005	2/15/2005	2/15/2005	2/15/2005	3/23/2005	3/23/2005	3/23/2005	3/23/2005	4/13/2005	4/13/2005	4/13/2005	4/13/2005	4/13/2005	4/13/2005	4/13/2005	4/13/2005
End Date	2/15/2005	2/15/2005	2/15/2005	2/15/2005	3/23/2005	3/23/2005	3/23/2005	3/23/2005	3/23/2005	3/30/2005	3/30/2005	3/30/2005	3/30/2005	5/5/2005	5/5/2005	5/5/2005	5/5/2005	5/5/2005	5/5/2005	5/5/2005	5/5/2005
Total Days	26	26	26	26	36	36	36	36	36	7	7	7	7	22	22	22	22	22	22	22	22
Sample Volume, L	3.10	3.03	3.08	3.08	2.40	2.30	2.32	2.59	2.49	5.92	5.79	6.15	6.05	4.93	4.93	4.07	4.07	5.10	5.10	5.12	5.12
PDS Collection Area, m ²	0.0948	0.0948	0.0948	0.0948	0.0948	0.0948	0.0948	0.0948	0.0948	0.0948	0.0948	0.0948	0.0948	0.0948	0.0948	0.0948	0.0948	0.0948	0.0948	0.0948	0.0948
Air Deposition Flux (Calcul	ated) (A)																				
Carcinogenic PAH (µg/m²/day)																				
Benzo(a)anthracene	0.026 (B)	0.066 (B)	0.072 (B)	0.104 (C)	0.006 (B)	0.017 (B)	0.020 (B)	0.033 (B)	0.034 (B)	-	0.039 (B)	0.068 (B)	0.060 (B)	0.015 (B)	0.047 (C)	0.035 (B)	0.056 (C)	0.034 (B)	0.068 (C)	0.021 (B)	0.036 (C)
Benzo(a)pyrene	0.032 (B)	0.079 (B)	0.093 (B)	0.154 (C)	0.010 (B)	0.026 (B)	0.027 (B)	0.044 (B)	0.038 (B)	-	-	0.057 (B)	0.057 (B)	0.033 (B)	0.069 (C)	0.060 (B)	0.084 (C)	0.043 (B)	0.080 (C)	0.022 (B)	0.038 (C)
Benzo(b)fluoranthene	0.050 (B)	0.146 (B)	0.150 (B)	0.239 (C)	0.014 (B)	0.045 (B)	0.045 (B)	0.071 (B)	0.064 (B)	0.050 (B)	0.058 (B)	0.098 (B)	0.097 (B)	0.063 (B)	0.097 (C)	0.089 (B)	0.111 (C)	0.075 (B)	0.110 (C)	0.059 (B)	0.086 (C)
Benzo(k)fluoranthene	0.040 (B)	0.113 (B)	0.130 (B)	0.158 (C)	0.012 (B)	0.033 (B)	0.042 (B)	0.058 (B)	0.050 (B)	0.048 (B)	0.054 (B)	0.070 (B)	0.081 (B)	0.037 (B)	0.069 (C)	0.037 (B)	0.060 (C)	0.037 (B)	0.070 (C)	0.023 (B)	0.052 (C)
Chrysene	0.072 (B)	0.170 (B)	0.192 (B)	0.282 (C)	0.022 (B)	0.066 (B)	0.069 (B)	0.093 (B)	0.085 (B)	-	0.133 (B)	0.087 (B)	0.099 (B)	0.041 (B)	0.072 (C)	0.090 (B)	0.123 (C)	0.071 (B)	0.113 (C)	0.054 (B)	0.077 (C)
Dibenzo(a,h)anthracene	0.012 (B)	0.033 (B)	0.038 (B)	0.050 (C)	-	-	-	0.016 (B)	0.017 (B)	0.022 (B)	-	0.051 (B)	-	-	-	-	-	-	-	-	-
Indeno(1,2,3-c,d)pyrene	0.030 (B)	0.077 (B)	0.090 (B)	0.118 (C)	0.010 (B)	0.025 (B)	0.026 (B)	0.042 (B)	0.036 (B)	0.045 (B)	-	0.070 (B)	0.071 (B)	-	-	-	-	-	-	-	_
Other PAH (μg/m²/day)																					
Benzo(g,h,I)perylene	0.050 (B)	0.125 (B)	0.141 (B)	0.174 (C)	0.018 (B)	0.046 (B)	0.052 (B)	0.060 (B)	0.051 (B)	0.042 (B)	0.074 (B)	0.056 (B)	0.067 (B)	-	-	-	-	-	-	-	_
Pyrene	0.080 (B)	0.221 (B)	0.269 (B)	0.269 (C)	0.023 (B)	0.100 (B)	0.092 (B)	0.115 (B)	0.086 (B)	0.066 (B)	0.226 (B)	0.152 (B)	0.119 (B)	0.054 (B)	0.114 (C)	0.103 (B)	0.161 (C)	0.082 (B)	0.153 (C)	0.060 (B)	0.104 (C)
Phthalates (µg/m²/day)																					
Dimethyl phthalate	0.021 (B)	0.033 (B)	0.035 (B)	0.080 (C)	-	0.019 (B)	-	0.016 (B)	0.020 (B)	-	-	-	-	0.020 (B)	0.020 (C)	0.029 (B)	0.029 (C)	0.018 (B)	0.018 (C)	0.030 (B)	0.043 (C)
Diethyl phthalate	0.125 (B)	0.091 (B)	0.085 (B)	0.264 (C)	0.025 (B)	0.053 (B)	0.035 (B)	-	0.044 (B)	0.212 (B)	-	0.255 (B)	-	0.134 (B)	0.134 (C)	0.128 (B)	0.128 (C)	0.012 (B)	0.012 (C)	0.163 (B)	0.224 (C)
Di-n-butyl phthalate	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Benzyl butyl phthalate	0.224 (B)	0.441 (B)	0.479 (B)	0.937 (C)	0.069 (B)	0.268 (B)	0.227 (B)	0.161 (B)	0.373 (B)	-	0.416 (B)	0.482 (B)	1.477 (B)	0.190 (B)	0.190 (C)	0.382 (B)	0.382 (C)	0.119 (B)	0.236 (C)	0.427 (B)	0.579 (C)
Bis(2-ethylhexyl)phthalate	0.664 (B)	2.087 (B)	2.261 (B)	3.028 (C)	0.227 (B)	1.283 (B)	1.260 (B)	1.036 (B)	1.066 (B)	-	3.538 (B)	-	-	-	-	1.989 (B)	2.364 (C)	-	-	-	-
Di-n-octyl phthalate	-	-	-	-	-	-	-	0.247 (B)	-	-	0.592 (B)	0.945 (B)	-	0.117 (B)	0.117 (C)	0.095 (B)	0.095 (C)	0.208 (B)	0.346 (C)	0.043 (B)	0.098 (C)
Aqueous Total Solids																					
Total solids (mg/L)	-	-	-	-	-	-	-	-	-	-	-	-	-	20	20	63	63	12	12	23	23

Notes:

Only samples values greater than 3 times the blank are presented.

Minimum Values in Bold Italics and Maximum Values in Bold

(A) - Blank-correction conducted by subtracting the uncorrected air deposition flux rate from the highest associated blank value.

PM2.5 - Particulate smaller than 2.5 µm in diameter. (B) - Result From Aqueous Sample Only

{C} - Combined Result From Aqueous and Wipe Samples

(D) - Puget Sound Clean Air Agency (www.pscleanair.org)

TEOM - Tapered Element Oscillating Microbalance

PM10 - Particulate smaller than 10 µm in diameter.

PAH - Polycyclic Aromatic Hydrocarbons

SPCC - South Park Community Center

PDS - Passive Deposition Sampler

(D) - Puget Sound Clean All Agency (www.pscleanall.org)

(E) - Value from Puget Sound Clean Air Agency Station "DD" (South Park: 8201 10th Avenue S.; Seattle, WA)

Table 10. Atmospheric flux deposition measurements relative to Beacon Hill station.

		Round 1				Round 2				Rou	ind 3					Roi	ind 4			
Station	Beacon Hill	Duwamish	Duwamish	Beacon Hill	Duwamish	Duwamish	Georgetown	S. Park CC	Beacon Hill	Duwamish	Georgetown	S. Park CC	Beacon Hill	Beacon Hill	Duwamish	Duwamish		Georgetown	S. Park CC	S. Park CC
Station ID	BW	CE	CE	BW	CE	CE	DZ	SPCC	BW	CE	DZ	SPCC	BW	BW	CE	CE	DZ	DZ	SPCC	SPCC
Sample Type	Sample	Sample	Duplicate	Sample	Sample	Duplicate	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample
Start Date	1/20/2005	1/20/2005	1/20/2005	2/15/2005	2/15/2005	2/15/2005	2/15/2005	2/15/2005	3/23/2005	3/23/2005	3/23/2005	3/23/2005	4/13/2005	4/13/2005	4/13/2005	4/13/2005	4/13/2005	4/13/2005	4/13/2005	4/13/2005
End Date	2/15/2005	2/15/2005	2/15/2005	3/23/2005	3/23/2005	3/23/2005	3/23/2005	3/23/2005	3/30/2005	3/30/2005	3/30/2005	3/30/2005	5/5/2005	5/5/2005	5/5/2005	5/5/2005	5/5/2005	5/5/2005	5/5/2005	5/5/2005
Total Days	26	26	26	36	36	36	36	36	7	7	7	7	22	22	22	22	22	22	22	22
Sample Volume, L	3.10	3.03	3.08	2.40	2.30	2.32	2.59	2.49	5.92	5.79	6.15	6.05	4.93	4.93	4.07	4.07	5.10	5.10	5.12	5.12
PDS Collection Area, m ²	0.0948	0.0948	0.0948	0.0948	0.0948	0.0948	0.0948	0.0948	0.0948	0.0948	0.0948	0.0948	0.0948	0.0948	0.0948	0.0948	0.0948	0.0948	0.0948	0.0948
Air Deposition Flux Ratios (A Carcinogenic PAH			0.70 (D)	4.00 (D)									4.00 (D)	4.00 (0)	0.00 (D)	4.40.(0)			4.00 (D)	0.77 (0)
Benzo(a)anthracene	1.00 (B)	2.55 (B)	2.78 (B)	1.00 (B)	2.96 (B)	3.35 (B)	5.65 (B)	5.85 (B)	-	-	-	-	1.00 (B)	1.00 (C)	2.36 (B)	1.19 (C)	2.27 (B)	1.45 (C)	1.38 (B)	0.77 (C)
Benzo(a)pyrene	1.00 (B)	2.48 (B)	2.93 (B)	1.00 (B)	2.72 (B)	2.78 (B)	4.56 (B)	3.86 (B)	-	-	-	-	1.00 (B)	1.00 (C)	1.85 (B)	1.21 (C)	1.31 (B)	1.16 (C)	0.66 (B)	0.54 (C)
Benzo(b)fluoranthene	1.00 (B)	2.91 (B)	2.98 (B)	1.00 (B)	3.17 (B)	3.23 (B)	5.04 (B)	4.57 (B)	1.00 (B)	1.18 (B)	1.98 (B)	1.94 (B)	1.00 (B)	1.00 (C)	1.40 (B)	1.14 (C)	1.19 (B)	1.13 (C)	0.94 (B)	0.89 (C)
Benzo(k)fluoranthene	1.00 (B)	2.82 (B)	3.24 (B)	1.00 (B)	2.78 (B)	3.51 (B)	4.85 (B)	4.17 (B)	1.00 (B)	1.12 (B)	1.44 (B)	1.68 (B)	1.00 (B)	1.00 (C)	0.99 (B)	0.87 (C)	0.98 (B)	1.02 (C)	0.61 (B)	0.75 (C)
Chrysene	1.00 (B)	2.35 (B)	2.66 (B)	1.00 (B)	3.06 (B)	3.17 (B)	4.31 (B)	3.91 (B)	-	-	-	-	1.00 (B)	1.00 (C)	2.20 (B)	1.70 (C)	1.75 (B)	1.56 (C)	1.31 (B)	1.07 (C)
Dibenzo(a,h)anthracene	1.00 (B)	2.79 (B)	3.23 (B)	-	-	-	-	-	1.00 (B)	-	2.29 (B)	-	-	-	-	-	-	-	-	-
Indeno(1,2,3-c,d)pyrene	1.00 (B)	2.58 (B)	2.99 (B)	1.00 (B)	2.48 (B)	2.54 (B)	4.05 (B)	3.48 (B)	1.00 (B)	-	1.54 (B)	1.57 (B)	-	-	-	-	-	-	-	
Other PAH						(=)														
Benzo(g,h,I)perylene	1.00 (B)	2.51 (B)	2.82 (B)	1.00 (B)	2.63 (B)	2.99 (B)	3.40 (B)	2.88 (B)	1.00 (B)	1.76 (B)	1.32 (B)	1.60 (B)	-	-	-	-	-	-	-	-
Pyrene	1.00 (B)	2.75 (B)	3.35 (B)	1.00 (B)	4.36 (B)	4.05 (B)	5.01 (B)	3.77 (B)	1.00 (B)	3.41 (B)	2.29 (B)	1.80 (B)	1.00 (B)	1.00 (C)	1.90 (B)	1.41 (C)	1.52 (B)	1.34 (C)	1.12 (B)	0.91 (C)
Phthalates													-	-	-	-	-	-	-	-
Dimethyl phthalate	1.00 (B)	1.55 (B)	1.64 (B)	-	-	-	-	-	-	-	-	-	1.00 (B)	1.00 (C)	1.45 (B)	1.45 (C)	0.90 (B)	0.90 (C)	1.50 (B)	2.15 (C)
Diethyl phthalate	1.00 (B)	0.73 (B)	0.68 (B)	1.00 (B)	2.14 (B)	1.44 (B)	-	1.78 (B)	1.00 (B)	-	1.20 (B)	-	1.00 (B)	1.00 (C)	0.96 (B)	0.96 (C)	0.09 (B)	0.09 (C)	1.22 (B)	1.67 (C)
Di-n-butyl phthalate	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Benzyl butyl phthalate	1.00 (B)	1.97 (B)	2.14 (B)	1.00 (B)	3.87 (B)	3.28 (B)	2.33 (B)	5.39 (B)	-	-	-	-	1.00 (B)	1.00 (C)	2.01 (B)	2.01 (C)	0.63 (B)	1.24 (C)	2.25 (B)	3.04 (C)
Bis(2-ethylhexyl)phthalate	1.00 (B)	3.14 (B)	3.41 (B)	1.00 (B)	5.65 (B)	5.55 (B)	4.56 (B)	4.70 (B)	-	-	-	-	-	-	-	-	-	-	-	-
Di-n-octyl phthalate	-	-	-	-	-	-	-	-	-	-	-	-	1.00 (B)	1.00 (C)	0.81 (B)	0.81 (C)	1.77 (B)	2.96 (C)	0.37 (B)	0.84 (C)

Notes: (A) - All results are blank corrected. Blank-correction conducted by subtracting the uncorrected air deposition flux rate from the highest associated blank value. (B) - Result From Aqueous Sample Only (C) - Combined Result From Aqueous and Wipe Samples

Table 11. Surface water quality complaints in the Lower Duwamish Waterway.

January - June 2005

Date	Material	Location	Service Area	Status
4/20/2005	Acid from Car Battery	211 S Austin St	SD	Resolved
1/14/2005	Auto Fluids	4801 Rainier Av S	CSO	Resolved
1/27/2005	Auto Fluids	1922 S Stevens St	SD	Resolved
6/1/2005	Auto Fluids	1118 14th Av S	SD	Resolved
3/7/2005	Auto Fluids	3523 S Bennett St	SD	Unresolved
3/10/2005	Auto Fluids	9641 59th Av S	SD	Unresolved
1/19/2005	Carpet cleaning solution	2000 Waverly PI N	CSO	Resolved
4/25/2005	Chemical	211 S Austin St	SD	Resolved
6/21/2005	Concrete Slurry	1122 Hiawatha PI S	SD	Resolved
5/3/2005	Diesel	2535 Airport Way S	SD	Resolved
4/12/2005	Diesel	1st Av S & Duwamish	SD	Unresolved
4/6/2005	Gasoline	S Kenyon St & 10th Av S	SD	Unresolved
6/1/2005	Leaking oil	5911 Fauntleroy Ave SW	SD	Resolved
5/24/2005	Motorcycle oil	4815 Fauntleroy Way SW	CSO	Unresolved
2/15/2005	Oil	9229 10th Av S	SD	Resolved
3/11/2005	Oil	1103 26th Av S	SD	Resolved
4/21/2005	Oil	2753 S Washington St	CSO	resolved
5/24/2005	Oil	40th Av Sw & SW Juneau St	SD	Resolved
6/16/2005	Oil	4208 Rainer Ave S	CSO	Resolved
3/8/2005	Sediment	1st Av S & S Denver St	SD	Unresolved
4/28/2005	Sewage	2348 Yale Ave E	CSO	Resolved
4/6/2005	Smelly Slime	5940 36th Av SW	SD	Resolved
4/6/2005	Soap Suds	S Edmunds St & Rainier Av S	CSO	Resolved
3/18/2005	Soapy Water	S Edmonds St & Rainier Av S	CSO	Resolved
1/19/2005	Turbid water	804 MLK Jr Way S	CSO	Resolved
3/17/2005	Turbid water	2911 1st Av S	CSO	Resolved
4/27/2005	Turbid water	2705 1st Av S	SD	Resolved
6/15/2005	Turbid water	26th Ave S & McClellan St	SD	Resolved
4/19/2005	Used Oil	3624 Courtland PI S	CSO	Resolved
5/19/2005	Wash water	94801 Rainier Av S	CSO	Resolved
5/20/2005	Wash water	4801 Rainier Av S	CSO	Resolved
01/13/05	Wastewater	7400 8th Av S	SD	Resolved
1/25/2005	Wastewater	7401 8th Av S	SD	Resolved
3/25/2005	Yellow Substance	1908 23rd Av S	CSO	Unresolved

34 SITES 7 UNRESOLVED, 27 RESOLVED

7 unresolved all because the complaint material was not found during inspection.

SKIPP Business	Address	Area	Date Kit Delivered
QFC#849	2707 Rainier AV S	?	03/28/05
_arry's Volvo	6301 Beacon Ave. S	B. Hill	06/29/05
Beacon Hill Corp	2415 BEACON AV S	Beacon Hill	04/18/05
Goodbye Graffiti	2114 13TH AV S	Beacon Hill	04/18/05
Jefferson Park Golf Course	4101 Beacon AV S	Beacon Hill	02/25/05
Lioe's Automotive Service	2400 Beacon AV S	Beacon Hill	03/25/05
MJC Enterprises LLC	2424 Beacon AV S	Beacon Hill	04/18/05
Plantscapes	1127 Poplar PL S	Beacon Hill	03/25/05
Canterbury Ale & Eats	534 15TH AV E	Capitol Hill	04/05/05
Car Tender	1706 12TH AV	Capitol Hill	01/20/05
CC's Burgers	2600 E Union ST	Capitol Hill	02/07/05
Finfine Ethiopian Restaurant	2123 E UNION ST	Capitol Hill	04/01/05
First Call Plus of Washington	526 19TH AV E	Capitol Hill	12/21/04
Holy Names Academy	728 21ST AV E	Capitol Hill	02/24/05
King Fish Café	602 19TH AV E	Capitol Hill	03/17/05
Metro Auto Rebuild	1510 Melrose AV		01/17/05
	615 19TH AV E	Capitol Hill	
Monsoon Restaurant	350 15TH AV E	Capitol Hill	04/27/05
Palermo Pizza & Pasta		Capitol Hill	02/09/05
Pioneer Human Services	102 21ST AV E	Capitol Hill	03/17/05
QFC 804	415 15TH AV E	Capitol Hill	01/25/05
QFC#823	8532 15TH AV NW	Capitol Hill	03/28/05
QFC#847	1401 BROADWAY	Capitol Hill	03/28/05
Tana Restaurant	2518 E Cherry ST	Capitol Hill	04/01/05
Teriyaki and Wok	324 Broadway E	Capitol Hill	07/08/05
Tru Line Frame & Wheel	312 boren AV S	Capitol Hill	02/09/05
Jnion Gospel Mission	1808 18TH AV	Capitol Hill	01/20/05
Nood Specialties	1908 E Mercer ST	Capitol Hill	01/17/05
A Piece of Cake	514 S King	Chinatown	05/04/05
Asia BBQ	655A S Jackson	Chinatown	05/04/05
Four Seas Restaurant	714 S King St	Chinatown	05/05/05
Fu Lin Restaurant	512 S King Street	Chinatown	05/04/05
Gossip Expresso & Tea	651 S King St.	Chinatown	05/04/05
Green Village	516 6th Ave. S	Chinatown	05/05/05
Harbor City	707 S King st.	Chinatown	05/18/05
Hing Loon Restaurant	628 S Weller	Chinatown	05/05/05
Honey Court	516 Maynard Ave.	Chinatown	05/18/05
Hon's Restaurant	416 6th Ave S	Chinatown	05/04/05
Kwan On Wing Co.	679 S King St	Chinatown	05/04/05
Vaxang	507 S Jackson	Chinatown	05/04/05
Nile Auto Repair	1622 E Yessler	Chinatown	06/01/05
Pearl Café	674 S Weller St.	Chinatown	05/04/05
Purple Dot Café	515 Maynard Ave. S	Chinatown	05/05/05
Spic n Span	652 S Dearborn	Chinatown	05/04/05
Trade Printing	515 7th Ave S	Chinatown	05/04/05
YummyHouseBakery	522 6th Ave S	Chinatown	05/05/05
Ambrosia Cafe	619 S King St.	Chinatown	05/05/05
Gom Hong	709 S King St.	Chinatown	05/18/05
Healthy Vegetasia	668 S King St.	Chinatown	05/04/05
Seventh Ave. Service	701 S Jackson St,	Chinatown	05/05/05
Tai Tong Restaurant	655 S King St.	Chinatown	05/04/05
A&A BBQ	663 S. Weller St.	Cinatown	05/18/05
Trade Printing	515 7th Ave. S	Cinatown	05/04/05
Amtrak Rail	187 S Holgate ST	Duwamish	12/20/04
Arco	7200 E MARGINAL WY S	Duwamish	04/05/05
Dresser-Rand Repair Center	225 S Lucile ST	Duwamish	01/20/05
Dukes Truck Repair	2401 Airport WY S	Duwamish	02/17/05
nt. Belt & Rubber supply	3685 Duwamish Ave S	Duwamish	05/16/05
_arry's Market	1001 S Myrtle ST	Duwamish	02/07/05
NorthStar Casteel	820 South Bradford Street	Duwamish	12/21/05
OB Williams	1939 1ST AV S	Duwamish	03/24/05

SKIPP Business	Address	Area	Date Kit Delivered
Peco's BBQ Pit	2260 1ST AV S	Duwamish	01/28/05
Pettit Oil	2535 Airport WY S	Duwamish	04/22/05
Pho Bac 3	2851 S HANFORD ST	Duwamish	02/24/05
Pho Wild Garlic	6519 4TH AV S	Duwamish	12/30/04
Recession Repair	2535 Airport WY S	Duwamish	04/22/05
Schwartz Bros Bakery	619 S Nevada ST	Duwamish	01/26/05
Seattle Biodiesel	6333 1st Ave S.	Duwamish	Voucher
South Park Marina	8604 Dallas AV S	Duwamish	03/16/05
Stone Path Logistics	1932 6TH AV S	Duwamish	03/02/05
Stone Path Logistics	615 S Holgate ST	Duwamish	03/02/05
Stone Path Logistics	610 S Walker ST	Duwamish	03/02/05
Stone Path Logistics	2201 6TH AV S	Duwamish	03/02/05
Fire Distribution Systems	6311 Corgiat DR S	Duwamish	01/26/05
Western Cartage	3629 DUWAMISH AVE. S	Duwamish	05/05/05
Ning's Aloft	8467 Perimeter RD S	Duwamish	01/07/05
AM/PM Mini Mart	427 12TH AV	First Hill	12/14/04
Medgar Evers Pool	500 23RD AV	First Hill	12/21/04
Saba Ethiopian Restaura	110 12th Ave	First Hill	05/16/05
Jniversal Auto Body & Services	1209 E Fir ST	First Hill	12/30/04
Daimonji Restaurant	5963 Corson AV S	Georgetown	02/17/05
Goldie's	3924 Airport Way S	Georgetown	07/12/05
Jitrablock, Inc	1615 S Graham ST	Georgetown	12/08/04
Hidmo Restaurant	2000 S JACKSON ST	Jackson	12/14/04
Moonlight Café	1212 S JACKSON ST	Jackson	02/24/05
Pho Bac 1	1314 S Jackson ST	Jackson	02/24/05
Pho Bac 2	1240 S Jackson ST	Jackson	02/24/05
An Thinh Restaurant	1207 S Jackson ST	Little Saigon	04/29/05
Anthony's Beauty School	1237 S Jackson St	Little Saigon	04/29/05
Hoa's Fashion	1220 S Jackson St.	Little Saigon	04/29/05
_yn Hair Salon	1042 S Jackson	Little Saigon	04/29/05
Nha Trang	1207 S Jackson	Little Saigon	05/04/05
Saigon Deli	1237 S Jackson St	Little Saigon	04/29/05
Thanh Vi	1046 S Jackson	Little Saigon	04/29/05
The Lemon Grass	514 12TH AV	Little Saigon	04/29/05
Thuan Kieu	1207 S Jackson	Little Saigon	05/04/05
Thuy Hair Studio	1212 S Jackson	Little Saigon	04/29/05
/ietnam House	1212 0 0000001	Little Saigon	04/29/05
38 Restaurant & Deli	1043 S Jackson	Little Saigon	04/29/05
Minh Tam's Market	1040 S Jackson St.	Little Saigon	04/29/05
A Chau Café & Deli	6902 Rainier Ave S	Rainier	07/14/05
Affordable Auto Wrecking	9802 M.L. King Jr. Way S	Rainier	-
Asmgra LLC	6815 Rainier AV S	Rainier	12/14/04
Banadir	5212 Rainier AV S	Rainier	12/14/04
Billiar Karaoke Hoang	3220 S Hudson St.	Rainier	07/14/05
Caff Massawa Rest.	3312 Rainier AV S	Rainier	04/06/05
Champion Auto Body	7100 Rainier Ave S	Rainier	07/14/05
Chu Ming Tofu	6754 MLK Jr. Wy	Rainier	05/04/05
Clayton Volkswagen	5503 M L KING JR WY S	Rainier	03/04/05
Dynamic Automotive	7269 Rainier Ave. S	Rainier	05/23/05
Global Auto Repair	12817 M L KING JR WY S	Rainier	03/22/05
Hoang Lan	7119 M L KING JR WY S	Rainier	03/22/05
Hoang Linh	5300 Rainier Ave S	Rainier	05/25/05
Hong Nhi	6727 M L KING JR WY S	Rainier	05/25/05
Huong qeu Deli and Café	6715 M L KING JR WY S	Rainier	04/01/05
•			
mport Used Car Sale	5203 Rainier AV S	Rainier	12/14/04
Japanese Amerocan Auto	6911 Rainier Ave S	Rainier	07/13/05
Jumbo Chinese Restauran	4208 Rainier Ave S	Rainier	05/25/05
Lakshmi Inc.	6230 Rainier Ave. S	Rainier	06/30/05
M&H Auto Body Shop Ma Ma Ethiopian	7000 Rainier Ave S 8115 Rainier AV S	Rainier Rainier	07/14/05 03/22/05
		Rainier	113/22/05

SKIPP Business	Address	Area	Date Kit Delivered
M-D Auto Body/ Repair	7202 Rainier Ave S	Rainier	07/14/05
Mediterranean Market	2307 Rainier Ave. SW	Rainier	05/23/05
Mekong Rainier Supermar	3400 Rainier Ave S	Rainier	04/29/05
Vi La Cay	718 Rainier Ave S	Rainier	05/25/05
Midas	2107 23RD AV S	Rainier	02/09/05
Minh's Auto Repair	6905 Rainier AV S	Rainier	02/25/05
Minh's Restaurant	7101 M L KING JR WY S	Rainier	03/08/05
My Canh Restaurant	6021 M L KING JR WY S	Rainier	03/08/03
-			
N&B Auto	6907 Rainier Ave S	Rainier	07/13/05
Pho An	2609 S McClellan St.	Rainier	05/25/05
Pho Bahn Mi Saigon	810 Rainier AV S	Rainier	04/07/05
Pho Ga	900 Rainier Ave S	Rainier	04/29/05
Pho Hoa	4732 Rainier Ave	Rainier	05/25/05
Pho My Chau	7101 M L KING JR WY S	Rainier	03/22/05
Pho Seattle	7127 M L KING JR WY S	Rainier	03/22/05
Pho Van	9150 Rainier AV S	Rainier	04/06/05
Phuoc Loc Tho Supermarket	6951 M L KING JR WY S	Rainier	02/24/05
Rainier Auto Body	6355 Rainier Ave S	Rainier	06/29/05
Rainier Photographic	8730 Rainier AV S	Rainier	12/07/04
Rainier Restaurant	6400 M L KING JR WY S	Rainier	04/01/05
S&M Auto Repair	6924 Rainier Ave S	Rainier	07/14/05
Saigon Dynasty	6040 M L KING JR WY S	Rainier	12/17/04
Sammy's Auto Service	9601 Renton AV S		03/22/05
		Rainier	
Seattle Best Cleaners	3219 MLK Wy S	Rainier	05/25/05
Tammy's Bakery	7101 M L KING JR WY S	Rainier	12/30/04
Than Auto	6901 Rainier AV S	Rainier	02/24/05
Thanh Thao	6012 M L KING JR WY S	Rainier	04/01/05
Tony's Bakery & Deli	6020 MLK Wy S	Rainier	04/29/05
Tuyet Hanh Fashion	3818 S Graham St.	Rainier	04/29/05
Van Loi Restaurant	3226 Rainier AV S	Rainier	02/24/05
Viet Market	6030 M L KING JR WY S	Rainier	12/17/04
West One	9001 Renton AV S	Rainier	03/22/05
Mimi's Bakery and Floral	4809 Beacon AV S	S. Seattle	04/06/05
South Seattle CC	6000 16th Ave SW	S. Seattle	07/15/05
Millwork Supply Co	2225 1ST AV S	S.Downtown	03/25/05
_indmark Machine Works	49 S Spokane St.	So Seattle	06/20/05
Seaport Steel	3660 E Marginal Wy S	So. Seattle	07/05/05
	2959 Utah Ave S	SODO	06/15/05
AMF Metals			
Aqua Quip	3447 4th Ave. S	SODO	12/17/05
	2752 6th Ave	SODO	05/25/05
Ederer Inc	2925 1st Ave S	SODO	07/08/05
Edward International Co.	1906 Occidental Ave. S	SODO	07/14/05
Emerald City Auto Repair	1943 4th ave so	SODO	05/25/05
First Ave Deli	3228 1ST AV S	SODO	03/28/05
Kings Transmission	2939 4TH AV S	SODO	12/17/04
Krispy Kreme	1900 1ST AV S	SODO	02/17/05
Magic Dragon	4601 6th Ave S	SODO	07/14/05
Nitze-Stagen	2401 Utah Ave	SODO	05/25/05
Northwest Shower door	3223 1st Ave S	SODO	06/15/05
Pittman Automotive Serv	465 S Holgate	SODO	05/26/05
PSF Industries	65 S Horton	SODO	06/20/05
Seattle Radiator Works	1902 Occidental Ave S	SODO	06/07/05
Nashington Chain & Sup	2901 Utah Ave S	SODO	06/10/05
Southend Quality Car Care	8902 14TH AV S	South Park	02/09/05
Accucraft Collision Center	2600 15TH AV W	West Seattle	03/11/05
Center Tool Rentals	9444 Delridge WY SW	West Seattle	12/09/04
Coffee To A Tea	4541 California Ave SW	West Seattle	07/15/05
Ty's Auto Repair	9226 Delridge Way SW	West Seattle	07/13/05
Weston Automotive	8854 Delridge Way SW	West Seattle	07/13/05
	9200 35TH AV SW	West Seattle	02/17/05

SKIPP Business	Address	Area	Date Kit Delivered
Auto Hound Collision	771 Valley St.		06/29/05
Café Ibex	3219 MLK Way S		06/20/05
East Yesler Grocery	1902 E Yesler		06/20/05
Foulee Market	2050 S Columbia Way		05/04/05
Jackson Park Golf Cours	1000 NE 135th St		06/28/05
Lalibela Ethiopian Restaur	2800 E Cherry		05/16/05
Meskel Ethiopian Restaur	2605 E Cherry		05/16/05
Sam's Auto Clinic	2616 E Cherry		06/01/05
Swedish Automotive	7501 35th Ave SW		06/29/05

Land Use	Storm drain service area (Ac)	Combined sewer service area (Ac)
Industrial	490	657
Commercial	233	412
Public right-of-way	991	1,432
Single-family residential	487	1,369
Multi-family residential	102	314
Schools	45	116
Open space	124	349
Vacant	128	251
Total	2,600	4,900

Table 13. Land use in the Diagonal Ave S CSO/SD service area.

 Table 14. Condition of Georgetown Flume.

Upstream Station	Downstream Station	Description	Condition
(ft)	(ft)		
0	250	60-inch tunnel	Not inspected (to be video-inspected in 2005)
250	370	Concrete-lined flume	Not inspected (to be video-inspected in 2005)
370	830	Twin 42" concrete pipes	Pipes intact, 1 broken joint in each. Three plugged holes in south pipe (from south side)
			possible pipe entry points + one PVC pipe (unplugged). Two plugged holes in north pipe
			(one from south, one from north).
830	1,295	Wood-lined flume	Flume generally intact. Standing water (3-9 inches) and 2-18 inches of sediment in flume
1,295	1,500	Wood-lined flume	Flume walls collapsed throughout. Sediment accumulations of 12-16 inches in flume
1,500	2,075	Wood-lined flume	Many boards on sidewalls rotted. Debris and about 9 inches of sediment in flume
2,075	2,230	72-inch CMP ^a	Pipe intact, some corrosion at joints and crown
2,230	2,475	72-inch CMP [▷]	Not inspected (to be video-inspected in 2005)

a. To MH100 on west side of E Marginal Way Sb. From west side of E Marginal Way S to Slip 4

Table 15. Active pipes entering Georgetown flume.^a

Pipe ID	Diameter	Material	Entry	Station ^c	Description
	(in)		Location ^b		
H-1	6 to 8	PVC	South	390	Found during video inspection of 42-inch twin pipes (south pipe)
G-2	8	Concrete	South	790	Discharge from Boeing (records indicate 100 gpm permitted)
F-1	4	Clay	North	970	Unknown
D-1	8	Concrete	North	1,460	Storm drain on west side of S Myrtle St
B-2	4	PVC	North	2,900	Unknown
B-3	3	ABS	North	2,900	Laundry discharge from motel (discharge has been discontinued)

a. Pipes that are not visibly capped or plugged.

b. Direction from which pipe enters flume.

c. Aproximate distance from upstream end of flume.

Table 16: Dallas Ave S and Vicinity Sample Results.

			Sample				
Мар	Sample ID	Sample Date Location	Depth	тос	PCBs		
Label		F	(ft)	(%)	(ppm)		
Dirt Collected From Roadway Surface and Catch Basins							
SD1	ROWT1	7/22/2004 W edge of Dallas Ave S at OWSEP1	0	0.78	0.26		
SD2	ROWT2	7/22/2004 E edge of Dallas Ave S at entrance to T117	0	2.18	1.6		
SD3	ROWT3	7/22/2004 CB on Dallas Ave S at NW corner of Port bldg at S end	0	7.37	7		
		T117					
SD4	ROWT4	7/22/2004 5-pt composite from storage area in ROW S of S Donovan	0	2.82	2.2		
		St					
SD5	ROWT5	7/22/2004 N edge of S Donovan St at SE corner of Basin Oil prop	0	1.84	4.8		
SD6	ROWT6	7/22/2004 NW corner of S Donovan St and 17th Ave S	0	1.01	0.47		
SD7	ROWT7	7/22/2004 5-pt composite along east edge of 17th Ave S between	0	3.36	6.1		
SD8	ROWT8	7/22/2004 CB on west side of 17th Ave S at #8609	0	4.35	9.2		
SD9	ROWT9	7/22/2004 2-pt composite N and S edge of Dallas Ave S and W of	0	2.14	1.9		
		17th Ave S					
SD10	ROWT10	9/23/2004 Inlet at SE corner of 14th Ave S and S Trenton St	0	5.80	0.028		
SD11	ROWT11	9/23/2004 Composite of street dust and dirt from inlet on S Cloverdale	0	6.48	0.58		
		St on E side 14th Ave S					
SD12	ROWT12	9/23/2004 Composite of street dust and dirt from inlet on S Donovan	0	4.08	0.46		
		St just east of 14th Ave S					
SD13	ROWT13	9/23/2004 Duplicate of 12	0	4.57	0.46		
SD14	ROWT14	9/23/2004 Inlet at SE corner of 14th Ave S and Dallas Ave S	0	9.41	0.17		
SD15	ROWT15	9/23/2004 Composite of street dust on N and S side of Dallas Ave S,	0	1.38	3.1		
SD16	ROWT16	9/23/2004 CB sample at SE corner of 16th Ave S and S Cloverdale St	0	3.67	0.36		
SD17	ROWT17	9/23/2004 Composite of street dust on N side of S Donovan St just	0	2.59	0.34		
		west of 16th Ave S					
SD18	ROWT18	9/23/2004 Catch basin at 17th Ave S and S Donovan St	0	2.88	0.36		
SD19	ROWT19	10/26/2004 Road shoulder in front of 8523 Dallas Ave S	0	8.26	0.163		
SD20	ROWT20	10/27/2004 Road shoulder across street from 8525 Dallas Ave S	0	1.04	1.3		
SD21	ROWT21	10/27/2004 Road shoulder in front of 8519 Dallas Ave S	0	4.46	0.075		
SD22	ROWT22	10/27/2004 Road shoulder in front driveway at 1437 S Donovan St	0	0.883	0.028		
SD25	ROWT25	12/8/2004 CB at SE Corner of S Cloverdale St and 10th Ave S	0	9.15	0.04		
SD25	ROWT26	12/8/2004 Dupe of SD25	0	9.30	0.039		
SD27	ROWT27	12/8/2004 CB at SW Corner of S Sullivan St and 8th Ave S	0	8.35	< 0.05		
SD28	ROWT28	12/8/2004 CB at NE corner of S Sullivan St and 12th Ave S	0	5.67	< 0.02		
SD29	ROWT29	12/8/2004 CB at NW corner of S Cloverdale St and 12th Ave S	0	6.01	< 0.039		
SD30	ROWT30	12/8/2004 CB at SW corner of S Donovan St and 12th Ave S	0	7.44	0.82		
SD51	TP51-031605	3/16/2005 Edge ROW on W side 16th Ave S (60' from Dallas)	0	NA	47		
SD52	TP52-031605	3/16/2005 Edge ROW on W side 16th Ave S (12.5' from Dallas)	0	NA	86		
SD53	CB53	3/16/2005 CB at boat storage yard on Dallas Ave S	0	NA	6.3		

Soil Samples from Right-of-Way

0011 00		git-or-way		
TP1	TP1-0.5	11/16/2004 Dallas Ave S at W edge 17th Ave S	0.5'	9.8
TP1	TP1-1.0	11/16/2004 Dallas Ave S at W edge 17th Ave S	1'	1.1
TP2	TP2-0.5	11/16/2004 Dallas Ave S and 17th Ave S	0.5'	7
TP2	TP2-1.0	11/16/2004 Dallas Ave S and 17th Ave S	1'	0.36
TP3	TP3-0.5	11/16/2004 17th Ave S at S edge Dallas Ave S	0.5'	4.7
TP3	TP3-1.0	11/16/2004 17th Ave S at S edge Dallas Ave S	1'	1.7
TP4	TP4-0.5	11/16/2004 17th Ave S at #8609	0.5'	38
TP4	TP4-1.0	11/16/2004 17th Ave S at #8609	1'	0.28
TP5	TP5-1.0	11/16/2004 17th Ave S at S edge #8609	1'	0.47
TP5	TP5-2.0	11/16/2004 17th Ave S at S edge #8609	2'	0.038
TP5	TP5-3.0	11/16/2004 17th Ave S at S edge #8609	3'	0.055
TP5	TP5-4.0	11/16/2004 17th Ave S at S edge #8609	4'	< 0.04
TP5	TP5-5.0	11/16/2004 17th Ave S at S edge #8609	5'	< 0.039
TP6	TP6-1.0	11/16/2004 Dallas Ave S at BO1	1'	12
TP6	TP6-2.0	11/16/2004 Dallas Ave S at BO1	2'	0.34
TP6	TP6-3.0	11/16/2004 Dallas Ave S at BO1	3'	0.1
TP7	TP7-1.0	11/17/2004 Dallas Ave S at BO2	1'	7.5
TP7	TP7-2.0	11/17/2004 Dallas Ave S at BO2	2'	0.59
TP7	TP7-3.0	11/17/2004 Dallas Ave S at BO2	3'	0.15
TP8	TP8-1.0	11/17/2004 Dallas Ave S at BO3	1'	11

Table 16: Dallas Ave S and Vicinity Sample Results.

TP8 TP8-2.0 11/17/2004 Dallas Ave S at BO3 TP8 TP8-3.0 11/17/2004 Dallas Ave S at BO3 TP9 TP9-1.0 11/17/2004 Dallas Ave S at S Donovan St	2'	(%) (ppm)
TP9 TP9-1.0 11/17/2004 Dallas Ave S at S Donovan St		0.24
	3'	0.045
	1'	18
TP9 TP9-2.0 11/17/2004 Dallas Ave S at S Donovan St TP0 TP0-2.0 11/17/2004 Dallas Ave S at S Donovan St	2'	21
TP9 TP9-3.0 11/17/2004 Dallas Ave S at S Donovan St TP10 TP10-1.0 11/17/2004 CB at Dallas Ave S and S Donovan St	<u> </u>	< 0.042
TP10 TP10-1.0 11/17/2004 CB at Dallas Ave S and S Donoval St 11/17/2004 CB at Dallas Ave S and S Donoval St	2'	2.6 0.17
TP10 TP10-3.0 11/17/2004 CB at Dallas Ave S and S Donovan St	3'	0.046
TP10TP10-4.011/17/2004 CB at Dallas Ave S and S Donovan St	4'	0.031
TP10TP10-5.011/17/2004 CB at Dallas Ave S and S Donovan St	5'	0.031
TP11 TP11-1.0 11/17/2004 S Donovan St1	1'	1.9
TP11 TP11-2.0 11/17/2004 S Donovan St1	2'	0.15
TP11 TP11-3.0 11/17/2004 S Donovan St1	3'	0.082
TP12 TP12-1.0 11/17/2004 S Donovan St2	1'	46
TP12 TP12-2.0 11/17/2004 S Donovan St2	2'	7.6
TP12 TP12-3.0 11/17/2004 S Donovan St2	3'	0.36
TP13 TP13-1.0 11/17/2004 S Donovan St3	1'	18
TP13 TP13-2.0 11/17/2004 S Donovan St3 TP10 TP10-0.0 11/17/2004 S Donovan St3	2'	0.81
TP13 TP13-3.0 11/17/2004 S Donovan St3 TP14 TP14.4.0 14/47/2004 S Donovan St4	<u> </u>	0.2
TP14 TP14-1.0 11/17/2004 S Donovan St4 TP14 TP14-2.0 11/17/2004 S Donovan St4	2'	0.41
TP14 TP14-2.0 11/17/2004 S Donovan St4 TP14 TP14-3.0 11/17/2004 S Donovan St4	3'	0.12
TP15 17-C-0.5 11/3/2004 17th Ave S and S Donovan St center	0.5'	3.3
TP1517-C-1.011/3/2004 17th Ave S and S Donovan St center	1'	5.5
TP16 17-C2-0.5 11/3/2004 17th Ave S @ 8617 center	0.5'	0.94
TP16 17-C2-1.0 11/3/2004 17th Ave S @ 8617 center	1'	0.16
TP17 17-C3-0.5 11/4/2004 17th Ave S road end center	0.5'	0.014
TP17 17-C3-1.0 11/4/2004 17th Ave S road end center	1'	0.016
TP18 17-E1-0.5 11/3/2004 17th Ave S @ 8620 east	0.5'	1.5
TP18 17-E1-1.0 11/3/2004 17th Ave S @ 8620 east	1'	0.94
TP19 17-E2-0.5 11/3/2004 17th Ave S @ N end Basin oil east	0.5'	14
TP19 17-E2-1.0 11/3/2004 17th Ave S @ N end Basin oil east	1'	11
TP19 17-E2-2.0 11/3/2004 17th Ave S @ N end Basin oil east	2'	12
TP20 17-W1-0.5 11/2/2004 17th Ave S @ 8609 west TP20 47 W1 4 0 44/2/2004 17th Ave S @ 8609 west	0.5'	6.3
TP20 17-W1-1.0 11/2/2004 17th Ave S @ 8609 west TP20 47 W4 2.0 44/2/2004 47th Ave S @ 8609 west	<u> </u>	4.5
TP20 17-W1-2.0 11/2/2004 17th Ave S @ 8609 west TP21 17-W2-0.5 11/2/2004 17th Ave S @ 8601 west	0.5'	1.6 8.6
TP21 17-W2-0.5 11/2/2004 Trin Ave S @ 8601 west TP21 17-W2-1.0 11/2/2004 17th Ave S @ 8601 west	0.5 1'	0.88
TP21 17-W2-2.0 11/2/2004 17th Ave 3 @ 8601 west	2'	1.2
TP22 17-W3-0.5 11/3/2004 17th Ave S @ 8620 west	0.5'	0.12
TP22 17-W3-1.0 11/3/2004 17th Ave S @ 8620 west	1'	0.09
TP23 D-C1-0.5 11/3/2004 Dallas Ave S across from Basin Oil entrance center		4.9
TP23 D-C1-1.0 11/3/2004 Dallas Ave S across from Basin Oil entrance center		1.7
TP24 D-E1-0.5 11/4/2004 Dallas Ave S @ T117 south entrance	0.5'	7
TP24 D-E1-1.0 11/4/2004 Dallas Ave S @ T117 south entrance	1'	1.9
TP25 D-E2-0.5 11/2/2004 E side Dallas Ave S @ T117 (mid)	0.5'	6.8
TP25 D-E2-1.0 11/2/2004 E side Dallas Ave S @ T117 (mid)	1'	6.5
TP26 D-E3-0.5 11/2/2004 E side Dallas Ave S @ center entrance	0.5'	66
TP26 D-E3-1.0 11/2/2004 E side Dallas Ave S @ center entrance TP27 D-N0.0.5 11/2/2004 N side Dallas Ave S @ respins N extension	1'	13
TP27 D-N2-0.5 11/4/2004 N side Dallas Ave S @ marina N entrance	0.5' 1'	0.66
TP27 D-N2-1.0 11/4/2004 N side Dallas Ave S @ marina N entrance TP28 D-S1-0.5 11/2/2004 S side Dallas Ave S W of 17th Ave S	0.5'	0.1 9.5
TP28 D-S1-0.5 11/2/2004 S side Dallas Ave S W of 17th Ave S TP28 D-S1-1.0 11/2/2004 S side Dallas Ave S W of 17th Ave S	0.5 1'	8.7
TP29 D-S2-0.5 11/3/2004 S side Dallas Ave S W of 16th Ave S TP39 D-S2-0.5 11/3/2004 S side Dallas Ave S W of 16th Ave S	0.5'	18
TP29 D-S2-1.0 11/3/2004 S side Dallas Ave S W of 16th Ave S TP3 D-S2-1.0 11/3/2004 S side Dallas Ave S W of 16th Ave S	1'	3.6
TP30D-S3-0.511/3/2004 S side Dallas Ave S @ marina N entrance	0.5'	0.3
TP30D-S3-1.011/3/2004 S side Dallas Ave S @ marina N entrance	1'	0.13
TP31 TP31-0.5 12/7/2004 8523 Dallas Ave S (base of 6" excavation)	0.5	0.82
TP32 TP32-0.5 12/7/2004 8525 Dallas Ave S (base of 6" excavation)	0.5	0.019
TP33 TP33-0.5 12/8/2004 8529 Dallas Ave S (base of 6" excavation)	0.5	0.02
TP34 TP34-0.5 12/8/2004 Dupe of TP33	0.5	0.02

Table 16: Dallas Ave S and Vicinity Sample Results.

Map Label	Sample ID	Sample Date Location	Sample Depth (ft)	TOC (%)	PCBs (ppm)
TP35	TP35-1.0	12/8/2004 1440 S Cloverdale (base of 12" excavation)	1		0.46
TP36	TP36-0.5	12/9/2004 S Park Marina east (base of 6" excavation)	0.5		0.02
TP37	TP37-0.5	12/9/2004 Dallas Ave across from boat storage yard (base of 6" excava	0.5		5.8
TP39	TP39-0.5	12/9/2004 S Park Marina west (base of 6" excavation)	0.5		0.44
TP40	TP40-0.5	12/10/2004 8601 17th Ave S (Dallas side #1)-base of 6" excavation	0.5		480
TP40 TP40	TP40-1.0 TP40-2.0	12/10/2004 8601 17th Ave S (Dallas side #1) 12/10/2004 8601 17th Ave S (Dallas side #1)	1 2		0.68
TP40 TP41	TP40-2.0 TP41-0.5	12/10/2004 Ballas Ave S at boat storage yardbase of 6" excavation	0.5		0.34 140
TP41	TP41-0.5	12/10/2004 Dallas Ave S at boat storage yard	1		140
TP41	TP41-1.0	12/10/2004 Dallas Ave S at boat storage yard	2		5.9
TP42	TP42-0.5	12/10/2004 8601 17th Ave S (Dallas side #2-in front of garage)base of	0.5		100
TP42	TP42-1.0	12/10/2004 8601 17th Ave S (Dallas side #2-in front of garage)	1		0.57
TP42	TP42-2.0	12/10/2004 8601 17th Ave S (Dallas side #2-in front of garage)	2		0.28
TP43	TP43-1.0	12/12/2004 8601 17th Ave S (17th side #1)base of 12" excavation	1		0.019
TP43	TP43-2.0	12/12/2004 8601 17th Ave S (17th side #1)	2		0.02
TP44	TP44-1.0	12/12/2004 8601 17th Ave S (17th side #2)base of 12" excavation	1		0.02
TP44	TP44-2.5	12/12/2004 8601 17th Ave S (17th side #2)	2.5		0.02
TP45	ROWS0-1	10/26/2004 Outside fence at 8609 17th Ave S	0	11.2	4.9
TP45	ROWS6-1	10/26/2004 Outside fence at 8609 17th Ave S	0.5	3.47	3.6
TP46	ROWS0-2	10/26/2004 Outside fence at 8601 17th Ave S	0	8.48	21
TP46	ROWS6-2	10/26/2004 Outside fence at 8601 17th Ave S	0.5	3.91	93
TP47	ROWS0-3	10/26/2004 Outside fence at 1440 S Cloverdale (Dallas ave side)	0	6.94	6.2
TP47	ROWS6-3	10/26/2004 6-in depth at 1440	0.5	1.42	2.8
TP48	ROWS0-4	10/26/2004 Surface soil next to sidewalk at 8529 Dallas Ave S	0	4.48	2.2
TP48	ROWS6-4	10/26/2004 8529 Dallas Ave S	0.5	2.3	0.99
TP49	ROWS0-5	10/27/2004 Surface soil next to sidewalk at 8523 Dallas Ave S	0	5.36	1.2
TP49	ROWS6-5	10/27/2004 6-in depth at 8523	0.5	2.14	0.85
TP49	ROWS0-6	10/27/2004 Dupe of ROWS0-5	0	5.82	1.1
TP50	ROWS0-7	10/27/2004 Front yard at 8519 Dallas Ave S	0	5.5	0.32
<u>TP50</u> TP51	ROWS6-7 TP51-0.5-041305	10/27/2004 6-in depth at 8519 4/13/2005 4' in from W edge 16th Ave S, 60' from power pole on Dallas	0.5 0.5	1.2	0.066 0.68
TP52	TP52-0.5-041305		0.5		0.089
TP53	HA1-0.5	3/10/2005 Soil pile on S Donovan St	0.5		0.24
TP53	HA1-1.0	3/10/2005 Soil pile on S Donovan St	1'		0.14
TP54	HA2-0.5	3/10/2005 Soil pile on S Donovan St	0.5		0.1
TP54	HA2-1.0	3/10/2005 Soil pile on S Donovan St	1'		0.15
TP55	HA3-0.5	3/10/2005 Soil pile on S Donovan St	0.5		0.092
TP55	HA3-1.0	3/10/2005 Soil pile on S Donovan St	1'		0.13
Yard Sa YS1	mples 8519-1	11/17/2004 8519 Dallas Ave S (west side front yard)	2"		0.097
YS1	8519-2	11/17/2004 8519 Dallas Ave S (west side front yard) 11/17/2004 8519 Dallas Ave S (west side front yard)	<u> </u>		0.097
YS2	8519-3	11/17/2004 8519 Dallas Ave S (west side front yard)	2"		0.087
YS2	8519-4	11/17/2004 8519 Dallas Ave S (east side front yard)	4"		0.086
YS3	8525-1	11/17/2004 8525 Dallas Ave S (east side iron yard)	2"		0.000
YS3	8525-2	11/17/2004 8525 Dallas Ave S (east side of house)	4"		0.22
YS4	8525-3	11/17/2004 8525 Dallas Ave S (backyard by alley)	2"		0.15
YS4	8525-4	11/17/2004 8525 Dallas Ave S (backyard by alley)	4"		0.14
YS5	8529-1	11/17/2004 8529 Dallas Ave S (west of entry walk)	2"		0.34
YS5	8529-2	11/17/2004 8529 Dallas Ave S (west of entry walk)	4"		0.34
YS6	8529-3	11/17/2004 8529 Dallas Ave S (east of driveway)	2"		0.13
YS6	8529-4	11/17/2004 8529 Dallas Ave S (east of driveway)	4"		0.18
YS7	8529-5	11/17/2004 8529 Dallas Ave S (backyard)	2"		0.15
YS8	1440-7	11/17/2004 1440 S Cloverdale St (west end garden)	2"		<0.067
YS8	1440-8	11/17/2004 1440 S Cloverdale St (west end garden)	4"		<0.067
YS9	1440-5	11/17/2004 1440 S Cloverdale St (adj to pond)	2"		0.43
YS9	1440-6	11/17/2004 1440 S Cloverdale St (adj to pond)	4"		0.2
YS10	1417-1	11/17/2004 1417 S Cloverdale St (front yard)	2"		0.088
YS11	1417-2	11/17/2004 1417 S Cloverdale St (garden in backyard)	2"		0.15

Table 16: Dallas Ave S and Vicinity Sample Results.

			Sample		
Мар	Sample ID	Sample Date Location	Depth	TOC	PCBs
Label			(ft)	(%)	(ppm)
YS12	1412-1	11/17/2004 1412 S Donovan St (garden in front yard)	2"		0.073
YS13	1412-2	11/17/2004 1412 S Donovan St (garden in backyard)	2"		0.083
YS14 YS15	8609-5 8523-3	11/17/2004 8609 17th Ave S (garden in backyard) 11/17/2004 8523 Dallas Ave S (front yard)	2" 2"		<0.058 0.22
YS15	8523-4	11/17/2004 8523 Dallas Ave S (front yard)	4"		0.22
YS16	8523-4	11/17/2004 8523 Dallas Ave S (front yard)	2"		0.11
YS16	8523-2	11/17/2004 8523 Dallas Ave S (front yard)	4"		0.097
YS17	8601-1	10/27/2004 8601 17th Ave S (front yard)	1"		37
YS17	8601-2	10/27/2004 8601 17th Ave S (front yard)	4"		46
YS18	8609-1	10/27/2004 8609 17th Ave S (next to sump)	1"		3.4
YS18	8609-2	10/27/2004 8609 17th Ave S (next to sump)	4"		1.4
YS19	8609-3	10/27/2004 8609 17th Ave S (just north of sidewalk entrance)	1"		0.85
YS19	8609-4	10/27/2004 8609 17th Ave S (just north of sidewalk entrance)	4"		0.53
YS20	1440-3	10/27/2004 1440 S Cloverdale St (west end garden)	4"		0.99
YS21	1440-4	10/27/2004 1440 S Cloverdale St (east end garden)	4"		0.17
YS22	1440-1	10/27/2004 1440 S Cloverdale (next to sidewalk on Dallas Ave S)	1"		ND
YS22	1440-2	10/27/2004 1440 S Cloverdale (next to sidewalk on Dallas Ave S)	4"		ND
YS23	P1-0.5	3/10/2005 8609 17th Ave S	6"		0.32
YS23	P1-1.0	3/10/2005 8609 17th Ave S 3/10/2005 8609 17th Ave S	<u>1'</u> 2'		1.9
YS23 YS23	P1-2.0 P1-3.0	3/10/2005 8609 17th Ave S 3/10/2005 8609 17th Ave S	3'		0.74
YS24	P1-3.0 P2-0.5	3/10/2005 8609 17th Ave S	<u> </u>		0.38
YS24	P2-1.0	3/10/2005 8609 17th Ave S	1'		0.052
YS25	P3-0.5	3/10/2005 8609 17th Ave S	6"		0.29
YS25	P3-1.0	3/10/2005 8609 17th Ave S	1'		0.021
YS26	P4-0.5	3/10/2005 8609 17th Ave S	6"		3.6
YS26	P4-1.0	3/10/2005 8609 17th Ave S	1'		0.021
YS27	P5-0.5	3/10/2005 8609 17th Ave S	6"		0.089
YS27	P5-1.0	3/10/2005 8609 17th Ave S	1'		0.021
YS28	P6-0.5	3/10/2005 8609 17th Ave S	6"		0.34
YS28	P6-1.0	3/10/2005 8609 17th Ave S	1'		0.018
YS29	P7-0.5	3/10/2005 8601 17th Ave S	6"		2.9
YS29	P7-1.0	3/10/2005 8601 17th Ave S	1'		0.32
YS30	P8-0.5	3/10/2005 8601 17th Ave S	6"		0.026
YS30	P8-1.0	3/10/2005 8601 17th Ave S	1'		0.031
YS31	P9-0.5	3/10/2005 8601 17th Ave S	6"		0.13
YS31	P9-1.0	3/10/2005 8601 17th Ave S	1' 6"		0.02 33
YS32 YS32	P10-0.5	3/10/2005 8601 17th Ave S	<u> </u>		33 13
YS32	P10-1.0 P10-2.0	3/10/2005 8601 17th Ave S 3/10/2005 8601 17th Ave S	2'		0.094
YS32	P10-3.0	3/10/2005 8601 17th Ave S	3'		0.094 17
YS32	P10-4.0	3/10/2005 8601 17th Ave S	4'		0.44
YS33	P11-0.5	3/10/2005 8601 17th Ave S	6"		0.11
YS34	P12-0.5	3/10/2005 8609 17th Ave S	6"		0.12
YS35	YS35-0.25	4/28/2005 8603 16th Ave Sboat storage yd entrance	3"		0.14
YS35	YS35-1.0	4/28/2005 8603 16th Ave Sboat storage yd entrance	1'		1.6
YS36	YS36-0.25	4/28/2005 8603 16th Ave Sboat storage yd, NE quad	3"		0.067
YS37	YS37-0.25	4/28/2005 8603 16th Ave Sboat storage yd, SE quad	3"		0.31
YS37	YS37-1.0	4/28/2005 8603 16th Ave Sboat storage yd, SE quad	1'		0.25
YS38	YS38-1.0	4/28/2005 Dupe of YS37-1.0	1'		0.24
YS39	YS39-0.25	4/28/2005 8603 16th Ave Sboat storage yd, SW quad	3"		0.31
YS40	YS40-0.25	4/28/2005 8603 16th Ave Sboat storage yd, NW quad	3"		1.9
YS40	YS40-1.0	4/28/2005 8603 16th Ave Sboat storage yd, NW quad	1'		3.2
YS41	YS41-0.25	4/28/2005 8601 17th Ave Sside yd by garage	3"		5.8
YS41	YS41-1.0	4/28/2005 8601 17th Ave Sside yd by garage	<u>1'</u> 3"		0.17
YS42 YS43	YS42-0.25	4/28/2005 8601 17th Ave Sside yd	3"		4.1 3.6
YS43	YS43-0.25 YS43-1.0	4/28/2005 8601 17th Ave Sfront yd by walkway 5/11/2005 8601 17th Ave Sfront yd by walkway	<u> </u>		3.6 0.25
<u>1545</u> YS44	YS44-0.25	4/28/2005 8609 17th Ave Sdriveway	3"		0.25
YS44	YS44-0.25	5/11/2005 8609 17th Ave Sdriveway	<u>3</u>		0.32
YS45	YS45-0.25	4/28/2005 8609 17th Ave Sfront yd by walkway	3"		1.8
			5		1.0

Table 16: Dallas Ave S and Vicinity Sample Results.

Label YS46 YS46 YS46 YS46 YS47 YS47	6-1.04/28/20057-1.04/28/20058-0.255/11/2005	E Location 5 8609 17th Ave Sside yard by tree 5 8609 17th Ave Sside yard by tree 5 Dupe of YS46-1.0 5 8601 17th Ave Sbackyard	Depth (ft) 3" 1' 1'	TOC (%)	PCBs (ppm) 0.76 0.44
YS46 YS46 YS46 YS46 YS47 YS47 YS48 YS48	6-1.0 4/28/2005 7-1.0 4/28/2005 8-0.25 5/11/2005	5 8609 17th Ave Sside yard by tree 5 Dupe of YS46-1.0	3" 1' 1'	(%)	0.76
YS46 YS46 YS47 YS47 YS48 YS48	6-1.0 4/28/2005 7-1.0 4/28/2005 8-0.25 5/11/2005	5 8609 17th Ave Sside yard by tree 5 Dupe of YS46-1.0	1' 1'		0.44
YS47 YS47 YS48 YS48	7-1.0 4/28/2005 8-0.25 5/11/2005	5 Dupe of YS46-1.0	1'		-
YS48 YS48	8-0.25 5/11/2005	•			
		5 8601 17th Ave Sbackyard			0.48
YS48 YS48	8_1.0 5/11/2005		3"		1.1
	0=1.0 0/11/2000	5 8601 17th Ave Sbackyard	1'		0.07
YS49 YS49	9-0.25 5/11/2005	5 8601 17th Ave Sbackyard	3"		0.41
YS50 YS50	0-0.25 5/11/2005	5 8609 17th Ave Sdriveway	3"		11
YS51 YS51	1-0.25 5/11/2005	5 8609 17th Aveside yard	3"		0.34
YS52 YS52	2-0.25 5/20/2005	5 8603 16th Ave Sboat storage yd, 15'-4" from NE corner	3"		0.44
YS52 YS52	2-1.0 5/20/2005	5 8603 16th Ave Sboat storage yd, 15'-4" from NE corner	1'		0.88
YS53 YS53	3-0.25 5/20/2005	5 8603 16th Ave Sboat storage yd, same as YS53, 15' off	3"		0.12
	4-0.25 5/20/2005	fence	3"		0.21
YS54 YS54 YS54 YS54		5 8603 16th Ave Sboat storage yd, 50' S of NW corner	<u>5</u>		0.31
		5 8603 16th Ave Sboat storage yd, 50' S of NW corner	3"		0.16
YS55 YS55		5 8603 16th Ave Sboat storage yd, 85' S of NW corner 5 8603 16th Ave Sboat storage yd, 85' S of NW corner	<u>5</u>		0.082
		5 8603 16th Ave Sboat storage yd, 85 S of NW corner, 15			0.04
1350 1350	0-0.25 5/20/2008	from fence	5		0.04
YS57 YS57	7-0.25 5/20/2005	5 8601 17th Ave Sbackyard, W of sidewalk	3"		0.42

U = Chemical not detected at the reported concentration

J = Estimated value. Concentration is less than the laboratory reporting limit.

Exceeds state cleanup level for unrestricted land use (1 ppm PCBs)

	PCB Aroclors (ug/L)									
Sample Location	Date	1016	1221	1232	1242	1248	1254	1260	1262	1268
Basin Oil runoff ^a	1/17/2005	0.1 U	0.383	0.1 U	0.1 U					
Basin Oil runoff ^a	1/22/2005	0.1 U								
Basin Oil runoff ^a	2/4/2005	0.1 U								
Plant influent ^b	1/10/2005	0.1 U	2.34	0.1 U	0.1 U					
Plant influent ^b	1/17/2005	0.1 U	0.142	0.1 U	0.1 U					
Plant influent ^b	1/22/2005	0.1 U	0.152	0.1 U	0.1 U					
Plant influent ^b	1/24/2005	0.1 U	0.167	0.1 U	0.1 U					
Plant influent ^b	2/4/2005	0.1 U								
Plant influent ^b	2/6/2005	0.1 U								

Table 17. Dallas Ave soil cleanup: Temporary stormwater treatment plant sample results.

U = Compound not detected at concentration shown.

a. Runoff from the south end of the property at the discharge to the new catch basin installed in 12/04.

b. All runoff entering the temporary stormwater treatment plant (collected from inlet to the treatment system).

FIGURES

Insert Figures 1-25

APPENDIX A

Business Inspection Process and Field Form

BUSINESS INSPECTION PROGRAM

Cross-Training

In January 2003, KCIW and SPU organized an initial training session to ensure that all inspectors involved in the project were well versed in the inspection procedures and capable of completing all aspects of an inspection (e.g., stormwater, industrial waste, and hazardous waste). The training was attended by more than 30 inspectors from 6 agencies. A training manual with accompanying reference material was provided to each inspector. In addition, a field form was developed to help the inspectors and ensure consistency (see Appendix A). Each of the four county and city agencies involved in the inspection program has designated a lead inspector who is responsible for coordinating the work of the other inspectors in their agency, distributing information, and meeting with the two project co-leads to discuss project procedures.

Business Inspection Process

Inspections are conducted in a specific geographic area. Inspections are initiated as follows:

- Postcards are mailed to all businesses in a given geographical area alerting them that inspectors will be coming to their neighborhood. The business lists used for mailing are purchased from a vendor.
- Inspectors are assigned to geographic subareas and given lists of known businesses in the subareas plus any other information available in county and/or city files including detailed drainage maps. With this information, inspectors conduct a sweep through the area to visually survey all businesses and determine which need to be inspected. In areas served by separated storm drains, inspectors conduct a complete sweep of the entire basin. In areas served by a combined system, inspectors survey only the commercial, industrial, institutional, and mixed use (retail/housing) areas. Residential areas are not surveyed.
- Businesses that do not conduct outside activities and those that do not use hazardous
 materials or involve industrial processing are not inspected. A list of businesses not
 inspected is being maintained to record all businesses evaluated as part of this effort.

Often it is not possible to determine if a full inspection is warranted at some businesses from a simple visual survey. In those cases, inspectors conduct an abbreviated inspection, termed a screening visit to assess whether a full inspection is needed. During a screening visit, inspectors talk to businesses about their site activities and based on this conversation determine if a full inspection is needed. If not, the inspector collects a business card and fills out a form documenting basic site information.

Full Inspections

Teams of 1 to 2 inspectors conduct onsite inspections of high-risk businesses. Inspectors check the following issues:

Industrial wastewater. Inspectors look for industrial processes that use water and/or generate wastewater, inspect any pretreatment systems, and note chemicals expected to be discharged.

Companies required to have industrial waste permits/authorizations but do not are referred to King County Industrial Waste for permitting.

<u>Wastes/materials disposal</u>. Inspectors review storage, handling, and disposal practices for a long list of waste/materials (e.g., acids, antifreeze, fluorescent light tubes, oils, solvents, phthalate-containing materials, and PCB-containing materials).

<u>Spill Prevention</u>. Inspectors evaluate spill prevention and cleanup practices for inside and outside areas at each facility.

<u>Stormwater</u>. Inspectors check outdoor areas for activities that have a high risk of polluting stormwater. High-risk pollution generating activities include fueling operations, vehicle/equipment maintenance and washing, outside storage (liquids in above ground or portable containers, vehicles/equipment, and non-containerized materials, by-products, or finished products), manufacturing, equipment/vehicle/building/ship maintenance and repair, painting or finishing of vehicles/boats/buildings/equipment, landscape maintenance/construction, and construction activities. In addition, inspectors examine onsite catch basins and other stormwater structures to ensure that these facilities are maintained correctly.

Corrective Actions and Follow-up

Inspectors discuss pollution prevention requirements with company representatives during the inspection and also send a follow up letter that identifies what corrective actions are needed and establishes deadlines for completing those actions. Unless the problem poses an immediate threat to the environment, businesses are typically allowed 30 days to make the necessary improvements. After the deadline, the inspector re-inspects. If the company has not made the necessary improvements at the time of the re-inspection, the inspector refers the problem to the agency with primary authority (SPU for stormwater issues, King County for industrial pretreatment issues, and Ecology for contaminated site issues) enforcement actions.

Businesses with the potential to recontaminate sediment offshore of the Diagonal Ave S CSO/SD following cleanup will be placed on more intensive routine inspection schedules than they would have received prior to the inspection project and may be monitored for specific chemicals of concern.

Data Management

All information collected during inspections is maintained in hard copy files at SPU. Files typically include the following information: original inspection field forms, photo documentation, site maps, copies of all letters sent to the business, copies of industrial waste discharge authorizations, and miscellaneous information provided by the business such as material safety data sheets (MSDS), spill prevention plans, or waste disposal manifests. In addition, information from field inspection forms is entered into an Access database built specifically for this project.

APPENDIX B

Summary Tables from Business Inspection Database

NOTES

Diagonal Ave S CSO/SD area is divided into the following basins and subbasins:

Basin	Subbasin	Description
Duwamish	Diagonal SD	Totally separated basin: Stormwater runoff discharges to the Diagonal separated storm drain system, wastewater discharges to Diagonal combined sewer system
Diagonal CSO	Diagonal CSO	Totally combined basin: Wastewater and stormwater discharge to Diagonal combined sewer system
Diagonal CSO	Lake Washington South	Partially separated basin: Wastewater discharges to the Diagonal combined sewer system and stormwater discharges to the storm drain system that flows to Lake Washington

Slips 4, 5, and 6 Drainage Basins:

Basin	Subbasin	Description
Duwamish	Slip 4	The inspected portion of Slip 4 is totally separated: Stormwater runoff is collected in one of 4 storm drains that discharges to Slip 4. Wastewater discharges to the sanitary sewer system.
Duwamish	Slip 5	Totally separated basin: Stormwater is collected in a King County airport storm drain that discharges near the former Slip 5 and wastewater discharges to the sanitary sewer system.
Duwamish	Slip 6	Totally separated basin: Stormwater runoff is collected in a King County airport storm drain that discharges to Slip 6 and wastewater discharges to sanitary sewer system.

TABLE B-1

Summary of inspections completed January 2005 – June 2005

Duwamish Source Control Program Database Site Summary by Visit Type Report

Screening Visits

Dates: Jan 1, 2005 to Jun 30, 2005 Basin: Duwamish Subbasin: Diagonal SD,Slip 4,Slip 5,Slip 6,Duwamish (NEC) SD,Duwamish (NEC) CSO

Screening visits						In
Facility	Address	Basin	Subbasin	SIC	Visit Date	Compliance *
Opportunity Skyway	6524 Ellis Ave S Seattle, WA 98108	Duwamish	Slip 4	8299	Jan 27, 2005	N/A
Screening Visits Count: 1						
Initial Visits						In
Facility	Address	Basin	Subbasin	SIC	Visit Date	Compliance *
Aero Motel Inn	7240 E Marginal Wy S Seattle, WA 98108	Duwamish	Slip 4	7011	Apr 25, 2005	Y
King County Airport Office Building	9010 E Marginal Wy S Seattle, WA 98108	Duwamish	Slip 6	9199	Jan 27, 2005	Ν
King County Surplus Storage	6530 Ellis Ave S Seattle, WA 98108	Duwamish	Slip 4	4225	Jan 27, 2005	Ν
Marine Vacuum Service	1516 S Graham St Seattle, WA 98124	Duwamish	Slip 4	7699	Jan 26, 2005	Y
Pepsi Bottling Group	2300 26th Ave S Seattle, WA 98144	Duwamish	Diagonal SD	5149	Jan 23, 2005	Y
Seaport Steel	3660 E Marginal Wy S Seattle, WA 98134	Duwamish	Duwamish (NEC) SD	3316	Jun 2, 2005	Ν
Shultz Distributing Inc.	1495 S Hardy St Seattle, WA 98108	Duwamish	Slip 4	5541	Mar 15, 2005	Ν
SPU South Transfer Station	8100 2nd Ave S Seattle, WA	Duwamish	Duwamish (NEC) SD	4212	Jun 10, 2005	Ν

* In Compliance as of the Report Ending Date.

Printed Aug 11, 2005 11:59 am

Initial Visits

Initial Visits						In
Facility	Address	Basin	Subbasin	SIC	Visit Date	Compliance *
T & T Truck and Trailer Repair	5300 1st Ave S Seattle, WA 98108	Duwamish	Duwamish (NEC) CSO	7538	Jun 10, 2005	Ν
Initial Visits Count: 9	_					
Followup Visits						In
Facility	Address	Basin	Subbasin	SIC	Visit Date	Compliance *
Aero Motel Inn	7240 E Marginal Wy S Seattle, WA 98108	Duwamish	Slip 4	7011	May 26, 2005	Y
		Duwamish	Slip 4	7011	Jun 30, 2005	Y
Aeroflight	8555 Perimeter Rd S Seattle, WA 98108	Duwamish	Slip 5	4581	Feb 14, 2005	Ν
		Duwamish	Slip 5	4581	Jun 10, 2005	Ν
Ameriflight	7575 Perimeter Rd S Seattle, WA 98134	Duwamish	Slip 5	4581	Mar 14, 2005	Y
Arco	7200 E Marginal Wy S Seattle, WA 98108	Duwamish	Slip 4	5541	Apr 21, 2005	Y
Caliber Inspection	7500 Perimeter Rd S Seattle, WA 98108	Duwamish	Slip 5	7389	May 31, 2005	Y
Charles Street- Maintenance Facility	805 S Dearborn ST Seattle, WA 98134	Duwamish	Diagonal SD	7538	Feb 15, 2005	Y
		Duwamish	Diagonal SD	7538	Jun 15, 2005	Y
Charlie's Produce	4103 2nd Ave S Seattle, WA 98134	Duwamish	Diagonal SD	5148	Feb 11, 2005	Ν

Printed Aug 11, 2005 11:59 am

Followup Visits

Followup Visits						In
Facility	Address	Basin	Subbasin	SIC	Visit Date	Compliance *
Charlie's Produce	4103 2nd Ave S Seattle, WA 98134	Duwamish	Diagonal SD	5148	Apr 29, 2005	Ν
Chinese Baptist Church	5801 Beacon Ave S Seattle, WA	Duwamish	Slip 4	8661	Jan 13, 2005	Y
CL Auto Repair	2901 17th Ave S Seattle, WA 98144	Duwamish	Diagonal SD	7538	Feb 8, 2005	Y
Jefferson Park Golf Maintenance Building	4101 Beacon Ave S Seattle, WA 98108	Duwamish	Diagonal SD	7992	Feb 2, 2005	Y
		Duwamish	Diagonal SD	7992	Jun 8, 2005	Y
Jensen Family LTD Partners	1001 S Myrtle St Seattle, WA 98108	Duwamish	Slip 4	6531	Jan 27, 2005	Y
Larry's Market		Duwamish	Slip 4	2099	Feb 16, 2005	Y
MacMillan Piper Inc.	655 S Edmunds St Seattle, WA 98108	Duwamish	Diagonal SD	4212	Feb 8, 2005	Y
Marine Vacuum Service	1516 S Graham St Seattle, WA 98124	Duwamish	Slip 4	7699	Jun 28, 2005	Y
Medgar Evers Pool/Seattle Parks and Recreation	500 23rd Ave Seattle, WA 98122	Duwamish	Diagonal SD	7999	Jan 4, 2005	Y
Nichols Truck Tire	6311 Corgiat Dr S Seattle, WA 98108	Duwamish	Slip 4	5531	Feb 28, 2005	Y
Pepsi Bottling Group	2300 26th Ave S Seattle, WA 98144	Duwamish	Diagonal SD	5149	Jun 15, 2005	Y
Pioneer Human Services	102 21st Ave E Seattle, WA 98112	Duwamish	Slip 4	7021	Mar 31, 2005	Ν
Reed Aviation	8490 Perimeter Rd S, #a2 Seattle, WA 98103	Duwamish	Slip 5	4581	Jan 20, 2005	Y

Printed Aug 11, 2005 11:59 am

Followup Visits

Facility	Address	Basin	Subbasin	SIC	Visit Date	In Compliance *
T & T Truck and Trailer Repair	5300 1st Ave S Seattle, WA 98108	Duwamish	Duwamish (NEC) CSO	7538	Jun 23, 2005	Ν
TCP Painting	1900 Airport Wy S Seattle, WA 98134	Duwamish	Diagonal SD	1721	Jan 28, 2005	Y
Wings Aloft	8467 Perimeter Rd SE Seattle, WA 98108	Duwamish	Slip 5	8299	Jan 7, 2005	Y

Followup Visits Count: 27

Report Total: 37 Visits

Duwamish Source Control Program Database Site Summary by Visit Type Report

Dates: Jan 1, 2005 to Jun 30, 2005 Basin: Diagonal CSO Subbasin: Diagonal CSO,Lake Washington South

Followup Visits						In
Facility	Address	Basin	Subbasin	SIC	Visit Date	Compliance *
Charles Street - Fire Truck Repair Shop	815 S Dearborn St Seattle, WA 98134	Diagonal CSO	Diagonal CSO	7538	Mar 4, 2005	Y
Charles Street - Testing Station	805 S Dearborn St Seattle, WA 98134	Diagonal CSO	Diagonal CSO	9651	Feb 7, 2005	Y
Charles Street Auto Shop	805 S Charles St Seattle, WA 98134	Diagonal CSO	Diagonal CSO	7538	Mar 4, 2005	Y
Charles Street SDOT Facility	801 S Plummer St Seattle, WA 98134	Diagonal CSO	Diagonal CSO	7699	Feb 16, 2005	Y
Dubb City	5022 Rainier Ave S Seattle, WA 98118	Diagonal CSO	Lake Washington South	7538	Apr 14, 2005	Y
National Pride Car Wash	3151 Rainier Ave S Seattle, WA 98108	Diagonal CSO	Lake Washington South	7542	Mar 28, 2005	Y
		Diagonal CSO	Lake Washington South	7542	May 20, 2005	Y
Puget Sound Foot & Ankle Center	600 Broadway, #220 Seattle, WA 98122	Diagonal CSO	Diagonal CSO	8011	Jun 30, 2005	Y
Robert Grenley, M.D.	600 Broadway Ave, #320 Seattle, WA 98122	Diagonal CSO	Diagonal CSO	8011	Jun 30, 2005	Y
Seattle University	901 12th Ave Seattle, WA 98122	Diagonal CSO	Diagonal CSO	8211	Jun 30, 2005	Y
	900 Broadway Seattle, WA 98122	Diagonal CSO	Diagonal CSO	8221	Jun 30, 2005	Y
	1215 E Columbia St Seattle, WA 98122	Diagonal CSO	Diagonal CSO	8221	Jun 30, 2005	Y

* In Compliance as of the Report Ending Date.

Printed Aug 11, 2005 11:58 am

Followup Visits					In
Facility	Address	Basin	Subbasin	SIC Visit De	

Followup Visits Count: 12

Report Total: 12 Visits

TABLE B-2

Site summary reports for all areas inspected January 2005 – June 2005

And

March 2003 – June 2005

Duwamish Source Control Program Database Duwamish/Diagonal CSO Summary Report

Cycle Totals Dates: Jan 1, 2005 to Jun 30, 2005	
New Inspections	
Full Inspections	9
Screening Inspections	1
Total New Inspections	10
Follow-up Inspections	39
Compliance This Cycle - (from Initial Visits di	uring the Cycle)
Sites Achieving Compliance This Cycle	3
No Action Needed This Cycle	0
For Sites Out of Compliance in Prior Cycle	
These Sites Achieved Partial Compliance	1
These Sites Achieved Overall Compliance	32

~ ~ ~ ~ ~			
Sites Out of Compliance	# of Sites		
Total Sites	- 17		
By Regulatory Area:			
Hazardous Waste	- 9		
Industrial Waste	- 1	Sites may have more	
Spill Prevention		than one	
Stormwater	- 13 ¹	problem area	
	# of Sites	# of Sites with	
~	w/Corr. Act. Reg		
Sites with Corrective Action Requested	423	630	67%
* Sites with one or more corr. actions requested as a %	of total sites with	h full initial visits	
1	# of Sites achievi	ng # of Sites	
	compliance	w/Corr. Act. Req.	
Sites achieving Overall Complianc	408	423	96%

Duwamish Source Control Program Database Duwamish/Diagonal CSO Summary Report

Cycle Totals Dates: Jan 1, 2003 to Jun 30, 2005	
New Inspections	
Full Inspections	636
Screening Inspections	276
Total New Inspections	912
Follow-up Inspections	560
Compliance This Cycle - (from Initial Visits d	uring the Cycle)
Sites Achieving Compliance This Cycle	408
No Action Needed This Cycle	196
For Sites Out of Compliance in Prior Cycle	
These Sites Achieved Partial Compliance	0
These Sites Achieved Overall Compliance	1

Sites Out of Compliance	# of Sites		
Total Sites			
By Regulatory Area:			
Hazardous Waste	- 9	G */	
Industrial Waste	· - 1	Sites may have more	
Spill Prevention	- 11	than one	
Stormwater	13	problem area	
	# of Sites w/Corr. Act. Re	# of Sites with eq. Full Initial Visits	
Sites with Corrective Action Requested	423	630	67%
* Sites with one or more corr. actions requested as a 9	% of total sites wi	th full initial visits	
	# of Sites achiev compliance		
	computance	w/Corr. Act. Req.	

Duwamish Source Control Program Database Business Inspection Summary Report

Dates: Jan 1, 2005 to Jun 30, 2005 Basin: Duwamish Subbasin: Diagonal SD

Cycle Totals

New Inspections	
Full Inspections	1
Screening Inspections	0
Total New Inspections	1
Follow-up Inspections	11

Sites Out of Compliance	# of Sites	
# of Sites	0	
by Regulatory Area (sites may need corrective a	actions in more than a	one area)
Hazardous Waste	0	
Industrial Waste	0	
Spill Prevention	0	
Stormwater	0	
	# of Sites	% of Sites
Sites with Corrective Action Requested	1	100%
* Sites with one or more corr. actions requested as a % of tot	al sites with full initial visi	its
	# of Sites	% of Sites
Sites achieving Overall Complianc	1	100%
* Sites achieving overall compliance as a % of sites with one	or more corr. actions requ	ested this cycle
Sites achieving Overall Compliance	H of Sites	
with Corrective Action Requested in Prior Cyc	# of Sites	
* Sites achieving overall compliance with one or more corr.		r cycle.
	# of Sites	% of Sites
Sites where no Action was needed		0%
* Sites with no corrective actions requested, as a % of sites w	ith full initial visits.	

Duwamish Source Control Program Database Business Inspection Summary Report Dates: Jan 1, 2005 to Jun 30, 2005 Basin: Diagonal CSO

Subbasin: Diagonal CSO, Lake Washington South

New Inspections	
Full Inspections	0
Screening Inspections	0
Total New Inspections	0
Follow-up Inspections	12

Sites Out of Compliance	# of Sites	
# of Sites	0	
by Regulatory Area (sites may need corrective	e actions in more than o	one area)
Hazardous Waste	0	
Industrial Waste	0	
Spill Prevention	0	
Stormwater	0	
	# of Sites	% of Sites
Sites with Corrective Action Requested		
* Sites with one or more corr. actions requested as a % of the		ts
	# of Sites	% of Sites
Sites achieving Overall Complianc	0	
* Sites achieving overall compliance as a % of sites with on	e or more corr. actions requ	ested this cycle
Sites achieving Overall Compliance		
Sites achieving Overall Compliance	# of Sites	
with Corrective Action Requested in Prior Cy		
* Sites achieving overall compliance with one or more corr.	actions requested in a prior	· cycle.
	# of Sites	% of Sites
Sites where no Action was needed	0	
* Sites with no corrective actions requested, as a % of sites	with full initial visits.	

Duwamish Source Control Program Database

Business Inspection Summary Report

Dates: Jan 1, 2003 to Jun 30, 2005 Basin: Duwamish Subbasin: Diagonal SD

Cycle Totals

New Inspections	
Full Inspections	372
Screening Inspections	137
Total New Inspections	509
Follow-up Inspections	341

Sites Out of Compliance

#	of Sites	
# of Sites	5	
by Regulatory Area (sites may need corrective ac	ctions in more than o	ne area)
Hazardous Waste	2	
Industrial Waste	0	
Spill Prevention	2	• ¹ 2
Stormwater	5	
	# of Sites	% of Sites
Sites with Corrective Action Requested	235	63%

* Sites with one or more corr. actions requested as a % of total sites with full initial visits

		# of Sites	% of Sites
Sites achieving Overall Complianc	· · · · · · · · · · · · · · · · · · ·	237	101%

* Sites achieving overall compliance as a % of sites with one or more corr. actions requested this cycle

Sites achieving Overall Compliance# of Siteswith Corrective Action Requested in Prior Cycle0

* Sites achieving overall compliance with one or more corr. actions requested in a prior cycle.

	# of Sites	% of Sites
Sites where no Action was needed	125	34%
* Sites with no corrective actions requested, as a % of sites with full	initial visits.	

e

50

DIAG ONLY

Duwamish Source Control Program Database **Business Inspection Summary Report** Dates: Jan 1, 2003 to Jun 30, 2005 Basin: Diagonal CSO Subbasin: Diagonal CSO,Lake Washington South

Cycle Totals

New Inspections	
Full Inspections	180
Screening Inspections	128
Total New Inspections	308
Follow-up Inspections	163

Sites Out of Compliance # of Sites # of Sites 3 by Regulatory Area (sites may need corrective actions in more than one area) Hazardous Waste 2 Industrial Waste 1 **Spill Prevention** 2 Stormwater 1 % of Sites # of Sites 125 69% Sites with Corrective Action Requested * Sites with one or more corr. actions requested as a % of total sites with full initial visits % of Sites # of Sites 128 102% Sites achieving Overall Complianc * Sites achieving overall compliance as a % of sites with one or more corr. actions requested this cycle

Sites achieving Overall Compliance# of Siteswith Corrective Action Requested in Prior Cycle0

* Sites achieving overall compliance with one or more corr. actions requested in a prior cycle.

	# of Sites	% of Sites
Sites where no Action was needed	46	26%
* Sites with no corrective actions requested, as a % of sites with full	initial visits.	

Dates: Jan 1, 2005 to Jun 30, 2005 Basin: Duwamish Subbasin: Slip 4

Cycle Totals

New Inspections	
Full Inspections	4
Screening Inspections	1
Total New Inspections	5
Follow-up Inspections	9

Sites Out of Compliance # of S.	ites	
U. 691	1	
by Regulatory Area (sites may need corrective action	s in more than o	ne area)
Hazardous Waste)	
Industrial Waste)	
Spill Prevention	1	
Stormwater	1	
	# of Sites	% of Sites
Sites with Corrective Action Requested	3	75%
* Sites with one or more corr. actions requested as a % of total sites	with full initial visit	5
	# of Sites	% of Sites
Sites achieving Overall Complianc	2	67%
* Sites achieving overall compliance as a % of sites with one or mor	e corr. actions reque	ested this cycle
Sites achieving Overall Compliance	# - 6 5 %	
with Corrective Action Requested in Prior Cycle	# of Sites	
* Sites achieving overall compliance with one or more corr. actions		cycle.
	# of Sites	% of Sites
Sites where no Action was needed	0	0%

* Sites with no corrective actions requested, as a % of sites with full initial visits.

Dates: Jan 1, 2003 to Jun 30, 2005 Basin: Duwamish Subbasin: Slip 4

Cycle Totals

New Inspections	
Full Inspections	46
Screening Inspections	9
Total New Inspections	55
Follow-up Inspections	36

Sites Out of Compliance	of Sites	
# of Sites	4	
by Regulatory Area (sites may need corrective ac	tions in more than	one area)
Hazardous Waste	2	
Industrial Waste	0	
Spill Prevention	4	
Stormwater	3	
	# of Sites	% of Sites
Sites with Corrective Action Requested	33	72%
* Sites with one or more corr. actions requested as a % of total		its
	# of Sites	% of Sites
Sites achieving Overall Complianc	29	88%
* Sites achieving overall compliance as a % of sites with one or		<i>uested this cycle</i>
Sites achieving Overall Compliance	# of Sites	
with Corrective Action Requested in Prior Cycle	# of Sites	
1 v		
* Sites achieving overall compliance with one or more corr. act	ions requested in a prior	r cycle.

	# of Sites	% of Sites
Sites where no Action was needed	11	24%
* Sites with no corrective actions requested, as a % of sites with full initial visits.		

Duwamish Source Control Program Database Business Inspection Summary Report

Dates: Jan 1, 2005 to Jun 30, 2005 Basin: Duwamish Subbasin: Slip 5,Slip 6

Cycle Totals

New Inspections	
Full Inspections	1
Screening Inspections	0
Total New Inspections	1
Follow-up Inspections	6

Sites Out of Compliance #of	Sites	
# of Sites	1	
by Regulatory Area (sites may need corrective actio	ons in more than o	ne area)
Hazardous Waste	0	
Industrial Waste	0	
Spill Prevention	0	
Stormwater	1	
	# of Sites	% of Sites
Sites with Corrective Action Requested		100%
* Sites with one or more corr. actions requested as a % of total site		5
	# of Sites	% of Sites
Sites achieving Overall Complianc	0	0%
* Sites achieving overall compliance as a % of sites with one or mo		ested this cycle
Sites achieving Overall Compliance	11 - C C 1	
with Corrective Action Requested in Prior Cycle	# of Sites	
· · · ·		
* Sites achieving overall compliance with one or more corr. action	s requested in a prior	cycle.
	# of Sites	% of Sites
Sites where no Action was needed	- 0	0%
* Sites with no corrective actions requested as a % of sites with fu	Il initial visits	

* Sites with no corrective actions requested, as a % of sites with full initial visits.

New Inspections		
Full Inspections 3	2	
Screening Inspections	2	
Total New Inspections 3	4	
Follow-up Inspections 1	5	
Sites Out of Compliance # of S	Sites	
	2	
by Regulatory Area (sites may need corrective action	ns in more than o	ne area)
Hazardous Waste	1	
Industrial Waste	0	
Spill Prevention	0	
Stormwater	2	
Sites with Corrective Action Requested	# of Sites 13	% of Sites 41%
* Sites with one or more corr. actions requested as a % of total sites	s with full initial visit.	\$
	# of Sites	% of Sites
Sites achieving Overall Complianc	12	92%
* Sites achieving overall compliance as a % of sites with one or more	re corr. actions reque	ested this cycle
Sites achieving Overall Compliance	# of Sites	
with Corrective Action Requested in Prior Cycle		
* Sites achieving overall compliance with one or more corr. actions		cycle.
	# of Sites	% of Sites
Sites where no Action was needed	14	44%
* Sites with no corrective actions requested, as a % of sites with full	l initial visits.	

Duwamish Source Control Program Database Business Inspection Summary Report

Dates: Jan 1, 2003 to Jun 30, 2005 Basin: Duwamish Subbasin: Slip 5,Slip 6

Cycle Totals

Printed Aug 12, 2005 9:44 am

TABLE B-3

Corrective actions requested (grouped by regulatory area)

Duwamish Source Control Program Database

Corrective Actions Sorted by Basin and Subbasin

Dates: Jan 1, 2003 to Jun 30, 2005 Basin: Duwamish Subbasin: Diagonal SD,Slip 4,Slip 5,Slip 6,Duwamish (NEC) SD,Duwamish (NEC) CSO

Duwamish Basin

Diagonal SD Subbasin

Hazardous Waste - 192

- 55 Properly dispose of Waste
- 25 Properly document waste disposal
- 68 Properly store Product/Waste
- 41 Properly label Containers
- 3 Repair or replace degraded open chemical containers

Industrial Waste - 11

- 4 Obtain proper permit for facility discharge
- 5 Implement pretreatment for discharge
- 2 Provide better/more maintenance for pretreatment system

Spill Prevention and Cleanup - 305

- 111 Improve or create spill response procedures
- 105 Improve or purchase adequate spill response materials
- 89 Properly educate employees

Stormwater - 327

- 143 Storm drain facility needs to be cleaned
- 23 Missing or damaged components to storm drain facility need replacement/repair
- 1 Make storm drain facility parts accessible
- 6 Correct illegal plumbing connection
- 38 Implement proper housekeeping
- 40 Don't discharge washwater or process wastewater to stormdrain
- 15 Implement proper washing practices
- 24 Properly store containerized materials
- 15 Properly store non-containerized materials
- 8 Clean and eliminate leaks and spills from storage areas
- 2 Implement proper fueling operations
- 9 Properly perform maintenance of vehicles and equipment
- 3 Implement proper material transfer practices

Diagonal SD Subbasin Total: 835

Slip 4 Subbasin

Hazardous Waste - 12

- 5 Properly dispose of Waste
- 1 Properly document waste disposal
- 5 Properly store Product/Waste
- 1 Properly label Containers

Spill Prevention and Cleanup - 61

- 24 Improve or create spill response procedures
- 15 Improve or purchase adequate spill response materials
- 22 Properly educate employees

Corrective Actions Sorted by Basin and Subbasin (continued)

Duwamish Basin

Slip 4 Subbasin

Stormwater - 25

- 13 Storm drain facility needs to be cleaned
- 3 Missing or damaged components to storm drain facility need replacement/repair
- 1 Correct illegal plumbing connection
- 1 Implement proper washing practices
- 2 Properly store containerized materials
- 3 Properly store non-containerized materials
- 2 Clean and eliminate leaks and spills from storage areas

Slip 4 Subbasin Total: 98

Slip 5 Subbasin

Hazardous Waste - 3

3 Properly store Product/Waste

Spill Prevention and Cleanup - 23

- 11 Improve or create spill response procedures
- 7 Improve or purchase adequate spill response materials
- 5 Properly educate employees

Stormwater - 4

- 1 Storm drain facility needs to be cleaned
- 2 Correct illegal plumbing connection
- 1 Implement proper washing practices

Slip 5 Subbasin Total: 30

Slip 6 Subbasin

Spill Prevention and Cleanup - 3

- 1 Improve or create spill response procedures
- 1 Improve or purchase adequate spill response materials
- 1 Properly educate employees

Stormwater - 1

1 Missing or damaged components to storm drain facility need replacement/repair

Slip 6 Subbasin Total: 4

Duwamish (NEC) SD Subbasin

Hazardous Waste - 1

1 Properly label Containers

Spill Prevention and Cleanup - 4

- 2 Improve or create spill response procedures
- 1 Improve or purchase adequate spill response materials
- 1 Properly educate employees

Stormwater - 2

- 1 Storm drain facility needs to be cleaned
- 1 Properly store non-containerized materials

Duwamish (NEC) SD Subbasin Total: 7

Corrective Actions Sorted by Basin and Subbasin (continued)

Duwamish Basin

Duwamish (NEC) CSO Subbasin

Hazardous Waste - 2

- 1 Properly store Product/Waste
- 1 Properly label Containers

Spill Prevention and Cleanup - 3

- 1 Improve or create spill response procedures
- 1 Improve or purchase adequate spill response materials
- 1 Properly educate employees

Stormwater - 5

- 1 Implement proper housekeeping
- 1 Properly store containerized materials
- 1 Properly store non-containerized materials
- 1 Clean and eliminate leaks and spills from storage areas
- 1 Properly perform maintenance of vehicles and equipment

Duwamish (NEC) CSO Subbasin Total:

10

Duwamish Basin Total: 984

	HW	IW	Spill Prev.	Stormwater	All	
Report Totals:	210	11	399	364	984	

Duwamish Source Control Program Database

Corrective Actions Sorted by Basin and Subbasin

Dates: Jan 1, 2003 to Jun 30, 2005 Basin: Diagonal CSO Subbasin: Diagonal CSO,Lake Washington South

Diagonal CSO Basin

Diagonal CSO Subbasin

Hazardous Waste - 32

- 12 Properly dispose of Waste
- 1 Properly document waste disposal
- 16 Properly store Product/Waste
- 3 Properly label Containers

Industrial Waste - 7

- 3 Obtain proper permit for facility discharge
- 3 Implement pretreatment for discharge
- 1 Provide better/more maintenance for pretreatment system

Spill Prevention and Cleanup - 93

- 36 Improve or create spill response procedures
- 29 Improve or purchase adequate spill response materials
- 28 Properly educate employees

Stormwater - 79

- 55 Storm drain facility needs to be cleaned
- 8 Missing or damaged components to storm drain facility need replacement/repair
- 2 Make storm drain facility parts accessible
- 1 Correct illegal plumbing connection
- 5 Implement proper housekeeping
- 2 Don't discharge washwater or process wastewater to stormdrain
- 2 Implement proper washing practices
- 2 Properly store containerized materials
- 1 Properly store non-containerized materials
- 1 Properly perform maintenance of vehicles and equipment

Diagonal CSO Subbasin Total: 211

Lake Washington South Subbasin

Hazardous Waste - 15

- 2 Properly dispose of Waste
- 2 Properly document waste disposal
- 8 Properly store Product/Waste
- 2 Properly label Containers
- 1 Repair or replace degraded open chemical containers

Industrial Waste - 4

- 3 Implement pretreatment for discharge
- 1 Provide better/more maintenance for pretreatment system

Spill Prevention and Cleanup - 32

- 10 Improve or create spill response procedures
- 12 Improve or purchase adequate spill response materials
- 10 Properly educate employees

Corrective Actions Sorted by Basin and Subbasin (continued)

Diagonal CSO Basin

Lake Washington South Subbasin

Stormwater - 45

- 27 Storm drain facility needs to be cleaned
- 3 Missing or damaged components to storm drain facility need replacement/repair
- 4 Implement proper housekeeping
- 3 Don't discharge washwater or process wastewater to stormdrain
- 6 Properly store containerized materials
- 2 Clean and eliminate leaks and spills from storage areas

Lake Washington South Subbasin Total: 96

Diagonal CSO Basin Total: 307

TABLE B-4

Corrective actions requested (grouped by basin and subbasin)

Duwamish Source Control Program Database Site History by Basin

_

Dates: Jan 1, 2005 to Jun 30, 2005 Basin: Duwamish Subbasin: Diagonal SD,Slip 4,Slip 5,Slip 6,Duwamish (NEC) SD,Duwamish (NEC) CSO

Duwamish Basin									
Diagonal SD Subbasin	1	 In	Car	r Actio	ns Reques	stad			
Business Name	Sewer Class	In Compliance*	HW	T. ACUO IW	ns Keques Spill	Storm	Visit Date	Visit Type	Inspector
Charles Street- Maintenance Facility	Combined	Y				3			
							07/28/04	Initial	Treat
							02/15/05	Followup	Uzunow
							06/15/05	Followup	
Charlie's Produce	Part. Sep.	Ν			2	2			
							03/14/03	Initial	Kaufmann
							10/07/04	Initial	Uzunow
							10/26/04	Followup	
							02/11/05	Followup	
							04/29/05	Followup	
CL Auto Repair	Combined	Y	2		4	5			
							05/21/03	Initial	Brown
							12/15/04	Initial	Treat
							07/25/03	Followup	Brown
							02/08/05	Followup	Treat
Jefferson Park Golf Maintenance Building	Separated	Y	3		3	5			
							07/16/03	Initial	Niehaus
							02/02/05	Followup	Uzunow
							06/08/05	Followup	

Site History by Basin (continued)									
Duwamish Basin		_							
Diagonal SD Subbas	sin	In	C	orr. Actio	ons Reques	sted			
Business Name	Sewer Class	Compliance*	HW	IW	Spill	Storm	Visit Date	e Visit Type	Inspector
MacMillan Piper Inc.	Separated	Y	2		3	8			
							06/04/03	Initial	Treat
							08/26/03	Followup	
							10/06/03	Followup	
							01/26/04	Followup	
							05/18/04	Followup	
							07/20/04	Followup	
							09/27/04	Followup	
							02/08/05	Followup	
Medgar Evers Pool/Seattle Parks and Recreation	Separated	Y	1		3				
							11/04/03	Initial	Perry
							12/09/04	Followup	Uzunow
							01/04/05	Followup	
Pepsi Bottling Group - 26th Ave	Separated	Y	1		2				
							10/21/03	Initial	Peacock
							01/23/05	Initial	Tuomisto
							06/15/05	Followup	
ICP Painting	Separated	Y	4		6	2			
							04/21/04	Initial	Bassett
							06/17/04	Followup	
							08/16/04	Followup	
							10/20/04	Followup	
							01/28/05	Followup	

Site History by Basin (continued) Duwamish Basin)								
Diagonal SD Sub	obasin] In	C	orr. Actio	ns Paqua	stad			
Business Name	Sewer Class	In Compliance*	HW	IW	ns Keque. Spill	Storm	Visit D	ute Visit Type	Inspector
Duwamish (NEC) CSO Subbasin								
Business Name	Sewer Class	In Compliance*	Co HW	orr. Actio IW	ns Reque. Spill	sted Storm	Visit D	te Visit Type	Inspector
T & T Truck and Trailer Repair	Combined	comptunee	2	177	3	5		ue visu 1ype	Inspector
							06/10/0 06/23/0		Stewart
Duwamish (NEC) SD Subbasin] In	C	orr. Actio	ns Reaue	sted			
Business Name	Sewer Class	Compliance*	HW	IW	Spill	Storm	Visit D	te Visit Type	Inspector
Seaport Steel	Separated		1		3	2			-
							06/02/0)5 Initial	Stewart
SPU South Transfer Station	Part. Sep.				1				
							06/10/0	95 Initial	Stewart
Slip 4 Subbasin			C	orr. Actio	ns Dagua	stad			
Business Name	Sewer Class	In Compliance*	HW	IW	ns Keque. Spill	steu Storm	Visit D	te Visit Type	Inspector
Aero Motel Inn	Separated	Ý	1			1			···· <i>r</i> · · · · ·
							04/25/0)5 Initial	Treat
							05/26/0	5 Followup	
							06/30/0	5 Followup	

-

Site History by Basin (continued)

Duwamish	Basin
----------	-------

Slip 4 Subbasin		In	Co	orr. Actio	ns Roauo	stad			
Business Name	Sewer Class	Compliance*	HW	IW	ns Reque Spill	Storm	Visit Date	Visit Type	Inspector
Arco - E Margin	Separated	Y			3	2			
							10/12/04	Initial	Stewart
							04/21/05	Followup	
Chinese Baptist Church	Combined	Y	1			1			
							07/26/04	Initial	Tuomisto
							11/29/04	Followup	
							01/13/05	Followup	
Jensen Family LTD Partners	Separated	Y				2			
							09/29/04	Initial	Uzunow
							12/16/04	Followup	
							01/27/05	Followup	
King County Surplus Storage	Separated	N							
							01/27/05	Initial	Uzunow
∟arry's Market - E Myrtle	Separated	Y			3				
							11/03/04	Initial	Stewart
							02/16/05	Followup	Burrell
Marine Vacuum Service	Combined	Y			1				
							01/26/05	Initial	Tuomisto
							06/28/05	Followup	
Nichols Truck Tire	Combined	Y	1		3				
							06/16/04	Initial	Tuomisto
							11/29/04	Followup	
							02/28/05	Followup	

Site History by Basin (continued)									
Duwamish Basin									
Slip 4 Subbasin] In		Corr. Action	ns Roano	stad			
Business Name	Sewer Class	In Compliance*	HW	IW	s Keque. Spill	Storm	Visit Date	Visit Type	Inspector
Opportunity Skyway	Separated	N/A							
							01/27/05	Screening	Uzunow
Pioneer Human Services	Separated	N			3				
							12/17/04	Initial	Bassett
							03/31/05	Followup	
Shultz Distributing Inc Airport	Separated	Ν			3	1			
							03/15/05	Initial	Treat

Slip 5 Subbasin					_				
•		In			ns Reque				
Business Name	Sewer Class	Compliance*	HW	IW	Spill	Storm	Visit Date	Visit Type	Inspector
Aeroflight	Separated		1		1	1			
							08/12/04	Initial	Stewart
							02/14/05	Followup	
							06/10/05	Followup	
Ameriflight	Separated	Y	1		3	2			
							06/04/04	Initial	Treat
							03/14/05	Followup	
Caliber Inspection	Separated	Y							
							08/18/04	Initial	Treat
							05/31/05	Followup	
Reed Aviation	Separated	Y			1				
							10/04/04	Initial	Stewart
							01/20/05	Followup	

Printed Aug 11, 2005 12:30 pm

rptSiteHistByBasin

o 5 Subbasin									
		In	Cor	r. Action	ns Reques	sted			
	Sewer Class	Compliance*	HW	IW	Spill	Storm	Visit Date	Visit Type	Inspector
	Separated	Y	1		1				
							09/13/04	Initial	Stewart
							01/07/05	Followup	Burrell
o 6 Subbasin		In	Cor	r Action	ns Reaues	sted			
	Sewer Class	Compliance*	HW	IW	_	Storm	Visit Date	Visit Type	Inspector
ort Office Building	Separated	Ν				1			
							01/27/05	Initial	Uzunow
		Sewer Class	In Sewer Class Compliance*	In Con Sewer Class Compliance* HW	In Corr. Action Sewer Class Compliance* HW IW	In Corr. Actions Reques Sewer Class Compliance* HW IW Spill	InCorr. Actions RequestedSewer ClassCompliance*HWIWSpillStorm	• 6 Subbasin In Corr. Actions Requested • 6 Subbasin In Corr. Actions Requested • Sewer Class Compliance* HW IW Spill Storm • t Office Building Separated N 1 In	In Corr. Actions Requested Sewer Class Im Corr. Actions Requested HW IW Spill Storm Visit Date Visit Type It Office Building Separated N 1

*Report	Screening Visits:	1
Totals:	Initial Visits:	30
10tais.	Followup Visits:	42

* Visits from prior time periods are included in order to see a full Site History for Sites that were visited during the report cycle.

-

Duwamish Source Control Program Database Site History by Basin

Dates: Jan 1, 2005 to Jun 30, 2005 Basin: Diagonal CSO Subbasin: Diagonal CSO,Lake Washington South

Diagonal CSO Basin									
Diagonal CSO Subba	sin]	C			- 1 - 1			
Business Name	Sewer Class	In Compliance*	HW	orr. Actio IW	ns Reque: Spill	stea Storm	Visit Date	Visit Type	Inspector
Charles Street - Fire Truck Repair Shop	Combined	Y	11,7	1	3	Storm	, 1511 D uite	, isit Type	mspector
							08/24/04	Initial	Uzunow
							03/04/05	Followup	
Charles Street - Testing Station	Combined	Y			3				
							09/03/04	Initial	Treat
							02/07/05	Followup	
Charles Street Auto Shop	Combined	Y	1		3	1			
							08/24/04	Initial	Uzunow
							03/04/05	Followup	
Charles Street SDOT Facility	Combined	Y	1		1	1			
							09/01/04	Initial	Uzunow
							02/16/05	Followup	
Puget Sound Foot & Ankle Center	Combined	Y	1						
							03/30/04	Initial	Mayfield
							06/30/05	Followup	Uzunow
Robert Grenley, M.D.	Combined	Y	1						
							04/02/04	Initial	Mayfield
							06/30/05	Followup	Uzunow
Seattle University - Services	Combined	Y			1				
							03/11/04	Initial	Rivera
							06/30/05	Followup	

* In Compliance as of the Report Ending Date.

Printed Aug 11, 2005 12:30 pm

rptSiteHistByBasin

Site History by Basin (continued)	·								
Diagonal CSO Basin									
Diagonal CSO Su	ubbasin] In	Co	r. Action	ns Roque	stad			
Business Name	Sewer Class	Compliance*	HW	IW IW	s Reques	Storm	Visit Date	Visit Type	Inspector
Seattle University - Engr Bld	Combined	Ý			1				1
							03/11/04	Initial	Rivera
							06/30/05	Followup	
Seattle University - Seaport	Combined	Y	2						
							03/11/04	Initial	Rivera
							05/00/04	Fallassum	Maddall
							05/20/04	Followup	Waddell
	0 //	1					05/20/04 06/30/05	Followup Followup	Rivera
Lake Washingtor Subbasin	n South	In	Сог	r. Action	ns Reques	sted			
Subbasin		In Compliance*			_		06/30/05	Followup	Rivera
Subbasin Business Name	Sewer Class	Compliance*	Cor HW	r. Action IW	ns Reques Spill	Storm	06/30/05		
Subbasin					_		06/30/05 Visit Date	Followup Visit Type	Rivera Inspector
Subbasin Business Name	Sewer Class	Compliance*			_	Storm	06/30/05 Visit Date 01/27/04	Followup Visit Type Screening	Rivera
Subbasin Business Name	Sewer Class	Compliance*			_	Storm	06/30/05 Visit Date	Followup Visit Type Screening Initial	Rivera Inspector
Subbasin Business Name	Sewer Class	Compliance*			_	Storm	06/30/05 <i>Visit Date</i> 01/27/04 02/12/04	Followup Visit Type Screening	Rivera Inspector
Subbasin Business Name Dubb City	Sewer Class Combined	Compliance *			Spill	<i>Storm</i> 1	06/30/05 <i>Visit Date</i> 01/27/04 02/12/04	Followup Visit Type Screening Initial	Rivera Inspector
Subbasin Business Name Dubb City	Sewer Class Combined	Compliance *			Spill	<i>Storm</i> 1	06/30/05 Visit Date 01/27/04 02/12/04 04/14/05	Followup	Rivera Inspector Uzunow
Subbasin Business Name Dubb City	Sewer Class Combined	Compliance *			Spill	<i>Storm</i> 1	06/30/05 Visit Date 01/27/04 02/12/04 04/14/05	Followup Visit Type Screening Initial Followup Initial	Rivera Inspector Uzunow Treat

-

Site History by Basin (continued)

*Report	Screening Visits:	1	* Visits from prior time periods are included in order to see a full Site History for Sites that
Totals:	Initial Visits:	<i>Initial Visits:</i> 11	were visited during the report cycle.
I Utuls.	Followup Visits:	14	

TABLE B-5

Site history by basin

Duwamish Source Control Program Database

Corrective Actions Requested, Grouped by Regulatory Area

Dates: Jan 1, 2005 to Jun 30, 2005 Basin: Duwamish Subbasin: Diagonal SD,Slip 4,Slip 5,Slip 6,Duwamish (NEC) SD,Duwamish (NEC) CSO

Regulatory Area:

Hazardous Waste	Letter			
Site	Date	Inspector	Corrective Action Requested	
Aero Motel Inn	4/27/2005	Treat	Properly store Product/Waste	
King County Maintenance Facility Airport	2/24/2005	Treat	Properly dispose of Waste	
			Properly store Product/Waste	
Pepsi Bottling Group 26th Ave	1/31/2005	Tuomisto	Properly store Product/Waste	
Seaport Steel	6/14/2005	Stewart	Properly label Containers	
T & T Truck and Trailer Repair	6/15/2005	Stewart	Properly store Product/Waste	
			Properly label Containers	

5 Sites with 7 Corrective Actions Requested

Regulatory Area:

Spill Prevention and Cleanup	Letter		
Site	Date	Inspector	Corrective Action Requested
King County Maintenance Facility Airport	2/24/2005	Treat	Improve or create spill response procedures
			Improve or purchase adequate spill response materials
			Properly educate employees
Marine Vacuum Service	3/7/2005	Tuomisto	Improve or create spill response procedures
Pepsi Bottling Group 26th Ave	1/31/2005	Tuomisto	Improve or create spill response procedures
			Improve or purchase adequate spill response materials
Pioneer Human Services	1/4/2005	Bassett	Improve or create spill response procedures
			Improve or purchase adequate spill response materials
			Properly educate employees

Corrective Actions Requested, Grouped by Regulatory Area (continued)

Regulatory Area:

Spill Prevention and Cleanup	Letter		
Site	Date	Inspector	Corrective Action Requested
Seaport Steel	6/14/2005	Stewart	Improve or create spill response procedures
			Improve or purchase adequate spill response materials
			Properly educate employees
Shultz Distributing Inc. Airport	3/22/2005	Treat	Improve or create spill response procedures
			Improve or purchase adequate spill response materials
			Properly educate employees
SPU South Transfer Station	6/13/2005	Stewart	Improve or create spill response procedures
T & T Truck and Trailer Repair	6/15/2005	Stewart	Improve or create spill response procedures
			Improve or purchase adequate spill response materials
			Properly educate employees

8 Sites with 19 Corrective Actions Requested

Regulatory Area:

-

Letter		
Date	Inspector	Corrective Action Requested
4/27/2005	Treat	Correct illegal plumbing connection
2/15/2005	Uzunow	Missing or damaged components to storm drain facility need replacement/repair
2/24/2005	Treat	Storm drain facility needs to be cleaned
		Missing or damaged components to storm drain facility need replacement/repair
6/14/2005	Stewart	Storm drain facility needs to be cleaned
		Properly store non-containerized materials
3/22/2005	Treat	Storm drain facility needs to be cleaned
6/15/2005	Stewart	Implement proper housekeeping
		Properly store containerized materials
		Properly store non-containerized materials
	Date 4/27/2005 2/15/2005 2/24/2005 6/14/2005 3/22/2005	Date Inspector 4/27/2005 Treat 2/15/2005 Uzunow 2/24/2005 Treat 6/14/2005 Stewart 3/22/2005 Treat

Clean and eliminate leaks and spills from storage areas Properly perform maintenance of vehicles and equipment

6 Sites with 12 Corrective Actions Requested

Corrective Actions Requested, Grouped by Regulatory Area (continued)

Report Totals: 10 Unique Sites with 38 Corrective Actions Requested

TABLE B-6

List of Corrective Actions Requested (March 2003 – June 2005)

Duwamish Corrective Actions by Basin, Subbasin

Basin: Diagonal CSO

Subbasin: Diagonal CSC)
Arco am/pm #81706 427 12th	a Ave
03/31/2004	Improve or create spill response procedures Improve or purchase adequate spill response materials Properly educate employees
Arco AM/PM/E1-Assa/Inc. 66	5 23rd Ave
04/01/2004	Improve or create spill response procedures Improve or purchase adequate spill response materials Properly educate employees Storm drain facility needs to be cleaned
AT Systems 1401 E Yesler St	t
03/04/2004	Improve or create spill response procedures Improve or purchase adequate spill response materials Properly educate employees Implement proper housekeeping Implement proper washing practices
Bank of America 4825 Rainie	r Ave S
01/28/2004	Storm drain facility needs to be cleaned
Beacon Hill Dry Cleaners 485	0 Beacon Ave S
02/02/2004	Improve or create spill response procedures Improve or purchase adequate spill response materials Properly educate employees Storm drain facility needs to be cleaned
06/14/2004	Correct illegal plumbing connection
Broadway Sports & Internal Mec	dicine 600 Broadway, #270
03/31/2004	Improve or purchase adequate spill response materials Implement pretreatment for discharge Properly dispose of Waste
BYG Maintenance 74 S Huds	on St
11/24/2003 Campus Shell Service Station	Improve or create spill response procedures 700 12th Ave
03/11/2004	Storm drain facility needs to be cleaned
Catholic Church of Holy Martyrs	
03/08/2004 Charles Street - Fire Truck Repa	Storm drain facility needs to be cleaned air Shop 815 S Dearborn St
08/24/2004	Improve or create spill response procedures
00/24/2004	Improve of create spin response procedures Improve or purchase adequate spill response materials Properly educate employees Provide better/more maintenance for pretreatment system
Charles Street - Testing Station	805 S Dearborn St
09/03/2004	Improve or create spill response procedures Improve or purchase adequate spill response materials Properly educate employees
Charles Street Auto Shop 805	5 S Charles St
08/24/2004	Improve or create spill response procedures

Basin: Diagonal CSO

Subbasin: Diagonal CS	n
08/24/2004	Improve or purchase adequate spill response materials
00/24/2004	Properly educate employees
	Storm drain facility needs to be cleaned
	Properly store Product/Waste
Charles Street SDOT Facility	801 S Plummer St
09/01/2004	Improve or create spill response procedures
	Implement proper housekeeping
	Properly label Containers
Church of Christ 1708 E Fir S	St
03/08/2004	Properly store Product/Waste
Columbia City Chiropractic 4	739 Rainier Ave S
04/14/2004	Storm drain facility needs to be cleaned
Columbia Funeral Home 456	7 Rainier Ave S
01/29/2004	Storm drain facility needs to be cleaned
Columbia Plaza 4801 Rainie	r Ave S
01/29/2004	Storm drain facility needs to be cleaned
Compton Lumber & Hardware	3847 1st Ave S
02/13/2004	Improve or create spill response procedures
	Improve or purchase adequate spill response materials
	Properly educate employees
Copy Mart 1018 E Seneca S	t
03/10/2004	Storm drain facility needs to be cleaned
Davis Door 2021 S Grand St	
01/05/2004	Improve or create spill response procedures
	Improve or purchase adequate spill response materials
	Properly educate employees
	Storm drain facility needs to be cleaned
	Properly store Product/Waste
Deeny Construction Co. Inc.	
10/22/2003	Improve or create spill response procedures
	Improve or purchase adequate spill response materials Make storm drain facility parts accessible
	Properly store Product/Waste
Don's Quality Automotive 11	17 12th Ave
03/31/2004	Properly store Product/Waste
	215 E Fir St
02/25/2004	Storm drain facility needs to be cleaned
	ainier Ave S
10/22/2003	Properly store Product/Waste
Evergreen Chiropractic Clinic	1032 S Jackson St, #200
04/19/2004	
	Implement pretreatment for discharge
Garfield High School 400 23r	
03/15/2004	Improve or create spill response procedures Improve or purchase adequate spill response materials
	Properly educate employees
	and the second

Subbasin: Diagonal CSO	
03/15/2004	Properly dispose of Waste
	Properly document waste disposal
Genesee Oil 3616 S Genesee	St
02/03/2004	Improve or create spill response procedures
	Properly educate employees
	Don't discharge washwater or process wastewater to stormdrain
Girlie Press 1658 21ST AVE	
03/17/2004	Improve or create spill response procedures
	Improve or purchase adequate spill response materials
	Properly educate employees
Goodwill Missionary Baptist Chu	
03/04/2004	Storm drain facility needs to be cleaned
Grace United Church of Christ	722 30th Ave S
04/01/2004	Storm drain facility needs to be cleaned
Han Han Market 412 12th Ave	S
03/16/2004	Improve or create spill response procedures
	Improve or purchase adequate spill response materials
	Properly educate employees
Harborview Medical Center 32	5 9th Ave
04/27/2004	Properly educate employees
	Implement pretreatment for discharge
	Properly dispose of Waste
Hospital Central Services Associ	
03/16/2004	Storm drain facility needs to be cleaned
	Madison St
Immaculate Conception 820 1	8th Ave
04/16/2004	Storm drain facility needs to be cleaned
Irena M. Baker DDS 4704 Rai	nier Ave SE
01/30/2004	Storm drain facility needs to be cleaned
04/14/2004	Storm drain facility needs to be cleaned
Joslin Diabetes Center 910 Bo	pylston Ave
04/14/2004	Storm drain facility needs to be cleaned
Kidney Centers 700 Broadway	<i>(</i>
04/06/2004	Storm drain facility needs to be cleaned
Kusakabe Professional Corp.	1414 E Yesler Wy
03/09/2004	Storm drain facility needs to be cleaned
Longs Drugs 3820 Rainier Ave	e S
02/27/2004	Improve or create spill response procedures
	Properly educate employees
Loomis Fargo 5200 E Margina	il Wy S
10/30/2003	Improve or create spill response procedures
	Storm drain facility needs to be cleaned
Madison Park Church of Christ	1115 19th Ave
04/01/2004	Storm drain facility needs to be cleaned

Subbasin: Diagonal CSO

Dasin. Dia	gunai Cot			
Malay Satay Hut	212 12th Av	e S		
	03/16/2004	Improve or purchase adequate spill response materials		
		Properly educate employees		
MC Food Store 4800 Bea		ו Ave S		
	02/17/2004	Improve or create spill response procedures		
		Improve or purchase adequate spill response materials		
		Properly educate employees		
		Storm drain facility needs to be cleaned		
		Missing or damaged components to storm drain facility need replacement/repair		
Medina Children's	Services 1	23 6th Ave		
	02/02/2004	Storm drain facility needs to be cleaned		
Manay Trac 14	00 Madiaan O	Properly dispose of Waste		
Money Tree 14	00 Madison St			
	04/14/2004			
Mount Zion Baptis				
	03/24/2004	Storm drain facility needs to be cleaned		
		Missing or damaged components to storm drain facility need replacement/repair		
Nha Hang Ngoc H	luong 1200	S Jackson St, #8		
	03/16/2004	Improve or create spill response procedures		
		Improve or purchase adequate spill response materials		
		Properly educate employees Properly store containerized materials		
		Properly dispose of Waste		
Occuhealth 726	Broadway, #2			
	03/26/2004	Improve or create spill response procedures		
Paine Electronics				
	01/23/2004	Storm drain facility needs to be cleaned		
	01/20/2004	Properly store Product/Waste		
		Properly label Containers		
Paine Electronics	2401 S Bay	view St		
	10/22/2003	Improve or create spill response procedures		
		Storm drain facility needs to be cleaned		
Photographic Cer	ter Northwest	900 12th Ave		
	03/11/2004	Obtain proper permit for facility discharge		
Porbug 820 S (Charlestown S			
Ũ	12/29/2003	Improve or create spill response procedures		
	12.20.2000	Storm drain facility needs to be cleaned		
		Missing or damaged components to storm drain facility need replacement/repair		
		Properly dispose of Waste		
		Properly store Product/Waste		
Puget Sound Foo	t & Ankle Cent	ter 600 Broadway, #220		
	03/30/2004	Properly dispose of Waste		
QFC 2707 Rair	nier Ave S			
	10/21/2003	Improve or create spill response procedures		
		Missing or damaged components to storm drain facility need replacement/repair		

Subbasin: Diagonal CSO

Qwest 1313 E	Columbia St	
	03/16/2004	Implement proper housekeeping
		Properly store Product/Waste
Rainier Pacific Ma	anagement	4714 Rainier Ave S
	03/31/2004	Storm drain facility needs to be cleaned
Rainier Valley Ch	iropractic P.S.	4236 36th Ave S
	03/10/2004	Storm drain facility needs to be cleaned
Rainier Valley Cu	Itural Center	3515 S Alaska St
	02/10/2004	Storm drain facility needs to be cleaned
Richlen's Mini-Ma	art/76 Gas Stat	ion 2220 E Union St
	03/10/2004	Improve or create spill response procedures Improve or purchase adequate spill response materials Properly educate employees Storm drain facility needs to be cleaned
Robert Grenley, N	M.D. 600 Bro	badway Ave, #320
	04/02/2004	Properly dispose of Waste
Royal Esquire Clu	ub 5016 Rai	nier Ave S
	02/04/2004	Storm drain facility needs to be cleaned Properly dispose of Waste
Safeway 3820	Rainier Ave S	
	03/01/2004	Storm drain facility needs to be cleaned
Saigon Viet Nam	Deli 1200 S	Jackson St, #7
	03/16/2004	Improve or create spill response procedures Improve or purchase adequate spill response materials Properly educate employees Properly store containerized materials Properly dispose of Waste
Seattle Automotiv	e Distributing,	Inc. 1264 S King St
	05/24/2004	Storm drain facility needs to be cleaned
Seattle Curtain		
	104 12th Ave	
	104 12th Ave 03/01/2004	Storm drain facility needs to be cleaned
Seattle Fire Depa	03/01/2004	
	03/01/2004 Irtment 3224	
	03/01/2004 irtment 3224 04/05/2004	4 4th Ave S Storm drain facility needs to be cleaned
Seattle Fire Depa	03/01/2004 irtment 3224 04/05/2004	4 4th Ave S Storm drain facility needs to be cleaned
Seattle Fire Depa	03/01/2004 irtment 3224 04/05/2004 901 12th A 03/11/2004	4 4th Ave S Storm drain facility needs to be cleaned ve Improve or purchase adequate spill response materials
Seattle Fire Depa Seattle University	03/01/2004 irtment 3224 04/05/2004 901 12th A 03/11/2004	4 4th Ave S Storm drain facility needs to be cleaned ve Improve or purchase adequate spill response materials
Seattle Fire Depa Seattle University	03/01/2004 artment 3224 04/05/2004 901 12th A 03/11/2004 900 Broady 03/11/2004	4 4th Ave S Storm drain facility needs to be cleaned ve Improve or purchase adequate spill response materials way Improve or purchase adequate spill response materials
Seattle Fire Depa Seattle University Seattle University	03/01/2004 ortment 3224 04/05/2004 901 12th A 03/11/2004 900 Broady 03/11/2004 1215 E Col	4 4th Ave S Storm drain facility needs to be cleaned ve Improve or purchase adequate spill response materials way Improve or purchase adequate spill response materials
Seattle Fire Depa Seattle University Seattle University	03/01/2004 artment 3224 04/05/2004 901 12th A 03/11/2004 900 Broady 03/11/2004 1215 E Col 05/20/2004	4 4th Ave S Storm drain facility needs to be cleaned ve Improve or purchase adequate spill response materials way Improve or purchase adequate spill response materials lumbia St Properly dispose of Waste
Seattle Fire Depa Seattle University Seattle University Seattle University	03/01/2004 artment 3224 04/05/2004 901 12th A 03/11/2004 900 Broady 03/11/2004 1215 E Col 05/20/2004	4 4th Ave S Storm drain facility needs to be cleaned ve Improve or purchase adequate spill response materials way Improve or purchase adequate spill response materials lumbia St Properly dispose of Waste Properly store Product/Waste

Basin: Diagonal CSO

Diagonal CSO	
Subbasin: Diagonal CSC)
01/21/2004	Missing or damaged components to storm drain facility need replacement/repair
	Obtain proper permit for facility discharge
	Properly store Product/Waste
	Properly label Containers
Shell Gas Station 2015 E Uni	on St
03/10/2004	Improve or create spill response procedures
	Improve or purchase adequate spill response materials
	Properly educate employees
Shell Mini Mart 3611 SE Gen	esee St
02/12/2004	Improve or create spill response procedures
	Improve or purchase adequate spill response materials
	Properly educate employees
	Storm drain facility needs to be cleaned
	Implement proper washing practices
	Properly perform maintenance of vehicles and equipment Properly store Product/Waste
Chiemi and Chien Investments	
Shiomi and Chinn Investments I	
04/15/2004	
	Implement proper housekeeping
Skeeter's Auto Rebuild, Inc. 2	2104 S Plum St
02/03/2004	Improve or create spill response procedures
	Improve or purchase adequate spill response materials
	Properly educate employees
	Storm drain facility needs to be cleaned
	Properly store Product/Waste
Sons of Haiti 153 14th Ave	
03/12/2004	Storm drain facility needs to be cleaned
Spencer Technologies 701 16	6th Ave
03/16/2004	Storm drain facility needs to be cleaned
Star Laundry 160 12th Ave	
02/27/2004	Improve or create spill response procedures
	Improve or purchase adequate spill response materials
	Properly educate employees
	Properly store Product/Waste
Swedish Family Medicine 140	01 Madison St
06/04/2004	Storm drain facility needs to be cleaned
Swedish Medical Center 801	Broadway
04/08/2004	Improve or create spill response procedures
Thanh Son Tofu 118 12th Ave	e
03/08/2004	Implement proper housekeeping
The Color Store, Inc. 1122 E	
03/10/2004	Storm drain facility needs to be cleaned
The Polyclinic 1145 Broadwa	
	Storm drain facility needs to be cleaned
U-Haul of Western WA 2515	Rainier Ave S
10/22/2003	Improve or create spill response procedures

Basin: Diagonal CSO

Subbasin: Diagonal CS	0
10/22/2003	Improve or purchase adequate spill response materials
	Properly educate employees
	Storm drain facility needs to be cleaned
	Don't discharge washwater or process wastewater to stormdrain
University of Washington Cons	olidated Laundry 2901 27th Ave S
03/23/2004	Improve or create spill response procedures
	Properly educate employees
	Obtain proper permit for facility discharge
	Properly store Product/Waste
Urban League of Metropolitan	
02/24/2004	,
US Postal Service 3727 S A	
	Storm drain facility needs to be cleaned
Viet Wah Supermarket 1032	S Jackson St
03/15/2004	Improve or create spill response procedures
	Improve or purchase adequate spill response materials
	Properly educate employees
Vy Da 1200 S Jackson St, #	
07/07/2004	Improve or create spill response procedures Improve or purchase adequate spill response materials
	Properly educate employees
	Properly store non-containerized materials
	Properly dispose of Waste
Washington State Department	of Social and Health Services 1700 E Cherry St
04/07/2004	Storm drain facility needs to be cleaned
	Missing or damaged components to storm drain facility need replacement/repair
Wholesale Transmissions 45	527 Rainier Ave S
02/12/2004	Improve or create spill response procedures
	Improve or purchase adequate spill response materials
	Properly store Product/Waste
Work Source 2531 Rainier A	ve S
06/17/2004	-
	Missing or damaged components to storm drain facility need replacement/repair
YMCA of Greater Seattle 17	00 23rd Ave E
03/15/2004	Storm drain facility needs to be cleaned
	Missing or damaged components to storm drain facility need replacement/repair
# of sites: 94	<i># of corr. actions:</i> 211
Subbasin: Lake Washir	ngton South
Banadir Restaurant 5212 Ra	inier Ave S
02/03/2004	Implement proper housekeeping
	Properly store Product/Waste
Burdick's Security 4728 Rair	ier Ave S
01/29/2004	Storm drain facility needs to be cleaned
Damascus Church 5261 Rai	nier Ave S

Subbasin: Lake Washington South		
01/27/2004	Storm drain facility needs to be cleaned	
Dong Khanh 5300 Rainier Av	ve S	
02/05/2004	Storm drain facility needs to be cleaned	
Dubb City 5022 Rainier Ave	S	
02/12/2004	Storm drain facility needs to be cleaned	
Enterprise Rent-A-Car 3711	Rainier Ave S	
02/09/2004	Storm drain facility needs to be cleaned	
Express Tires & Auto Service	5000 Martin Luther King Jr Wy S	
03/01/2004	Storm drain facility needs to be cleaned	
	Properly store containerized materials	
	Properly store Product/Waste	
Foulee Market 2050 S Colum	nbian Wy	
02/20/2004	Improve or purchase adequate spill response materials	
	Properly educate employees	
	Storm drain facility needs to be cleaned	
Genesee Plaza 4400 Rainier		
04/22/2004		
Clent Toutiles Corporation 20	Missing or damaged components to storm drain facility need replacement/repair	
•	031 S Walden St	
	Storm drain facility needs to be cleaned	
	316 Rainier Ave S	
01/30/2004	Improve or purchase adequate spill response materials Storm drain facility needs to be cleaned	
	Implement pretreatment for discharge	
	Properly store Product/Waste	
Hong's Garage 3518 Rainier	Ave S	
02/23/2004	Improve or create spill response procedures	
	Improve or purchase adequate spill response materials	
	Properly educate employees	
Image Star Shots 4801 Raini	er Ave S	
02/05/2004	Improve or create spill response procedures	
	Improve or purchase adequate spill response materials	
	Properly label Containers	
Import Auto Sales 5203 Rain		
03/31/2003	Improve or create spill response procedures	
	Improve or purchase adequate spill response materials Properly educate employees	
	Storm drain facility needs to be cleaned	
	Properly store Product/Waste	
Isaacs Chiropractic Clinic 52	00 Rainier Ave S	
03/23/2004	Implement pretreatment for discharge	
Javi's Auto 3757 Rainier Ave S		
02/11/2004	Storm drain facility needs to be cleaned	
John Muir Elementary School	3301 S Horton St	
02/23/2004	Storm drain facility needs to be cleaned	

Subbasin: Lake Washington South

Jone's Clavier Academy of Mus	ic, Inc. 3847 Rainier Ave S		
03/03/2004	Storm drain facility needs to be cleaned		
	Missing or damaged components to storm drain facility need replacement/repair		
K-1 Auto Body Shop 5223 Ra	K-1 Auto Body Shop 5223 Rainier Ave S		
02/25/2003	Improve or create spill response procedures		
	Improve or purchase adequate spill response materials		
	Properly educate employees		
	Don't discharge washwater or process wastewater to stormdrain		
	Properly store containerized materials		
04/00/0004	Properly store Product/Waste		
04/22/2004	Don't discharge washwater or process wastewater to stormdrain Properly store containerized materials		
Mekong Rainier Market & Gift			
02/23/2004			
	in Rainier Ave S		
03/02/2004	Improve or create spill response procedures		
00/02/2004	Improve or purchase adequate spill response materials		
	Properly educate employees		
	Don't discharge washwater or process wastewater to stormdrain		
	Clean and eliminate leaks and spills from storage areas		
PCC Natural Markets 5041 W	/ilson Ave S		
02/09/2004	Storm drain facility needs to be cleaned		
Pho Hoa 4732 Rainier Ave S			
05/21/2004	Storm drain facility needs to be cleaned		
Phoi's Auto Co. 3501 Rainier	Ave S		
02/09/2004	Improve or create spill response procedures		
	Improve or purchase adequate spill response materials		
	Properly educate employees		
	Storm drain facility needs to be cleaned		
Quan P. Le, M.D. 4069 Raini	,		
02/04/2004	Storm drain facility needs to be cleaned		
Radio Hart's 5303 Rainier Av			
01/27/2004	Storm drain facility needs to be cleaned		
Deleter Auto 0000 4th Auto 0	Properly dispose of Waste		
Rainier Auto 3300 4th Ave S			
07/11/2003	Improve or create spill response procedures		
	Improve or purchase adequate spill response materials Properly educate employees		
	Implement proper housekeeping		
	Properly store containerized materials		
	Properly store Product/Waste		
	Properly label Containers		
	Repair or replace degraded open chemical containers		
Rex's Service 5059 Wilson A	ve S		
02/09/2004	Improve or create spill response procedures		
	Properly educate employees		

Subbasin: Lake Washin	agton South	
	Storm drain facility needs to be cleaned	
	ainier Ave S	
02/18/2004	Improve or purchase adequate spill response materials	
02,10,2004	Properly educate employees	
	Implement proper housekeeping	
	Properly store containerized materials	
	Clean and eliminate leaks and spills from storage areas	
	Properly document waste disposal	
	Properly store Product/Waste	
Saint Gobain 3711 S Hudsor		
05/25/2004	Improve or create spill response procedures	
	Improve or purchase adequate spill response materials	
	Storm drain facility needs to be cleaned	
	Properly document waste disposal	
Seattle Super Market 4801 B	leacon Ave SE	
03/09/2004	Improve or purchase adequate spill response materials	
	Storm drain facility needs to be cleaned	
	Missing or damaged components to storm drain facility need replacement/repair	
Screanc's Hatfield Plumbing &	Heating Co., Inc. 3704 S Ferdinand	
-	•	
	Properly dispose of Waste	
Super Saver Furniture 4208	Rainier Ave S	
02/12/2004	Storm drain facility needs to be cleaned	
Tacos El Asadero 3513 Rain	ier Ave S	
02/09/2004	Storm drain facility needs to be cleaned	
Wash's Auto Reair 5021 Rair	nier Ave S	
02/05/2004	Improve or create spill response procedures	
	Properly educate employees	
WestFarm Foods 4058 Rainier Ave S		
02/18/2004	Storm drain facility needs to be cleaned	
	Implement proper housekeeping	
	Provide better/more maintenance for pretreatment system	
Zion Prep Academy 4730 32	nd Ave S	
02/12/2004	Storm drain facility needs to be cleaned	
	Properly store containerized materials	
	Properly store Product/Waste	
# of sites: 37	<i># of corr. actions:</i> 96	
Duwamish		
Subbasin: Diagonal SD		
4800 Denver Avenue Facility	4800 Denver Ave S	
07/21/2005	Storm drain facility needs to be cleaned	

Basin:

Subbasin: Diagonal SD	
01/20/2004	Implement proper washing practices
	Properly store Product/Waste
	Properly label Containers
ABC Towing 710 S Dakota S	t
05/15/2003	Properly dispose of Waste
	Properly store Product/Waste
Acme Construction Supply Co.,	Inc. 4747 1st Ave S
03/24/2003	Storm drain facility needs to be cleaned
	Missing or damaged components to storm drain facility need replacement/repair
Action Communications, Inc.	4000 Airport Wy S
05/13/2003	Storm drain facility needs to be cleaned
Active Gear 4412 4th Ave S	
12/19/2003	Storm drain facility needs to be cleaned
Adhesa Plate 4000 7th Ave S	
05/15/2003	Implement pretreatment for discharge
	10 6th Ave S
07/25/2003	
0112312003	Improve or purchase adequate spill response materials
	Properly educate employees
	Storm drain facility needs to be cleaned
Airgas Norpac 4401 Airport V	-
05/20/2003	
00/20/2000	Properly educate employees
	Storm drain facility needs to be cleaned
	Properly dispose of Waste
	Properly store Product/Waste
Alaskan Copper & Brass 340	0 6th Ave S
06/05/2003	Improve or create spill response procedures
	Improve or purchase adequate spill response materials
	Properly educate employees
	Storm drain facility needs to be cleaned
Alaskan Copper & Brass 330	0 6th Ave S
06/05/2003	Improve or create spill response procedures
	Improve or purchase adequate spill response materials
Alaskan Copper and Brass 3	405 6th Ave S
06/05/2003	Improve or create spill response procedures
	Improve or purchase adequate spill response materials
	Storm drain facility needs to be cleaned
	Correct illegal plumbing connection
	Implement proper fueling operations
All City Fence Co. 2345 Rain	
10/21/2003	Improve or create spill response procedures
	Improve or purchase adequate spill response materials
	Properly educate employees Missing or demoged components to storm drain facility need replacement/repair
All Dorte Trading Co. LLC. 24	Missing or damaged components to storm drain facility need replacement/repair
All Ports Trading Co. LLC 34	29 Airport Wy S

Subbasin: Diagonal SD	
08/05/2003	Improve or create spill response procedures
	Improve or purchase adequate spill response materials
Amazon.com 1200 12th Ave	S
10/30/2003	Improve or create spill response procedures
	Improve or purchase adequate spill response materials
	Properly educate employees
	Storm drain facility needs to be cleaned
American Red Cross 1900 25	ith Ave S
10/23/2003	Storm drain facility needs to be cleaned Don't discharge washwater or process wastewater to stormdrain
Arctic Ice Cream Novelties 19	001 23rd Ave S
10/16/2003	Clean and eliminate leaks and spills from storage areas
	Properly store Product/Waste
ASA Mercer Middle School 16	600 Columbia Wy
06/20/2003	Storm drain facility needs to be cleaned
Atlas Supply 611 S Charlesto	
06/24/2003	Improve or create spill response procedures
00/24/2000	Don't discharge washwater or process wastewater to stormdrain
	Properly dispose of Waste
Audio-Visual Products, Inc. 8	
06/11/2003	
	Implement proper washing practices
Auto-Chlor System 4315 7th	Ave S
06/23/2003	Obtain proper permit for facility discharge
Automotive Brakes & Service	308 14th Ave S
09/10/2003	Improve or create spill response procedures
	Properly educate employees
	Properly label Containers
Bailey Gazert Elementary 130	01 E Yesler Wy
10/15/2003	Improve or create spill response procedures
	Improve or purchase adequate spill response materials
	Properly educate employees
	Storm drain facility needs to be cleaned
	Properly store containerized materials
	Properly store Product/Waste
	Properly label Containers
Bamboohardwoods 510 S Inc	lustrial Wy
08/14/2003	Storm drain facility needs to be cleaned
Barr Transmission 3913 Airpo	ort Wy S
07/02/2003	Improve or create spill response procedures
	Improve or purchase adequate spill response materials
	Properly educate employees
	Implement proper housekeeping
Bartell Drugs 4711 Denver Av	ve S
03/18/2003	Improve or create spill response procedures
	Improve or purchase adequate spill response materials

Subbasin: Diagonal SD	
	Properly educate employees
	Don't discharge washwater or process wastewater to stormdrain
	Properly store Product/Waste
Bendokas Painting Company, Ir	nc. 805 Rainier Ave S
09/04/2003	Improve or create spill response procedures
Bill Hatch Sports 4202 6th Av	ve S
	Storm drain facility needs to be cleaned
00/20/2000	Missing or damaged components to storm drain facility need replacement/repair
Blaine Memorial United Method	
02/18/2004	Storm drain facility needs to be cleaned
Blanchard Auto Electric/Automo	tive Service Co. 640 S Spokane St
	Improve or create spill response procedures
01120/2003	Improve or purchase adequate spill response materials
BMP Painting Contractors, Inc.	
-	
06/19/2003	Improve or create spill response procedures
	Improve or purchase adequate spill response materials
	Properly educate employees Properly document waste disposal
	Properly label Containers
Budget Batteries 2006 Rainie	
-	
10/16/2003	Improve or create spill response procedures
	Improve or purchase adequate spill response materials
	Storm drain facility needs to be cleaned
	Implement proper housekeeping
	Don't discharge washwater or process wastewater to stormdrain Properly store Product/Waste
Bush Woodcraft 841 Rainier	
08/18/2003	
08/18/2003	Storm drain facility needs to be cleaned Properly dispose of Waste
	Properly document waste disposal
Business Park 3828 4th Ave	
09/29/2003	-
	Storm drain facility needs to be cleaned
BYG Taxi Co-op 74 S Hudson	
08/12/2003	Don't discharge washwater or process wastewater to stormdrain
Byrne Specialty Gases, Inc. 6	001 S Andover St
06/05/2003	Storm drain facility needs to be cleaned
C & C Food Store 3002 Beac	on Ave S
05/23/2003	Improve or create spill response procedures
	Improve or purchase adequate spill response materials
	Properly educate employees
	Storm drain facility needs to be cleaned
	Missing or damaged components to storm drain facility need replacement/repair
	Implement proper housekeeping
	Properly dispose of Waste
	Properly store Product/Waste
C.C. Filson Co. 3851 1st Ave	S

Monday, August 15, 2005

Subbasin: Diagonal SD	
02/19/2004	Storm drain facility needs to be cleaned
	Missing or damaged components to storm drain facility need replacement/repair
Carpet Liquidators Inc. 3434	4th Ave S
08/14/2003	Storm drain facility needs to be cleaned
Cascade Designs 4000 1st A	ve S
03/13/2003	Improve or create spill response procedures
	Improve or purchase adequate spill response materials
	Properly educate employees
	Storm drain facility needs to be cleaned
	Missing or damaged components to storm drain facility need replacement/repair
	Implement proper housekeeping
	Properly dispose of Waste
	Properly store Product/Waste
	Properly label Containers
	Repair or replace degraded open chemical containers
Cascade Designs 3800 1st A	ve S
03/13/2003	Improve or create spill response procedures
	Improve or purchase adequate spill response materials
	Properly educate employees
	Implement proper housekeeping
	Properly store non-containerized materials
	Properly dispose of Waste
	Properly document waste disposal
	Properly store Product/Waste
	Properly label Containers
Cascade Designs 130 S Dak	ota St
03/13/2003	Storm drain facility needs to be cleaned
Cascade Designs 4225 2nd A	Ave S
03/13/2003	Improve or create spill response procedures
	Properly educate employees
	Storm drain facility needs to be cleaned
	Correct illegal plumbing connection
	Don't discharge washwater or process wastewater to stormdrain
	Properly store non-containerized materials
	Properly store Product/Waste
Cascade Designs 3857 2nd A	Ave S
03/13/2003	Improve or create spill response procedures
	Improve or purchase adequate spill response materials
	Properly educate employees
	Implement proper housekeeping
	Properly store containerized materials
	Properly store non-containerized materials
	Properly store Product/Waste
Cascade Machinery & Electric,	• •
03/14/2003	Improve or create spill response procedures
	Improve or purchase adequate spill response materials
	Properly educate employees
	Don't discharge washwater or process wastewater to stormdrain

Subbasin: Diagonal SD	
03/14/2003	Properly store Product/Waste
	Properly label Containers
Catholic Community Services of	f King County 100 23rd Ave S
09/18/2003	Storm drain facility needs to be cleaned
	Implement proper housekeeping
Cedrus Technologies Inc. 392	22 6th Ave S
08/13/2003	Storm drain facility needs to be cleaned
Center For Career Alternatives	901 Rainier Ave S
08/13/2003	Storm drain facility needs to be cleaned
	Properly dispose of Waste
	Properly document waste disposal
Charles Street- Maintenance Fa	acility 805 S Dearborn ST
07/28/2004	
	Implement proper housekeeping
	Properly store non-containerized materials
Charlie's Produce 3844 1st A	
03/14/2003	Improve or create spill response procedures
	Properly educate employees Storm drain facility needs to be cleaned
Charlie's Produce 4103 2nd A	
03/14/2003	Improve or create spill response procedures
00/14/2000	Properly educate employees
	Storm drain facility needs to be cleaned
04/29/2005	Correct illegal plumbing connection
Chevron 2802 Rainier Ave S	
10/10/2003	Storm drain facility needs to be cleaned
	Properly dispose of Waste
	Properly document waste disposal
	Properly store Product/Waste
Chiles & Company Property Ma	-
09/16/2003	Storm drain facility needs to be cleaned
City Commerce Park 3849 1s	st Ave S
05/08/2003	Storm drain facility needs to be cleaned
City of Seattle 2700 Airport W	/y S
10/06/2003	Storm drain facility needs to be cleaned
	Correct illegal plumbing connection
	Implement proper housekeeping
CL Auto Repair 2901 17th Av	
05/21/2003	Improve or create spill response procedures Improve or purchase adequate spill response materials
	Properly educate employees
	Storm drain facility needs to be cleaned
	Implement proper housekeeping
	Properly store non-containerized materials
	Properly store Product/Waste
	Properly label Containers

Subbasin: Diagonal SD	
12/15/2004	Improve or purchase adequate spill response materials
	Properly store non-containerized materials
	Clean and eliminate leaks and spills from storage areas
Clear Channel Outdoor 3601	6th Ave S
06/27/2003	Properly document waste disposal
Cleveland High School 5511	15th Ave S
11/19/2003	Improve or create spill response procedures
	Properly educate employees
	Storm drain facility needs to be cleaned
Cooptivide Laboratorias 2000	Properly store Product/Waste
	1st Ave S
03/11/2003	Improve or create spill response procedures
Color Graphics 1421 S Dean	
09/04/2003	Improve or create spill response procedures
	Storm drain facility needs to be cleaned
	Implement proper housekeeping Properly store Product/Waste
Commercial Warehouse Co., Inc	
06/18/2003	Improve or create spill response procedures Improve or purchase adequate spill response materials
	Properly educate employees
Consolidated Press 600 S Sp	
	Improve or create spill response procedures
00/19/2003	Improve or create spin response procedures
Container Care Inc. 1S Idaho	
03/28/2003	Properly store containerized materials
03/20/2003	Properly store Product/Waste
Control Contractors 1128 Pop	
·	Storm drain facility needs to be cleaned
00/21/2000	Missing or damaged components to storm drain facility need replacement/repair
COSTCO Wholesale 4401 4th	
03/20/2003	Storm drain facility needs to be cleaned
Cramer Inspection Services 2	-
10/09/2003	Storm drain facility needs to be cleaned
Crosscut Hardwoods 4100 1s	-
02/19/2004	
	Missing or damaged components to storm drain facility need replacement/repair 0 Airport Wy S
05/21/2003	Improve or create spill response procedures
	Improve or purchase adequate spill response materials Properly educate employees
DeWalt 2100 Airport Wy S	
06/05/2003	Improve or create spill response procedures Improve or purchase adequate spill response materials
	Properly educate employees
	Storm drain facility needs to be cleaned
	· · · · · · · · · · · · · · · · · · ·

Subbasin: Diagonal SD	
Down Products 4011 6th Ave	S
08/07/2003	Storm drain facility needs to be cleaned
Eco Waterborne Coatings 420	0 S Hinds St
05/19/2003	Properly dispose of Waste
	Properly document waste disposal
	Properly label Containers
Ed Wyse Beauty Supply 3701	7th Ave S
12/01/2003	Storm drain facility needs to be cleaned
	Missing or damaged components to storm drain facility need replacement/repair
El Centro de la Raza 2524 16	th Ave S
10/23/2003	Improve or create spill response procedures
	Improve or purchase adequate spill response materials
	Properly educate employees
	Storm drain facility needs to be cleaned
	Properly label Containers
Emerald City Bindery 4809 Ai	rport Wy S
06/17/2003	Storm drain facility needs to be cleaned
	Implement proper housekeeping
	Don't discharge washwater or process wastewater to stormdrain
	Properly store Product/Waste
Emmanuel's Inc. 1105 Rainie	r Ave S
08/13/2003	Improve or create spill response procedures
	Improve or purchase adequate spill response materials
	Properly educate employees
	Don't discharge washwater or process wastewater to stormdrain
	Properly store Product/Waste
Ezell's Famous Chicken 501 2	23rd Ave S
08/05/2003	Storm drain facility needs to be cleaned
	Properly store containerized materials
Fabriform Plastics Inc. 3300 A	Airport Wy S
05/30/2003	Implement proper housekeeping
	Properly store containerized materials
	Properly dispose of Waste
	Properly document waste disposal
	Properly store Product/Waste
	Properly label Containers
Firestone 2915 Rainier Ave S	
10/28/2003	Improve or create spill response procedures
	Improve or purchase adequate spill response materials
	Storm drain facility needs to be cleaned
	Implement proper housekeeping
	Properly dispose of Waste
	Properly store Product/Waste
	Properly label Containers
Electorida 600 8 Deketa St	Repair or replace degraded open chemical containers
FleetPride 600 S Dakota St 05/14/2003	Properly store Product/Waste
03/14/2003	

Suppasin: Diagonal SD	Subbasin:	Diagonal SD	
-----------------------	-----------	-------------	--

Flexi-Van Leasing Inc. 1S Ida	ho St
03/28/2003	Properly store containerized materials
	Properly store Product/Waste
FMG LLC 3433 Airport Wy SE	Ξ
04/15/2004	Storm drain facility needs to be cleaned
Glassworks 927 Rainier Ave	S
08/13/2003	Properly dispose of Waste
	Properly document waste disposal
Golden Pheasant Foods, LLC	1222 S Weller St
08/13/2003	Missing or damaged components to storm drain facility need replacement/repair
Goldie's Inc. 3924 Airport Wy	S
08/20/2003	Storm drain facility needs to be cleaned
	Don't discharge washwater or process wastewater to stormdrain
	Implement proper washing practices
Grand Central Baking Company	4634 E Marginal Wy, #C110
03/12/2003	Improve or purchase adequate spill response materials
	Properly store Product/Waste
GSA - FBI Shop 4735 E Marg	
06/25/2004	
	Missing or damaged components to storm drain facility need replacement/repair Properly dispose of Waste
	Properly store Product/Waste
	Properly label Containers
GSA - Federal Center South	4735 E Marginal Wy S
06/25/2004	Improve or purchase adequate spill response materials
	Storm drain facility needs to be cleaned
	Missing or damaged components to storm drain facility need replacement/repair
	Properly store Product/Waste
Hadco Supply 2500 Airport W	/y S
06/12/2003	Improve or create spill response procedures
	Improve or purchase adequate spill response materials
	Properly educate employees Implement proper housekeeping
High-Rise Cabinets Inc. 2755	Airport Wy S
-	
05/28/2003	Improve or create spill response procedures Improve or purchase adequate spill response materials
	Properly educate employees
	Properly dispose of Waste
	Properly document waste disposal
Honolulu Freight Service 232	6 Airport Wy S
05/28/2003	Improve or create spill response procedures
	Properly educate employees
Intermountain Supply, Inc. 37	00 6th Ave S
07/18/2003	Improve or create spill response procedures
	Improve or purchase adequate spill response materials
	Storm drain facility needs to be cleaned

Subbasin: Diagonal SD

International Truck Leasing & R	ental 3801 7th Ave S
-	
05/27/2003	
	Don't discharge washwater or process wastewater to stormdrain
NN/ late an etile a etile to the A000 de	Properly store containerized materials
INX International Ink 4029 1s	t Ave S
03/21/2003	Improve or create spill response procedures
	Properly educate employees
	Storm drain facility needs to be cleaned
	Properly label Containers
Iridio 5050 1st Ave S	
10/31/2003	Improve or create spill response procedures
Ishimitsu & Sons Inc. 2304 R	ainier Ave S
10/27/2003	Properly dispose of Waste
	Properly store Product/Waste
Island Detail 308 14th Ave S	
09/04/2003	Properly dispose of Waste
J.H. Carr & Sons 37 S Hudso	
03/19/2003	Improve or create spill response procedures
	Improve or purchase adequate spill response materials
	Properly educate employees
	Implement proper housekeeping
	Implement proper material transfer practices
J.R. Abbott Construction 351	2 Airport Wy S
08/11/2003	Improve or create spill response procedures
	Improve or purchase adequate spill response materials
	Storm drain facility needs to be cleaned
	Properly dispose of Waste
	Properly store Product/Waste
	Properly label Containers
Jacks Inc. 24 S Idaho St	
03/20/2003	Properly store Product/Waste
	Properly label Containers
Jackson Motors, Inc. 401 Rai	nier Ave S
07/29/2004	Don't discharge washwater or process wastewater to stormdrain
	Properly store Product/Waste
Jefferson Park Family Medicine	2902 Beacon Ave S
10/30/2003	Storm drain facility needs to be cleaned
Jefferson Park Golf Course Clu	
06/25/2003	Improve or create spill response procedures
	Improve or purchase adequate spill response materials
	Properly educate employees
	Storm drain facility needs to be cleaned
	Don't discharge washwater or process wastewater to stormdrain Implement proper washing practices
	Properly store containerized materials
lofforcon Dark Calf Maintenana	
Jefferson Park Golf Maintenanc	e Building 4101 Beacon Ave S

Subbasin: Diagonal SD	
07/16/2003	Improve or create spill response procedures
	Improve or purchase adequate spill response materials
	Properly educate employees
	Storm drain facility needs to be cleaned
	Don't discharge washwater or process wastewater to stormdrain
	Implement proper washing practices
	Properly store containerized materials
	Properly perform maintenance of vehicles and equipment
	Properly dispose of Waste
	Properly store Product/Waste
	Properly label Containers
JEMCO, Inc. 901 S Hinds St	
08/11/2003	Properly store Product/Waste
JSH Properties Inc. 2601 S M	Ic Clellan St
10/22/2003	Storm drain facility needs to be cleaned
Kawabe Memorial House 221	-
00/24/2003	Storm drain facility needs to be cleaned
	Dearborn St
	Improve or purchase adequate spill response materials
King County Sheriff 4623 7th	Ave S
05/19/2003	Storm drain facility needs to be cleaned
	Don't discharge washwater or process wastewater to stormdrain
	Implement proper washing practices
King's Oriental Foods Co. Ltd	1238 S Weller St
01/23/2004	Storm drain facility needs to be cleaned
	Don't discharge washwater or process wastewater to stormdrain
Lacy & Par 660 S Industrial V	Vy
06/18/2003	Storm drain facility needs to be cleaned
Laird Plastics 650 S Industria	l Wy
06/19/2003	Improve or purchase adequate spill response materials
00,10,2000	Storm drain facility needs to be cleaned
	Implement proper housekeeping
	Properly dispose of Waste
Lee & Eastes Tank Lines 241	18 Airport Wy S
05/21/2003	Improve or create spill response procedures
03/21/2003	Improve or purchase adequate spill response materials
	Properly educate employees
	Properly store Product/Waste
	Properly label Containers
Leon Sullivan Health Care Cent	
08/26/2003	Storm drain facility needs to be cleaned
	Missing or damaged components to storm drain facility need replacement/repair
	Properly dispose of Waste
Liberty Sidecars 2310 Rainie	
10/09/2003	Improve or create spill response procedures
	Don't discharge washwater or process wastewater to stormdrain

Subbasin: Diagonal SD		
10/09/2003	Properly document waste disposal	
	Properly store Product/Waste	
	Properly label Containers	
Life Style Landscape 4101 4t	h Ave S	
10/22/2003	Storm drain facility needs to be cleaned	
	Properly store non-containerized materials	
Liquor Control Board 4401 E	Marginal Wy	
09/29/2003	Improve or create spill response procedures	
	Improve or purchase adequate spill response materials	
	Properly educate employees	
	Correct illegal plumbing connection	
	Don't discharge washwater or process wastewater to stormdrain	
	Properly store non-containerized materials	
	Properly store Product/Waste	
	Properly label Containers	
Loudeye 1130 Rainier Ave S		
08/06/2003	Storm drain facility needs to be cleaned	
Lowe's Home Improvement Wa	rehouse 2700 Rainier Ave S	
10/14/2003	Improve or purchase adequate spill response materials	
	Storm drain facility needs to be cleaned	
M&R Equipment, Inc. 3626 A	irport Wy S	
07/15/2003	Improve or purchase adequate spill response materials	
	Storm drain facility needs to be cleaned	
	Properly dispose of Waste	
	Properly document waste disposal	
	Properly store Product/Waste	
	Properly label Containers	
MacDonald Meat Company, LL	C 2709 Airport Wy S	
06/12/2003	Improve or create spill response procedures	
	Improve or purchase adequate spill response materials	
	Properly educate employees	
	Storm drain facility needs to be cleaned	
MacMillan Piper Inc. 655 S Edmunds St		
06/04/2003	Improve or create spill response procedures	
	Improve or purchase adequate spill response materials	
	Properly educate employees	
	Storm drain facility needs to be cleaned	
	Missing or damaged components to storm drain facility need replacement/repair	
	Implement proper housekeeping	
	Properly store containerized materials	
	Clean and eliminate leaks and spills from storage areas Implement proper fueling operations	
	Properly perform maintenance of vehicles and equipment	
	Implement proper material transfer practices	
	Properly store Product/Waste	
	Properly label Containers	
Mail Movers 4500 4th Ave S		

Mail Movers 4500 4th Ave S

Subbasin: Diagonal SD 03/19/2003	Improve or purchase adequate spill response materials Storm drain facility needs to be cleaned Clean and eliminate leaks and spills from storage areas	
	Properly dispose of Waste Properly label Containers	
Mailhandlers 4005 6th Ave S		
08/14/2003	Storm drain facility needs to be cleaned	
Mallory Church Corp. 676 S I	ndustrial Wy	
06/04/2003	Improve or create spill response procedures	
	Improve or purchase adequate spill response materials	
Mandarin Apartmonte 1701 1	Missing or damaged components to storm drain facility need replacement/repair 2th Ave S	
•	Storm drain facility needs to be cleaned	
00/10/2003	Missing or damaged components to storm drain facility need replacement/repair	
Masons Supply Co. 5004 2nd		
03/19/2003	Improve or create spill response procedures	
	Properly dispose of Waste	
Maurer Supply 843 Rainier A	ve S	
08/11/2003	Improve or create spill response procedures	
	Improve or purchase adequate spill response materials Properly educate employees	
McDonald's #435 2336 25th		
10/30/2003	Storm drain facility needs to be cleaned	
01/28/2004	-	
04/01/2004	Storm drain facility needs to be cleaned	
McKinstry Company 5005 3rd	d Ave S	
03/28/2003	Properly store Product/Waste	
01/15/2004	Properly label Containers Storm drain facility needs to be cleaned	
	ndustrial Wy	
07/09/2003	Storm drain facility needs to be cleaned	
	Don't discharge washwater or process wastewater to stormdrain	
	Properly store containerized materials	
Madras Eugra Daal/Caattle Dad	Properly dispose of Waste	
Medgar Evers Pool/Seattle Park		
11/04/2003	Improve or create spill response procedures Improve or purchase adequate spill response materials	
	Properly educate employees	
	Properly label Containers	
Merlino Foods 5200 Denver A	Ave S	
05/29/2003	Improve or create spill response procedures	
	Properly educate employees Storm drain facility needs to be cleaned	
	Missing or damaged components to storm drain facility need replacement/repair	
	Don't discharge washwater or process wastewater to stormdrain	
	Properly perform maintenance of vehicles and equipment	
	Properly dispose of Waste	

S

ubl	oasin: I	Diagonal SD	
	Mi La Cay 7	'18 Rainier Ave S	
		08/29/2003	Improve or create spill response procedures Improve or purchase adequate spill response materials Properly educate employees Storm drain facility needs to be cleaned
	Mobile Equipn	nent Systems 2	120 Airport Wy S
		05/28/2003	Improve or create spill response procedures Improve or purchase adequate spill response materials Properly educate employees Properly document waste disposal
	Modelwerks	655 S Andover	
		05/21/2003	Storm drain facility needs to be cleaned Properly dispose of Waste
	Modine Weste	ern 115 S Daws	on St
		12/08/2003	Improve or create spill response procedures Improve or purchase adequate spill response materials Properly educate employees Storm drain facility needs to be cleaned Properly store containerized materials
	Mutual Fish C	o. 2335 Rainier	Ave S
		10/23/2003	Storm drain facility needs to be cleaned Implement proper washing practices
	Ngoc Viet Jew	elry 1236 S Jac	ckson St, #B
		09/16/2003	Storm drain facility needs to be cleaned Properly store containerized materials Properly store non-containerized materials
	Nikkei Concer	ns 1601 E Yesl	er Wy
		10/29/2003	Storm drain facility needs to be cleaned Implement proper housekeeping Properly store containerized materials Properly dispose of Waste Properly document waste disposal Properly label Containers
	Nile Auto Rep	air 1622 Yesler	
		09/24/2003	Improve or create spill response procedures Improve or purchase adequate spill response materials Properly educate employees Implement proper housekeeping Properly store containerized materials Properly store non-containerized materials Clean and eliminate leaks and spills from storage areas Properly perform maintenance of vehicles and equipment Properly store Product/Waste
	NorStar Speci		3901 7th Ave S, #100
	Nette Of C	05/27/2003	Storm drain facility needs to be cleaned
	North Star Ca		Ave S

05/22/2003 Implement pretreatment for discharge

Subbasin: Diagonal SD	
05/22/2003	Properly dispose of Waste
	Properly store Product/Waste
	Properly label Containers
05/05/2004	Improve or create spill response procedures
	Improve or purchase adequate spill response materials
	Properly educate employees
	Storm drain facility needs to be cleaned
	Implement proper housekeeping
	Clean and eliminate leaks and spills from storage areas
	Properly perform maintenance of vehicles and equipment
	Properly label Containers
Northwest Publishing Center	1710 S Norman St
09/04/2003	Improve or create spill response procedures
	Improve or purchase adequate spill response materials
	Properly educate employees
NW Container Services Inc. 6	35 S Edmunds St
06/25/2003	Improve or create spill response procedures
	Improve or purchase adequate spill response materials
	Don't discharge washwater or process wastewater to stormdrain
	Properly dispose of Waste
	Properly label Containers
Oberto Sausage Company 20	000 Airport Wy S
06/24/2003	Improve or create spill response procedures
	Improve or purchase adequate spill response materials
	Properly educate employees
	Properly dispose of Waste
	Properly document waste disposal
	Properly store Product/Waste
Operation Nightwatch 302 14	th Ave S
11/14/2003	Storm drain facility needs to be cleaned
	Properly dispose of Waste
Pacer Global Logistics 655 S	Edmunds St
06/03/2003	Implement proper housekeeping
	Properly perform maintenance of vehicles and equipment
Pacific Industrial Supply 3200) 4th Ave S
05/16/2003	Improve or create spill response procedures
	Improve or purchase adequate spill response materials
	Properly educate employees
	Implement proper housekeeping
	Properly dispose of Waste
	Properly document waste disposal
Pacific Industrial Supply 2960) 4th Ave S
05/16/2003	Improve or create spill response procedures
	Improve or purchase adequate spill response materials
	Properly educate employees
	Implement proper housekeeping
Pacific Northwest Theatre Assoc	ciates, Inc. 615 S Alaska St

Subbasin: Diagonal SD			
05/20/2003	Improve or create spill response procedures		
	Improve or purchase adequate spill response materials		
	Properly educate employees		
	Storm drain facility needs to be cleaned		
	Properly dispose of Waste		
Pacific Publishing Co. 636 S	Alaska St		
05/19/2003	Improve or create spill response procedures		
	Improve or purchase adequate spill response materials		
	Properly educate employees		
	Implement proper housekeeping		
	Implement proper washing practices		
	Properly store containerized materials		
	Implement pretreatment for discharge		
	Properly dispose of Waste Properly store Product/Waste		
PacMed Clinics 1200 12th Av			
10/30/2003			
	Properly store Product/Waste		
	Properly label Containers		
Payless Shoe Source 2326 F			
10/09/2003	Storm drain facility needs to be cleaned		
Pepsi Bottling Group 5300 De	enver Ave S		
05/22/2003	Improve or create spill response procedures		
	Improve or purchase adequate spill response materials		
	Storm drain facility needs to be cleaned		
	Don't discharge washwater or process wastewater to stormdrain		
	Implement proper washing practices		
	Properly dispose of Waste		
Pepsi Bottling Group 2300 26	oth Ave S		
01/23/2005	Improve or create spill response procedures		
	Improve or purchase adequate spill response materials		
	Properly store Product/Waste		
Perfect Auto 4115 4th Ave S			
03/17/2003	Improve or purchase adequate spill response materials		
	Storm drain facility needs to be cleaned		
	Don't discharge washwater or process wastewater to stormdrain		
	Implement proper washing practices		
	Properly store containerized materials		
Dhalaa Tira 2000 7th Ave C	Properly store Product/Waste		
Phelps Tire 3922 7th Ave S			
08/28/2003	Storm drain facility needs to be cleaned		
	Implement proper housekeeping		
	Properly store non-containerized materials		
	Properly dispose of Waste		
Phelps Tire 2520 Airport Wy			
05/19/2003	Improve or create spill response procedures		
	Improve or purchase adequate spill response materials		

Subbasin: Diagonal SD	
05/19/2003	Properly educate employees
	Properly dispose of Waste
	Properly document waste disposal
	Properly store Product/Waste
Pho Bac 1 1314 S Jackson S	t
09/17/2003	Implement proper housekeeping
	Don't discharge washwater or process wastewater to stormdrain
Pho Bac IV 1240 S Jackson S	St
09/17/2003	Storm drain facility needs to be cleaned
Pho Nuong 2826 Martin Luthe	er King Jr Wy S
11/12/2003	Improve or create spill response procedures
	Improve or purchase adequate spill response materials
	Properly educate employees
	Storm drain facility needs to be cleaned Properly store Product/Waste
Plantscapes Horticultural Servic	
·	·
08/26/2003	Improve or create spill response procedures Improve or purchase adequate spill response materials
	Properly educate employees
	Storm drain facility needs to be cleaned
	Implement proper housekeeping
	Don't discharge washwater or process wastewater to stormdrain
	Implement proper washing practices
	Properly perform maintenance of vehicles and equipment
	Properly document waste disposal
	Properly store Product/Waste
	Properly label Containers
Plymouth Poultry 4500 7th Av	e S
06/04/2003	Improve or create spill response procedures
	Improve or purchase adequate spill response materials Properly educate employees
	Storm drain facility needs to be cleaned
Pro Express Inc. 4800 Denve	
03/18/2003	Improve or purchase adequate spill response materials
03/10/2003	Storm drain facility needs to be cleaned
	Don't discharge washwater or process wastewater to stormdrain
	Properly store Product/Waste
	Properly label Containers
Professional Marketing Group	912 Rainier Ave S
08/06/2003	Storm drain facility needs to be cleaned
Promenade 23 Shopping Center	306 23rd Ave S
08/08/2003	Storm drain facility needs to be cleaned
Promenade 23 Shopping Center	2301 S Jackson St, #101A
08/27/2003	Storm drain facility needs to be cleaned
Promenade Red Apple Market	2301 S Jackson St
08/27/2003	Improve or purchase adequate spill response materials
00/21/2003	Implement proper housekeeping

Subbasin: Diagonal SD	
	Properly dispose of Waste
Puget Sound Industry Services	4429 Airport Wy S
07/23/2003	Improve or create spill response procedures
	Improve or purchase adequate spill response materials
	Properly educate employees
	Storm drain facility needs to be cleaned
	Make storm drain facility parts accessible
	Correct illegal plumbing connection Implement proper housekeeping
	Obtain proper permit for facility discharge
Puget Sound Truck Lines, Inc.	3720 Airport Wy S
07/15/2003	Storm drain facility needs to be cleaned
Rainier Grocery Outlet 2901 2	
10/27/2003	Improve or create spill response procedures
10/21/2003	Improve or purchase adequate spill response materials
	Properly educate employees
	Storm drain facility needs to be cleaned
	Properly dispose of Waste
	Properly document waste disposal
Rainier Veterinary Hospital 81	5 Rainier Ave S
08/27/2003	Storm drain facility needs to be cleaned
Ralph's Concrete Pumping 15	11 Rainier Ave S
12/12/2003	Don't discharge washwater or process wastewater to stormdrain
Ralph's Concrete Pumping 81	6 Poplar PI S
08/12/2003	Improve or create spill response procedures
	Improve or purchase adequate spill response materials
	Properly educate employees
	Don't discharge washwater or process wastewater to stormdrain
	Properly store Product/Waste
Recycling Depot 851 Rainier	Ave S
08/14/2003	Improve or create spill response procedures
	Improve or purchase adequate spill response materials
	Properly educate employees
Reliance Fire Protection 3706	Storm drain facility needs to be cleaned Airport Wy S
07/30/2003	Improve or create spill response procedures
	Improve or purchase adequate spill response materials Properly educate employees
	Don't discharge washwater or process wastewater to stormdrain
Remo Borracchini's 2307 Rair	nier Ave S
10/23/2003	Storm drain facility needs to be cleaned
Renaissance 5212 6th Ave S	
	Improve or create spill response procedures
05/15/2003	Improve or create spill response procedures Improve or purchase adequate spill response materials
	Storm drain facility needs to be cleaned
	Implement proper housekeeping
	Don't discharge washwater or process wastewater to stormdrain

Subbasin: Diagonal SD	
-	Properly label Containers
Rent-A-Center 2301 S Jackson	on St, #202
	Don't discharge washwater or process wastewater to stormdrain Properly dispose of Waste
Rite Aid Pharmacies 2707 Ra	ainier Ave S
10/20/2003	Implement proper housekeeping Implement pretreatment for discharge Properly dispose of Waste
Royal Glass Co., Inc. 1216 S	Weller St
08/19/2003	Storm drain facility needs to be cleaned
Safelite Glass Corp. 665 S Da	akota St
06/23/2003	Improve or create spill response procedures Improve or purchase adequate spill response materials Properly educate employees Storm drain facility needs to be cleaned Don't discharge washwater or process wastewater to stormdrain
Sanderson Safety Supply 260	00 Airport Wy S
05/19/2003	Improve or create spill response procedures Properly educate employees
Scientific Supply & Equipment, I	Inc. 926 Poplar PI S
08/07/2003	Improve or purchase adequate spill response materials Storm drain facility needs to be cleaned Properly store Product/Waste
Sealant Specialists 4621 Airp	ort Wy S
05/20/2003	Improve or create spill response procedures Improve or purchase adequate spill response materials Properly educate employees Properly store Product/Waste
Sears Service Center 4786 1	st Ave S
03/21/2003	Improve or create spill response procedures Improve or purchase adequate spill response materials Properly educate employees Storm drain facility needs to be cleaned Properly store containerized materials Properly store Product/Waste
Seattle Barrel Company 4716	S Airport Wy S
06/03/2003	Improve or create spill response procedures Improve or purchase adequate spill response materials Properly educate employees Don't discharge washwater or process wastewater to stormdrain Implement proper washing practices Clean and eliminate leaks and spills from storage areas Implement proper material transfer practices
Seattle Barrel Company 4520) 7th Ave S
06/30/2003	Implement proper housekeeping Properly store containerized materials Properly label Containers

Properly label Containers

```
Subbasin:
                   Diagonal SD
       Seattle Central Community College - Wood Technology Facility 2310 S Lane St
                         03/29/2004 Properly store Product/Waste
       Seattle City Light 3613 4th Ave S
                         05/07/2003 Implement proper washing practices
                                      Properly label Containers
       Seattle Credit Union 2030 Airport Wy S
                         07/10/2003 Storm drain facility needs to be cleaned
       Seattle DOT - Sunny Jim 4200 Airport Wy S
                         05/30/2003
                                      Improve or create spill response procedures
                                      Properly educate employees
       Seattle Goodwill
                         1400 S Lane St
                         08/15/2003
                                      Improve or create spill response procedures
                                      Properly educate employees
                                      Properly store containerized materials
                                      Properly dispose of Waste
                                      Properly store Product/Waste
       Seattle Injector Company
                                1410 Airport Wy S
                         06/16/2003
                                      Improve or create spill response procedures
                                      Improve or purchase adequate spill response materials
                                      Properly educate employees
                                      Storm drain facility needs to be cleaned
       Seattle Lighthouse-The Lighthouse for the Blind, Inc. 2501 S Plum St
                         10/24/2003
                                      Improve or create spill response procedures
                                      Improve or purchase adequate spill response materials
                                      Properly educate employees
                                      Storm drain facility needs to be cleaned
                                      Missing or damaged components to storm drain facility need replacement/repair
                                      Implement proper washing practices
                                      Obtain proper permit for facility discharge
       Seattle Parks - Citywide Horticulture Center 1600 S Dakota St
                         06/30/2003 Storm drain facility needs to be cleaned
       Seattle Self Storage 1100 Poplar PI S
                         08/07/2003 Improve or purchase adequate spill response materials
                                      Properly educate employees
                                      Storm drain facility needs to be cleaned
       Senior Services - Minor Home Repair 620 S Spokane St
                         08/21/2003 Improve or purchase adequate spill response materials
                                      Storm drain facility needs to be cleaned
                                      Properly dispose of Waste
       Sharp's Automotive, Inc. 2102 Airport Wy S
                         01/12/2004
                                      Improve or create spill response procedures
                                      Improve or purchase adequate spill response materials
                                      Properly educate employees
                                      Properly document waste disposal
                                      Properly store Product/Waste
                                      Properly label Containers
```

Subbasin: Diagonal SD		
Shell 852 Rainier Ave S		
09/05/2003	Improve or create spill response procedures	
	Properly educate employees	
	Storm drain facility needs to be cleaned	
Skyline Electric & MFG. Compa	ny 3619 7th Ave S	
12/01/2003	Improve or create spill response procedures	
	Improve or purchase adequate spill response materials	
	Properly educate employees	
	Properly store non-containerized materials	
	Properly store Product/Waste	
SME Electrical Contractors 8	28 S Poplar Pl	
08/11/2003	Improve or create spill response procedures	
00,11/2000	Improve or purchase adequate spill response materials	
	Properly educate employees	
	Storm drain facility needs to be cleaned	
	Implement proper housekeeping	
	Don't discharge washwater or process wastewater to stormdrain	
	Properly store containerized materials	
	Properly store non-containerized materials	
Sprague Company 1136 Pop	lar PI S	
08/27/2003	Storm drain facility needs to be cleaned	
	Properly store Product/Waste	
St. Edward Parish 4250 S Me	ead St	
02/19/2004	Storm drain facility needs to be cleaned	
Stan's Hamburgers 828 Rain	-	
09/03/2003	Improve or create spill response procedures	
00,00,2000	Properly educate employees	
	Storm drain facility needs to be cleaned	
	Properly store containerized materials	
Starbucks Coffee Company 2	2921 Martin Luther King Jr Wy	
10/13/2003		
10/13/2003	Implement proper housekeeping	
Stewart Industries 16 S Idaho		
03/26/2003		
	Properly label Containers	
Stewart Lumber Co. 1761 Rainier Ave S		
12/23/2003		
	Improve or purchase adequate spill response materials	
	Properly educate employees	
	Storm drain facility needs to be cleaned	
	Missing or damaged components to storm drain facility need replacement/repair	
Stone Ely Design 4660 E Mar	Properly store Product/Waste	
Stone Fly Design 4660 E Mai		
03/19/2003		
Stugger Floatrig Co	Properly document waste disposal	

Stusser Electric Co. 660 S Andover St

Subbasin: Diagonal SD			
07/02/2003	Improve or create spill response procedures		
	Storm drain facility needs to be cleaned		
	Missing or damaged components to storm drain facility need replacement/repair		
	Properly document waste disposal		
Summit Radiology 861 Popla			
08/20/2003	Storm drain facility needs to be cleaned		
Sun Deli Mart 2701 Airport W	ly S		
06/12/2003	Storm drain facility needs to be cleaned		
Sun Food Trading Co. 4715 6	Sth Ave S		
05/19/2003	Improve or create spill response procedures		
00,10,2000	Improve or purchase adequate spill response materials		
	Properly educate employees		
	Storm drain facility needs to be cleaned		
	Don't discharge washwater or process wastewater to stormdrain		
	Implement proper washing practices		
	Properly dispose of Waste		
Sun Sun Oriental Food Co. 1	328 S Weller St		
08/19/2003	Storm drain facility needs to be cleaned		
	Properly store containerized materials		
Takisaki Inc. 1312 S Weller S	it		
08/13/2003	Missing or damaged components to storm drain facility need replacement/repair		
TCP Painting 1900 Airport W	y S		
04/21/2004	Improve or create spill response procedures		
	Improve or purchase adequate spill response materials		
	Properly educate employees		
	Properly dispose of Waste		
06/17/2004	Improve or create spill response procedures		
	Improve or purchase adequate spill response materials		
	Properly educate employees		
	Properly dispose of Waste		
	Properly store Product/Waste		
08/16/2004	Properly store Product/Waste		
10/20/2004	Properly store containerized materials		
	Properly perform maintenance of vehicles and equipment		
Thai Hung Auto Repair 509 F	Rainier Ave S		
11/04/2003	Storm drain facility needs to be cleaned		
	Properly dispose of Waste		
The Boiler Room 3828 4th Av	ve S		
03/31/2003	Improve or purchase adequate spill response materials		
	Properly educate employees		
	Properly store Product/Waste		
	Repair or replace degraded open chemical containers		
The Color Group 1407 S Dea	rborn St		
08/14/2003	Improve or create spill response procedures		
	Properly label Containers		
The Corporate Image 4001 1	st Ave S		
09/29/2003	Improve or create spill response procedures		

Subbasin: Diagonal SD	
09/29/2003	Improve or purchase adequate spill response materials
	Properly educate employees
The Painters, Inc. 4501 Airpo	rt Wy S
06/04/2003	Storm drain facility needs to be cleaned
	Don't discharge washwater or process wastewater to stormdrain
Trade-Marx Sign & Display Corp	o. 3614 6th Ave S
07/30/2003	Obtain proper permit for facility discharge
	Properly dispose of Waste
Tru-Line Frame & Wheel 312	Boren Ave S
09/04/2003	Storm drain facility needs to be cleaned
Tully's Coffee 3100 Airport W	y S
06/15/2003	Improve or create spill response procedures
	Improve or purchase adequate spill response materials
	Properly educate employees
	Storm drain facility needs to be cleaned
	Properly document waste disposal
	Properly store Product/Waste
Union Pacific Railroad 402 S	Dawson St
06/19/2003	Implement proper housekeeping
	Properly store non-containerized materials
	Clean and eliminate leaks and spills from storage areas
United Ocean Seafood Inc. 22	209 Rainier Ave S
11/05/2003	
	Missing or damaged components to storm drain facility need replacement/repair
United Parcel Service 4455 7	
05/28/2003	
	Missing or damaged components to storm drain facility need replacement/repair
	Implement proper housekeeping Don't discharge washwater or process wastewater to stormdrain
US Club House Home & Garder	
08/28/2003	Improve or purchase adequate spill response materials Properly dispose of Waste
	Properly store Product/Waste
Utility Inc. 3931 1st Ave S	
09/08/2004	Improve or create spill response procedures
09/08/2004	Improve or purchase adequate spill response materials
	Properly educate employees
	Don't discharge washwater or process wastewater to stormdrain
	Properly dispose of Waste
Valley Gear & Transmission, Inc	. 1543 Rainier Ave S
10/29/2003	Storm drain facility needs to be cleaned
Veterans Administration Medica	I Center 1660 S Columbia Wy
06/16/2003	Storm drain facility needs to be cleaned
00, 10, 2000	Implement pretreatment for discharge
	Properly dispose of Waste
	Properly store Product/Waste

Subbasin: Diag	gonal SD	
Vietnam's Pearl	708 Rainier	Ave S
	08/28/2003	Improve or create spill response procedures
		Improve or purchase adequate spill response materials
		Implement proper housekeeping
Votivo, Ltd. 345	0 4th Ave S	
	08/14/2003	Improve or create spill response procedures
		Improve or purchase adequate spill response materials Properly educate employees
W.W. Grainger, In	c. 4930 3rd	
		Improve or create spill response procedures
		Properly educate employees
		Storm drain facility needs to be cleaned
Washington Belt &	Drive System	ns 4201 Airport Wy S
	06/16/2003	Improve or purchase adequate spill response materials
		Storm drain facility needs to be cleaned
Washington Middle		101 S Jackson St
	09/04/2003	Storm drain facility needs to be cleaned
Washington State	Dopartmont	Provide better/more maintenance for pretreatment system of Transportation - Gas Station 3700 9th Ave S
Washington State		Improve or create spill response procedures
	12/04/2003	Improve or purchase adequate spill response materials
		Properly educate employees
Washington State	Department o	of Transportation - Signal Shop 3700 9th Ave S
	12/04/2003	Don't discharge washwater or process wastewater to stormdrain
		Properly store non-containerized materials
Materia de Deser	1407 O D -	Properly label Containers
Watermark Press		
	08/14/2003	Improve or create spill response procedures Improve or purchase adequate spill response materials
		Properly educate employees
		Provide better/more maintenance for pretreatment system
		Properly dispose of Waste
		Properly document waste disposal
Western Peterbilt	nc 3801 A	Properly label Containers virport Wy S
Western reterbilt	07/17/2003	
	01/11/2000	Properly document waste disposal
WGM Jeweler Cor	mpany 301	23rd Ave S
	09/16/2003	Improve or purchase adequate spill response materials
		Properly dispose of Waste
Widget Works 3	834 4th Ave \$	SE
	04/05/2004	Improve or create spill response procedures
		Improve or purchase adequate spill response materials
		Properly educate employees Properly perform maintenance of vehicles and equipment
		Properly store Product/Waste

Subbasin:	Diagonal SD	
	04/05/2004	Properly label Containers
# of sites: 242	2	# of corr. actions: 836
Subbasin:	Duwamish (N	NEC) CSO
T & T Truc	k and Trailer Repair	5300 1st Ave S
	06/10/2005	Improve or create spill response procedures
		Improve or purchase adequate spill response materials
		Properly educate employees
		Implement proper housekeeping
		Properly store containerized materials
		Properly store non-containerized materials
		Clean and eliminate leaks and spills from storage areas
		Properly perform maintenance of vehicles and equipment
		Properly store Product/Waste
		Properly label Containers
# of sites: 1		# of corr. actions: 10
Subbasin: Duwamish (NEC) SD		
Seaport Ste	eel 3660 E Margin	al Wy S
	06/02/2005	Improve or create spill response procedures
		Improve or purchase adequate spill response materials

00/02/2003	improve or create spin response procedures
	Improve or purchase adequate spill response materials
	Properly educate employees
	Storm drain facility needs to be cleaned
	Properly store non-containerized materials
	Properly label Containers
SPU South Transfer Station	8100 2nd Ave S
06/10/2005	Improve or create spill response procedures

of corr. actions:

7

of sites: 2

Subbasin: Slip 4

Aero Motel Inn 7240 E Margi	7240 E Marginal Wy S	
04/25/2005	Correct illegal plumbing connection	
	Properly store Product/Waste	
Air Lift Northwest 6987 Perim	eter Rd S	
09/20/2004	Improve or create spill response procedures	
	Improve or purchase adequate spill response materials	
	Properly educate employees	
Airpac Airlines 7001 Perimeter Rd S		
09/20/2004	Improve or create spill response procedures	
	Properly educate employees	
Alaska Logistics 7400 8th Av	e S	
06/22/2004	Improve or create spill response procedures	
	Improve or purchase adequate spill response materials	
	Storm drain facility needs to be cleaned	
	Clean and eliminate leaks and spills from storage areas	
	Properly store Product/Waste	

Subbasin: Slip 4	
Arco 7200 E Marginal Wy S	
10/12/2004 Improve or create spill response procedures	
Improve or purchase adequate spill response materials	
Properly educate employees	
Storm drain facility needs to be cleaned	
Properly store containerized materials	
AV Factory 1900 S Corgiat Dr	
05/19/2004 Storm drain facility needs to be cleaned	
Missing or damaged components to storm drain facility need replacement/rep	paır
Chinese Baptist Church 5801 Beacon Ave S	
07/26/2004 Storm drain facility needs to be cleaned	
Properly dispose of Waste Classic Helicopters 6505 Perimeter Rd S	
08/05/2004 Improve or create spill response procedures Improve or purchase adequate spill response materials	
Properly educate employees	
Envelope Converting Service 6603 Ursula Ave S	
05/19/2004 Improve or create spill response procedures	
Improve or purchase adequate spill response materials	
Properly educate employees	
Federal Aviation Administration 6526 Ellis Ave S	
08/05/2004 Improve or create spill response procedures	
Properly educate employees	
Storm drain facility needs to be cleaned	
Properly store non-containerized materials	
Ferguson Property 1915 Ursula PI S	
06/09/2004 Storm drain facility needs to be cleaned	
Fire Station # 27 1000 S Myrtle St	
08/20/2004 Storm drain facility needs to be cleaned	
Galvin Flying Service, Inc. 7001 Perimeter Rd S	
08/11/2004 Improve or create spill response procedures	
Properly educate employees	
Galvin Flying Service, Inc. 7023 Perimeter Rd S	
08/11/2004 Improve or create spill response procedures	
Properly educate employees	
Galvin Flying Service, Inc. 7149 Perimeter Rd S	
08/11/2004 Improve or create spill response procedures Properly educate employees	
Clean and eliminate leaks and spills from storage areas	
Galvin Flying Service, Inc. 7201 Perimeter Rd S	
08/11/2004 Improve or create spill response procedures	
Properly educate employees	
Galvin Flying Service, Inc. 6987 Perimeter Rd S	
08/11/2004 Improve or create spill response procedures	
Properly educate employees	

Subbasin: Slip 4	
Garlatz/Seattle Air Corp 1115	S Elizabeth St
10/06/2004	Properly store non-containerized materials
Georgetown Management 680	01 Perimeter Rd S, #A
08/17/2004	Improve or create spill response procedures
	Improve or purchase adequate spill response materials
	Properly educate employees
Jensen Family LTD Partners	1001 S Myrtle St
09/29/2004	Storm drain facility needs to be cleaned
	Missing or damaged components to storm drain facility need replacement/repair
King County Maintenance Facilit	ty 6518 Ellis Ave
12/22/2004	Improve or create spill response procedures
	Improve or purchase adequate spill response materials
	Properly educate employees Storm drain facility needs to be cleaned
	Missing or damaged components to storm drain facility need replacement/repair
	Properly dispose of Waste
	Properly store Product/Waste
Larry's Market 1001 S Myrtle	St
11/03/2004	Improve or create spill response procedures
	Improve or purchase adequate spill response materials
	Properly educate employees
Marine Vacuum Service 1516	S Graham St
01/26/2005	Improve or create spill response procedures
National Aviation 7170 Perime	eter Rd S
08/25/2004	Improve or purchase adequate spill response materials
	Properly educate employees
Nichols Truck Tire 6311 Corgi	at Dr S
06/16/2004	
	Improve or purchase adequate spill response materials
	Properly educate employees Properly dispose of Waste
NW Truck Transmission Inc.	3327 18th Ave S
06/09/2004	Improve or create spill response procedures
00/00/2004	Properly store containerized materials
	Properly dispose of Waste
	Properly document waste disposal
	Properly label Containers
O'Neill And Sons 6640 Ellis A	ve S
08/20/2004	Improve or create spill response procedures
	Properly educate employees
	Storm drain facility needs to be cleaned
	Implement proper washing practices Properly store Product/Waste
Pacific Multiforms Co., Inc. 66	00 Ursula PL S
05/19/2004	Storm drain facility needs to be cleaned
	21st Ave E

Subbasin: Slip 4	
12/17/2004	Improve or create spill response procedures Improve or purchase adequate spill response materials Properly educate employees
Puget Sound Energy 6500 U	rsula Ave S
05/27/2004	Improve or create spill response procedures Improve or purchase adequate spill response materials Properly educate employees Storm drain facility needs to be cleaned Properly store Product/Waste
Show Quality Metal Finishing	1115 S Elizabeth St
10/06/2004	Improve or create spill response procedures Improve or purchase adequate spill response materials Properly educate employees Properly store non-containerized materials Properly dispose of Waste
Shultz Distributing Inc. 1495	S Hardy St
03/15/2005	Improve or create spill response procedures Improve or purchase adequate spill response materials Properly educate employees Storm drain facility needs to be cleaned
UltraBlock Inc. 6300 17th Av	e S
06/16/2004	Improve or create spill response procedures Improve or purchase adequate spill response materials Properly educate employees
# of sites: 33	<i># of corr. actions:</i> 98
Subbasin: Slip 5	
Aeroflight 8555 Perimeter Ro	IS
08/12/2004 02/14/2005	Improve or create spill response procedures Correct illegal plumbing connection Properly store Product/Waste
Ameriflight 7575 Perimeter R	
Ameningin 1575 Ferimeter R	2d S
06/04/2004	In Solution of the second seco
-	Improve or create spill response procedures Improve or purchase adequate spill response materials Properly educate employees Storm drain facility needs to be cleaned Correct illegal plumbing connection Properly store Product/Waste
06/04/2004	Improve or create spill response procedures Improve or purchase adequate spill response materials Properly educate employees Storm drain facility needs to be cleaned Correct illegal plumbing connection Properly store Product/Waste Rd S
06/04/2004 BAX Global 8201 Perimeter 08/12/2004	Improve or create spill response procedures Improve or purchase adequate spill response materials Properly educate employees Storm drain facility needs to be cleaned Correct illegal plumbing connection Properly store Product/Waste Rd S Improve or create spill response procedures
06/04/2004 BAX Global 8201 Perimeter 08/12/2004	Improve or create spill response procedures Improve or purchase adequate spill response materials Properly educate employees Storm drain facility needs to be cleaned Correct illegal plumbing connection Properly store Product/Waste Rd S Improve or create spill response procedures Improve or purchase adequate spill response materials

Subbasin: Slip 5		
08/05/2004	Improve or create spill response procedures	
Galvin Flying Service, Inc. 7777 Perimeter Rd S		
08/11/2004	Improve or create spill response procedures	
	Improve or purchase adequate spill response materials	
	Properly educate employees	
MJL Partners 7827 Perimeter	Rd S	
09/20/2004	Improve or create spill response procedures	
	Improve or purchase adequate spill response materials	
	Properly educate employees	
Reed Aviation 8490 Perimete	r Rd S, #a2	
10/04/2004	Improve or create spill response procedures	
SSCC - Aviation Department Ha	ngar 8900 E Marginal Wy S	
08/11/2004	Improve or create spill response procedures	
	Improve or purchase adequate spill response materials	
	Properly educate employees	
Startube 8900 E Marginal Wy	S	
08/11/2004	Improve or create spill response procedures	
	Improve or purchase adequate spill response materials	
	Properly educate employees	
Wings Aloft 8467 Perimeter R	Rd SE	
09/13/2004	Improve or create spill response procedures	
	Properly store Product/Waste	
# of sites: 11	<i># of corr. actions:</i> 30	
Subbasin: Slip 6		

King County Airport Office Building 9010 E Marginal Wy S

01/27/2005 Missing or damaged components to storm drain facility need replacement/repair

King County Sheriff- Air Support Unit 8600 Perimeter Rd S

08/03/2004 Improve or create spill response procedures Improve or purchase adequate spill response materials Properly educate employees

of sites: 2 # of corr. actions: 4

Subbasin: South Park

Da Vinci Gourmet 7224 1st Ave S

10/18/2002	Improve or create spill response procedures	
	Improve or purchase adequate spill response materials	
	Properly educate employees	
	Storm drain facility needs to be cleaned	
	Implement proper housekeeping	
	Implement proper washing practices	
08/16/2004	Improve or create spill response procedures	
	Improve or purchase adequate spill response materials	
	Properly educate employees	
Independent Metals, Inc. 703	S Monroe St	
08/13/2003	Improve or create spill response procedures	

Subbasin:	South Park	
	08/13/2003	Improve or purchase adequate spill response materials
		Properly educate employees
		Properly store non-containerized materials
		Properly store Product/Waste
		Properly label Containers
# of sites: 2		<i># of corr. actions:</i> 18

APPENDIX C

Phthalate Air Monitoring Information

TECHNICAL MEMORANDUM

From: Bruce Tiffany
To: Elsie Hulsizer
Cc:
Date: July 21, 2005
Re: Lower Duwamish Waterway Source Control - Passive Deposition Sampling – Phase 1 Results

INTRODUCTION

This memorandum presents the results of air deposition sampling conducted as part of source control efforts for the Lower Duwamish Waterway superfund cleanup. The purpose of the sampling was to evaluate the air deposition pathway for selected chemicals of concern.

King County Industrial Waste Program staff collected air deposition samples at four different stations and delivered them to the King County Environmental Laboratory for analysis. The Phthalate Committee of the Lower Duwamish Source Control Work Group acted as advisors for the sampling design. Committee members include representatives from King County, Seattle Public Utilities, and a research partner, City of Tacoma.

This memorandum covers Phase 1 of sampling, conducted from January 2005 through May 2005. Sampling was done with passive deposition samplers designed to collect rainfall (i.e., wet deposition) although the samplers also collected dry particulate. The planning and development for Phase 2 sampling is currently underway

PASSIVE DEPOSITION SAMPLING

Sampling Stations

The Phase 1 passive deposition sampling occurred over four rounds from January 2005 through May 2005 at four sampling stations in the Lower Duwamish drainage area. These stations (with owner/operator) were as follows:

- Beacon Hill (Washington State Department of Ecology)
- Duwamish (Puget Sound Clean Air Agency)
- Georgetown (Washington State Department of Ecology)
- South Park Community Center (Seattle Parks Department)

These stations were selected to collect neighborhood-scale air deposition samples from different portions of the Lower Duwamish drainage area.

See Figure 1 for information on station locations.

See Table 1 for information on sample collection.

Sampler Preparation

Each passive deposition sampler consisted of the following components:

- 1.14-ft diameter stainless steel mixing bowl w/drilled hole & welded 3/8" stainless steel union (stainless steel collector).
- $6''(L) \ge 3/8''(Dia.)$ stainless steel tubing $\frac{w}{3}/8''$ stainless steel nut and ferrule.
- 2 metal washers.
- 2.5-gallon glass carboy w/metal lid (w/hole cut to allow passage of stainless steel fittings).

The components were cleaned at the King County Environmental Laboratory (KCEL) prior to assembly. After assembly, an aqueous equipment rinsate sample was collected for each sampler by pouring purified laboratory water through the sampling apparatus, swirling the contents around the inside of the carboy, removing the stainless steel collector from the apparatus, and decanting the liquid into a 1-liter amber glass bottle for subsequent laboratory analysis. The apparatus was then reassembled with the glass carboy wrapped in aluminum foil to minimize the photodegradation of chemicals of concern.

Before the samplers were placed in the field, a KCEL chemist added a deuterated monitoring compound spike into each sampler. The spike consisted of a 500 nanogram (ng) mixture of the following deuterated PAH/phthalate compounds:

- Acenaphthylene-d8
- Anthracene-d10
- Benzo(a)pyrene-d12
- Dimethylphthalate-d6
- Fluorene-d10
- Pyrene-d10

No preservatives were added to the samplers. Initial testing of the passive deposition samplers indicated that biodegradation was not a concern.

Sampler Installation/Retrieval

The locations for samplers within each station were chosen to be free of overhead interference and to be as far as practicable from plastic products. Photographs of sampler locations are provided in the **Photographs** section attached to this memorandum.

At the time of sample collection, observations of sampler condition were recorded along with the date and time of sampler removal. The stainless steel collector of each sampler was covered in aluminum foil and the entire passive deposition sampler apparatus was placed in the utility van for transport to KCEL. All samplers removed from the stations were delivered to KCEL within one to four hours of collection.

Round 4 Total Solids Sampling

Separate samplers were utilized in Round 4 for collecting aqueous samples for total solids analysis. These samples were collected to evaluate solids loading and to compare the results with PAH/phthalate data from the passive deposition samplers.

SAMPLE ANALYSIS

PAH/Phthalate Analysis

The aqueous samples were extracted by use of JT Baker C18 solid phase extraction cartridges and analyzed for PAH and phthalates according to EPA Method 8270B. After particulate was observed in the stainless steel collectors of the passive deposition samplers, wipe tests were conducted for some of the sampling rounds. The wipe samples were extracted and analyzed for PAH and phthalates according to EPA Method 8270B.

The following compounds were analyzed:

PAH

- 2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene
- Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)Pyrene Naphthalene Phenanthrene Pyrene

Phthalates

Benzyl Butyl Phthalate Bis(2-Ethylhexyl)Phthalate Di-*n*-Butyl Phthalate Di-*n*-Octyl Phthalate Diethyl Phthalate Dimethyl Phthalate

SAMPLE RESULTS

<u>PAH/Phthalate Data</u>

PAH/phthalate analytical results from Rounds 1 to 4 are summarized in **Table 2**. The analytical results include sample results and associated equipment rinsate and method blank results. The laboratory data and associated laboratory narrative are provided in **Attachment A**.

Table 2 presents the aqueous, wipe, and calculated air deposition flux results from Rounds 1 to 4 of passive deposition sampling. The results from Rounds 1, 2, and 4 are the most useful since the samplers were in the field for 26, 36, and 22 days, respectively. Although the results from Round 3 are included,

the samplers were in the field for seven days of high rainfall with less opportunity to collect particulate mass.

The analytical results in **Table 2** are limited to the seven carcinogenic PAH, pyrene, benzo(g,h,i)perylene, and the six phthalate compounds. Analytical recoveries for the lower molecular weight PAH deuterated monitoring compounds (below pyrene-d10) were judged to be insufficient for inclusion in this analysis. Further analytical method refinement is needed to provide more reproducible results for the lower molecular weight PAH. No further action was needed for this phase of sampling since the carcinogenic PAH and the suite of phthalates are of greater concern.

PAH/Phthalate Aqueous Results

Table 2 presents the aqueous results from Rounds 1 through 4. The aqueous concentrations ranged from approximately 0.01 to 0.2 μ g/l for the PAH, 0.03 to 0.5 μ g/l for benzyl butyl phthalate, and 0.1 to 2.0 μ g/l for bis(2-ethylhexyl)phthalate. Since several of these analytes have logarithmic water-organic carbon partition coefficients (Log Koc) values on the order of five or greater, and as a visible amount of particulate was collected in the carboys of the samplers, it is not surprising to see these analytical results. However, it is important to note that these numbers could have been higher since the design of the passive deposition samplers resulted in some particulate remaining in the stainless steel collector of each apparatus.

PAH/Phthalate Wipe Results

Table 2 presents the wipe results from one sample from Round 1 and all of the samples from Round 4. Review of the wipe data for these samples indicates that the mass of higher molecular weight PAH and phthalates retained on the surface of stainless steel collector was significant. The mass of the higher molecular weight PAH and phthalates retained on the surface of the stainless steel collector ranged from approximately 0% to 50% of the total mass collected.

PAH/Phthalate Air Deposition Results

<u>Data Summary</u>

Calculation of air deposition flux is a useful tool for evaluating the rate at which mass of a particular chemical of concern is depositing on a terrestrial surface through the air pathway. The units of air deposition flux are mass per area per time (mass/area/time). The air deposition flux values calculated on **Table 2** are in units of micrograms per meter squared per day (μ g/m²/day).

The aqueous results in **Table 2** are converted to air deposition flux by utilizing the aqueous concentration for a given analyte, the volume of the aqueous sample, the internal area of the stainless steel collector, and the number of days the passive deposition sampler was in the field. Wipe samples were collected for one sample in Round 1 and all the samples in Round 4. The mass of a particular

analyte collected from the wipe sample was added to the mass of the analyte derived from the associated aqueous sample to determine a total air deposition flux.

As discussed previously, the wipe samples collected from Rounds 1 and 4 indicated that a significant amount of analyte mass was retained on the stainless steel collector. Because of the mixture of sample results that include wipe data and those that do not, the results in **Table 2** are flagged to indicate if a result is from an aqueous sample only or if the result was derived from a combination of aqueous and wipe data.

The air deposition flux results in **Table 2** are uncorrected for blank contamination. In addition, only detected values are summarized. No accounting is made for the detection limits associated with non-detected values. For further information on detection limits, please review the analytical data provided in **Attachment A**.

Air Deposition Flux

Table 3 provides air deposition flux results that are corrected for blank contamination. Only sample values greater than three-times (3x) the associated blank concentration were used. For sample values that passed the three-times criterion, the higher value from either the method blank or the associated equipment rinsate blank was used to subtract from the sample result.

The air deposition flux results for Rounds 1 through 4 ranged from approximately 0.01 to 0.3 μ g/m²/day for the PAH, 0.1 to 1.5 μ g/m²/day for benzyl butyl phthalate, and 0.2 to 3.5 μ g/m²/day for bis(2-ethylhexyl)phthalate.

Air Deposition Flux Ratios

For most of the rounds, the air deposition flux results were lower for the Beacon Hill Station than for the Duwamish, Georgetown, and South Park Stations. Therefore, an analysis of the ratio of air deposition flux results to those at the Beacon Hill Station was performed to evaluate localized effects of air deposition flux.

Table 4 presents an analysis of the ratios of air deposition flux results to those at the Beacon Hill Station.

For Round 1, the results for PAH, benzyl butyl phthalate, and bis(2-ethylhexyl)phthalate at the Duwamish, Georgetown, and South Park Stations were approximately two- to three-times (2x to 3x) those of the Beacon Hill Station.

For Round 2, the results for PAH, benzyl butyl phthalate, and bis(2-ethylhexyl)phthalate at the Duwamish, Georgetown, and South Park Stations were approximately three- to five-times (3x to 5x) those of the Beacon Hill Station. However, it should be noted that some of the lowest sample values for Phase 1 were obtained from the Round 2 sample at the Beacon Hill Station and the associated recoveries for the deuterated monitoring compounds were all less than 10% (see **Table 2** and **Table 3**). A review

of the field notes for this site indicated that a small portion of aluminum foil was missing from the passive deposition sampler apparatus at the time of sampler retrieval. It is possible that photodegradation played a role in the aqueous concentrations for the Round 2 Beacon Hill sample. Therefore, the Round 2 ratios for the three Duwamish Valley stations should be considered biased high.

For Round 3, the limited results for PAH, benzyl butyl phthalate, and bis(2-ethylhexyl)phthalate at the Duwamish, Georgetown, and South Park Stations were approximately equal to two-times (1x to 2x) those of the Beacon Hill Station.

For Round 4, the results for PAH, benzyl butyl phthalate, and bis(2-ethylhexyl)phthalate at the Duwamish, Georgetown, and South Park Stations were approximately three-quarters to two-times (0.75x to 2x) those of the Beacon Hill Station.

For Rounds 1 through 4, the three Duwamish Valley stations (Duwamish, Georgetown, and South Park) had higher ratios to Beacon Hill during the winter sampling events (Rounds 1 and 2) than during the spring sampling events (Rounds 3 and 4).

Associated Air Monitoring Data

Air monitoring data were available for the Beacon Hill and Duwamish Stations for the Phase 1 time period. The South Park Community Center did not have any air monitoring equipment, but was within proximity to a small station operated by the Puget Sound Clean Air Agency (PSCAA).

Data for atmospheric concentrations of particulate with diameters less than 2.5 μ m (PM_{2.5}) were available by the nephelometer technique for the Beacon Hill, Duwamish, and South Park Stations. The PM_{2.5} data were obtained from the PSCAA website and were not corrected by the reference method – a procedure that PSCAA conducts on an annual basis. These data are summarized in **Table 2**.

Data for atmospheric concentrations of particulate with diameters less than 10 μ m (PM₁₀) were available by the tapered element oscillating microbalance (TEOM) technique for the Duwamish Station. The PM₁₀ data were obtained from the PSCAA website. These data are summarized in **Table 2**.

These data are provided in this technical memorandum to provide a qualitative comparison with sample results. In general, atmospheric particulate concentrations were greater during the winter sampling events (Rounds 1 and 2) than during the spring sampling events (Rounds 3 and 4). This compares with historic PSCAA data that shows atmospheric particulate concentrations trending higher during fall/winter months than during spring/summer months.

Atmospheric particulate information can be important because the carcinogenic PAH and larger molecular weight phthalates preferentially adsorb to the particulate phase than to the aqueous or gaseous phases. If sufficient PAH/phthalate air deposition flux data are collected in the future, correlations with $PM_{2.5}$ (or some other parameter) could be informative. However, at this time, there is insufficient data to perform correlations.

Round 4 Total Solids Results

Samples for aqueous total solids analysis were collected during Round 4. These data are provided in **Attachment A** and are summarized in **Table 2**. For Round 4, the lowest result was obtained from the Georgetown Station (12 mg/L). Approximately similar results were obtained from the Beacon Hill and South Park Stations (20 mg/L and 23 mg/L, respectively). The highest result was obtained from the Duwamish Station (63 mg/L).

These data are provided in this technical memorandum to provide a qualitative comparison with sample results. Because the aqueous total solid concentrations cover a five-times (5x) range (Duwamish vs. Georgetown), and as the associated chemical results do not cover nearly this broad of a range, it is not expected that chemicals of concern will correlate well with aqueous total solids samples or atmospheric total suspended particulate samples. However, correlation with different atmospheric parameters (e.g., $PM_{2.5}$, carbon monoxide, etc.) still may be informative.

COMPARISON OF SAMPLE RESULTS WITH OTHER STUDIES

Table 5 presents a comparison of the results from Rounds 1 through 4 of passive deposition sampling with data collected from other air deposition studies. The following studies were reviewed:

- Georgia Basin, British Columbia: 1999 2001
- Roskilde Fjord, Denmark: 1996 1997
- Washington State Department of Ecology/Air Quality Program: 1998 1999
- U.S. EPA & Environment Canada/Integrated Atmospheric Deposition Network: 1997 -1998

The results from Rounds 1 through 4 of passive deposition sampling (**Table 5**) reflect the results collected from aqueous samples only and from results that include wipe data. Because of the inclusion of the aqueous-only data, and the potential photodegradation losses from the Round 2 Beacon Hill sample, the reported minimum values should be considered biased low. Regardless of this deficiency, a comparison of these results to other studies provides important general information on the scale of the variability form region to region and between rural vs. urban locations.

<u>Georgia Basin</u>

Environment Canada conducted a study involving four air sampling stations in the British Columbia portion of the Georgia Basin Airshed. The Georgian Basin Airshed covers the southeast portion of British Columbia Province and the northwest portion of Washington State - including Puget Sound.

Two of the stations provided useful air deposition information. The Chilliwack Station of south-central British Columbia was used to collect air deposition data for PAH and phthalates. The Cowichan Station of southeast Vancouver Island was used to collect air deposition data for PAH. Both of these locations are considered to be of mixed urban/rural land use.

The results from the Chilliwack and Cowichan Stations were reported in air concentration units of nanograms per cubic meter (ng/m³). These air concentrations were then converted to air deposition flux values of micrograms per square meter per day (μ g/m²/day) by applying a deposition velocity to account for the rate at which chemicals or particles "fall" to terrestrial surfaces.

Air deposition velocities can be determined experimentally, but researchers often apply typical values. However, there is some disagreement as to what a "typical" value should be. The Georgia Basin study assumed a "typical" air deposition velocity of 0.1 cm/second whereas another researcher applies a "typical" air deposition velocity of 0.2 cm/second. Because of this discrepancy, the air concentration values were converted to air deposition flux values by applying air deposition values of both 0.1 cm/second and 0.2 cm/second to produce a range of feasible values. These results are provided in **Table 5**.

A review of **Table 5** indicates that results from Rounds 1 through 4 of passive deposition sampling compare favorably to the results from the Chilliwack and Cowichan Stations. The maximum PAH values were comparable to the upper range of average values from the Cowichan Station. The minimum PAH values from Rounds 1 through 4 (mainly, from the Beacon Hill Station) are comparable to the Chilliwack and Cowichan Stations. Given this information, it appears that the Phase 1 results are comparable to other portions of the Georgia Basin Airshed.

<u>Roskilde Fjord</u>

Air deposition data were collected for the duration of one year at the Lille Valby meteorological station on Roskilde Fjord, Denmark. The Lille Valby meteorological station is located approximately 20 miles west of Copenhagen. The testing was limited to selected phthalates. The results from this testing are provided in **Table 5**.

A review of **Table 5** indicates that results for bis(2-ethylhexyl)phthalate from Rounds 1 through 4 of passive deposition sampling are within the range of results from Roskilde Fjord. Results for benzyl butyl phthalate and di-*n*-octyl phthalate are slightly higher. Results for di-*n*-butyl phthalate are substantially lower than in Roskilde Fjord.

The average results from the Roskilde Fjord study are also within the range of values from the Chilliwack Station of the Georgia Basin study. Based on this information, it is possible that there are background concentrations of phthalates that are regional, hemispheric, or global in nature. However, a detailed evaluation of this requires more research and is considered beyond the scope of this technical memorandum.

Washington State Deparment of Ecology – Air Quality Program

The Washington State Department of Ecology (Ecology) conducted a study involving several air sampling stations in the Puget Sound. Two of these stations (Beacon Hill and Georgetown) also were used for several of the rounds of the Phase 1 passive deposition sampling. Ecology collected PAH data

from these two stations and only reported results for lower molecular weight PAH (i.e., pyrene and smaller).

Ecology collected samples by using high-volume air sampling techniques. The average air concentration values for pyrene were converted to air deposition flux by using air deposition velocity values of 0.1 cm/second and 0.2 cm/second, respectively. The results for air deposition flux are summarized in **Table 5** for comparison.

A review of **Table 5** indicates that results for pyrene from Rounds 1 through 4 of passive deposition sampling are within the range of average results from the Ecology study. This indicates that the passive deposition sampling technique is deriving results that correspond favorably to dry air deposition sampling techniques.

U.S. EPA/Environment Canada – Integrated Atmospheric Deposition Network

From 1990 through 1998, the U.S. EPA and Environment Canada maintained the Integrated Atmospheric Deposition Network (IADN) to study air deposition in the Great Lakes of the United States and Canada. Of the sampling stations of the IADN, data were used from the two Lake Michigan stations – one representing an urban setting (Chicago, IL) and another representing a rural setting (Sleeping Bear Dunes, MI). Data were requested from IADN, but only results for benzo(a)pyrene were provided for the carcinogenic PAH. No phthalate data were available.

The IADN collected samples by using high-volume air sampling techniques. The average air concentration values for benzo(a)pyrene were converted to air deposition flux by using air deposition velocity values of 0.1 cm/second and 0.2 cm/second, respectively. The results for air deposition flux are summarized in **Table 5** for comparison.

A review of **Table 5** indicates that results for benzo(a)pyrene from Rounds 1 through 4 of passive deposition sampling are within the range of average results from the IADN study. This indicates that results from the background/industrialized locations within the Lower Duwamish Waterway appear to be within the same range as the rural/urban results from another region of the country.

CONCLUSIONS

The results from Phase 1 of passive deposition sampling indicate that there are generally higher levels of air deposition flux in the Duwamish Valley areas (Duwamish, Georgetown, and South Park) when compared to background (Beacon Hill). However, for the carcinogenic PAH and selected phthalates, the three Duwamish Valley stations had higher ratios to Beacon Hill during the winter sampling events than during the spring sampling events. Atmospheric particulate concentrations also were greater during the winter sampling events than during the spring sampling events. Although future testing is needed, the early indications are that seasonality could impact air deposition for the chemicals of concern.

As a quality control check on the sample results, the Phase 1 results were compared with other studies. The results from the Phase 1 testing compared well with studies conducted within the same airshed (i.e., Georgia Basin and Ecology studies) and with other regions (i.e., IADN and Roskilde Fjord studies). Further air deposition testing should be conducted to evaluate the reproducibility of results and to collect sufficient data to perform correlations with existing atmospheric measurements (e.g., particulate concentration by $PM_{2.5}$, etc.).

RECOMMENDATIONS FOR FUTURE WORK

I recommend that passive (dry and wet) deposition sampling be continued for another phase of sampling (Phase 2) in the Lower Duwamish Waterway study area. This phase of sampling should last for one calendar year to evaluate the seasonality of air deposition and to collect additional data to perform correlations with other parameters. The ultimate goal of this work is to collect sufficient data to estimate loading of chemicals of concern to the Lower Duwamish drainage area through the air deposition pathway.

Before initiating Phase 2 sampling, some modifications from the Phase 1 approach are recommended. Of primary importance will be a redesign of the passive deposition sampler. The "bowl" configuration of the current stainless steel collector traps more particulate than originally envisioned. I recommend changing this "bowl" with a funnel made of stainless steel or a more inert material (e.g., Teflon, etc.). Redesign of the sampler will require laboratory testing to ensure that contamination is not being introduced from the apparatus.

REFERENCES

Belzer, Wayne. 2004. Atmospheric Concentrations and Depositions in the Georgia Basin Airshed. *In* T.W. Droscher and D.A. Fraser (eds). Proceedings of the 2003 Georgia Basin/Puget Sound Research Conference. CD-ROM or Online. Available:

http://www.psat.wa.gov/Publications/03_proceedings/start.htm [February 2004]

Puget Sound Clean Air Agency (PSCAA). September 2004. 2003 Air Quality Data Summary. (http://www.pscleanair.org/)

Simcik, Matt F. Slideshow: Atmospheric Deposition of Air Toxics. Division of Environmental and Occupational Health, School of Public Health, University of Minnesota. (http://www2.nature.nps.gov/air/studies/air_toxics/docs/Simcik.ppt)

Tiffany, Bruce. 2005. January 21, 2005 Technical Memorandum: Lower Duwamish Source Control – Status of Passive Deposition Sampling. King County Industrial Waste Program.

U.S. Environmental Protection Agency/Environment Canada – Integrated Atmospheric Deposition Network (IADN) – Great Lakes (<u>http://www.msc-smc.ec.gc.ca/iadn/Overview/index_e.html</u>)

U.S. Environmental Protection Agency. 1982. Aquatic Fate Process Data for Organic Priority Pollutants. EPA Report No. 440/4-81-014

Vikelsoe, J., Fauser, P., Sorensen, P.B. & Carlsen, L. 2001. Phthalates and Nonylphenols in Roskilde Fjord. A Field Study and Mathematical Modelling of Transport and Fate in Water and Sediment. The Aquatic Environment. National Environmental Research Institute, Roskilde. 106pp. NERI Technical Report. No. 339

Washington State Department of Ecology/Air Quality Program (https://fortress.wa.gov/ecy/aqp/Toxics/AirToxicsHome.shtml)

TABLES

Table 1 - Sample MatrixLower Duwamish - Passive Deposition Sampling - Phase 1

				South Park Community
Station	Beacon Hill	Duwamish	Georgetown	Center
Station ID	BW	CE	DZ	SPCC
Location	15th S. & Charlestown	4752 E. Marginal Wy. S.	6431 Corson Ave. S.	8025 10th. Ave. S.
Round 1				
Start	1/20/2005	1/20/2005		
			-	-
End	2/15/2005	2/15/2005	-	-
Days	26	26	-	-
Total Rainfall, Inches	1.45 (A)	1.45 (A)	1.45 (A)	1.45 (A)
Reference Volume, L	3.49 (B)	3.49 (B)	3.49 (B)	3.49 (B)
Round 2				
Start	2/15/2005	2/15/2005	2/15/2005	2/15/2005
End	3/23/2005	3/23/2005	3/23/2005	3/23/2005
Days	36	36	36	36
Total Rainfall, Inches	1.06 (A)	1.06 (A)	1.06 (A)	1.06 (A)
Reference Volume, L	2.55 (B)	2.55 (B)	2.55 (B)	2.55 (B)
Round 3				
Start	3/23/2005	3/23/2005	3/23/2005	3/23/2005
End	3/30/2005	3/30/2005	3/30/2005	3/30/2005
Days	7	7	7	7
Total Rainfall, Inches	2.68 (A)	2.68 (A)	2.68 (A)	2.68 (A)
Reference Volume, L	6.45 (B)	6.45 (B)	6.45 (B)	6.45 (B)
Round 4				
Start	4/13/2005	4/13/2005	4/13/2005	4/13/2005
End	5/5/2005	5/5/2005	5/5/2005	5/5/2005
Days	22	22	22	22
Total Rainfall, Inches	1.89 (A)	1.89 (A)	1.89 (A)	1.89 (A)
Reference Volume, L	4.55 (B)	4.55 (B)	4.55 (B)	4.55 (B)

Notes:

(A) - Recorded at National Weather Service - SeaTac International Airport Station (Source: www.beautifulseattle.com)

(B) - Reference Volume Based on a Passive Deposition Sampler Collection Area of 0.0948 m² (1.02 ft²) and Total Rainfall Recorded at National Weather Service - SeaTac International Airport Station (Source: www.beautifulseattle.com)

Table 2 - Blank and Sample Results Lower Duwamish - Passive Deposition Sampling - Phase 1 (Detected Results Only)

	Dourd 4										David 0												Dame d D				
	Round 1 Equipment R	nsates			Samples						Round 2 Equipment Rins	ates					Samples						Round 3 Equipment Rinsa	ites			
Station		Beacon Hill	Duwamish	Duwamish	-	-	Beacon Hill	Duwamish	Duwamish	Duwamish		Beacon Hill	Duwamish	Duwamish	Georgetown	S. Park CC	-	Beacon Hill	Duwamish	Duwamish	Georgetown	S. Park CC		Beacon Hill	Duwamish	Georgetown	S. Park CC
Station ID Sample Type	- Method Blar	BW k Rinsate Blank	CE Rinsate Blank	CE Rinsate Dup.	- Method Blank	- Method Blank	BW Sample	CE Sample	CE Duplicate	CE Duplicate	- Method Blank	BW Rinsate Blank	CE Rinsate Blank	CE Rinsate Dup.	DZ Rinsate Blank	SPCC Rinsate Blank	- Method Blank	BW Sample	CE Sample	CE Duplicate	DZ Sample	SPCC Sample	- Method Blank	BW Rinsate Blank	CE Rinsate Blank	DZ Rinsate Blank	SPCC Rinsate Blank
Start Date	-	-	-	-	-	-	1/20/2005	1/20/2005	1/20/2005	1/20/2005	-	-	-	-	-	-	-	2/15/2005	2/15/2005	2/15/2005	2/15/2005	2/15/2005	-	-	-	-	-
End Date	-	1/20/2005	1/19/2005	1/19/2005	-	-	2/15/2005	2/15/2005	2/15/2005	2/15/2005	-	2/14/2005	2/14/2005	2/14/2005	2/14/2005	2/14/2005	-	3/23/2005	3/23/2005	3/23/2005	3/23/2005	3/23/2005	-	3/22/2005	3/22/2005	3/22/2005	3/22/2005
Total Days	26	26	26	26	26	26	26	26	26	26	36	36	36	36	36	36	36	36	36	36	36	36	7	7	7	7	7
Sample Volume, L PDS Collection Area, m ²	1.00 0.0948	1.03 0.0948	1.04 0.0948	1.02 0.0948	2.00 0.0948	2.00 0.0948	3.10 0.0948	3.03 0.0948	3.08 0.0948	3.08 0.0948	1.00 0.0948	0.91 0.0948	1.01 0.0948	1.01 0.0948	1.02 0.0948	1.01 0.0948	3.00 0.0948	2.40 0.0948	2.30 0.0948	2.32 0.0948	2.59 0.0948	2.49 0.0948	1.00 0.0948	1.01 0.0948	1.03 0.0948	1.03 0.0948	1.02 0.0948
Aqueous Sample Results																											
Carcinogenic PAH		I	r		-r						-		r	r	r	r	r					r					
Benzo(a)anthracene µg/L		ND ND	ND ND	ND ND	ND ND	ND ND	0.021 0.025	0.054	0.058	0.058	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.008	0.026	0.029 0.040	0.044	0.047	ND ND	ND ND	ND ND	ND ND	ND ND
Benzo(a)pyrene µg/L Benzo(b)fluoranthene µg/L		ND	ND	ND	ND	ND	0.025	0.064	0.075	0.075	ND	ND	ND	ND	ND	ND	ND	0.014	0.039	0.040	0.058	0.051	ND	ND	ND	ND	ND
Benzo(k)fluoranthene µg/L		ND	ND	ND	ND	ND	0.032	0.092	0.104	0.120	ND	ND	ND	ND	ND	ND	ND	0.017	0.050	0.062	0.077	0.069	ND	ND	ND	ND	ND
Chrysene µg/L	ND	ND	ND	ND	ND	ND	0.057	0.138	0.154	0.154	ND	ND	ND	ND	ND	ND	ND	0.031	0.098	0.101	0.123	0.116	ND	ND	ND	ND	ND
Dibenzo(a,h)anthracene µg/L	ND	ND	ND	ND	ND	ND	0.009	0.027	0.030	0.030	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.021	0.023	ND	ND	ND	ND	ND
Indeno(1,2,3-Cd)pyrene µg/L	ND	ND	ND	ND	ND	ND	0.024	0.063	0.072	0.072	ND	ND	ND	ND	ND	ND	ND	0.015	0.038	0.038	0.055	0.049	ND	ND	ND	ND	ND
Other PAH	ND	ND	ND	ND	ND	ND	0.040	0.102	0.113	0.113	ND	ND	ND	ND	ND	ND	ND	0.025	0.069	0.077	0.079	0.070	ND	ND	ND	ND	ND
Benzo(g,h,I)perylene µg/L Pyrene µg/L		ND	ND	ND	ND	ND	0.040	0.180	0.215	0.215	ND	ND	ND	ND	ND	ND	ND	0.033	0.148	0.136	0.151	0.118	ND	ND	ND	ND	ND
Phthalates																											
Dimethyl Phthalate µg/L		ND	ND	ND	ND	ND	0.017	0.027	0.028	0.028	ND	ND	ND	ND	ND	ND	ND	ND	0.028	ND	0.021	0.028	ND	ND	ND	ND	ND
Diethyl Phthalate µg/L	ND	ND	ND	ND	ND	ND	0.099	0.074	0.068	0.068	ND	ND	ND	ND	ND	ND	ND	0.035	0.078	0.052	ND	0.060	ND	ND	ND	ND	ND
Di-N-Butyl Phthalate µg/L Benzvl Butvl Phthalate µg/L		0.083 ND	0.0981 ND	0.07 ND	0.063 ND	0.063 ND	0.158 0.178	0.187 0.359	0.113 0.383	0.113 0.383	0.063 ND	0.078 ND	0.078 ND	0.107 ND	0.069 ND	0.084 ND	0.029 ND	0.062	0.199	0.103 0.334	0.071	0.098	ND ND	0.060 ND	0.065 ND	ND ND	0.054 ND
Benzyl Butyl Phthalate µg/L Bis(2-Ethylhexyl)Phthalate µg/L		0.086	0.0981	0.081	0.155	0.155	0.628	1.800	1.910	1.910	0.068	0.114	0.129	0.109	0.086	0.085	0.082	0.098	2.010	1.960	1.460	1.560	0.060	0.084	0.082	0.077	0.231
Di-N-Octyl Phthalate µg/L		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.326	ND	ND	ND	ND	ND	ND
Deuterated Monitoring Compounds				*	1															·							
D6-Dimethyl Phthalate % Rec			Not Spiked		63	63	62	58	53	53	Not Spiked	Not Spiked	Not Spiked	Not Spiked		Not Spiked	41	0	55	38	8	20	43	64	67	59	56
D10-Pyrene % Rec D12-Benzo(a)pyrene % Rec			Not Spiked	Not Spiked		69	32 36	47	55 66	55	Not Spiked	Not Spiked		Not Spiked	Not Spiked		61 61	3	56 65	52 48	19 13	11 9	34 38	50 44	54 50	45 37	50 47
D12-Benzo(a)pyrene % Rec	Not Spiked	Not Spiked	Not Spiked	Not Spiked	64	64	30	41	00	66	Not Spiked	Not Spiked	Not Spiked	Not Spiked	Not Spiked	Not Spiked	61	8	60	48	13	9	38	44	50	3/	47
Sample Collector Wipe Results (A)																											
Carcinogenic PAH																							1				
Benzo(a)anthracene µg	-	-	-	-	-	ND	-	-	-	0.08	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Benzo(a)pyrene µg	-	-	-	-	-	ND	-		-	0.15	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Benzo(b)fluoranthene µg	-	-	-	-	-	ND	-	-	-	0.22	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Benzo(k)fluoranthene µg	-	-	-	-	-	ND	-	-	-	0.07	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Dibenzo(a,h)anthracene µg	-	-	-	-	-	ND ND	-	-	-	0.22	-	-	-	-	-	-	-	-	-	-		-		-	-	-	
Indeno(1,2,3-Cd)pyrene µg	-	-	-	-	-	ND	-	-	-	0.07	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Other PAH																											
Benzo(g,h,l)perylene µg	-	-	-	-	-	ND	-	-	-	0.08	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Pyrene µg Phthalates	-	-	-	-	-	ND	-	-		0	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-
Dimethyl Phthalate µg	-	-	-	-	-	ND	-	-		0.11	-	-	-	-		-	-	-	-	-		-		-	-	-	
Diethyl Phthalate µg	-	-	-	-	-	0.43	-	-	-	0.87	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Di-N-Butyl Phthalate µg	-	-	-	-	-	0.26	-	-	-	0.63	-	-	-	-		-	-	-	-	-		-	-	-	-	-	-
Benzyl Butyl Phthalate µg	-	-	-	-	-	ND 0.24	-	-	-	1.13 2.13	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Bis(2-Ethylhexyl)Phthalate µg Di-N-Octyl Phthalate µg	-					0.24 ND	-			2.13 ND	-	-	-	-		-			-	-	-			-	-		
		0	1	1	L.										1											L. L. L.	
Air Deposition Flux (Calculated)																							I				
Carcinogenic PAH											-														-	-	
Benzo(a)anthracene µg/m²/d			-	-	-	-	0.026 (B)			0.104 (C)	-	-	-	-	-	-	-			0.020 (B)	0.033 (B)	0.034 (B)		-	-	-	- 1
Benzo(a)pyrene µg/m²/da	ay -	-	-	-	-	-	0.032 (B) 0.050 (B)	0.079 (B) 0.146 (B)		0.154 (C)	-	-	-	-	-	-	-	0.010 (B)	0.026 (B)	0.027 (B) 0.045 (B)	0.044 (B) 0.071 (B)	0.038 (B) 0.064 (B)		-	-	-	
Benzo(b)fluoranthene µg/m²/d Benzo(k)fluoranthene µg/m²/d	ay - av -	+ -	-	-	-	-	0.050 (B) 0.040 (B)	0.146 (B) 0.113 (B)	0.150 (B) 0.130 (B)	0.239 (C) 0.158 (C)	-	-	-	-	-	-	-	0.014 (B) 0.012 (B)	0.045 (B) 0.033 (B)	0.045 (B) 0.042 (B)	0.071 (B) 0.058 (B)	0.064 (B) 0.050 (B)		-	-	-	
Chrysene µg/m²/d	ay -	-	-	-	-	-	0.072 (B)	0.170 (B)	0.192 (B)	0.282 (C)	-	-	-	-	-	-	-	0.022 (B)	0.066 (B)	0.069 (B)	0.093 (B)	0.085 (B)	- 1	-	-	-	
Dibenzo(a,h)anthracene µg/m²/d	ay -	-	-	-	-	-	0.012 (B)	0.033 (B)	0.038 (B)	0.050 (C)	-	-	-	-	-	-	-	-	-	-	0.016 (B)	0.017 (B)	-	-	-	-	-
Indeno(1,2,3-Cd)pyrene µg/m ² /d	ay -	-	-	-	-	-	0.030 (B)	0.077 (B)	0.090 (B)	0.118 (C)	-	-	-	-	-	-	-	0.010 (B)	0.025 (B)	0.026 (B)	0.042 (B)	0.036 (B)	-	-	-	-	-
Other PAH			1		-	1	0.050 (P)	0.125 (D)	0.141 (D)	0.174 (0)					1			0.019 (D)	0.046 (D)	0.052 (P)	0.060 (B)	0.0E4 (B)	<u> </u> г				
Benzo(g,h,l)perylene µg/m²/d. Pyrene µg/m²/d.		-	-	-	-	-	0.050 (B) 0.080 (B)	0.125 (B) 0.221 (B)	0.141 (B) 0.269 (B)	0.174 (C) 0.269 (C)	-	-	-	-	-	-	+	0.018 (B) 0.023 (B)	0.046 (B) 0.100 (B)	0.052 (B) 0.092 (B)	0.060 (B) 0.115 (B)	0.051 (B) 0.086 (B)		-	-	-	
Phthalates	-/		1	1	1	1		5.221 (5)	5.200 (8)	5.200 (0)			1	1	1	1		0.020 (D)	5.100 (5)	5.002 (5)	3.1.10 (3)	0.000 (D)	1				
Dimethyl Phthalate ug/m ² /d	ay -	-	-	-	-	-	0.021 (B)	0.033 (B)	0.035 (B)	0.080 (C)	-	-	-	-	-	-	-	-	0.019 (B)	-	0.016 (B)	0.020 (B)	-	-	-	-	-
Diethyl Phthalate µg/m²/da	ay -		-	-	-	-	0.125 (B)	0.091 (B)	0.085 (B)	-	-	-	-	-	-	-	-	0.025 (B)	0.053 (B)	0.035 (B)	-	0.044 (B)		-	-	-	
Di-N-Butyl Phthalate µg/m²/d	ay -	-	-	-	-	-	- 0.224 (B)	- 0.441 (B)	- 0.479 (B)	- 0.937 (C)	-	-	-	-	-	-	-	- 0.069 (B)	- 0.268 (B)	- 0.227 (B)	- 0.161 (B)	- 0.373 (B)	-	-	-	-	-
Benzyl Butyl Phthalate µg/m²/d: Bis(2-Ethylhexyl)Phthalate µg/m²/d:	ay - ay 0.027 (B)	0.036 (B)	- 0.041 (B)	0.034 (B)	0.126 (B)	0.223 (C)	0.224 (B) 0.790 (B)	2.213 (B)	2.387 (B)	3.251 (C)	0.020 (B)	0.030 (B)	0.038 (B)	0.032 (B)	0.026 (B)	0.025 (B)	0.072 (B)	0.069 (B) 0.299 (B)	0.268 (B) 1.355 (B)	1.332 (B)	1.108 (B)	1.138 (B)	0.090 (B)	- 0.128 (B)	0.127 (B)	- 0.120 (B)	- 0.355 (B)
Di-N-Octyl Phthalate µg/m²/d		-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	0.247 (B)	-	-	-	-	-	-
Associated Air Monitoring Data (D)																											
Average PM _{2.5} (Nephelometer) µg/m ³		-	-	-	-	-	10	15	15	15	-	-	-	-	-	-	-	9	12	12	-	12 (E)	-	-	-	-	-
Average PM ₁₀ (TEOM - Adjusted) µg/m ³	-	-	-	-	-	-	-	34	34	34	-	-	-	-	-	-	-	-	39	39	-	-	-	-	-	-	
																	-		-								
Aqueous Total Solids			1	1	T								r	r	1	r						T.	ļ				
Total Solids mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Notes: ND - Not Detected PAH - Polycyclic Aromatic Hydrocarbons PDS - Passive Deposition Sampler PM2.5 - Particulate smaller than 2.5 µm in diameter.

PM10 - Particulate smaller than 10 µm in diameter. SPCC - South Park Community Center TEOM - Tapered Element Oscillating Microbalance 0-000 - Sample value is less than three-times (3x) the associated blank value

(A) - All values reported at absolute mass. No blank-correction conducted.
 (B) - Result From Aqueous Sample Only
 (C) - Combined Result From Aqueous and Wipe Samples
 (D) - Puget Sound Clean Air Agency (www.pscleanair.org)

(E) - Value from Puget Sound Clean Air Agency Station "DD" (South Park: 8201 10th Avenue S.; Seattle, WA)

Page 1 of 2

Table 2 - Blank and Sample Results

Lower Duwamish - Passive Deposition Sampling - Phase 1 (Detected Results Only)

		David & (Contin	ued)					.]
		Round 3 (Contin Samples	,					Round 4 Equipment Rins	ates				Samples								
Station		-	Beacon Hill	-	Duwamish	Georgetown	S. Park CC	-	Beacon Hill	Duwamish	Georgetown	S. Park CC		Beacon Hill	Beacon Hill	Duwamish	Duwamish	Georgetown	Georgetown	S. Park CC	S. Park CC
Station ID		-	BW	-	CE	DZ	SPCC	-	BW	CE	DZ	SPCC	-	BW	BW	CE	CE	DZ	DZ	SPCC	SPCC
Sample Type		Method Blank	Sample	Method Blank	Sample	Sample	Sample 3/23/2005	Method Blank	Rinsate Blank	Rinsate Blank	Rinsate Blank	Rinsate Blank	Method Blank	Sample	Sample 4/13/2005	Sample 4/13/2005	Sample 4/13/2005	Sample	Sample	Sample 4/13/2005	Sample 4/13/2005
Start Date End Date			3/23/2005 3/30/2005		3/23/2005 3/30/2005	3/23/2005 3/30/2005	3/23/2005 3/30/2005							4/13/2005 5/5/2005	4/13/2005 5/5/2005	5/5/2005	5/5/2005	4/13/2005 5/5/2005	4/13/2005 5/5/2005	4/13/2005 5/5/2005	4/13/2005 5/5/2005
Total Days		7	7	7	7	7	7	22	22	22	22	22	22	22	22	22	22	22	22	22	22
Sample Volume, L		6.00	5.92	6.00	5.79	6.15	6.05	1.00	1.00	0.99	1.00	1.02	5.00	4.93	4.93	4.07	4.07	5.10	5.10	5.12	5.12
PDS Collection Area, m ²		0.0948	0.0948	0.0948	0.0948	0.0948	0.0948	0.0948	0.0948	0.0948	0.0948	0.0948	0.0948	0.0948	0.0948	0.0948	0.0948	0.0948	0.0948	0.0948	0.0948
Aqueous Sample Results																					
Carcinogenic PAH																1				1	
Benzo(a)anthracene	µg/L	ND	ND	ND	0.004	0.007	0.007	-	-	-	-	-	-	0.0063	0.0063	0.018	0.018	0.0138	0.0138	0.00836	0.00836
Benzo(a)pyrene	µg/L	ND	ND 0.006	ND ND	ND 0.007	0.006	0.006	-	-	-	-	-	-	0.0138	0.0138	0.0309	0.0309	0.0175	0.0175	0.00883	0.00883
Benzo(b)fluoranthene Benzo(k)fluoranthene	µg/L	ND ND	0.006	ND	0.007	0.011 0.008	0.011 0.009	-	-	-	-	-	-	0.0268	0.0268	0.0456	0.0456 0.019	0.0307 0.015	0.0307 0.015	0.0242	0.0242 0.00924
Chrysene	μg/L μg/L	ND	ND	ND	0.015	0.009	0.003		-	-		-		0.0138	0.0138	0.019	0.0462	0.0292	0.0292	0.00324	0.0218
Dibenzo(a,h)anthracene	μg/L	ND	0.003	ND	ND	0.006	ND	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Indeno(1,2,3-Cd)pyrene	µg/L	ND	0.005	ND	ND	0.008	0.008	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Other PAH																					
Benzo(g,h,I)perylene	µg/L	ND	0.005	ND	0.009	0.006	0.007	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Pyrene	µg/L	ND	0.007	ND	0.026	0.016	0.013	-	-	-	-	-	-	0.0229	0.0229	0.0527	0.0527	0.0337	0.0337	0.0246	0.0246
Phthalates									1	1		1									
Dimethyl Phthalate	µg/L	ND	ND	ND 0.042	ND	ND	ND	-	-	-	-	-	0.0029	0.0113	0.0113	0.0186	0.0186	0.0102	0.0102	0.0151	0.0151
Diethyl Phthalate	µg/L	ND 0.020	0.024	0.013	0.023	0.040	0.033	- 0.053	-	- 0.077	-	-	-	0.0567	0.0567	0.0657	0.0657	0.00493	0.00493	0.0664	0.0664
Di-N-Butyl Phthalate Benzyl Butyl Phthalate	µg/L	0.020	0.049	0.022 ND	0.068	0.065	0.063	0.053	0.068	0.077	0.068	0.067	0.0154	0.0977	0.0977	0.0454	0.0454	0.0166	0.0166	0.0846	0.0846
Bis(2-Ethylhexyl)Phthalate	μg/L μg/L	0.026	0.034	0.040	0.048	0.052	0.162	0.172	0.205	0.209	0.245	- 0.187	0.0356	0.0804	0.0804	1.07	1.07	0.0487	0.0487	0.174	0.174
Di-N-Octyl Phthalate	μg/L	0.025 ND	ND	ND	0.068	0.102	ND	-	-	-	-	-	-	0.0495	0.0495	0.0486	0.0486	0.0849	0.0849	0.0174	0.0174
Deuterated Monitoring Compour		110	110	110	0.000	0.102	110							0.0100	0.0100	0.0100	0.0100	0.0010	0.0010	0.0111	0.0171
D6-Dimethyl Phthalate	% Rec	17	17	27	30	25	32	83	74	78	73	81	17	33	33	34	34	24	24	23	23
D10-Pyrene	% Rec	45	11	58	24	19	22	71	67	64	67	72	98	77	77	84	84	68	68	63	63
D12-Benzo(a)pyrene	% Rec	46	21	65	52	29	41	74	71	72	72	74	73	20	20	62	62	47	47	41	41
Sample Collector Wipe Res	ulto (A)																				
Carcinogenic PAH	uits (A)																				
Benzo(a)anthracene	рq	-			-		-		-						0.067	-	0.0435	-	0.072	-	0.0325
Benzo(a)pyrene	μg	-	-	-	-	-	-	-	-	-	-	-	-	-	0.0765	-	0.0485	-	0.078	-	0.0335
Benzo(b)fluoranthene	μg	-		-	-	-	-	-	-	-	-	-	-	-	0.07	-	0.045	-	0.0725	-	0.055
Benzo(k)fluoranthene	μg	-			-	-	-	-	-	-	-	-		-	0.0665	-	0.0485	-	0.0705	-	0.061
Chrysene	μg	-	-	-	-	-	-	-	-	-	-	-	-	-	0.0655	-	0.069	-	0.086	-	0.0495
Dibenzo(a,h)anthracene	μg	-	-	-	-	-	-	-	-	-	-	-	-	-	0.058	-	-	-	0.053	-	0.049
Indeno(1,2,3-Cd)pyrene Other PAH	μg	-	-	-	-	-	-		-	-	-	-	-	-	0.0865	-	0.0705	-	0.0865	-	0.057
Benzo(g,h,I)perylene	μg	-	-		-	-	-	-	-	-	-	-	-	-	0.059	-	0.0615	-	0.074	-	0.0295
Pyrene	μg	-	-	-	-	-	-	-	-	-	-	-	-	-	0.125	-	0.122	-	0.148	-	0.09
Phthalates																•				•	
Dimethyl Phthalate	μg	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.028
Diethyl Phthalate	μg	-	-	-	-	-	-	-	-	-	-	-	-	-	- 0.415	-	-	-	-	-	0.127
Di-N-Butyl Phthalate Benzyl Butyl Phthalate	μg	-		-	-		-	-	-	-		-	0.229	-	0.410	-	0.279	-	0.276	-	0.271 0.316
Bis(2-Ethylhexyl)Phthalate	μg μg						-						0.337		0.8		1.09		0.244		0.510
Di-N-Octyl Phthalate	μg	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.289	-	0.115
<u> </u>																•				•	
Air Deposition Flux (Calcul	ated)							<u> </u>													
Carcinogenic PAH		1		1	0.000 (D)	0.000 (5)	0.000 (7)	l	1	1	T	1	T	0.045 (5)	0.047 (0)	0.005 (D)	0.050 (0)	0.001 (5)	0.000 (0)	0.001 (D)	0.000 (0)
Benzo(a)anthracene	µg/m²/day		-	-	0.039 (B)	0.068 (B) 0.057 (B)	0.060 (B)	-	-	-	-	-	-	0.015 (B) 0.033 (B)	0.047 (C)	0.035 (B) 0.060 (B)	0.056 (C) 0.084 (C)	0.034 (B) 0.043 (B)	0.068 (C) 0.080 (C)	0.021 (B)	0.036 (C) 0.038 (C)
Benzo(a)pyrene Benzo(b)fluoranthene	µg/m²/day µg/m²/day		- 0.050 (B)	1	- 0.058 (B)	0.057 (B) 0.098 (B)	0.057 (B) 0.097 (B)	<u> </u>			<u> </u>		<u> </u>	0.033 (B) 0.063 (B)	0.069 (C) 0.097 (C)	0.060 (B) 0.089 (B)	0.084 (C) 0.111 (C)	0.043 (B) 0.075 (B)	0.080 (C) 0.110 (C)	0.022 (B) 0.059 (B)	0.038 (C) 0.086 (C)
Benzo(k)fluoranthene	µg/m²/day		0.048 (B)	-	0.058 (B) 0.054 (B)	0.098 (B) 0.070 (B)	0.097 (B) 0.081 (B)	-	-	-	-	-	-	0.003 (B) 0.037 (B)	0.097 (C) 0.069 (C)	0.037 (B)	0.060 (C)	0.075 (B) 0.037 (B)	0.070 (C)	0.023 (B)	0.066 (C) 0.052 (C)
Chrysene	µg/m²/day	-	-	-	0.133 (B)	0.087 (B)	0.099 (B)	-	-	-	-	-	-	0.041 (B)	0.072 (C)	0.090 (B)	0.123 (C)	0.071 (B)	0.113 (C)	0.054 (B)	0.077 (C)
Dibenzo(a,h)anthracene	µg/m²/day	- 1	0.022 (B)	-	-	0.051 (B)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Indeno(1,2,3-Cd)pyrene	µg/m²/day		0.045 (B)	-	-	0.070 (B)	0.071 (B)	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Other PAH																					
Benzo(g,h,I)perylene	µg/m²/day	-	0.042 (B)	-	0.074 (B)	0.056 (B)	0.067 (B)	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Pyrene	µg/m²/day		0.066 (B)	-	0.226 (B)	0.152 (B)	0.119 (B)	-	-	-	-	-	-	0.054 (B)	0.114 (C)	0.103 (B)	0.161 (C)	0.082 (B)	0.153 (C)	0.060 (B)	0.104 (C)
Phthalates Dimethyl Phthalate	110/m2/da			1	1	1	1		1	1	1	1	0.007 (B)	0.027 (B)	0.027 (C)	0.036 (B)	0.036 (C)	0.025 (B)	0.025 (C)	0.037 (B)	0.050 (C)
Direthyl Phthalate	µg/m²/day µg/m²/day	-	- 0.212 (B)	- 0.118 (B)	-	0.373 (B)	-	-	-	-	-	-	0.007 (B)	0.027 (B) 0.134 (B)	0.027 (C) 0.134 (C)	0.036 (B) 0.128 (B)	0.036 (C) 0.128 (C)	0.025 (B) 0.012 (B)	0.025 (C) 0.012 (C)	0.037 (B) 0.163 (B)	0.050 (C) 0.224 (C)
Di-N-Butyl Phthalate	µg/m²/day		0.212(B) -	-	-	-	-	-	-	-	-	-	-	-	-	J. 120 (B)	-	0.012 (B) -	-	-	0.224 (C) -
Benzyl Butyl Phthalate	µg/m²/day		-	-	0.416 (B)	0.482 (B)	1.477 (B)	-	-	-	-	-	-	0.190 (B)	0.190 (C)	0.382 (B)	0.382 (C)	0.119 (B)	0.236 (C)	0.427 (B)	0.579 (C)
Bis(2-Ethylhexyl)Phthalate	µg/m²/day	0.223 (B)	-	0.362 (B)	3.900 (B)	-	-	0.082 (B)	0.098 (B)	0.099 (B)	0.117 (B)	0.091 (B)	0.247 (C)	-	-	2.088 (B)	2.611 (C)	-	-	-	-
Di-N-Octyl Phthalate	µg/m²/day		-	-	0.592 (B)	0.945 (B)	-	- `	-	-	-	-	-	0.117 (B)	0.117 (C)	0.095 (B)	0.095 (C)	0.208 (B)	0.346 (C)	0.043 (B)	0.098 (C)
															······	i	·				
Associated Air Monitoring			5	1	7	1	E (E)		1	1	1	1	1	7	-	9	9	1	1	0 /=>	0 /5
Average PM _{2.5} (Nephelometer)	µg/m³	-	5	-		-	5 (E)	-	-	-	-	-	-	/	7	-	-	-	-	8 (E)	8 (E)
Average PM ₁₀ (TEOM - Adjusted)	µg/m³	-	-	-	22	-	-	-	-	-	-	-	-	-	-	23	23	-	-	-	-
Aqueous Total Solids																					
Total Solids	mg/L	-		-			-	-	-	-	-	-		20	20	63	63	12	12	23	23
. cta. Sondo				1			1		l	l		l		20	20						20

Table 3 - Blank-Corrected Sample Results

Lower Duwamish - Passive Deposition Sampling - Phase 1 (Only Sample Values Greater Than Three-Times Blank Values Used)

		Round 1				Round 2					Round 3			
		Blank-Corrected	Sample Results			Blank-Corrected	Sample Results				Blank-Corrected	Sample Results	;	
Station		Beacon Hill	Duwamish	Duwamish	Duwamish	Beacon Hill	Duwamish	Duwamish	Georgetown	S. Park CC	Beacon Hill	Duwamish	Georgetown	S. Park CC
Station ID		BW	CE	CE	CE	BW	CE	CE	DZ	SPCC	BW	CE	DZ	SPCC
Sample Type		Sample	Sample	Duplicate	Duplicate	Sample	Sample	Duplicate	Sample	Sample	Sample	Sample	Sample	Sample
Start Date		1/20/2005	1/20/2005	1/20/2005	1/20/2005	2/15/2005	2/15/2005	2/15/2005	2/15/2005	2/15/2005	3/23/2005	3/23/2005	3/23/2005	3/23/2005
End Date		2/15/2005	2/15/2005	2/15/2005	2/15/2005	3/23/2005	3/23/2005	3/23/2005	3/23/2005	3/23/2005	3/30/2005	3/30/2005	3/30/2005	3/30/2005
Total Days Sample Volume, L		26 3.10	26 3.03	26 3.08	26 3.08	36 2.40	36 2.30	36 2.32	36 2.59	36 2.49	7 5.92	7 5.79	7 6.15	7 6.05
PDS Collection Area, m ²		0.0948	0.0948	0.0948	0.0948	0.0948	2.30 0.0948	0.0948	0.0948	0.0948	0.0948	0.0948	0.0948	0.0948
PDS Collection Area, in		0.0940	0.0940	0.0940	0.0340	0.0940	0.0940	0.0940	0.0340	0.0940	0.0340	0.0340	0.0340	0.0340
Air Deposition Flux (Calcula	ated) (A)													
Carcinogenic PAH														
Benzo(a)anthracene	µg/m²/day	0.026 (B)	0.066 (B)	0.072 (B)	0.104 (C)	0.006 (B)	0.017 (B)	0.020 (B)	0.033 (B)	0.034 (B)	-	0.039 (B)	0.068 (B)	0.060 (B)
Benzo(a)pyrene	µg/m²/day	0.032 (B)	0.079 (B)	0.093 (B)	0.154 (C)	0.010 (B)	0.026 (B)	0.027 (B)	0.044 (B)	0.038 (B)	-	-	0.057 (B)	0.057 (B)
Benzo(b)fluoranthene	µg/m²/day	0.050 (B)	0.146 (B)	0.150 (B)	0.239 (C)	0.014 (B)	0.045 (B)	0.045 (B)	0.071 (B)	0.064 (B)	0.050 (B)	0.058 (B)	0.098 (B)	0.097 (B)
Benzo(k)fluoranthene	µg/m²/day	0.040 (B)	0.113 (B)	0.130 (B)	0.158 (C)	0.012 (B)	0.033 (B)	0.042 (B)	0.058 (B)	0.050 (B)	0.048 (B)	0.054 (B)	0.070 (B)	0.081 (B)
Chrysene	µg/m²/day	0.072 (B)	0.170 (B)	0.192 (B)	0.282 (C)	0.022 (B)	0.066 (B)	0.069 (B)	0.093 (B)	0.085 (B)	-	0.133 (B)	0.087 (B)	0.099 (B)
Dibenzo(a,h)anthracene	µg/m²/day	0.012 (B)	0.033 (B)	0.038 (B)	0.050 (C)	-	-	-	0.016 (B)	0.017 (B)	0.022 (B)	-	0.051 (B)	-
Indeno(1,2,3-Cd)pyrene	µg/m²/day	0.030 (B)	0.077 (B)	0.090 (B)	0.118 (C)	0.010 (B)	0.025 (B)	0.026 (B)	0.042 (B)	0.036 (B)	0.045 (B)	-	0.070 (B)	0.071 (B)
Other PAH					•					•		•	•	
Benzo(g,h,I)perylene	µg/m²/day	0.050 (B)	0.125 (B)	0.141 (B)	0.174 (C)	0.018 (B)	0.046 (B)	0.052 (B)	0.060 (B)	0.051 (B)	0.042 (B)	0.074 (B)	0.056 (B)	0.067 (B)
Pyrene	µg/m²/day	0.080 (B)	0.221 (B)	0.269 (B)	0.269 (C)	0.023 (B)	0.100 (B)	0.092 (B)	0.115 (B)	0.086 (B)	0.066 (B)	0.226 (B)	0.152 (B)	0.119 (B)
Phthalates														
Dimethyl Phthalate	µg/m²/day	0.021 (B)	0.033 (B)	0.035 (B)	0.080 (C)	-	0.019 (B)	-	0.016 (B)	0.020 (B)	-	-	-	-
Diethyl Phthalate	µg/m²/day	0.125 (B)	0.091 (B)	0.085 (B)	0.264 (C)	0.025 (B)	0.053 (B)	0.035 (B)	-	0.044 (B)	0.212 (B)	-	0.255 (B)	-
Di-N-Butyl Phthalate	µg/m²/day	-	-	-	-	-	-	-	-	-	-	-	-	-
Benzyl Butyl Phthalate	µg/m²/day	0.224 (B)	0.441 (B)	0.479 (B)	0.937 (C)	0.069 (B)	0.268 (B)	0.227 (B)	0.161 (B)	0.373 (B)	-	0.416 (B)	0.482 (B)	1.477 (B)
Bis(2-Ethylhexyl)Phthalate	µg/m²/day	0.664 (B)	2.087 (B)	2.261 (B)	3.028 (C)	0.227 (B)	1.283 (B)	1.260 (B)	1.036 (B)	1.066 (B)	-	3.538 (B)	-	-
Di-N-Octyl Phthalate	µg/m²/day	-	-	-	-	-	-	-	0.247 (B)	-	-	0.592 (B)	0.945 (B)	-
Associated Air Monitoring I	Data (D)				•				•	•		•	•	
Average PM _{2.5} (Nephelometer)	μg/m ³	10	15	15	15	9	12	12		12 (E)	5	7		5 (E)
Average PM ₁₀ (TEOM - Adjusted)	µg/m³	-	34	34	34	3	39	39	-	12 (E) -		22	-	J (L)
Average i wi ₁₀ (i Lowi - Adjusted)	µg/m²	-	34	34	34	-	39	39	-	-	-	22	-	-
Aqueous Total Solids														
Total Solids	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-

Notes:

PAH - Polycyclic Aromatic Hydrocarbons

PDS - Passive Deposition Sampler

PM2.5 - Particulate smaller than 2.5 μm in diameter.

PM10 - Particulate smaller than 10 µm in diameter.

SPCC - South Park Community Center

TEOM - Tapered Element Oscillating Microbalance

Minimum Values in Bold Italics and Maximum Values in Bold

(A) - Blank-correction conducted by subtracting the uncorrected air deposition flux rate from the highest associated blank value.

(B) - Result From Aqueous Sample Only

{C} - Combined Result From Aqueous and Wipe Samples

(D) - Puget Sound Clean Air Agency (www.pscleanair.org)

(E) - Value from Puget Sound Clean Air Agency Station "DD" (South Park: 8201 10th Avenue S.; Seattle, WA)

Table 3 - Blank-Corrected Sample Results

Lower Duwamish - Passive Deposition Sampling - Phase 1 (Only Sample Values Greater Than Three-Times Blank Values Used)

		Round 4							
		Blank-Corrected	Sample Results						
Station		Beacon Hill	Beacon Hill	Duwamish	Duwamish	Georgetown	Georgetown	S. Park CC	S. Park CC
Station ID		BW	BW	CE	CE	DZ	DZ	SPCC	SPCC
Sample Type		Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample
Start Date		4/13/2005	4/13/2005	4/13/2005	4/13/2005	4/13/2005	4/13/2005	4/13/2005	4/13/2005
End Date		5/5/2005	5/5/2005	5/5/2005	5/5/2005	5/5/2005	5/5/2005	5/5/2005	5/5/2005
Total Days		22	22	22	22	22	22	22	22
Sample Volume, L		4.93	4.93	4.07	4.07	5.10	5.10	5.12	5.12
PDS Collection Area, m ²		0.0948	0.0948	0.0948	0.0948	0.0948	0.0948	0.0948	0.0948
Air Deposition Flux (Calcula	ated) (A)								
Carcinogenic PAH									
Benzo(a)anthracene	µg/m²/day	0.015 (B)	0.047 (C)	0.035 (B)	0.056 (C)	0.034 (B)	0.068 (C)	0.021 (B)	0.036 (C)
Benzo(a)pyrene	µg/m²/day	0.033 (B)	0.069 (C)	0.060 (B)	0.084 (C)	0.043 (B)	0.080 (C)	0.022 (B)	0.038 (C)
Benzo(b)fluoranthene	µg/m²/day	0.063 (B)	0.097 (C)	0.089 (B)	0.111 (C)	0.075 (B)	0.110 (C)	0.059 (B)	0.086 (C)
Benzo(k)fluoranthene	µg/m²/day	0.037 (B)	0.069 (C)	0.037 (B)	0.060 (C)	0.037 (B)	0.070 (C)	0.023 (B)	0.052 (C)
Chrysene	µg/m²/day	0.041 (B)	0.072 (C)	0.090 (B)	0.123 (C)	0.071 (B)	0.113 (C)	0.054 (B)	0.077 (C)
Dibenzo(a,h)anthracene	µg/m²/day	-	-	-	-	-	-	-	-
Indeno(1,2,3-Cd)pyrene	µg/m²/day	-	-	-	-	-	-	-	-
Other PAH				•					
Benzo(g,h,I)perylene	µg/m²/day	-	-	-	-	-	-	-	-
Pyrene	µg/m²/day	0.054 (B)	0.114 (C)	0.103 (B)	0.161 (C)	0.082 (B)	0.153 (C)	0.060 (B)	0.104 (C)
Phthalates									
Dimethyl Phthalate	µg/m²/day	0.020 (B)	0.020 (C)	0.029 (B)	0.029 (C)	0.018 (B)	0.018 (C)	0.030 (B)	0.043 (C)
Diethyl Phthalate	µg/m²/day	0.134 (B)	0.134 (C)	0.128 (B)	0.128 (C)	0.012 (B)	0.012 (C)	0.163 (B)	0.224 (C)
Di-N-Butyl Phthalate	µg/m²/day	-	-	-	-	-	-	-	-
Benzyl Butyl Phthalate	µg/m²/day	0.190 (B)	0.190 (C)	0.382 (B)	0.382 (C)	0.119 (B)	0.236 (C)	0.427 (B)	0.579 (C)
Bis(2-Ethylhexyl)Phthalate	µg/m²/day	-	-	1.989 (B)	2.364 (C)	-	-	-	-
Di-N-Octyl Phthalate	µg/m²/day	0.117 (B)	0.117 (C)	0.095 (B)	0.095 (C)	0.208 (B)	0.346 (C)	0.043 (B)	0.098 (C)
				-					
Associated Air Monitoring				1		1			
Average PM _{2.5} (Nephelometer)	µg/m³	7	7	9	9			8 (E)	8 (E)
Average PM ₁₀ (TEOM - Adjusted)	µg/m³			23	23				
Aqueous Total Solids									
Total Solids	mg/L	20	20	63	63	12	12	23	23
	IIIY/L	20	20	00	00	14	14	20	25

Table 4 - Ratio of Results to Beacon Hill

Lower Duwamish - Passive Deposition Sampling - Phase 1

		Round 1			Round 2					Round 3				Round 4		
		Blank-Corrected	Sample Results	;	Blank-Corrected	d Sample Results	;			Blank-Corrected	Sample Results	3		Blank-Corrected	Sample Results	;
Station		Beacon Hill	Duwamish	Duwamish	Beacon Hill	Duwamish	Duwamish	Georgetown	S. Park CC	Beacon Hill	Duwamish	Georgetown	S. Park CC	Beacon Hill	Beacon Hill	Duwamish
Station ID		BW	CE	CE	BW	CE	CE	DZ	SPCC	BW	CE	DZ	SPCC	BW	BW	CE
Sample Type		Sample	Sample	Duplicate	Sample	Sample	Duplicate	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample
Start Date		1/20/2005	1/20/2005	1/20/2005	2/15/2005	2/15/2005	2/15/2005	2/15/2005	2/15/2005	3/23/2005	3/23/2005	3/23/2005	3/23/2005	4/13/2005	4/13/2005	4/13/2005
End Date		2/15/2005	2/15/2005	2/15/2005	3/23/2005	3/23/2005	3/23/2005	3/23/2005	3/23/2005	3/30/2005	3/30/2005	3/30/2005	3/30/2005	5/5/2005	5/5/2005	5/5/2005
Total Days		26	26	26	36	36	36	36	36	7	7	7	7	22	22	22
Sample Volume, L		3.10 0.0948	3.03 0.0948	3.08 0.0948	2.40 0.0948	2.30 0.0948	2.32 0.0948	2.59 0.0948	2.49 0.0948	5.92 0.0948	5.79 0.0948	6.15 0.0948	6.05 0.0948	4.93 0.0948	4.93 0.0948	4.07
PDS Collection Area, m ²		0.0948	0.0948	0.0948	0.0948	0.0948	0.0948	0.0948	0.0948	0.0948	0.0948	0.0948	0.0948	0.0948	0.0948	0.0948
Air Deposition Flux Ratios ((A)															
Carcinogenic PAH																
Benzo(a)anthracene	-	1.00 (B)	2.55 (B)	2.78 (B)	1.00 (B)	2.96 (B)	3.35 (B)	5.65 (B)	5.85 (B)	-	-	-	-	1.00 (B)	1.00 (C)	2.36 (B)
Benzo(a)pyrene	-	1.00 (B)	2.48 (B)	2.93 (B)	1.00 (B)	2.72 (B)	2.78 (B)	4.56 (B)	3.86 (B)	-	-	-	-	1.00 (B)	1.00 (C)	1.85 (B)
Benzo(b)fluoranthene	-	1.00 (B)	2.91 (B)	2.98 (B)	1.00 (B)	3.17 (B)	3.23 (B)	5.04 (B)	4.57 (B)	1.00 (B)	1.18 (B)	1.98 (B)	1.94 (B)	1.00 (B)	1.00 (C)	1.40 (B)
Benzo(k)fluoranthene	-	1.00 (B)	2.82 (B)	3.24 (B)	1.00 (B)	2.78 (B)	3.51 (B)	4.85 (B)	4.17 (B)	1.00 (B)	1.12 (B)	1.44 (B)	1.68 (B)	1.00 (B)	1.00 (C)	0.99 (B)
Chrysene	-	1.00 (B)	2.35 (B)	2.66 (B)	1.00 (B)	3.06 (B)	3.17 (B)	4.31 (B)	3.91 (B)	-	-	-	-	1.00 (B)	1.00 (C)	2.20 (B)
Dibenzo(a,h)anthracene	-	1.00 (B)	2.79 (B)	3.23 (B)	-	-	-	-	-	1.00 (B)	-	2.29 (B)	-	-	-	-
Indeno(1,2,3-Cd)pyrene	-	1.00 (B)	2.58 (B)	2.99 (B)	1.00 (B)	2.48 (B)	2.54 (B)	4.05 (B)	3.48 (B)	1.00 (B)	-	1.54 (B)	1.57 (B)	-	-	-
Other PAH																
Benzo(g,h,l)perylene	-	1.00 (B)	2.51 (B)	2.82 (B)	1.00 (B)	2.63 (B)	2.99 (B)	3.40 (B)	2.88 (B)	1.00 (B)	1.76 (B)	1.32 (B)	1.60 (B)	-	-	-
Pyrene	-	1.00 (B)	2.75 (B)	3.35 (B)	1.00 (B)	4.36 (B)	4.05 (B)	5.01 (B)	3.77 (B)	1.00 (B)	3.41 (B)	2.29 (B)	1.80 (B)	1.00 (B)	1.00 (C)	1.90 (B)
Phthalates														-	-	-
Dimethyl Phthalate	-	1.00 (B)	1.55 (B)	1.64 (B)	-	-	-	-	-	-	-	-	-	1.00 (B)	1.00 (C)	1.45 (B)
Diethyl Phthalate	-	1.00 (B)	0.73 (B)	0.68 (B)	1.00 (B)	2.14 (B)	1.44 (B)	-	1.78 (B)	1.00 (B)	-	1.20 (B)	-	1.00 (B)	1.00 (C)	0.96 (B)
Di-N-Butyl Phthalate	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Benzyl Butyl Phthalate	-	1.00 (B)	1.97 (B)	2.14 (B)	1.00 (B)	3.87 (B)	3.28 (B)	2.33 (B)	5.39 (B)	-	-	-	-	1.00 (B)	1.00 (C)	2.01 (B)
Bis(2-Ethylhexyl)Phthalate	-	1.00 (B)	3.14 (B)	3.41 (B)	1.00 (B)	5.65 (B)	5.55 (B)	4.56 (B)	4.70 (B)	-	-	-	-	-	-	-
Di-N-Octyl Phthalate	-	-	-	-	-	-	-	-	-	-	-	-	-	1.00 (B)	1.00 (C)	0.81 (B)

Notes:

(A) - Blank-correction conducted by subtracting the uncorrected air deposition flux rate from the highest associated blank value.
(B) - Result From Aqueous Sample Only
{C} - Combined Result From Aqueous and Wipe Samples

Lower Duwamish - Passive Deposition Sampling - Phase 1

Station		Duwamish	Georgetown	Georgetown	S. Park CC	S. Park CC
Station ID		CE	DZ	DZ	SPCC	SPCC
Sample Type		Sample	Sample	Sample	Sample	Sample
Start Date		4/13/2005	4/13/2005	4/13/2005	4/13/2005	4/13/2005
End Date		5/5/2005	5/5/2005	5/5/2005	5/5/2005	5/5/2005
Total Days		22 4.07	22	22 5.10	22 5.12	22
Sample Volume, L PDS Collection Area, m ²		4.07 0.0948	5.10 0.0948	0.0948	5.12 0.0948	5.12 0.0948
PDS Collection Area, III-		0.0946	0.0946	0.0940	0.0946	0.0946
Air Deposition Elux Potion (• •					
Air Deposition Flux Ratios (A	4)					
Benzo(a)anthracene	_	1.19 (C)	2.27 (B)	1.45 (C)	1.38 (B)	0.77 (C)
Benzo(a)pyrene	-	1.21 (C)	1.31 (B)	1.16 (C)	0.66 (B)	0.54 (C)
Benzo(b)fluoranthene	-	1.14 (C)	1.19 (B)	1.13 (C)	0.94 (B)	0.89 (C)
Benzo(k)fluoranthene	-	0.87 (C)	0.98 (B)	1.02 (C)	0.61 (B)	0.75 (C)
Chrysene	-	1.70 (C)	1.75 (B)	1.56 (C)	1.31 (B)	1.07 (C)
Dibenzo(a,h)anthracene	-	-	-	-	-	-
Indeno(1,2,3-Cd)pyrene	-	-	-	-	-	-
Other PAH						
Benzo(g,h,l)perylene	-	-	-	-	-	-
Pyrene	-	1.41 (C)	1.52 (B)	1.34 (C)	1.12 (B)	0.91 (C)
Phthalates		-	-	-	-	-
Dimethyl Phthalate	-	1.45 (C)	0.90 (B)	0.90 (C)	1.50 (B)	2.15 (C)
Diethyl Phthalate	-	0.96 (C)	0.09 (B)	0.09 (C)	1.22 (B)	1.67 (C)
Di-N-Butyl Phthalate	-	-	-	-	-	-
Benzyl Butyl Phthalate	-	2.01 (C)	0.63 (B)	1.24 (C)	2.25 (B)	3.04 (C)
Bis(2-Ethylhexyl)Phthalate	-	-	-	-	-	-
Di-N-Octyl Phthalate	-	0.81 (C)	1.77 (B)	2.96 (C)	0.37 (B)	0.84 (C)

8/26/2005

Table 5 - Comparison of Results to Other Studies

Lower Duwamish - Passive Deposition Sampling - Phase 1

		LDW-PDS: Pr	nase 1		Georgia Basin Airs	shed (A)	Georgia Basin Air	shed (B)	Roskilde Fjor	d - Denmark (C	;)
		Blank-Corrected	Sample Results		0.1 cm/second Air De	position Velocity	0.2 cm/second Air De	position Velocity	Air Deposition F	lux Values As Re	ported
		Average	Maximum	Minimum	Average - Cowichan	Average - Chilliwack	Average - Cowichan	Average - Chilliwack	Average	Maximum	Minimum
Air Deposition Flux											
Carcinogenic PAH											
Benzo(a)anthracene	µg/m²/day	NR	0.104	0.006	0.050	0.015	0.101	0.030	NR	NR	NR
Benzo(a)pyrene	µg/m²/day	NR	0.154	0.010	0.057	0.016	0.113	0.032	NR	NR	NR
Benzo(b)fluoranthene	µg/m²/day	NR	0.239	0.014	0.112	0.040	0.225	0.079	NR	NR	NR
Benzo(k)fluoranthene	µg/m²/day	NR	0.158	0.012	0.038	0.011	0.077	0.021	NR	NR	NR
Chrysene	µg/m²/day	NR	0.282	0.022	0.072	0.031	0.144	0.061	NR	NR	NR
Dibenzo(a,h)anthracene	µg/m²/day	NR	0.051	0.012	0.008	0.004	0.017	0.007	NR	NR	NR
Indeno(1,2,3-Cd)pyrene	µg/m²/day	NR	0.118	0.010	0.060	0.017	0.120	0.034	NR	NR	NR
Other PAH											
Benzo(g,h,I)perylene	µg/m²/day	NR	0.174	0.018	0.051	0.023	0.101	0.047	NR	NR	NR
Pyrene	µg/m²/day	NR	0.269	0.023	0.181	0.130	0.363	0.260	NR	NR	NR
Phthalates											
Dimethyl Phthalate	µg/m²/day	NR	0.080	0.016	NR	0.041	NR	0.082	NR	NR	NR
Diethyl Phthalate	µg/m²/day	NR	0.264	0.012	NR	0.236	NR	0.472	NR	NR	NR
Di-N-Butyl Phthalate	µg/m²/day	NR	-	-	NR	0.492	NR	0.985	0.564	2.589	0.004
Benzyl Butyl Phthalate	µg/m²/day	NR	1.477	0.069	NR	0.031	NR	0.063	0.047	0.134	0.000
Bis(2-Ethylhexyl)Phthalate	µg/m²/day	NR	3.538	0.227	NR	0.308	NR	0.615	0.625	2.162	0.068
Di-N-Octyl Phthalate	µg/m²/day	NR	0.945	0.043	NR	0.008	NR	0.017	0.036	0.181	0.000

Notes:

NR - Not Reported

(A) - From Atmospheric Concentrations and Depositions in the Georgia Basin Airshed (Belzer,

2003) - Average Values from Cowichan (04/18/00 - 03/06/01) and Chilliwack (05/18/99 - 02/08/00)

Stations - Air Deposition Velocity of 0.1 cm/second Used.

(B) - From Atmospheric Concentrations and Depositions in the Georgia Basin Airshed (Belzer,

2003) - Average Values from Cowichan (04/18/00 - 03/06/01) and Chilliwack (05/18/99 - 02/08/00) Stations - Air Deposition Velocity of 0.2 cm/second Used.

(C) - From *Phthalates and Nonylphenols in Roskilde Fjord* (Vikelsoe, et al., 2001) - Values from Lille Valby Station (1996 - 1997)

(D) - From Washington State Department of Ecology's Beacon Hill (BW) and Georgetown (DZ) Stations - 03/98 - 02/99 - Air Depositon Velocity of 0.1 cm/second Used.

(E) - From Washington State Department of Ecology's Beacon Hill (BW) and Georgetown (DZ)

Stations - 03/98 - 02/99 - Air Depositon Velocity of 0.2 cm/second Used.

(F) - From Integrated Atmospheric Deposition Network (IADN) - U.S. EPA/Environment Canada - IIT Chicago and Sleeping Bear Dunes Stations (1997 & 1998) - Air Deposition Velocity of 0.1 cm/second used.

(G) - From Integrated Atmospheric Deposition Network (IADN) - U.S. EPA/Environment Canada - IIT Chicago and Sleeping Bear Dunes Stations (1997 & 1998) - Air Deposition Velocity of 0.2 cm/second used.

Table 5 - Comparison of Results to Other Studies

Lower Duwamish - Passive Deposition Sampling - Phase 1

		LDW-PDS: Pl	nase 1		Ecology - Air Toxic	s Study (D)	Ecology - Air Toxic	s Study (E)
		Blank-Corrected	d Sample Results		0.1 cm/second Air Dep	position Velocity	0.2 cm/second Air Dep	osition Velocity
		Average	Maximum	Minimum	Average - Beacon Hil	Average - Georgetown	Average - Beacon Hil	Average - Georgetown
Air Deposition Flux								
Carcinogenic PAH								
Benzo(a)anthracene	µg/m²/day	NR	0.104	0.006	NR	NR	NR	NR
Benzo(a)pyrene	µg/m²/day	NR	0.154	0.010	NR	NR	NR	NR
Benzo(b)fluoranthene	µg/m²/day	NR	0.239	0.014	NR	NR	NR	NR
Benzo(k)fluoranthene	µg/m²/day	NR	0.158	0.012	NR	NR	NR	NR
Chrysene	µg/m²/day	NR	0.282	0.022	NR	NR	NR	NR
Dibenzo(a,h)anthracene	µg/m²/day	NR	0.051	0.012	NR	NR	NR	NR
Indeno(1,2,3-Cd)pyrene	µg/m²/day	NR	0.118	0.010	NR	NR	NR	NR
Other PAH								
Benzo(g,h,I)perylene	µg/m²/day	NR	0.174	0.018	NR	NR	NR	NR
Pyrene	µg/m²/day	NR	0.269	0.023	0.104	0.173	0.207	0.346
Phthalates								
Dimethyl Phthalate	µg/m²/day	NR	0.080	0.016	NR	NR	NR	NR
Diethyl Phthalate	µg/m²/day	NR	0.264	0.012	NR	NR	NR	NR
Di-N-Butyl Phthalate	µg/m²/day	NR	-	-	NR	NR	NR	NR
Benzyl Butyl Phthalate	µg/m²/day	NR	1.477	0.069	NR	NR	NR	NR
Bis(2-Ethylhexyl)Phthalate	µg/m²/day	NR	3.538	0.227	NR	NR	NR	NR
Di-N-Octyl Phthalate	µg/m²/day	NR	0.945	0.043	NR	NR	NR	NR

Notes:

NR - Not Reported

(A) - From Atmospheric Concentrations and Depositions in the Georgia Basin Airshed (Belzer,

2003) - Average Values from Cowichan (04/18/00 - 03/06/01) and Chilliwack (05/18/99 - 02/08/00) Stations - Air Deposition Velocity of 0.1 cm/second Used.

(B) - From Atmospheric Concentrations and Depositions in the Georgia Basin Airshed (Belzer,

2003) - Average Values from Cowichan (04/18/00 - 03/06/01) and Chilliwack (05/18/99 - 02/08/00) Stations - Air Deposition Velocity of 0.2 cm/second Used.

(C) - From *Phthalates and Nonylphenols in Roskilde Fjord* (Vikelsoe, et al., 2001) - Values from Lille Valby Station (1996 - 1997)

(D) - From Washington State Department of Ecology's Beacon Hill (BW) and Georgetown (DZ) Stations - 03/98 - 02/99 - Air Depositon Velocity of 0.1 cm/second Used.

(E) - From Washington State Department of Ecology's Beacon Hill (BW) and Georgetown (DZ) Stations - 03/98 - 02/99 - Air Depositon Velocity of 0.2 cm/second Used.

(F) - From Integrated Atmospheric Deposition Network (IADN) - U.S. EPA/Environment Canada - IIT Chicago and Sleeping Bear Dunes Stations (1997 & 1998) - Air Deposition Velocity of 0.1 cm/second used.

(G) - From Integrated Atmospheric Deposition Network (IADN) - U.S. EPA/Environment Canada - IIT Chicago and Sleeping Bear Dunes Stations (1997 & 1998) - Air Deposition Velocity of 0.2 cm/second used.

Table 5 - Comparison of Results to Other Studies

Lower Duwamish - Passive Deposition Sampling - Phase 1

		LDW-PDS: Pr	nase 1		IADN - Lake Michiga	n Data (F)	IADN - Lake Michiga	n Data (G)
		Blank-Corrected	d Sample Results		0.1 cm/second Air Depc	sition Velocity	0.2 cm/second Air Depo	sition Velocity
		Average	Maximum	Minimum	Average - IIT/Chicago	Average - Sleeping Bear Dunes	Average - IIT/Chicago	Average - Sleeping Bear Dunes
Air Deposition Flux								
Carcinogenic PAH								
Benzo(a)anthracene	µg/m²/day	NR	0.104	0.006	NR	NR	NR	NR
Benzo(a)pyrene	µg/m²/day	NR	0.154	0.010	0.067	0.001	0.134	0.003
Benzo(b)fluoranthene	µg/m²/day	NR	0.239	0.014	NR	NR	NR	NR
Benzo(k)fluoranthene	µg/m²/day	NR	0.158	0.012	NR	NR	NR	NR
Chrysene	µg/m²/day	NR	0.282	0.022	NR	NR	NR	NR
Dibenzo(a,h)anthracene	µg/m²/day	NR	0.051	0.012	NR	NR	NR	NR
Indeno(1,2,3-Cd)pyrene	µg/m²/day	NR	0.118	0.010	NR	NR	NR	NR
Other PAH								
Benzo(g,h,I)perylene	µg/m²/day	NR	0.174	0.018	NR	NR	NR	NR
Pyrene	µg/m²/day	NR	0.269	0.023	NR	NR	NR	NR
Phthalates								
Dimethyl Phthalate	µg/m²/day	NR	0.080	0.016	NR	NR	NR	NR
Diethyl Phthalate	µg/m²/day	NR	0.264	0.012	NR	NR	NR	NR
Di-N-Butyl Phthalate	µg/m²/day	NR	-	-	NR	NR	NR	NR
Benzyl Butyl Phthalate	µg/m²/day	NR	1.477	0.069	NR	NR	NR	NR
Bis(2-Ethylhexyl)Phthalate	µg/m²/day	NR	3.538	0.227	NR	NR	NR	NR
Di-N-Octyl Phthalate	µg/m²/day	NR	0.945	0.043	NR	NR	NR	NR

Notes:

NR - Not Reported

(A) - From Atmospheric Concentrations and Depositions in the Georgia Basin Airshed (Belzer, 2003) - Average Values from Cowichan (04/18/00 - 03/06/01) and Chilliwack (05/18/99 - 02/08/00)

Stations - Air Deposition Velocity of 0.1 cm/second Used.

(B) - From Atmospheric Concentrations and Depositions in the Georgia Basin Airshed (Belzer,

2003) - Average Values from Cowichan (04/18/00 - 03/06/01) and Chilliwack (05/18/99 - 02/08/00) Stations - Air Deposition Velocity of 0.2 cm/second Used.

(C) - From *Phthalates and Nonylphenols in Roskilde Fjord* (Vikelsoe, et al., 2001) - Values from Lille Valby Station (1996 - 1997)

(D) - From Washington State Department of Ecology's Beacon Hill (BW) and Georgetown (DZ) Stations - 03/98 - 02/99 - Air Depositon Velocity of 0.1 cm/second Used.

(E) - From Washington State Department of Ecology's Beacon Hill (BW) and Georgetown (DZ) Stations - 03/98 - 02/99 - Air Depositon Velocity of 0.2 cm/second Used.

(F) - From Integrated Atmospheric Deposition Network (IADN) - U.S. EPA/Environment Canada - IIT Chicago and Sleeping Bear Dunes Stations (1997 & 1998) - Air Deposition Velocity of 0.1 cm/second used.

(G) - From Integrated Atmospheric Deposition Network (IADN) - U.S. EPA/Environment Canada - IIT Chicago and Sleeping Bear Dunes Stations (1997 & 1998) - Air Deposition Velocity of 0.2 cm/second used.

FIGURES

Insert Appendix C, Figure 1, Air Deposition Sampling Stations

PHOTOGRAPHS

Insert Appendix C, photographs (5)

ATTACHMENT A

Analytical Data and Laboratory Narrative Lower Duwamish Source Control – Passive Deposition Sampling – Phase I

PROJECT: 423589-090-1	Locator: Descrip: Client Loc: Sampled: Lab ID: Matrix: % Solids:	MB Added b Jan 00, ² WG7866 BLANK V	62-1		Locator: Descrip: Client Loc: Sampled: Lab ID: Matrix: % Solids:	BLANK [®] Blank1 CE01-B Jan 19, L34472 BLANK	K-011905 2005 1	-011905	Locator: Descrip: Client Loc: Sampled: Lab ID: Matrix: % Solids:	BLANK1 Blank1 CE02-BK Jan 19, 2 L34472-2 BLANK V	2	11905		Locator: Descrip: Client Loc: Sampled: Lab ID: Matrix: % Solids:	BLANK1 Blank1 BW-BK-01 Jan 20, 20 L34472-3 BLANK W	005	005	Locator: Descrip: Client Loc: Sampled: Lab ID: Matrix: % Solids:		76-1	or	Locator: Descrip: Client Loc: Sampled: Lab ID: Matrix: % Solids:	NONE UNKNOWN CE-01-0120 Jan 20, 200 L34778-1 OTHR WTR	05-0215	-
Parameters	Value	Qual -We	MDL I	RDL Units	Value	Qual -We	MDL t Weight Bas	RDL Units	Value	Qual -W	MDL et Weight Bas		Units	Value	Qual -We	MDL t Weight Basi	RDL Uni s	s Value	Qual -We	MDL t Weight Bas	RDL Units	Value	Qual M -Wet We	DL ght Basis	RDL Units
ORGANICS																									
M=OR 8270B																									
2-Methylnaphthalene		<mdl< td=""><td>0.01</td><td>0.02 ug/L</td><td></td><td><mdl< td=""><td>0.0096</td><td>0.0192 ug/L</td><td></td><td><mdl< td=""><td>0.0098</td><td>0.0196</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0097</td><td>0.0194 ug/</td><td></td><td><mdl< td=""><td>0.005</td><td>0.01 ug/L</td><td></td><td><mdl 0.0<="" td=""><td>033 (</td><td>0.0066 ug/L</td></mdl></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	0.01	0.02 ug/L		<mdl< td=""><td>0.0096</td><td>0.0192 ug/L</td><td></td><td><mdl< td=""><td>0.0098</td><td>0.0196</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0097</td><td>0.0194 ug/</td><td></td><td><mdl< td=""><td>0.005</td><td>0.01 ug/L</td><td></td><td><mdl 0.0<="" td=""><td>033 (</td><td>0.0066 ug/L</td></mdl></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	0.0096	0.0192 ug/L		<mdl< td=""><td>0.0098</td><td>0.0196</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0097</td><td>0.0194 ug/</td><td></td><td><mdl< td=""><td>0.005</td><td>0.01 ug/L</td><td></td><td><mdl 0.0<="" td=""><td>033 (</td><td>0.0066 ug/L</td></mdl></td></mdl<></td></mdl<></td></mdl<>	0.0098	0.0196	ug/L		<mdl< td=""><td>0.0097</td><td>0.0194 ug/</td><td></td><td><mdl< td=""><td>0.005</td><td>0.01 ug/L</td><td></td><td><mdl 0.0<="" td=""><td>033 (</td><td>0.0066 ug/L</td></mdl></td></mdl<></td></mdl<>	0.0097	0.0194 ug/		<mdl< td=""><td>0.005</td><td>0.01 ug/L</td><td></td><td><mdl 0.0<="" td=""><td>033 (</td><td>0.0066 ug/L</td></mdl></td></mdl<>	0.005	0.01 ug/L		<mdl 0.0<="" td=""><td>033 (</td><td>0.0066 ug/L</td></mdl>	033 (0.0066 ug/L
Acenaphthene		<mdl< td=""><td></td><td>0.02 ug/L</td><td></td><td><mdl< td=""><td>0.0096</td><td>0.0192 ug/L</td><td></td><td><mdl< td=""><td>0.0098</td><td>0.0196</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0097</td><td>0.0194 ug/</td><td></td><td><mdl< td=""><td>0.005</td><td>0.01 ug/L</td><td>0.0218</td><td>0.0</td><td>033 (</td><td>0.0066 ug/L</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>		0.02 ug/L		<mdl< td=""><td>0.0096</td><td>0.0192 ug/L</td><td></td><td><mdl< td=""><td>0.0098</td><td>0.0196</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0097</td><td>0.0194 ug/</td><td></td><td><mdl< td=""><td>0.005</td><td>0.01 ug/L</td><td>0.0218</td><td>0.0</td><td>033 (</td><td>0.0066 ug/L</td></mdl<></td></mdl<></td></mdl<></td></mdl<>	0.0096	0.0192 ug/L		<mdl< td=""><td>0.0098</td><td>0.0196</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0097</td><td>0.0194 ug/</td><td></td><td><mdl< td=""><td>0.005</td><td>0.01 ug/L</td><td>0.0218</td><td>0.0</td><td>033 (</td><td>0.0066 ug/L</td></mdl<></td></mdl<></td></mdl<>	0.0098	0.0196	ug/L		<mdl< td=""><td>0.0097</td><td>0.0194 ug/</td><td></td><td><mdl< td=""><td>0.005</td><td>0.01 ug/L</td><td>0.0218</td><td>0.0</td><td>033 (</td><td>0.0066 ug/L</td></mdl<></td></mdl<>	0.0097	0.0194 ug/		<mdl< td=""><td>0.005</td><td>0.01 ug/L</td><td>0.0218</td><td>0.0</td><td>033 (</td><td>0.0066 ug/L</td></mdl<>	0.005	0.01 ug/L	0.0218	0.0	033 (0.0066 ug/L
Acenaphthylene		<mdl< td=""><td>0.01</td><td>0.02 ug/L</td><td></td><td><mdl< td=""><td>0.0096</td><td>0.0192 ug/L</td><td></td><td><mdl< td=""><td>0.0098</td><td>0.0196</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0097</td><td>0.0194 ug/</td><td></td><td><mdl< td=""><td>0.005</td><td>0.01 ug/L</td><td>0.0145</td><td>i 0.0</td><td>033 (</td><td>0.0066 ug/L</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	0.01	0.02 ug/L		<mdl< td=""><td>0.0096</td><td>0.0192 ug/L</td><td></td><td><mdl< td=""><td>0.0098</td><td>0.0196</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0097</td><td>0.0194 ug/</td><td></td><td><mdl< td=""><td>0.005</td><td>0.01 ug/L</td><td>0.0145</td><td>i 0.0</td><td>033 (</td><td>0.0066 ug/L</td></mdl<></td></mdl<></td></mdl<></td></mdl<>	0.0096	0.0192 ug/L		<mdl< td=""><td>0.0098</td><td>0.0196</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0097</td><td>0.0194 ug/</td><td></td><td><mdl< td=""><td>0.005</td><td>0.01 ug/L</td><td>0.0145</td><td>i 0.0</td><td>033 (</td><td>0.0066 ug/L</td></mdl<></td></mdl<></td></mdl<>	0.0098	0.0196	ug/L		<mdl< td=""><td>0.0097</td><td>0.0194 ug/</td><td></td><td><mdl< td=""><td>0.005</td><td>0.01 ug/L</td><td>0.0145</td><td>i 0.0</td><td>033 (</td><td>0.0066 ug/L</td></mdl<></td></mdl<>	0.0097	0.0194 ug/		<mdl< td=""><td>0.005</td><td>0.01 ug/L</td><td>0.0145</td><td>i 0.0</td><td>033 (</td><td>0.0066 ug/L</td></mdl<>	0.005	0.01 ug/L	0.0145	i 0.0	033 (0.0066 ug/L
Anthracene		<mdl< td=""><td>0.01</td><td>0.02 ug/L</td><td></td><td><mdl< td=""><td>0.0096</td><td>0.0192 ug/L</td><td></td><td><mdl< td=""><td>0.0098</td><td>0.0196</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0097</td><td>0.0194 ug/</td><td>_</td><td><mdl< td=""><td>0.005</td><td>0.01 ug/L</td><td>0.00825</td><td>i 0.0</td><td>033 (</td><td>0.0066 ug/L</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	0.01	0.02 ug/L		<mdl< td=""><td>0.0096</td><td>0.0192 ug/L</td><td></td><td><mdl< td=""><td>0.0098</td><td>0.0196</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0097</td><td>0.0194 ug/</td><td>_</td><td><mdl< td=""><td>0.005</td><td>0.01 ug/L</td><td>0.00825</td><td>i 0.0</td><td>033 (</td><td>0.0066 ug/L</td></mdl<></td></mdl<></td></mdl<></td></mdl<>	0.0096	0.0192 ug/L		<mdl< td=""><td>0.0098</td><td>0.0196</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0097</td><td>0.0194 ug/</td><td>_</td><td><mdl< td=""><td>0.005</td><td>0.01 ug/L</td><td>0.00825</td><td>i 0.0</td><td>033 (</td><td>0.0066 ug/L</td></mdl<></td></mdl<></td></mdl<>	0.0098	0.0196	ug/L		<mdl< td=""><td>0.0097</td><td>0.0194 ug/</td><td>_</td><td><mdl< td=""><td>0.005</td><td>0.01 ug/L</td><td>0.00825</td><td>i 0.0</td><td>033 (</td><td>0.0066 ug/L</td></mdl<></td></mdl<>	0.0097	0.0194 ug/	_	<mdl< td=""><td>0.005</td><td>0.01 ug/L</td><td>0.00825</td><td>i 0.0</td><td>033 (</td><td>0.0066 ug/L</td></mdl<>	0.005	0.01 ug/L	0.00825	i 0.0	033 (0.0066 ug/L
Benzo(a)anthracene		<mdl< td=""><td>0.01</td><td>0.02 ug/L</td><td></td><td><mdl< td=""><td>0.0096</td><td>0.0192 ug/L</td><td></td><td><mdl< td=""><td>0.0098</td><td>0.0196</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0097</td><td>0.0194 ug/</td><td>_</td><td><mdl< td=""><td>0.005</td><td>0.01 ug/L</td><td>0.0538</td><td>6.0</td><td>033 (</td><td>0.0066 ug/L</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	0.01	0.02 ug/L		<mdl< td=""><td>0.0096</td><td>0.0192 ug/L</td><td></td><td><mdl< td=""><td>0.0098</td><td>0.0196</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0097</td><td>0.0194 ug/</td><td>_</td><td><mdl< td=""><td>0.005</td><td>0.01 ug/L</td><td>0.0538</td><td>6.0</td><td>033 (</td><td>0.0066 ug/L</td></mdl<></td></mdl<></td></mdl<></td></mdl<>	0.0096	0.0192 ug/L		<mdl< td=""><td>0.0098</td><td>0.0196</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0097</td><td>0.0194 ug/</td><td>_</td><td><mdl< td=""><td>0.005</td><td>0.01 ug/L</td><td>0.0538</td><td>6.0</td><td>033 (</td><td>0.0066 ug/L</td></mdl<></td></mdl<></td></mdl<>	0.0098	0.0196	ug/L		<mdl< td=""><td>0.0097</td><td>0.0194 ug/</td><td>_</td><td><mdl< td=""><td>0.005</td><td>0.01 ug/L</td><td>0.0538</td><td>6.0</td><td>033 (</td><td>0.0066 ug/L</td></mdl<></td></mdl<>	0.0097	0.0194 ug/	_	<mdl< td=""><td>0.005</td><td>0.01 ug/L</td><td>0.0538</td><td>6.0</td><td>033 (</td><td>0.0066 ug/L</td></mdl<>	0.005	0.01 ug/L	0.0538	6.0	033 (0.0066 ug/L
Benzo(a)pyrene		<mdl< td=""><td>0.02</td><td>0.04 ug/L</td><td></td><td><mdl< td=""><td>0.019</td><td>0.0385 ug/L</td><td></td><td><mdl< td=""><td>0.02</td><td>0.0392</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.019</td><td>0.0388 ug/</td><td>_</td><td><mdl< td=""><td>0.005</td><td>0.01 ug/L</td><td>0.064</td><td>0.0</td><td>033 (</td><td>0.0066 ug/L</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	0.02	0.04 ug/L		<mdl< td=""><td>0.019</td><td>0.0385 ug/L</td><td></td><td><mdl< td=""><td>0.02</td><td>0.0392</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.019</td><td>0.0388 ug/</td><td>_</td><td><mdl< td=""><td>0.005</td><td>0.01 ug/L</td><td>0.064</td><td>0.0</td><td>033 (</td><td>0.0066 ug/L</td></mdl<></td></mdl<></td></mdl<></td></mdl<>	0.019	0.0385 ug/L		<mdl< td=""><td>0.02</td><td>0.0392</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.019</td><td>0.0388 ug/</td><td>_</td><td><mdl< td=""><td>0.005</td><td>0.01 ug/L</td><td>0.064</td><td>0.0</td><td>033 (</td><td>0.0066 ug/L</td></mdl<></td></mdl<></td></mdl<>	0.02	0.0392	ug/L		<mdl< td=""><td>0.019</td><td>0.0388 ug/</td><td>_</td><td><mdl< td=""><td>0.005</td><td>0.01 ug/L</td><td>0.064</td><td>0.0</td><td>033 (</td><td>0.0066 ug/L</td></mdl<></td></mdl<>	0.019	0.0388 ug/	_	<mdl< td=""><td>0.005</td><td>0.01 ug/L</td><td>0.064</td><td>0.0</td><td>033 (</td><td>0.0066 ug/L</td></mdl<>	0.005	0.01 ug/L	0.064	0.0	033 (0.0066 ug/L
Benzo(b)fluoranthene		<mdl< td=""><td>0.02</td><td>0.04 ug/L</td><td></td><td><mdl< td=""><td>0.019</td><td>0.0385 ug/L</td><td></td><td><mdl< td=""><td>0.02</td><td>0.0392</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.019</td><td>0.0388 ug/</td><td></td><td><mdl< td=""><td>0.005</td><td>0.01 ug/L</td><td>0.119</td><td>0.0</td><td>033 (</td><td>0.0066 ug/L</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	0.02	0.04 ug/L		<mdl< td=""><td>0.019</td><td>0.0385 ug/L</td><td></td><td><mdl< td=""><td>0.02</td><td>0.0392</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.019</td><td>0.0388 ug/</td><td></td><td><mdl< td=""><td>0.005</td><td>0.01 ug/L</td><td>0.119</td><td>0.0</td><td>033 (</td><td>0.0066 ug/L</td></mdl<></td></mdl<></td></mdl<></td></mdl<>	0.019	0.0385 ug/L		<mdl< td=""><td>0.02</td><td>0.0392</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.019</td><td>0.0388 ug/</td><td></td><td><mdl< td=""><td>0.005</td><td>0.01 ug/L</td><td>0.119</td><td>0.0</td><td>033 (</td><td>0.0066 ug/L</td></mdl<></td></mdl<></td></mdl<>	0.02	0.0392	ug/L		<mdl< td=""><td>0.019</td><td>0.0388 ug/</td><td></td><td><mdl< td=""><td>0.005</td><td>0.01 ug/L</td><td>0.119</td><td>0.0</td><td>033 (</td><td>0.0066 ug/L</td></mdl<></td></mdl<>	0.019	0.0388 ug/		<mdl< td=""><td>0.005</td><td>0.01 ug/L</td><td>0.119</td><td>0.0</td><td>033 (</td><td>0.0066 ug/L</td></mdl<>	0.005	0.01 ug/L	0.119	0.0	033 (0.0066 ug/L
Benzo(g,h,i)perylene		<mdl< td=""><td>0.02</td><td>0.04 ug/L</td><td></td><td><mdl< td=""><td>0.019</td><td>0.0385 ug/L</td><td></td><td><mdl< td=""><td>0.02</td><td>0.0392</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.019</td><td>0.0388 ug/</td><td></td><td><mdl< td=""><td>0.005</td><td>0.01 ug/L</td><td>0.102</td><td>2 0.0</td><td>033 (</td><td>0.0066 ug/L</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	0.02	0.04 ug/L		<mdl< td=""><td>0.019</td><td>0.0385 ug/L</td><td></td><td><mdl< td=""><td>0.02</td><td>0.0392</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.019</td><td>0.0388 ug/</td><td></td><td><mdl< td=""><td>0.005</td><td>0.01 ug/L</td><td>0.102</td><td>2 0.0</td><td>033 (</td><td>0.0066 ug/L</td></mdl<></td></mdl<></td></mdl<></td></mdl<>	0.019	0.0385 ug/L		<mdl< td=""><td>0.02</td><td>0.0392</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.019</td><td>0.0388 ug/</td><td></td><td><mdl< td=""><td>0.005</td><td>0.01 ug/L</td><td>0.102</td><td>2 0.0</td><td>033 (</td><td>0.0066 ug/L</td></mdl<></td></mdl<></td></mdl<>	0.02	0.0392	ug/L		<mdl< td=""><td>0.019</td><td>0.0388 ug/</td><td></td><td><mdl< td=""><td>0.005</td><td>0.01 ug/L</td><td>0.102</td><td>2 0.0</td><td>033 (</td><td>0.0066 ug/L</td></mdl<></td></mdl<>	0.019	0.0388 ug/		<mdl< td=""><td>0.005</td><td>0.01 ug/L</td><td>0.102</td><td>2 0.0</td><td>033 (</td><td>0.0066 ug/L</td></mdl<>	0.005	0.01 ug/L	0.102	2 0.0	033 (0.0066 ug/L
Benzo(k)fluoranthene		<mdl< td=""><td>0.02</td><td>0.04 ug/L</td><td></td><td><mdl< td=""><td>0.019</td><td>0.0385 ug/L</td><td></td><td><mdl< td=""><td>0.02</td><td>0.0392</td><td>ug/L</td><td></td><td><mdl< td=""><td></td><td>0.0388 ug/</td><td></td><td><mdl< td=""><td>0.005</td><td>0.01 ug/L</td><td>0.0921</td><td>0.0</td><td>033 (</td><td>0.0066 ug/L</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	0.02	0.04 ug/L		<mdl< td=""><td>0.019</td><td>0.0385 ug/L</td><td></td><td><mdl< td=""><td>0.02</td><td>0.0392</td><td>ug/L</td><td></td><td><mdl< td=""><td></td><td>0.0388 ug/</td><td></td><td><mdl< td=""><td>0.005</td><td>0.01 ug/L</td><td>0.0921</td><td>0.0</td><td>033 (</td><td>0.0066 ug/L</td></mdl<></td></mdl<></td></mdl<></td></mdl<>	0.019	0.0385 ug/L		<mdl< td=""><td>0.02</td><td>0.0392</td><td>ug/L</td><td></td><td><mdl< td=""><td></td><td>0.0388 ug/</td><td></td><td><mdl< td=""><td>0.005</td><td>0.01 ug/L</td><td>0.0921</td><td>0.0</td><td>033 (</td><td>0.0066 ug/L</td></mdl<></td></mdl<></td></mdl<>	0.02	0.0392	ug/L		<mdl< td=""><td></td><td>0.0388 ug/</td><td></td><td><mdl< td=""><td>0.005</td><td>0.01 ug/L</td><td>0.0921</td><td>0.0</td><td>033 (</td><td>0.0066 ug/L</td></mdl<></td></mdl<>		0.0388 ug/		<mdl< td=""><td>0.005</td><td>0.01 ug/L</td><td>0.0921</td><td>0.0</td><td>033 (</td><td>0.0066 ug/L</td></mdl<>	0.005	0.01 ug/L	0.0921	0.0	033 (0.0066 ug/L
Benzyl Butyl Phthalate		<mdl< td=""><td>0.05</td><td>0.1 ug/L</td><td></td><td><mdl< td=""><td>0.048</td><td>0.0962 ug/L</td><td></td><td><mdl< td=""><td>0.049</td><td>0.098</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.049</td><td>0.0971 ug/</td><td>L</td><td><mdl< td=""><td>0.025</td><td>0.05 ug/L</td><td>0.359</td><td>0</td><td>.017</td><td>0.033 ug/L</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	0.05	0.1 ug/L		<mdl< td=""><td>0.048</td><td>0.0962 ug/L</td><td></td><td><mdl< td=""><td>0.049</td><td>0.098</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.049</td><td>0.0971 ug/</td><td>L</td><td><mdl< td=""><td>0.025</td><td>0.05 ug/L</td><td>0.359</td><td>0</td><td>.017</td><td>0.033 ug/L</td></mdl<></td></mdl<></td></mdl<></td></mdl<>	0.048	0.0962 ug/L		<mdl< td=""><td>0.049</td><td>0.098</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.049</td><td>0.0971 ug/</td><td>L</td><td><mdl< td=""><td>0.025</td><td>0.05 ug/L</td><td>0.359</td><td>0</td><td>.017</td><td>0.033 ug/L</td></mdl<></td></mdl<></td></mdl<>	0.049	0.098	ug/L		<mdl< td=""><td>0.049</td><td>0.0971 ug/</td><td>L</td><td><mdl< td=""><td>0.025</td><td>0.05 ug/L</td><td>0.359</td><td>0</td><td>.017</td><td>0.033 ug/L</td></mdl<></td></mdl<>	0.049	0.0971 ug/	L	<mdl< td=""><td>0.025</td><td>0.05 ug/L</td><td>0.359</td><td>0</td><td>.017</td><td>0.033 ug/L</td></mdl<>	0.025	0.05 ug/L	0.359	0	.017	0.033 ug/L
Bis(2-Ethylhexyl)Phthalate	0.067	7 <rdl,b< td=""><td>0.05</td><td>0.1 ug/L</td><td>0.098</td><td>1 B</td><td>0.048</td><td>0.0962 ug/L</td><td>0.081</td><td>1 <rdl,b< td=""><td>0.049</td><td>0.098</td><td>ug/L</td><td>0.086</td><td><rdl,b< td=""><td>0.049</td><td>0.0971 ug/</td><td>L 0.15</td><td>5 B</td><td>0.025</td><td>0.05 ug/L</td><td>1.8</td><td>3 0</td><td>.017</td><td>0.033 ug/L</td></rdl,b<></td></rdl,b<></td></rdl,b<>	0.05	0.1 ug/L	0.098	1 B	0.048	0.0962 ug/L	0.081	1 <rdl,b< td=""><td>0.049</td><td>0.098</td><td>ug/L</td><td>0.086</td><td><rdl,b< td=""><td>0.049</td><td>0.0971 ug/</td><td>L 0.15</td><td>5 B</td><td>0.025</td><td>0.05 ug/L</td><td>1.8</td><td>3 0</td><td>.017</td><td>0.033 ug/L</td></rdl,b<></td></rdl,b<>	0.049	0.098	ug/L	0.086	<rdl,b< td=""><td>0.049</td><td>0.0971 ug/</td><td>L 0.15</td><td>5 B</td><td>0.025</td><td>0.05 ug/L</td><td>1.8</td><td>3 0</td><td>.017</td><td>0.033 ug/L</td></rdl,b<>	0.049	0.0971 ug/	L 0.15	5 B	0.025	0.05 ug/L	1.8	3 0	.017	0.033 ug/L
Chrysene		<mdl< td=""><td></td><td>0.02 ug/L</td><td></td><td><mdl< td=""><td>0.0096</td><td>0.0192 ug/L</td><td></td><td><mdl< td=""><td>0.0098</td><td>0.0196</td><td>0</td><td></td><td><mdl< td=""><td>0.0097</td><td>0.0194 ug/</td><td>L</td><td><mdl< td=""><td>0.005</td><td>0.01 ug/L</td><td>0.138</td><td></td><td>033 (</td><td>0.0066 ug/L</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>		0.02 ug/L		<mdl< td=""><td>0.0096</td><td>0.0192 ug/L</td><td></td><td><mdl< td=""><td>0.0098</td><td>0.0196</td><td>0</td><td></td><td><mdl< td=""><td>0.0097</td><td>0.0194 ug/</td><td>L</td><td><mdl< td=""><td>0.005</td><td>0.01 ug/L</td><td>0.138</td><td></td><td>033 (</td><td>0.0066 ug/L</td></mdl<></td></mdl<></td></mdl<></td></mdl<>	0.0096	0.0192 ug/L		<mdl< td=""><td>0.0098</td><td>0.0196</td><td>0</td><td></td><td><mdl< td=""><td>0.0097</td><td>0.0194 ug/</td><td>L</td><td><mdl< td=""><td>0.005</td><td>0.01 ug/L</td><td>0.138</td><td></td><td>033 (</td><td>0.0066 ug/L</td></mdl<></td></mdl<></td></mdl<>	0.0098	0.0196	0		<mdl< td=""><td>0.0097</td><td>0.0194 ug/</td><td>L</td><td><mdl< td=""><td>0.005</td><td>0.01 ug/L</td><td>0.138</td><td></td><td>033 (</td><td>0.0066 ug/L</td></mdl<></td></mdl<>	0.0097	0.0194 ug/	L	<mdl< td=""><td>0.005</td><td>0.01 ug/L</td><td>0.138</td><td></td><td>033 (</td><td>0.0066 ug/L</td></mdl<>	0.005	0.01 ug/L	0.138		033 (0.0066 ug/L
Dibenzo(a,h)anthracene		<mdl< td=""><td>0.02</td><td>0.04 ug/L</td><td></td><td><mdl< td=""><td>0.019</td><td>0.0385 ug/L</td><td></td><td><mdl< td=""><td>0.02</td><td>0.0392</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.019</td><td>0.0388 ug/</td><td></td><td><mdl< td=""><td>0.005</td><td>0.01 ug/L</td><td>0.0267</td><td>.0.0</td><td>033 (</td><td>0.0066 ug/L</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	0.02	0.04 ug/L		<mdl< td=""><td>0.019</td><td>0.0385 ug/L</td><td></td><td><mdl< td=""><td>0.02</td><td>0.0392</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.019</td><td>0.0388 ug/</td><td></td><td><mdl< td=""><td>0.005</td><td>0.01 ug/L</td><td>0.0267</td><td>.0.0</td><td>033 (</td><td>0.0066 ug/L</td></mdl<></td></mdl<></td></mdl<></td></mdl<>	0.019	0.0385 ug/L		<mdl< td=""><td>0.02</td><td>0.0392</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.019</td><td>0.0388 ug/</td><td></td><td><mdl< td=""><td>0.005</td><td>0.01 ug/L</td><td>0.0267</td><td>.0.0</td><td>033 (</td><td>0.0066 ug/L</td></mdl<></td></mdl<></td></mdl<>	0.02	0.0392	ug/L		<mdl< td=""><td>0.019</td><td>0.0388 ug/</td><td></td><td><mdl< td=""><td>0.005</td><td>0.01 ug/L</td><td>0.0267</td><td>.0.0</td><td>033 (</td><td>0.0066 ug/L</td></mdl<></td></mdl<>	0.019	0.0388 ug/		<mdl< td=""><td>0.005</td><td>0.01 ug/L</td><td>0.0267</td><td>.0.0</td><td>033 (</td><td>0.0066 ug/L</td></mdl<>	0.005	0.01 ug/L	0.0267	.0.0	033 (0.0066 ug/L
Diethyl Phthalate		<mdl< td=""><td>0.05</td><td>0.1 ug/L</td><td></td><td><mdl< td=""><td>0.048</td><td>0.0962 ug/L</td><td></td><td><mdl< td=""><td>0.049</td><td>0.098</td><td>0</td><td></td><td><mdl< td=""><td>0.049</td><td>0.0971 ug/</td><td>L</td><td><mdl< td=""><td>0.025</td><td>0.05 ug/L</td><td>0.0743</td><td>s 0</td><td>.017</td><td>0.033 ug/L</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	0.05	0.1 ug/L		<mdl< td=""><td>0.048</td><td>0.0962 ug/L</td><td></td><td><mdl< td=""><td>0.049</td><td>0.098</td><td>0</td><td></td><td><mdl< td=""><td>0.049</td><td>0.0971 ug/</td><td>L</td><td><mdl< td=""><td>0.025</td><td>0.05 ug/L</td><td>0.0743</td><td>s 0</td><td>.017</td><td>0.033 ug/L</td></mdl<></td></mdl<></td></mdl<></td></mdl<>	0.048	0.0962 ug/L		<mdl< td=""><td>0.049</td><td>0.098</td><td>0</td><td></td><td><mdl< td=""><td>0.049</td><td>0.0971 ug/</td><td>L</td><td><mdl< td=""><td>0.025</td><td>0.05 ug/L</td><td>0.0743</td><td>s 0</td><td>.017</td><td>0.033 ug/L</td></mdl<></td></mdl<></td></mdl<>	0.049	0.098	0		<mdl< td=""><td>0.049</td><td>0.0971 ug/</td><td>L</td><td><mdl< td=""><td>0.025</td><td>0.05 ug/L</td><td>0.0743</td><td>s 0</td><td>.017</td><td>0.033 ug/L</td></mdl<></td></mdl<>	0.049	0.0971 ug/	L	<mdl< td=""><td>0.025</td><td>0.05 ug/L</td><td>0.0743</td><td>s 0</td><td>.017</td><td>0.033 ug/L</td></mdl<>	0.025	0.05 ug/L	0.0743	s 0	.017	0.033 ug/L
Dimethyl Phthalate		<mdl< td=""><td>0.05</td><td>0.1 ug/L</td><td></td><td><mdl< td=""><td>0.048</td><td>0.0962 ug/L</td><td></td><td><mdl< td=""><td>0.049</td><td>0.098</td><td>0</td><td></td><td><mdl< td=""><td></td><td>0.0971 ug/</td><td></td><td><mdl< td=""><td></td><td>0.05 ug/L</td><td></td><td></td><td></td><td>0.033 ug/L</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	0.05	0.1 ug/L		<mdl< td=""><td>0.048</td><td>0.0962 ug/L</td><td></td><td><mdl< td=""><td>0.049</td><td>0.098</td><td>0</td><td></td><td><mdl< td=""><td></td><td>0.0971 ug/</td><td></td><td><mdl< td=""><td></td><td>0.05 ug/L</td><td></td><td></td><td></td><td>0.033 ug/L</td></mdl<></td></mdl<></td></mdl<></td></mdl<>	0.048	0.0962 ug/L		<mdl< td=""><td>0.049</td><td>0.098</td><td>0</td><td></td><td><mdl< td=""><td></td><td>0.0971 ug/</td><td></td><td><mdl< td=""><td></td><td>0.05 ug/L</td><td></td><td></td><td></td><td>0.033 ug/L</td></mdl<></td></mdl<></td></mdl<>	0.049	0.098	0		<mdl< td=""><td></td><td>0.0971 ug/</td><td></td><td><mdl< td=""><td></td><td>0.05 ug/L</td><td></td><td></td><td></td><td>0.033 ug/L</td></mdl<></td></mdl<>		0.0971 ug/		<mdl< td=""><td></td><td>0.05 ug/L</td><td></td><td></td><td></td><td>0.033 ug/L</td></mdl<>		0.05 ug/L				0.033 ug/L
Di-N-Butyl Phthalate	0.052	2 <rdl,b< td=""><td></td><td>0.1 ug/L</td><td>0.098</td><td></td><td>0.048</td><td>0.0962 ug/L</td><td>0.07</td><td>7 <rdl,b< td=""><td>0.049</td><td>0.098</td><td>-</td><td>0.083</td><td><rdl,b< td=""><td></td><td>0.0971 ug/</td><td></td><td>5 B</td><td></td><td>0.05 ug/L</td><td>0.187</td><td></td><td></td><td>0.033 ug/L</td></rdl,b<></td></rdl,b<></td></rdl,b<>		0.1 ug/L	0.098		0.048	0.0962 ug/L	0.07	7 <rdl,b< td=""><td>0.049</td><td>0.098</td><td>-</td><td>0.083</td><td><rdl,b< td=""><td></td><td>0.0971 ug/</td><td></td><td>5 B</td><td></td><td>0.05 ug/L</td><td>0.187</td><td></td><td></td><td>0.033 ug/L</td></rdl,b<></td></rdl,b<>	0.049	0.098	-	0.083	<rdl,b< td=""><td></td><td>0.0971 ug/</td><td></td><td>5 B</td><td></td><td>0.05 ug/L</td><td>0.187</td><td></td><td></td><td>0.033 ug/L</td></rdl,b<>		0.0971 ug/		5 B		0.05 ug/L	0.187			0.033 ug/L
Di-N-Octyl Phthalate		<mdl< td=""><td>0.05</td><td>0.1 ug/L</td><td></td><td><mdl< td=""><td>0.048</td><td>0.0962 ug/L</td><td></td><td><mdl< td=""><td>0.049</td><td>0.098</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.049</td><td>0.0971 ug/</td><td></td><td><mdl< td=""><td>0.025</td><td>0.05 ug/L</td><td></td><td><mdl 0<="" td=""><td>.017</td><td>0.033 ug/L</td></mdl></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	0.05	0.1 ug/L		<mdl< td=""><td>0.048</td><td>0.0962 ug/L</td><td></td><td><mdl< td=""><td>0.049</td><td>0.098</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.049</td><td>0.0971 ug/</td><td></td><td><mdl< td=""><td>0.025</td><td>0.05 ug/L</td><td></td><td><mdl 0<="" td=""><td>.017</td><td>0.033 ug/L</td></mdl></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	0.048	0.0962 ug/L		<mdl< td=""><td>0.049</td><td>0.098</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.049</td><td>0.0971 ug/</td><td></td><td><mdl< td=""><td>0.025</td><td>0.05 ug/L</td><td></td><td><mdl 0<="" td=""><td>.017</td><td>0.033 ug/L</td></mdl></td></mdl<></td></mdl<></td></mdl<>	0.049	0.098	ug/L		<mdl< td=""><td>0.049</td><td>0.0971 ug/</td><td></td><td><mdl< td=""><td>0.025</td><td>0.05 ug/L</td><td></td><td><mdl 0<="" td=""><td>.017</td><td>0.033 ug/L</td></mdl></td></mdl<></td></mdl<>	0.049	0.0971 ug/		<mdl< td=""><td>0.025</td><td>0.05 ug/L</td><td></td><td><mdl 0<="" td=""><td>.017</td><td>0.033 ug/L</td></mdl></td></mdl<>	0.025	0.05 ug/L		<mdl 0<="" td=""><td>.017</td><td>0.033 ug/L</td></mdl>	.017	0.033 ug/L
Fluoranthene		<mdl< td=""><td>0.01</td><td>0.02 ug/L</td><td></td><td><mdl< td=""><td>0.0096</td><td>0.0192 ug/L</td><td></td><td><mdl< td=""><td>0.0098</td><td>0.0196</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0097</td><td>0.0194 ug/</td><td>L</td><td><mdl< td=""><td>0.005</td><td>0.01 ug/L</td><td>0.217</td><td>· 0.0</td><td>033 (</td><td>0.0066 ug/L</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	0.01	0.02 ug/L		<mdl< td=""><td>0.0096</td><td>0.0192 ug/L</td><td></td><td><mdl< td=""><td>0.0098</td><td>0.0196</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0097</td><td>0.0194 ug/</td><td>L</td><td><mdl< td=""><td>0.005</td><td>0.01 ug/L</td><td>0.217</td><td>· 0.0</td><td>033 (</td><td>0.0066 ug/L</td></mdl<></td></mdl<></td></mdl<></td></mdl<>	0.0096	0.0192 ug/L		<mdl< td=""><td>0.0098</td><td>0.0196</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0097</td><td>0.0194 ug/</td><td>L</td><td><mdl< td=""><td>0.005</td><td>0.01 ug/L</td><td>0.217</td><td>· 0.0</td><td>033 (</td><td>0.0066 ug/L</td></mdl<></td></mdl<></td></mdl<>	0.0098	0.0196	ug/L		<mdl< td=""><td>0.0097</td><td>0.0194 ug/</td><td>L</td><td><mdl< td=""><td>0.005</td><td>0.01 ug/L</td><td>0.217</td><td>· 0.0</td><td>033 (</td><td>0.0066 ug/L</td></mdl<></td></mdl<>	0.0097	0.0194 ug/	L	<mdl< td=""><td>0.005</td><td>0.01 ug/L</td><td>0.217</td><td>· 0.0</td><td>033 (</td><td>0.0066 ug/L</td></mdl<>	0.005	0.01 ug/L	0.217	· 0.0	033 (0.0066 ug/L
Fluorene		<mdl< td=""><td></td><td>0.02 ug/L</td><td></td><td><mdl< td=""><td>0.0096</td><td>0.0192 ug/L</td><td></td><td><mdl< td=""><td>0.0098</td><td>0.0196</td><td>0</td><td></td><td><mdl< td=""><td>0.0097</td><td>0.0194 ug/</td><td></td><td><mdl< td=""><td>0.005</td><td>0.01 ug/L</td><td>0.0162</td><td>2 0.0</td><td>033 (</td><td>0.0066 ug/L</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>		0.02 ug/L		<mdl< td=""><td>0.0096</td><td>0.0192 ug/L</td><td></td><td><mdl< td=""><td>0.0098</td><td>0.0196</td><td>0</td><td></td><td><mdl< td=""><td>0.0097</td><td>0.0194 ug/</td><td></td><td><mdl< td=""><td>0.005</td><td>0.01 ug/L</td><td>0.0162</td><td>2 0.0</td><td>033 (</td><td>0.0066 ug/L</td></mdl<></td></mdl<></td></mdl<></td></mdl<>	0.0096	0.0192 ug/L		<mdl< td=""><td>0.0098</td><td>0.0196</td><td>0</td><td></td><td><mdl< td=""><td>0.0097</td><td>0.0194 ug/</td><td></td><td><mdl< td=""><td>0.005</td><td>0.01 ug/L</td><td>0.0162</td><td>2 0.0</td><td>033 (</td><td>0.0066 ug/L</td></mdl<></td></mdl<></td></mdl<>	0.0098	0.0196	0		<mdl< td=""><td>0.0097</td><td>0.0194 ug/</td><td></td><td><mdl< td=""><td>0.005</td><td>0.01 ug/L</td><td>0.0162</td><td>2 0.0</td><td>033 (</td><td>0.0066 ug/L</td></mdl<></td></mdl<>	0.0097	0.0194 ug/		<mdl< td=""><td>0.005</td><td>0.01 ug/L</td><td>0.0162</td><td>2 0.0</td><td>033 (</td><td>0.0066 ug/L</td></mdl<>	0.005	0.01 ug/L	0.0162	2 0.0	033 (0.0066 ug/L
Indeno(1,2,3-Cd)Pyrene		<mdl< td=""><td></td><td>0.04 ug/L</td><td></td><td><mdl< td=""><td>0.019</td><td>0.0385 ug/L</td><td></td><td><mdl< td=""><td>0.02</td><td>0.0392</td><td>0</td><td></td><td><mdl< td=""><td></td><td>0.0388 ug/</td><td></td><td><mdl< td=""><td></td><td>0.01 ug/L</td><td>0.063</td><td>0.0</td><td>033 (</td><td>0.0066 ug/L</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>		0.04 ug/L		<mdl< td=""><td>0.019</td><td>0.0385 ug/L</td><td></td><td><mdl< td=""><td>0.02</td><td>0.0392</td><td>0</td><td></td><td><mdl< td=""><td></td><td>0.0388 ug/</td><td></td><td><mdl< td=""><td></td><td>0.01 ug/L</td><td>0.063</td><td>0.0</td><td>033 (</td><td>0.0066 ug/L</td></mdl<></td></mdl<></td></mdl<></td></mdl<>	0.019	0.0385 ug/L		<mdl< td=""><td>0.02</td><td>0.0392</td><td>0</td><td></td><td><mdl< td=""><td></td><td>0.0388 ug/</td><td></td><td><mdl< td=""><td></td><td>0.01 ug/L</td><td>0.063</td><td>0.0</td><td>033 (</td><td>0.0066 ug/L</td></mdl<></td></mdl<></td></mdl<>	0.02	0.0392	0		<mdl< td=""><td></td><td>0.0388 ug/</td><td></td><td><mdl< td=""><td></td><td>0.01 ug/L</td><td>0.063</td><td>0.0</td><td>033 (</td><td>0.0066 ug/L</td></mdl<></td></mdl<>		0.0388 ug/		<mdl< td=""><td></td><td>0.01 ug/L</td><td>0.063</td><td>0.0</td><td>033 (</td><td>0.0066 ug/L</td></mdl<>		0.01 ug/L	0.063	0.0	033 (0.0066 ug/L
Naphthalene		<mdl< td=""><td></td><td>0.04 ug/L</td><td></td><td><mdl< td=""><td>0.019</td><td>0.0385 ug/L</td><td></td><td><mdl< td=""><td></td><td>0.0392</td><td>U</td><td></td><td><mdl< td=""><td></td><td>0.0388 ug/</td><td></td><td></td><td></td><td>0.01 ug/L</td><td>0.0248</td><td></td><td></td><td>0.0066 ug/L</td></mdl<></td></mdl<></td></mdl<></td></mdl<>		0.04 ug/L		<mdl< td=""><td>0.019</td><td>0.0385 ug/L</td><td></td><td><mdl< td=""><td></td><td>0.0392</td><td>U</td><td></td><td><mdl< td=""><td></td><td>0.0388 ug/</td><td></td><td></td><td></td><td>0.01 ug/L</td><td>0.0248</td><td></td><td></td><td>0.0066 ug/L</td></mdl<></td></mdl<></td></mdl<>	0.019	0.0385 ug/L		<mdl< td=""><td></td><td>0.0392</td><td>U</td><td></td><td><mdl< td=""><td></td><td>0.0388 ug/</td><td></td><td></td><td></td><td>0.01 ug/L</td><td>0.0248</td><td></td><td></td><td>0.0066 ug/L</td></mdl<></td></mdl<>		0.0392	U		<mdl< td=""><td></td><td>0.0388 ug/</td><td></td><td></td><td></td><td>0.01 ug/L</td><td>0.0248</td><td></td><td></td><td>0.0066 ug/L</td></mdl<>		0.0388 ug/				0.01 ug/L	0.0248			0.0066 ug/L
Phenanthrene		<mdl< td=""><td></td><td>0.02 ug/L</td><td></td><td><mdl< td=""><td>0.0096</td><td>0.0192 ug/L</td><td></td><td><mdl< td=""><td>0.0098</td><td>0.0196</td><td>· J</td><td></td><td><mdl< td=""><td></td><td>0.0194 ug/</td><td>_</td><td></td><td></td><td>0.01 ug/L</td><td>0.0647</td><td>0.0</td><td>033 (</td><td>0.0066 ug/L</td></mdl<></td></mdl<></td></mdl<></td></mdl<>		0.02 ug/L		<mdl< td=""><td>0.0096</td><td>0.0192 ug/L</td><td></td><td><mdl< td=""><td>0.0098</td><td>0.0196</td><td>· J</td><td></td><td><mdl< td=""><td></td><td>0.0194 ug/</td><td>_</td><td></td><td></td><td>0.01 ug/L</td><td>0.0647</td><td>0.0</td><td>033 (</td><td>0.0066 ug/L</td></mdl<></td></mdl<></td></mdl<>	0.0096	0.0192 ug/L		<mdl< td=""><td>0.0098</td><td>0.0196</td><td>· J</td><td></td><td><mdl< td=""><td></td><td>0.0194 ug/</td><td>_</td><td></td><td></td><td>0.01 ug/L</td><td>0.0647</td><td>0.0</td><td>033 (</td><td>0.0066 ug/L</td></mdl<></td></mdl<>	0.0098	0.0196	· J		<mdl< td=""><td></td><td>0.0194 ug/</td><td>_</td><td></td><td></td><td>0.01 ug/L</td><td>0.0647</td><td>0.0</td><td>033 (</td><td>0.0066 ug/L</td></mdl<>		0.0194 ug/	_			0.01 ug/L	0.0647	0.0	033 (0.0066 ug/L
Pyrene		<mdl< td=""><td>0.01</td><td>0.02 ug/L</td><td></td><td><mdl< td=""><td>0.0096</td><td>0.0192 ug/L</td><td></td><td><mdl< td=""><td>0.0098</td><td>0.0196</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0097</td><td>0.0194 ug/</td><td>_</td><td><mdl< td=""><td>0.005</td><td>0.01 ug/L</td><td>0.18</td><td>0.0</td><td>033 (</td><td>0.0066 ug/L</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	0.01	0.02 ug/L		<mdl< td=""><td>0.0096</td><td>0.0192 ug/L</td><td></td><td><mdl< td=""><td>0.0098</td><td>0.0196</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0097</td><td>0.0194 ug/</td><td>_</td><td><mdl< td=""><td>0.005</td><td>0.01 ug/L</td><td>0.18</td><td>0.0</td><td>033 (</td><td>0.0066 ug/L</td></mdl<></td></mdl<></td></mdl<></td></mdl<>	0.0096	0.0192 ug/L		<mdl< td=""><td>0.0098</td><td>0.0196</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0097</td><td>0.0194 ug/</td><td>_</td><td><mdl< td=""><td>0.005</td><td>0.01 ug/L</td><td>0.18</td><td>0.0</td><td>033 (</td><td>0.0066 ug/L</td></mdl<></td></mdl<></td></mdl<>	0.0098	0.0196	ug/L		<mdl< td=""><td>0.0097</td><td>0.0194 ug/</td><td>_</td><td><mdl< td=""><td>0.005</td><td>0.01 ug/L</td><td>0.18</td><td>0.0</td><td>033 (</td><td>0.0066 ug/L</td></mdl<></td></mdl<>	0.0097	0.0194 ug/	_	<mdl< td=""><td>0.005</td><td>0.01 ug/L</td><td>0.18</td><td>0.0</td><td>033 (</td><td>0.0066 ug/L</td></mdl<>	0.005	0.01 ug/L	0.18	0.0	033 (0.0066 ug/L

PROJECT: 423589-090-1	Locator: Descrip: Client Loc: Sampled: Lab ID: Matrix: % Solids:		-2			Locator: Descrip: Client Loc: Sampled: Lab ID: Matrix: % Solids:		-3			Locator: Descrip: Client Loc: Sampled: Lab ID: Matrix: % Solids:	MB Added by Jan 00, 19 WG79075 BLANK W	900 i-1	or	Locator: Descrip: Client Loo Sampled: Lab ID: Matrix: % Solids:				Locator: Descrip: Client Loc: Sampled: Lab ID: Matrix: % Solids:		2			Locator: Descrip: Client Loc: Sampled: Lab ID: Matrix: % Solids:	NONE UNKNOV BW-BK-C Feb 14, 2 L34777-3 BLANK V	2005		
Parameters	Value	Qual -We	MDL et Weight Bas	RDL	Units	Value	Qual -w	MDL et Weight Bas		Units	Value	Qual -Wet	MDL t Weight E	RDL Uni Basis	ts Value	Qual -W	MDL /et Weight Bas	RDL Unit	s Value	Qual -v	MDL Vet Weight Ba	RDL	Units	Value	Qual -W	MDL et Weight Bas	RDL Unit	ίS
ORGANICS																												
M=OR 8270B																												
2-Methylnaphthalene		<mdl< td=""><td>0.0032</td><td>0.00649</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0032</td><td>0.00645</td><td>ug/L</td><td></td><td><mdl,h< td=""><td>0.01</td><td>0.02 ug/</td><td>L</td><td><mdl,h< td=""><td>0.0098</td><td>0.0196 ug/L</td><td></td><td><mdl,h< td=""><td>0.0099</td><td>0.0198</td><td>3 ug/L</td><td></td><td><mdl,h< td=""><td>0.011</td><td>0.022 ug/l</td><td>L</td></mdl,h<></td></mdl,h<></td></mdl,h<></td></mdl,h<></td></mdl<></td></mdl<>	0.0032	0.00649	ug/L		<mdl< td=""><td>0.0032</td><td>0.00645</td><td>ug/L</td><td></td><td><mdl,h< td=""><td>0.01</td><td>0.02 ug/</td><td>L</td><td><mdl,h< td=""><td>0.0098</td><td>0.0196 ug/L</td><td></td><td><mdl,h< td=""><td>0.0099</td><td>0.0198</td><td>3 ug/L</td><td></td><td><mdl,h< td=""><td>0.011</td><td>0.022 ug/l</td><td>L</td></mdl,h<></td></mdl,h<></td></mdl,h<></td></mdl,h<></td></mdl<>	0.0032	0.00645	ug/L		<mdl,h< td=""><td>0.01</td><td>0.02 ug/</td><td>L</td><td><mdl,h< td=""><td>0.0098</td><td>0.0196 ug/L</td><td></td><td><mdl,h< td=""><td>0.0099</td><td>0.0198</td><td>3 ug/L</td><td></td><td><mdl,h< td=""><td>0.011</td><td>0.022 ug/l</td><td>L</td></mdl,h<></td></mdl,h<></td></mdl,h<></td></mdl,h<>	0.01	0.02 ug/	L	<mdl,h< td=""><td>0.0098</td><td>0.0196 ug/L</td><td></td><td><mdl,h< td=""><td>0.0099</td><td>0.0198</td><td>3 ug/L</td><td></td><td><mdl,h< td=""><td>0.011</td><td>0.022 ug/l</td><td>L</td></mdl,h<></td></mdl,h<></td></mdl,h<>	0.0098	0.0196 ug/L		<mdl,h< td=""><td>0.0099</td><td>0.0198</td><td>3 ug/L</td><td></td><td><mdl,h< td=""><td>0.011</td><td>0.022 ug/l</td><td>L</td></mdl,h<></td></mdl,h<>	0.0099	0.0198	3 ug/L		<mdl,h< td=""><td>0.011</td><td>0.022 ug/l</td><td>L</td></mdl,h<>	0.011	0.022 ug/l	L
Acenaphthene		<mdl< td=""><td>0.0032</td><td>0.00649</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0032</td><td>0.00645</td><td>ug/L</td><td></td><td><mdl,h< td=""><td>0.01</td><td>0.02 ug/</td><td>L</td><td><mdl,h< td=""><td>0.0098</td><td>0.0196 ug/L</td><td></td><td><mdl,h< td=""><td>0.0099</td><td>0.0198</td><td>3 ug/L</td><td></td><td><mdl,h< td=""><td>0.011</td><td>0.022 ug/l</td><td>L</td></mdl,h<></td></mdl,h<></td></mdl,h<></td></mdl,h<></td></mdl<></td></mdl<>	0.0032	0.00649	ug/L		<mdl< td=""><td>0.0032</td><td>0.00645</td><td>ug/L</td><td></td><td><mdl,h< td=""><td>0.01</td><td>0.02 ug/</td><td>L</td><td><mdl,h< td=""><td>0.0098</td><td>0.0196 ug/L</td><td></td><td><mdl,h< td=""><td>0.0099</td><td>0.0198</td><td>3 ug/L</td><td></td><td><mdl,h< td=""><td>0.011</td><td>0.022 ug/l</td><td>L</td></mdl,h<></td></mdl,h<></td></mdl,h<></td></mdl,h<></td></mdl<>	0.0032	0.00645	ug/L		<mdl,h< td=""><td>0.01</td><td>0.02 ug/</td><td>L</td><td><mdl,h< td=""><td>0.0098</td><td>0.0196 ug/L</td><td></td><td><mdl,h< td=""><td>0.0099</td><td>0.0198</td><td>3 ug/L</td><td></td><td><mdl,h< td=""><td>0.011</td><td>0.022 ug/l</td><td>L</td></mdl,h<></td></mdl,h<></td></mdl,h<></td></mdl,h<>	0.01	0.02 ug/	L	<mdl,h< td=""><td>0.0098</td><td>0.0196 ug/L</td><td></td><td><mdl,h< td=""><td>0.0099</td><td>0.0198</td><td>3 ug/L</td><td></td><td><mdl,h< td=""><td>0.011</td><td>0.022 ug/l</td><td>L</td></mdl,h<></td></mdl,h<></td></mdl,h<>	0.0098	0.0196 ug/L		<mdl,h< td=""><td>0.0099</td><td>0.0198</td><td>3 ug/L</td><td></td><td><mdl,h< td=""><td>0.011</td><td>0.022 ug/l</td><td>L</td></mdl,h<></td></mdl,h<>	0.0099	0.0198	3 ug/L		<mdl,h< td=""><td>0.011</td><td>0.022 ug/l</td><td>L</td></mdl,h<>	0.011	0.022 ug/l	L
Acenaphthylene	0.0101		0.0032	0.00649	ug/L		<mdl< td=""><td>0.0032</td><td>0.00645</td><td>ug/L</td><td></td><td><mdl,h< td=""><td>0.01</td><td>0.02 ug/</td><td>L</td><td><mdl,h< td=""><td>0.0098</td><td>0.0196 ug/L</td><td></td><td><mdl,h< td=""><td>0.0099</td><td>0.0198</td><td>3 ug/L</td><td></td><td><mdl,h< td=""><td>0.011</td><td>0.022 ug/l</td><td>L</td></mdl,h<></td></mdl,h<></td></mdl,h<></td></mdl,h<></td></mdl<>	0.0032	0.00645	ug/L		<mdl,h< td=""><td>0.01</td><td>0.02 ug/</td><td>L</td><td><mdl,h< td=""><td>0.0098</td><td>0.0196 ug/L</td><td></td><td><mdl,h< td=""><td>0.0099</td><td>0.0198</td><td>3 ug/L</td><td></td><td><mdl,h< td=""><td>0.011</td><td>0.022 ug/l</td><td>L</td></mdl,h<></td></mdl,h<></td></mdl,h<></td></mdl,h<>	0.01	0.02 ug/	L	<mdl,h< td=""><td>0.0098</td><td>0.0196 ug/L</td><td></td><td><mdl,h< td=""><td>0.0099</td><td>0.0198</td><td>3 ug/L</td><td></td><td><mdl,h< td=""><td>0.011</td><td>0.022 ug/l</td><td>L</td></mdl,h<></td></mdl,h<></td></mdl,h<>	0.0098	0.0196 ug/L		<mdl,h< td=""><td>0.0099</td><td>0.0198</td><td>3 ug/L</td><td></td><td><mdl,h< td=""><td>0.011</td><td>0.022 ug/l</td><td>L</td></mdl,h<></td></mdl,h<>	0.0099	0.0198	3 ug/L		<mdl,h< td=""><td>0.011</td><td>0.022 ug/l</td><td>L</td></mdl,h<>	0.011	0.022 ug/l	L
Anthracene	0.0305	5	0.0032	0.00649	ug/L	0.00935		0.0032	0.00645	ug/L		<mdl,h< td=""><td>0.01</td><td>0.02 ug/</td><td>L</td><td><mdl,h< td=""><td>0.0098</td><td>0.0196 ug/L</td><td></td><td><mdl,h< td=""><td>0.0099</td><td>0.0198</td><td>3 ug/L</td><td></td><td><mdl,h< td=""><td>0.011</td><td>0.022 ug/l</td><td>Ē</td></mdl,h<></td></mdl,h<></td></mdl,h<></td></mdl,h<>	0.01	0.02 ug/	L	<mdl,h< td=""><td>0.0098</td><td>0.0196 ug/L</td><td></td><td><mdl,h< td=""><td>0.0099</td><td>0.0198</td><td>3 ug/L</td><td></td><td><mdl,h< td=""><td>0.011</td><td>0.022 ug/l</td><td>Ē</td></mdl,h<></td></mdl,h<></td></mdl,h<>	0.0098	0.0196 ug/L		<mdl,h< td=""><td>0.0099</td><td>0.0198</td><td>3 ug/L</td><td></td><td><mdl,h< td=""><td>0.011</td><td>0.022 ug/l</td><td>Ē</td></mdl,h<></td></mdl,h<>	0.0099	0.0198	3 ug/L		<mdl,h< td=""><td>0.011</td><td>0.022 ug/l</td><td>Ē</td></mdl,h<>	0.011	0.022 ug/l	Ē
Benzo(a)anthracene	0.0575	5	0.0032	0.00649	ug/L	0.0206		0.0032	0.00645	ug/L		<mdl,h< td=""><td>0.025</td><td>0.05 ug/</td><td>L</td><td><mdl,h< td=""><td>0.025</td><td>0.049 ug/L</td><td></td><td><mdl,h< td=""><td>0.025</td><td>0.0495</td><td>5 ug/L</td><td></td><td><mdl,h< td=""><td>0.027</td><td>0.0549 ug/l</td><td>L</td></mdl,h<></td></mdl,h<></td></mdl,h<></td></mdl,h<>	0.025	0.05 ug/	L	<mdl,h< td=""><td>0.025</td><td>0.049 ug/L</td><td></td><td><mdl,h< td=""><td>0.025</td><td>0.0495</td><td>5 ug/L</td><td></td><td><mdl,h< td=""><td>0.027</td><td>0.0549 ug/l</td><td>L</td></mdl,h<></td></mdl,h<></td></mdl,h<>	0.025	0.049 ug/L		<mdl,h< td=""><td>0.025</td><td>0.0495</td><td>5 ug/L</td><td></td><td><mdl,h< td=""><td>0.027</td><td>0.0549 ug/l</td><td>L</td></mdl,h<></td></mdl,h<>	0.025	0.0495	5 ug/L		<mdl,h< td=""><td>0.027</td><td>0.0549 ug/l</td><td>L</td></mdl,h<>	0.027	0.0549 ug/l	L
Benzo(a)pyrene	0.0747	7	0.0032	0.00649	ug/L	0.0252		0.0032	0.00645	ug/L		<mdl,h< td=""><td>0.01</td><td>0.02 ug/</td><td>L</td><td><mdl,h< td=""><td>0.0098</td><td>0.0196 ug/L</td><td></td><td><mdl,h< td=""><td>0.0099</td><td>0.0198</td><td>3 ug/L</td><td></td><td><mdl,h< td=""><td>0.011</td><td>0.022 ug/l</td><td>L</td></mdl,h<></td></mdl,h<></td></mdl,h<></td></mdl,h<>	0.01	0.02 ug/	L	<mdl,h< td=""><td>0.0098</td><td>0.0196 ug/L</td><td></td><td><mdl,h< td=""><td>0.0099</td><td>0.0198</td><td>3 ug/L</td><td></td><td><mdl,h< td=""><td>0.011</td><td>0.022 ug/l</td><td>L</td></mdl,h<></td></mdl,h<></td></mdl,h<>	0.0098	0.0196 ug/L		<mdl,h< td=""><td>0.0099</td><td>0.0198</td><td>3 ug/L</td><td></td><td><mdl,h< td=""><td>0.011</td><td>0.022 ug/l</td><td>L</td></mdl,h<></td></mdl,h<>	0.0099	0.0198	3 ug/L		<mdl,h< td=""><td>0.011</td><td>0.022 ug/l</td><td>L</td></mdl,h<>	0.011	0.022 ug/l	L
Benzo(b)fluoranthene	0.12	2	0.0032	0.00649	ug/L	0.04		0.0032	0.00645	ug/L		<mdl,h< td=""><td>0.02</td><td>0.04 ug/</td><td>L</td><td><mdl,h< td=""><td>0.02</td><td>0.0392 ug/L</td><td></td><td><mdl,h< td=""><td>0.02</td><td>0.0396</td><td>3 ug/L</td><td></td><td><mdl,h< td=""><td>0.022</td><td>0.044 ug/l</td><td>L</td></mdl,h<></td></mdl,h<></td></mdl,h<></td></mdl,h<>	0.02	0.04 ug/	L	<mdl,h< td=""><td>0.02</td><td>0.0392 ug/L</td><td></td><td><mdl,h< td=""><td>0.02</td><td>0.0396</td><td>3 ug/L</td><td></td><td><mdl,h< td=""><td>0.022</td><td>0.044 ug/l</td><td>L</td></mdl,h<></td></mdl,h<></td></mdl,h<>	0.02	0.0392 ug/L		<mdl,h< td=""><td>0.02</td><td>0.0396</td><td>3 ug/L</td><td></td><td><mdl,h< td=""><td>0.022</td><td>0.044 ug/l</td><td>L</td></mdl,h<></td></mdl,h<>	0.02	0.0396	3 ug/L		<mdl,h< td=""><td>0.022</td><td>0.044 ug/l</td><td>L</td></mdl,h<>	0.022	0.044 ug/l	L
Benzo(g,h,i)perylene	0.113	3	0.0032	0.00649	ug/L	0.0397		0.0032	0.00645	ug/L		<mdl,h< td=""><td>0.01</td><td>0.02 ug/</td><td>L</td><td><mdl,h< td=""><td>0.0098</td><td>0.0196 ug/L</td><td></td><td><mdl,h< td=""><td>0.0099</td><td>0.0198</td><td>3 ug/L</td><td></td><td><mdl,h< td=""><td>0.011</td><td>0.022 ug/l</td><td>L</td></mdl,h<></td></mdl,h<></td></mdl,h<></td></mdl,h<>	0.01	0.02 ug/	L	<mdl,h< td=""><td>0.0098</td><td>0.0196 ug/L</td><td></td><td><mdl,h< td=""><td>0.0099</td><td>0.0198</td><td>3 ug/L</td><td></td><td><mdl,h< td=""><td>0.011</td><td>0.022 ug/l</td><td>L</td></mdl,h<></td></mdl,h<></td></mdl,h<>	0.0098	0.0196 ug/L		<mdl,h< td=""><td>0.0099</td><td>0.0198</td><td>3 ug/L</td><td></td><td><mdl,h< td=""><td>0.011</td><td>0.022 ug/l</td><td>L</td></mdl,h<></td></mdl,h<>	0.0099	0.0198	3 ug/L		<mdl,h< td=""><td>0.011</td><td>0.022 ug/l</td><td>L</td></mdl,h<>	0.011	0.022 ug/l	L
Benzo(k)fluoranthene	0.104	ł	0.0032	0.00649	ug/L	0.0319		0.0032	0.00645	ug/L		<mdl,h< td=""><td>0.02</td><td>0.04 ug/</td><td>L</td><td><mdl,h< td=""><td>0.02</td><td>0.0392 ug/L</td><td></td><td><mdl,h< td=""><td>0.02</td><td>0.0396</td><td>3 ug/L</td><td></td><td><mdl,h< td=""><td>0.022</td><td>0.044 ug/l</td><td>Ĺ</td></mdl,h<></td></mdl,h<></td></mdl,h<></td></mdl,h<>	0.02	0.04 ug/	L	<mdl,h< td=""><td>0.02</td><td>0.0392 ug/L</td><td></td><td><mdl,h< td=""><td>0.02</td><td>0.0396</td><td>3 ug/L</td><td></td><td><mdl,h< td=""><td>0.022</td><td>0.044 ug/l</td><td>Ĺ</td></mdl,h<></td></mdl,h<></td></mdl,h<>	0.02	0.0392 ug/L		<mdl,h< td=""><td>0.02</td><td>0.0396</td><td>3 ug/L</td><td></td><td><mdl,h< td=""><td>0.022</td><td>0.044 ug/l</td><td>Ĺ</td></mdl,h<></td></mdl,h<>	0.02	0.0396	3 ug/L		<mdl,h< td=""><td>0.022</td><td>0.044 ug/l</td><td>Ĺ</td></mdl,h<>	0.022	0.044 ug/l	Ĺ
Benzyl Butyl Phthalate	0.383	3	0.016	0.0325	ug/L	0.178		0.016	0.0323	ug/L		<mdl,h< td=""><td>0.03</td><td>0.06 ug/</td><td>L</td><td><mdl,h< td=""><td>0.029</td><td>0.0588 ug/L</td><td></td><td><mdl,h< td=""><td>0.03</td><td>0.0594</td><td>4 ug/L</td><td></td><td><mdl,h< td=""><td>0.033</td><td>0.0659 ug/l</td><td>L</td></mdl,h<></td></mdl,h<></td></mdl,h<></td></mdl,h<>	0.03	0.06 ug/	L	<mdl,h< td=""><td>0.029</td><td>0.0588 ug/L</td><td></td><td><mdl,h< td=""><td>0.03</td><td>0.0594</td><td>4 ug/L</td><td></td><td><mdl,h< td=""><td>0.033</td><td>0.0659 ug/l</td><td>L</td></mdl,h<></td></mdl,h<></td></mdl,h<>	0.029	0.0588 ug/L		<mdl,h< td=""><td>0.03</td><td>0.0594</td><td>4 ug/L</td><td></td><td><mdl,h< td=""><td>0.033</td><td>0.0659 ug/l</td><td>L</td></mdl,h<></td></mdl,h<>	0.03	0.0594	4 ug/L		<mdl,h< td=""><td>0.033</td><td>0.0659 ug/l</td><td>L</td></mdl,h<>	0.033	0.0659 ug/l	L
Bis(2-Ethylhexyl)Phthalate	1.91		0.016	0.0325	ug/L	0.628		0.016	0.0323	ug/L	0.068	8 B,H	0.01	0.02 ug/	L 0.08	63 B,H	0.0098	0.0196 ug/L	0.085	1 B,H	0.0099	0.0198	3 ug/L	0.114	↓ B,H	0.011	0.022 ug/l	L
Chrysene	0.154	ļ.	0.0032	0.00649	ug/L	0.0574		0.0032	0.00645	ug/L		<mdl,h< td=""><td>0.02</td><td>0.04 ug/</td><td>L</td><td><mdl,h< td=""><td>0.02</td><td>0.0392 ug/L</td><td></td><td><mdl,h< td=""><td>0.02</td><td>0.0396</td><td>∂ug/L</td><td></td><td><mdl,h< td=""><td>0.022</td><td>0.044 ug/l</td><td>L</td></mdl,h<></td></mdl,h<></td></mdl,h<></td></mdl,h<>	0.02	0.04 ug/	L	<mdl,h< td=""><td>0.02</td><td>0.0392 ug/L</td><td></td><td><mdl,h< td=""><td>0.02</td><td>0.0396</td><td>∂ug/L</td><td></td><td><mdl,h< td=""><td>0.022</td><td>0.044 ug/l</td><td>L</td></mdl,h<></td></mdl,h<></td></mdl,h<>	0.02	0.0392 ug/L		<mdl,h< td=""><td>0.02</td><td>0.0396</td><td>∂ug/L</td><td></td><td><mdl,h< td=""><td>0.022</td><td>0.044 ug/l</td><td>L</td></mdl,h<></td></mdl,h<>	0.02	0.0396	∂ug/L		<mdl,h< td=""><td>0.022</td><td>0.044 ug/l</td><td>L</td></mdl,h<>	0.022	0.044 ug/l	L
Dibenzo(a,h)anthracene	0.0302	2	0.0032	0.00649	ug/L	0.00935		0.0032	0.00645	ug/L		<mdl,h< td=""><td>0.01</td><td>0.02 ug/</td><td>L</td><td><mdl,h< td=""><td>0.0098</td><td>0.0196 ug/L</td><td></td><td><mdl,h< td=""><td>0.0099</td><td>0.0198</td><td>3 ug/L</td><td></td><td><mdl,h< td=""><td>0.011</td><td>0.022 ug/l</td><td>L</td></mdl,h<></td></mdl,h<></td></mdl,h<></td></mdl,h<>	0.01	0.02 ug/	L	<mdl,h< td=""><td>0.0098</td><td>0.0196 ug/L</td><td></td><td><mdl,h< td=""><td>0.0099</td><td>0.0198</td><td>3 ug/L</td><td></td><td><mdl,h< td=""><td>0.011</td><td>0.022 ug/l</td><td>L</td></mdl,h<></td></mdl,h<></td></mdl,h<>	0.0098	0.0196 ug/L		<mdl,h< td=""><td>0.0099</td><td>0.0198</td><td>3 ug/L</td><td></td><td><mdl,h< td=""><td>0.011</td><td>0.022 ug/l</td><td>L</td></mdl,h<></td></mdl,h<>	0.0099	0.0198	3 ug/L		<mdl,h< td=""><td>0.011</td><td>0.022 ug/l</td><td>L</td></mdl,h<>	0.011	0.022 ug/l	L
Diethyl Phthalate	0.0679)	0.016	0.0325	ug/L	0.099		0.016	0.0323	ug/L		<mdl,h< td=""><td>0.03</td><td>0.06 ug/</td><td>L</td><td><mdl,h< td=""><td>0.029</td><td>0.0588 ug/L</td><td></td><td><mdl,h< td=""><td>0.03</td><td>0.0594</td><td>4 ug/L</td><td></td><td><mdl,h< td=""><td>0.033</td><td>0.0659 ug/l</td><td>L</td></mdl,h<></td></mdl,h<></td></mdl,h<></td></mdl,h<>	0.03	0.06 ug/	L	<mdl,h< td=""><td>0.029</td><td>0.0588 ug/L</td><td></td><td><mdl,h< td=""><td>0.03</td><td>0.0594</td><td>4 ug/L</td><td></td><td><mdl,h< td=""><td>0.033</td><td>0.0659 ug/l</td><td>L</td></mdl,h<></td></mdl,h<></td></mdl,h<>	0.029	0.0588 ug/L		<mdl,h< td=""><td>0.03</td><td>0.0594</td><td>4 ug/L</td><td></td><td><mdl,h< td=""><td>0.033</td><td>0.0659 ug/l</td><td>L</td></mdl,h<></td></mdl,h<>	0.03	0.0594	4 ug/L		<mdl,h< td=""><td>0.033</td><td>0.0659 ug/l</td><td>L</td></mdl,h<>	0.033	0.0659 ug/l	L
Dimethyl Phthalate	0.028	3 <rdl< td=""><td>0.016</td><td>0.0325</td><td>ug/L</td><td>0.017</td><td><rdl< td=""><td>0.016</td><td>0.0323</td><td>ug/L</td><td></td><td><mdl,h< td=""><td>0.01</td><td>0.02 ug/</td><td>L</td><td><mdl,h< td=""><td>0.0098</td><td>0.0196 ug/L</td><td></td><td><mdl,h< td=""><td>0.0099</td><td>0.0198</td><td>3 ug/L</td><td></td><td><mdl,h< td=""><td>0.011</td><td>0.022 ug/l</td><td>L</td></mdl,h<></td></mdl,h<></td></mdl,h<></td></mdl,h<></td></rdl<></td></rdl<>	0.016	0.0325	ug/L	0.017	<rdl< td=""><td>0.016</td><td>0.0323</td><td>ug/L</td><td></td><td><mdl,h< td=""><td>0.01</td><td>0.02 ug/</td><td>L</td><td><mdl,h< td=""><td>0.0098</td><td>0.0196 ug/L</td><td></td><td><mdl,h< td=""><td>0.0099</td><td>0.0198</td><td>3 ug/L</td><td></td><td><mdl,h< td=""><td>0.011</td><td>0.022 ug/l</td><td>L</td></mdl,h<></td></mdl,h<></td></mdl,h<></td></mdl,h<></td></rdl<>	0.016	0.0323	ug/L		<mdl,h< td=""><td>0.01</td><td>0.02 ug/</td><td>L</td><td><mdl,h< td=""><td>0.0098</td><td>0.0196 ug/L</td><td></td><td><mdl,h< td=""><td>0.0099</td><td>0.0198</td><td>3 ug/L</td><td></td><td><mdl,h< td=""><td>0.011</td><td>0.022 ug/l</td><td>L</td></mdl,h<></td></mdl,h<></td></mdl,h<></td></mdl,h<>	0.01	0.02 ug/	L	<mdl,h< td=""><td>0.0098</td><td>0.0196 ug/L</td><td></td><td><mdl,h< td=""><td>0.0099</td><td>0.0198</td><td>3 ug/L</td><td></td><td><mdl,h< td=""><td>0.011</td><td>0.022 ug/l</td><td>L</td></mdl,h<></td></mdl,h<></td></mdl,h<>	0.0098	0.0196 ug/L		<mdl,h< td=""><td>0.0099</td><td>0.0198</td><td>3 ug/L</td><td></td><td><mdl,h< td=""><td>0.011</td><td>0.022 ug/l</td><td>L</td></mdl,h<></td></mdl,h<>	0.0099	0.0198	3 ug/L		<mdl,h< td=""><td>0.011</td><td>0.022 ug/l</td><td>L</td></mdl,h<>	0.011	0.022 ug/l	L
Di-N-Butyl Phthalate	0.113	3	0.016	0.0325	ug/L	0.158		0.016	0.0323	ug/L	0.063	3 B,H	0.01	0.02 ug/	L 0.06	86 B,H	0.0098	0.0196 ug/L	0.084	2 B,H	0.0099	0.0198	3 ug/L	0.078	B,H	0.011	0.022 ug/l	L
Di-N-Octyl Phthalate		<mdl< td=""><td>0.016</td><td>0.0325</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.016</td><td>0.0323</td><td>ug/L</td><td></td><td><mdl,h< td=""><td>0.02</td><td>0.04 ug/</td><td>L</td><td><mdl,h< td=""><td>0.02</td><td>0.0392 ug/L</td><td></td><td><mdl,h< td=""><td>0.02</td><td>0.0396</td><td>3 ug/L</td><td></td><td><mdl,h< td=""><td>0.022</td><td>0.044 ug/l</td><td>L</td></mdl,h<></td></mdl,h<></td></mdl,h<></td></mdl,h<></td></mdl<></td></mdl<>	0.016	0.0325	ug/L		<mdl< td=""><td>0.016</td><td>0.0323</td><td>ug/L</td><td></td><td><mdl,h< td=""><td>0.02</td><td>0.04 ug/</td><td>L</td><td><mdl,h< td=""><td>0.02</td><td>0.0392 ug/L</td><td></td><td><mdl,h< td=""><td>0.02</td><td>0.0396</td><td>3 ug/L</td><td></td><td><mdl,h< td=""><td>0.022</td><td>0.044 ug/l</td><td>L</td></mdl,h<></td></mdl,h<></td></mdl,h<></td></mdl,h<></td></mdl<>	0.016	0.0323	ug/L		<mdl,h< td=""><td>0.02</td><td>0.04 ug/</td><td>L</td><td><mdl,h< td=""><td>0.02</td><td>0.0392 ug/L</td><td></td><td><mdl,h< td=""><td>0.02</td><td>0.0396</td><td>3 ug/L</td><td></td><td><mdl,h< td=""><td>0.022</td><td>0.044 ug/l</td><td>L</td></mdl,h<></td></mdl,h<></td></mdl,h<></td></mdl,h<>	0.02	0.04 ug/	L	<mdl,h< td=""><td>0.02</td><td>0.0392 ug/L</td><td></td><td><mdl,h< td=""><td>0.02</td><td>0.0396</td><td>3 ug/L</td><td></td><td><mdl,h< td=""><td>0.022</td><td>0.044 ug/l</td><td>L</td></mdl,h<></td></mdl,h<></td></mdl,h<>	0.02	0.0392 ug/L		<mdl,h< td=""><td>0.02</td><td>0.0396</td><td>3 ug/L</td><td></td><td><mdl,h< td=""><td>0.022</td><td>0.044 ug/l</td><td>L</td></mdl,h<></td></mdl,h<>	0.02	0.0396	3 ug/L		<mdl,h< td=""><td>0.022</td><td>0.044 ug/l</td><td>L</td></mdl,h<>	0.022	0.044 ug/l	L
Fluoranthene	0.254	ł	0.0032	0.00649	ug/L	0.0794		0.0032	0.00645	ug/L		<mdl,h< td=""><td>0.02</td><td>0.04 ug/</td><td>L</td><td><mdl,h< td=""><td>0.02</td><td>0.0392 ug/L</td><td></td><td><mdl,h< td=""><td>0.02</td><td>0.0396</td><td>3 ug/L</td><td></td><td><mdl,h< td=""><td>0.022</td><td>0.044 ug/l</td><td>L</td></mdl,h<></td></mdl,h<></td></mdl,h<></td></mdl,h<>	0.02	0.04 ug/	L	<mdl,h< td=""><td>0.02</td><td>0.0392 ug/L</td><td></td><td><mdl,h< td=""><td>0.02</td><td>0.0396</td><td>3 ug/L</td><td></td><td><mdl,h< td=""><td>0.022</td><td>0.044 ug/l</td><td>L</td></mdl,h<></td></mdl,h<></td></mdl,h<>	0.02	0.0392 ug/L		<mdl,h< td=""><td>0.02</td><td>0.0396</td><td>3 ug/L</td><td></td><td><mdl,h< td=""><td>0.022</td><td>0.044 ug/l</td><td>L</td></mdl,h<></td></mdl,h<>	0.02	0.0396	3 ug/L		<mdl,h< td=""><td>0.022</td><td>0.044 ug/l</td><td>L</td></mdl,h<>	0.022	0.044 ug/l	L
Fluorene	0.0153	3	0.0032	0.00649	ug/L	0.00839		0.0032	0.00645	ug/L		<mdl,h< td=""><td>0.01</td><td>0.02 ug/</td><td>L</td><td><mdl,h< td=""><td>0.0098</td><td>0.0196 ug/L</td><td></td><td><mdl,h< td=""><td>0.0099</td><td>0.0198</td><td>3 ug/L</td><td></td><td><mdl,h< td=""><td>0.011</td><td>0.022 ug/l</td><td>L</td></mdl,h<></td></mdl,h<></td></mdl,h<></td></mdl,h<>	0.01	0.02 ug/	L	<mdl,h< td=""><td>0.0098</td><td>0.0196 ug/L</td><td></td><td><mdl,h< td=""><td>0.0099</td><td>0.0198</td><td>3 ug/L</td><td></td><td><mdl,h< td=""><td>0.011</td><td>0.022 ug/l</td><td>L</td></mdl,h<></td></mdl,h<></td></mdl,h<>	0.0098	0.0196 ug/L		<mdl,h< td=""><td>0.0099</td><td>0.0198</td><td>3 ug/L</td><td></td><td><mdl,h< td=""><td>0.011</td><td>0.022 ug/l</td><td>L</td></mdl,h<></td></mdl,h<>	0.0099	0.0198	3 ug/L		<mdl,h< td=""><td>0.011</td><td>0.022 ug/l</td><td>L</td></mdl,h<>	0.011	0.022 ug/l	L
Indeno(1,2,3-Cd)Pyrene	0.0718	3	0.0032	0.00649	ug/L	0.0239		0.0032	0.00645	ug/L		<mdl,h< td=""><td>0.02</td><td>0.04 ug/</td><td>L</td><td><mdl,h< td=""><td>0.02</td><td>0.0392 ug/L</td><td></td><td><mdl,h< td=""><td>0.02</td><td>0.0396</td><td>3 ug/L</td><td></td><td><mdl,h< td=""><td>0.022</td><td>0.044 ug/l</td><td>L</td></mdl,h<></td></mdl,h<></td></mdl,h<></td></mdl,h<>	0.02	0.04 ug/	L	<mdl,h< td=""><td>0.02</td><td>0.0392 ug/L</td><td></td><td><mdl,h< td=""><td>0.02</td><td>0.0396</td><td>3 ug/L</td><td></td><td><mdl,h< td=""><td>0.022</td><td>0.044 ug/l</td><td>L</td></mdl,h<></td></mdl,h<></td></mdl,h<>	0.02	0.0392 ug/L		<mdl,h< td=""><td>0.02</td><td>0.0396</td><td>3 ug/L</td><td></td><td><mdl,h< td=""><td>0.022</td><td>0.044 ug/l</td><td>L</td></mdl,h<></td></mdl,h<>	0.02	0.0396	3 ug/L		<mdl,h< td=""><td>0.022</td><td>0.044 ug/l</td><td>L</td></mdl,h<>	0.022	0.044 ug/l	L
Naphthalene	0.026	6	0.0032	0.00649	ug/L	0.0187		0.0032	0.00645	ug/L		<mdl,h< td=""><td>0.01</td><td>0.02 ug/</td><td>L</td><td><mdl,h< td=""><td>0.0098</td><td>0.0196 ug/L</td><td></td><td><mdl,h< td=""><td>0.0099</td><td>0.0198</td><td>3 ug/L</td><td></td><td><mdl,h< td=""><td>0.011</td><td>0.022 ug/l</td><td>L</td></mdl,h<></td></mdl,h<></td></mdl,h<></td></mdl,h<>	0.01	0.02 ug/	L	<mdl,h< td=""><td>0.0098</td><td>0.0196 ug/L</td><td></td><td><mdl,h< td=""><td>0.0099</td><td>0.0198</td><td>3 ug/L</td><td></td><td><mdl,h< td=""><td>0.011</td><td>0.022 ug/l</td><td>L</td></mdl,h<></td></mdl,h<></td></mdl,h<>	0.0098	0.0196 ug/L		<mdl,h< td=""><td>0.0099</td><td>0.0198</td><td>3 ug/L</td><td></td><td><mdl,h< td=""><td>0.011</td><td>0.022 ug/l</td><td>L</td></mdl,h<></td></mdl,h<>	0.0099	0.0198	3 ug/L		<mdl,h< td=""><td>0.011</td><td>0.022 ug/l</td><td>L</td></mdl,h<>	0.011	0.022 ug/l	L
Phenanthrene	0.0987	7	0.0032	0.00649	ug/L	0.0548		0.0032	0.00645	ug/L		<mdl,h< td=""><td>0.01</td><td>0.02 ug/</td><td>L</td><td><mdl,h< td=""><td>0.0098</td><td>0.0196 ug/L</td><td></td><td><mdl,h< td=""><td>0.0099</td><td>0.0198</td><td>3 ug/L</td><td></td><td><mdl,h< td=""><td>0.011</td><td>0.022 ug/l</td><td>L</td></mdl,h<></td></mdl,h<></td></mdl,h<></td></mdl,h<>	0.01	0.02 ug/	L	<mdl,h< td=""><td>0.0098</td><td>0.0196 ug/L</td><td></td><td><mdl,h< td=""><td>0.0099</td><td>0.0198</td><td>3 ug/L</td><td></td><td><mdl,h< td=""><td>0.011</td><td>0.022 ug/l</td><td>L</td></mdl,h<></td></mdl,h<></td></mdl,h<>	0.0098	0.0196 ug/L		<mdl,h< td=""><td>0.0099</td><td>0.0198</td><td>3 ug/L</td><td></td><td><mdl,h< td=""><td>0.011</td><td>0.022 ug/l</td><td>L</td></mdl,h<></td></mdl,h<>	0.0099	0.0198	3 ug/L		<mdl,h< td=""><td>0.011</td><td>0.022 ug/l</td><td>L</td></mdl,h<>	0.011	0.022 ug/l	L
Pyrene	0.215	5	0.0032	0.00649	ug/L	0.0639		0.0032	0.00645	ug/L		<mdl,h< td=""><td>0.01</td><td>0.02 ug/</td><td>L</td><td><mdl,h< td=""><td>0.0098</td><td>0.0196 ug/L</td><td></td><td><mdl,h< td=""><td>0.0099</td><td>0.0198</td><td>3 ug/L</td><td></td><td><mdl,h< td=""><td>0.011</td><td>0.022 ug/l</td><td>L</td></mdl,h<></td></mdl,h<></td></mdl,h<></td></mdl,h<>	0.01	0.02 ug/	L	<mdl,h< td=""><td>0.0098</td><td>0.0196 ug/L</td><td></td><td><mdl,h< td=""><td>0.0099</td><td>0.0198</td><td>3 ug/L</td><td></td><td><mdl,h< td=""><td>0.011</td><td>0.022 ug/l</td><td>L</td></mdl,h<></td></mdl,h<></td></mdl,h<>	0.0098	0.0196 ug/L		<mdl,h< td=""><td>0.0099</td><td>0.0198</td><td>3 ug/L</td><td></td><td><mdl,h< td=""><td>0.011</td><td>0.022 ug/l</td><td>L</td></mdl,h<></td></mdl,h<>	0.0099	0.0198	3 ug/L		<mdl,h< td=""><td>0.011</td><td>0.022 ug/l</td><td>L</td></mdl,h<>	0.011	0.022 ug/l	L
]

PROJECT: 423589-090-1	Locator: Descrip: Client Loc: Sampled: Lab ID: Matrix: % Solids:	NONE UNKNOV CE01-BK Feb 14, 2 L34777-4 BLANK V	2005			Locator: Descrip: Client Loc: Sampled: Lab ID: Matrix: % Solids:	NONE UNKNOW CE02-BK- Feb 14, 2 L34777-5 BLANK W	-021405-0 005			Locator: Descrip: Client Loc: Sampled: Lab ID: Matrix: % Solids:	MB Added by Jan 00, 1 WG7986 BLANK V	4-1			Descrip:		-1		Locator: Descrip: Client Loc: Sampled: Lab ID: Matrix: % Solids:		, 2005 5-2	CATOR 05-032305		Descrip: I Client Loc: I Sampled: I Lab ID: I		3		
Parameters	Value	Qual -w	MDL /et Weight Bas		Units	Value	Qual -We	MDL et Weight Bas		Units	Value	Qual -w	MDL et Weight Ba	RDL	Units	Value	Qual -We	MDL et Weight Bas	RDL Un	its Value	Qual -We	MDL et Weight Ba	RDL	Units	Value		MDL Weight Basis	RDL Unit	S
ORGANICS																													
M=OR 8270B																													
2-Methylnaphthalene		<mdl,h< td=""><td>0.0099</td><td>0.0198</td><td>ug/L</td><td></td><td><mdl,h< td=""><td>0.0099</td><td>0.0198</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0033</td><td>0.00667</td><td>7 ug/L</td><td>0.0108</td><td></td><td>0.0039</td><td>0.00772 ug</td><td>/L 0.013</td><td>3</td><td>0.004</td><td>0.00803</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0042</td><td>0.00833 ug/</td><td>L</td></mdl<></td></mdl<></td></mdl,h<></td></mdl,h<>	0.0099	0.0198	ug/L		<mdl,h< td=""><td>0.0099</td><td>0.0198</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0033</td><td>0.00667</td><td>7 ug/L</td><td>0.0108</td><td></td><td>0.0039</td><td>0.00772 ug</td><td>/L 0.013</td><td>3</td><td>0.004</td><td>0.00803</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0042</td><td>0.00833 ug/</td><td>L</td></mdl<></td></mdl<></td></mdl,h<>	0.0099	0.0198	ug/L		<mdl< td=""><td>0.0033</td><td>0.00667</td><td>7 ug/L</td><td>0.0108</td><td></td><td>0.0039</td><td>0.00772 ug</td><td>/L 0.013</td><td>3</td><td>0.004</td><td>0.00803</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0042</td><td>0.00833 ug/</td><td>L</td></mdl<></td></mdl<>	0.0033	0.00667	7 ug/L	0.0108		0.0039	0.00772 ug	/L 0.013	3	0.004	0.00803	ug/L		<mdl< td=""><td>0.0042</td><td>0.00833 ug/</td><td>L</td></mdl<>	0.0042	0.00833 ug/	L
Acenaphthene		<mdl,h< td=""><td>0.0099</td><td>0.0198</td><td>ug/L</td><td></td><td><mdl,h< td=""><td>0.0099</td><td>0.0198</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0033</td><td>0.00667</td><td>7 ug/L</td><td></td><td><mdl< td=""><td>0.0039</td><td>0.00772 ug</td><td>/L</td><td><mdl< td=""><td>0.004</td><td>0.00803</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0042</td><td>0.00833 ug/</td><td>Ē</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl,h<></td></mdl,h<>	0.0099	0.0198	ug/L		<mdl,h< td=""><td>0.0099</td><td>0.0198</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0033</td><td>0.00667</td><td>7 ug/L</td><td></td><td><mdl< td=""><td>0.0039</td><td>0.00772 ug</td><td>/L</td><td><mdl< td=""><td>0.004</td><td>0.00803</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0042</td><td>0.00833 ug/</td><td>Ē</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl,h<>	0.0099	0.0198	ug/L		<mdl< td=""><td>0.0033</td><td>0.00667</td><td>7 ug/L</td><td></td><td><mdl< td=""><td>0.0039</td><td>0.00772 ug</td><td>/L</td><td><mdl< td=""><td>0.004</td><td>0.00803</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0042</td><td>0.00833 ug/</td><td>Ē</td></mdl<></td></mdl<></td></mdl<></td></mdl<>	0.0033	0.00667	7 ug/L		<mdl< td=""><td>0.0039</td><td>0.00772 ug</td><td>/L</td><td><mdl< td=""><td>0.004</td><td>0.00803</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0042</td><td>0.00833 ug/</td><td>Ē</td></mdl<></td></mdl<></td></mdl<>	0.0039	0.00772 ug	/L	<mdl< td=""><td>0.004</td><td>0.00803</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0042</td><td>0.00833 ug/</td><td>Ē</td></mdl<></td></mdl<>	0.004	0.00803	ug/L		<mdl< td=""><td>0.0042</td><td>0.00833 ug/</td><td>Ē</td></mdl<>	0.0042	0.00833 ug/	Ē
Acenaphthylene		<mdl,h< td=""><td>0.0099</td><td>0.0198</td><td>ug/L</td><td></td><td><mdl,h< td=""><td>0.0099</td><td>0.0198</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0033</td><td>0.00667</td><td>7 ug/L</td><td></td><td><mdl< td=""><td>0.0039</td><td>0.00772 ug</td><td>/L</td><td><mdl< td=""><td>0.004</td><td>0.00803</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0042</td><td>0.00833 ug/l</td><td>Ē</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl,h<></td></mdl,h<>	0.0099	0.0198	ug/L		<mdl,h< td=""><td>0.0099</td><td>0.0198</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0033</td><td>0.00667</td><td>7 ug/L</td><td></td><td><mdl< td=""><td>0.0039</td><td>0.00772 ug</td><td>/L</td><td><mdl< td=""><td>0.004</td><td>0.00803</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0042</td><td>0.00833 ug/l</td><td>Ē</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl,h<>	0.0099	0.0198	ug/L		<mdl< td=""><td>0.0033</td><td>0.00667</td><td>7 ug/L</td><td></td><td><mdl< td=""><td>0.0039</td><td>0.00772 ug</td><td>/L</td><td><mdl< td=""><td>0.004</td><td>0.00803</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0042</td><td>0.00833 ug/l</td><td>Ē</td></mdl<></td></mdl<></td></mdl<></td></mdl<>	0.0033	0.00667	7 ug/L		<mdl< td=""><td>0.0039</td><td>0.00772 ug</td><td>/L</td><td><mdl< td=""><td>0.004</td><td>0.00803</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0042</td><td>0.00833 ug/l</td><td>Ē</td></mdl<></td></mdl<></td></mdl<>	0.0039	0.00772 ug	/L	<mdl< td=""><td>0.004</td><td>0.00803</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0042</td><td>0.00833 ug/l</td><td>Ē</td></mdl<></td></mdl<>	0.004	0.00803	ug/L		<mdl< td=""><td>0.0042</td><td>0.00833 ug/l</td><td>Ē</td></mdl<>	0.0042	0.00833 ug/l	Ē
Anthracene		<mdl,h< td=""><td>0.0099</td><td>0.0198</td><td>ug/L</td><td></td><td><mdl,h< td=""><td>0.0099</td><td>0.0198</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0033</td><td>0.00667</td><td>7 ug/L</td><td>0.0112</td><td></td><td>0.0039</td><td>0.00772 ug</td><td>/L 0.010</td><td>4</td><td>0.004</td><td>0.00803</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0042</td><td>0.00833 ug/</td><td>L</td></mdl<></td></mdl<></td></mdl,h<></td></mdl,h<>	0.0099	0.0198	ug/L		<mdl,h< td=""><td>0.0099</td><td>0.0198</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0033</td><td>0.00667</td><td>7 ug/L</td><td>0.0112</td><td></td><td>0.0039</td><td>0.00772 ug</td><td>/L 0.010</td><td>4</td><td>0.004</td><td>0.00803</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0042</td><td>0.00833 ug/</td><td>L</td></mdl<></td></mdl<></td></mdl,h<>	0.0099	0.0198	ug/L		<mdl< td=""><td>0.0033</td><td>0.00667</td><td>7 ug/L</td><td>0.0112</td><td></td><td>0.0039</td><td>0.00772 ug</td><td>/L 0.010</td><td>4</td><td>0.004</td><td>0.00803</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0042</td><td>0.00833 ug/</td><td>L</td></mdl<></td></mdl<>	0.0033	0.00667	7 ug/L	0.0112		0.0039	0.00772 ug	/L 0.010	4	0.004	0.00803	ug/L		<mdl< td=""><td>0.0042</td><td>0.00833 ug/</td><td>L</td></mdl<>	0.0042	0.00833 ug/	L
Benzo(a)anthracene		<mdl,h< td=""><td>0.025</td><td>0.0495</td><td>ug/L</td><td></td><td><mdl,h< td=""><td>0.025</td><td>0.0495</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0033</td><td>0.00667</td><td>7 ug/L</td><td>0.0436</td><td></td><td>0.0039</td><td>0.00772 ug</td><td>/L 0.04</td><td>7</td><td>0.004</td><td>0.00803</td><td>ug/L</td><td>0.00833</td><td>RDL</td><td>0.0042</td><td>0.00833 ug/</td><td>L</td></mdl<></td></mdl,h<></td></mdl,h<>	0.025	0.0495	ug/L		<mdl,h< td=""><td>0.025</td><td>0.0495</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0033</td><td>0.00667</td><td>7 ug/L</td><td>0.0436</td><td></td><td>0.0039</td><td>0.00772 ug</td><td>/L 0.04</td><td>7</td><td>0.004</td><td>0.00803</td><td>ug/L</td><td>0.00833</td><td>RDL</td><td>0.0042</td><td>0.00833 ug/</td><td>L</td></mdl<></td></mdl,h<>	0.025	0.0495	ug/L		<mdl< td=""><td>0.0033</td><td>0.00667</td><td>7 ug/L</td><td>0.0436</td><td></td><td>0.0039</td><td>0.00772 ug</td><td>/L 0.04</td><td>7</td><td>0.004</td><td>0.00803</td><td>ug/L</td><td>0.00833</td><td>RDL</td><td>0.0042</td><td>0.00833 ug/</td><td>L</td></mdl<>	0.0033	0.00667	7 ug/L	0.0436		0.0039	0.00772 ug	/L 0.04	7	0.004	0.00803	ug/L	0.00833	RDL	0.0042	0.00833 ug/	L
Benzo(a)pyrene		<mdl,h< td=""><td>0.0099</td><td>0.0198</td><td>ug/L</td><td></td><td><mdl,h< td=""><td>0.0099</td><td>0.0198</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0033</td><td>0.00667</td><td>7 ug/L</td><td>0.0583</td><td></td><td>0.0039</td><td>0.00772 ug</td><td>/L 0.051</td><td>4</td><td>0.004</td><td>0.00803</td><td>ug/L</td><td>0.0138</td><td></td><td>0.0042</td><td>0.00833 ug/</td><td>L</td></mdl<></td></mdl,h<></td></mdl,h<>	0.0099	0.0198	ug/L		<mdl,h< td=""><td>0.0099</td><td>0.0198</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0033</td><td>0.00667</td><td>7 ug/L</td><td>0.0583</td><td></td><td>0.0039</td><td>0.00772 ug</td><td>/L 0.051</td><td>4</td><td>0.004</td><td>0.00803</td><td>ug/L</td><td>0.0138</td><td></td><td>0.0042</td><td>0.00833 ug/</td><td>L</td></mdl<></td></mdl,h<>	0.0099	0.0198	ug/L		<mdl< td=""><td>0.0033</td><td>0.00667</td><td>7 ug/L</td><td>0.0583</td><td></td><td>0.0039</td><td>0.00772 ug</td><td>/L 0.051</td><td>4</td><td>0.004</td><td>0.00803</td><td>ug/L</td><td>0.0138</td><td></td><td>0.0042</td><td>0.00833 ug/</td><td>L</td></mdl<>	0.0033	0.00667	7 ug/L	0.0583		0.0039	0.00772 ug	/L 0.051	4	0.004	0.00803	ug/L	0.0138		0.0042	0.00833 ug/	L
Benzo(b)fluoranthene		<mdl,h< td=""><td>0.02</td><td>0.0396</td><td>ug/L</td><td></td><td><mdl,h< td=""><td>0.02</td><td>0.0396</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0033</td><td>0.00667</td><td>7 ug/L</td><td>0.0934</td><td></td><td>0.0039</td><td>0.00772 ug</td><td>/L 0.08</td><td>8</td><td>0.004</td><td>0.00803</td><td>ug/L</td><td>0.02</td><td></td><td>0.0042</td><td>0.00833 ug/</td><td>L I</td></mdl<></td></mdl,h<></td></mdl,h<>	0.02	0.0396	ug/L		<mdl,h< td=""><td>0.02</td><td>0.0396</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0033</td><td>0.00667</td><td>7 ug/L</td><td>0.0934</td><td></td><td>0.0039</td><td>0.00772 ug</td><td>/L 0.08</td><td>8</td><td>0.004</td><td>0.00803</td><td>ug/L</td><td>0.02</td><td></td><td>0.0042</td><td>0.00833 ug/</td><td>L I</td></mdl<></td></mdl,h<>	0.02	0.0396	ug/L		<mdl< td=""><td>0.0033</td><td>0.00667</td><td>7 ug/L</td><td>0.0934</td><td></td><td>0.0039</td><td>0.00772 ug</td><td>/L 0.08</td><td>8</td><td>0.004</td><td>0.00803</td><td>ug/L</td><td>0.02</td><td></td><td>0.0042</td><td>0.00833 ug/</td><td>L I</td></mdl<>	0.0033	0.00667	7 ug/L	0.0934		0.0039	0.00772 ug	/L 0.08	8	0.004	0.00803	ug/L	0.02		0.0042	0.00833 ug/	L I
Benzo(g,h,i)perylene		<mdl,h< td=""><td>0.0099</td><td>0.0198</td><td>ug/L</td><td></td><td><mdl,h< td=""><td>0.0099</td><td>0.0198</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0033</td><td>0.00667</td><td>7 ug/L</td><td>0.0788</td><td></td><td>0.0039</td><td>0.00772 ug</td><td>/L 0.069</td><td>5</td><td>0.004</td><td>0.00803</td><td>ug/L</td><td>0.025</td><td></td><td>0.0042</td><td>0.00833 ug/</td><td>L</td></mdl<></td></mdl,h<></td></mdl,h<>	0.0099	0.0198	ug/L		<mdl,h< td=""><td>0.0099</td><td>0.0198</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0033</td><td>0.00667</td><td>7 ug/L</td><td>0.0788</td><td></td><td>0.0039</td><td>0.00772 ug</td><td>/L 0.069</td><td>5</td><td>0.004</td><td>0.00803</td><td>ug/L</td><td>0.025</td><td></td><td>0.0042</td><td>0.00833 ug/</td><td>L</td></mdl<></td></mdl,h<>	0.0099	0.0198	ug/L		<mdl< td=""><td>0.0033</td><td>0.00667</td><td>7 ug/L</td><td>0.0788</td><td></td><td>0.0039</td><td>0.00772 ug</td><td>/L 0.069</td><td>5</td><td>0.004</td><td>0.00803</td><td>ug/L</td><td>0.025</td><td></td><td>0.0042</td><td>0.00833 ug/</td><td>L</td></mdl<>	0.0033	0.00667	7 ug/L	0.0788		0.0039	0.00772 ug	/L 0.069	5	0.004	0.00803	ug/L	0.025		0.0042	0.00833 ug/	L
Benzo(k)fluoranthene		<mdl,h< td=""><td>0.02</td><td>0.0396</td><td>ug/L</td><td></td><td><mdl,h< td=""><td>0.02</td><td>0.0396</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0033</td><td>0.00667</td><td>7 ug/L</td><td>0.0768</td><td></td><td>0.0039</td><td>0.00772 ug</td><td>/L 0.068</td><td>7</td><td>0.004</td><td>0.00803</td><td>ug/L</td><td>0.0171</td><td></td><td>0.0042</td><td>0.00833 ug/</td><td>L</td></mdl<></td></mdl,h<></td></mdl,h<>	0.02	0.0396	ug/L		<mdl,h< td=""><td>0.02</td><td>0.0396</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0033</td><td>0.00667</td><td>7 ug/L</td><td>0.0768</td><td></td><td>0.0039</td><td>0.00772 ug</td><td>/L 0.068</td><td>7</td><td>0.004</td><td>0.00803</td><td>ug/L</td><td>0.0171</td><td></td><td>0.0042</td><td>0.00833 ug/</td><td>L</td></mdl<></td></mdl,h<>	0.02	0.0396	ug/L		<mdl< td=""><td>0.0033</td><td>0.00667</td><td>7 ug/L</td><td>0.0768</td><td></td><td>0.0039</td><td>0.00772 ug</td><td>/L 0.068</td><td>7</td><td>0.004</td><td>0.00803</td><td>ug/L</td><td>0.0171</td><td></td><td>0.0042</td><td>0.00833 ug/</td><td>L</td></mdl<>	0.0033	0.00667	7 ug/L	0.0768		0.0039	0.00772 ug	/L 0.068	7	0.004	0.00803	ug/L	0.0171		0.0042	0.00833 ug/	L
Benzyl Butyl Phthalate		<mdl,h< td=""><td>0.03</td><td>0.0594</td><td>ug/L</td><td></td><td><mdl,h< td=""><td>0.03</td><td>0.0594</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.017</td><td>0.0333</td><td>3 ug/L</td><td>0.212</td><td></td><td>0.019</td><td>0.0386 ug</td><td>/L 0.51</td><td>1</td><td>0.02</td><td>0.0402</td><td>ug/L</td><td>0.0983</td><td></td><td>0.021</td><td>0.0417 ug/l</td><td>L .</td></mdl<></td></mdl,h<></td></mdl,h<>	0.03	0.0594	ug/L		<mdl,h< td=""><td>0.03</td><td>0.0594</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.017</td><td>0.0333</td><td>3 ug/L</td><td>0.212</td><td></td><td>0.019</td><td>0.0386 ug</td><td>/L 0.51</td><td>1</td><td>0.02</td><td>0.0402</td><td>ug/L</td><td>0.0983</td><td></td><td>0.021</td><td>0.0417 ug/l</td><td>L .</td></mdl<></td></mdl,h<>	0.03	0.0594	ug/L		<mdl< td=""><td>0.017</td><td>0.0333</td><td>3 ug/L</td><td>0.212</td><td></td><td>0.019</td><td>0.0386 ug</td><td>/L 0.51</td><td>1</td><td>0.02</td><td>0.0402</td><td>ug/L</td><td>0.0983</td><td></td><td>0.021</td><td>0.0417 ug/l</td><td>L .</td></mdl<>	0.017	0.0333	3 ug/L	0.212		0.019	0.0386 ug	/L 0.51	1	0.02	0.0402	ug/L	0.0983		0.021	0.0417 ug/l	L .
Bis(2-Ethylhexyl)Phthalate	0.129	9 B,H	0.0099	0.0198	ug/L	0.109	B,H	0.0099	0.0198	ug/L	0.082	2 B	0.017	0.0333	3 ug/L	1.46		0.019	0.0386 ug	/L 1.5	6	0.02	0.0402	ug/L	0.425	В	0.021	0.0417 ug/	L I
Chrysene		<mdl,h< td=""><td>0.02</td><td>0.0396</td><td>ug/L</td><td></td><td><mdl,h< td=""><td>0.02</td><td>0.0396</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0033</td><td>0.00667</td><td>7 ug/L</td><td>0.123</td><td></td><td>0.0039</td><td>0.00772 ug</td><td>/L 0.11</td><td>6</td><td>0.004</td><td>0.00803</td><td>ug/L</td><td>0.0308</td><td></td><td>0.0042</td><td>0.00833 ug/l</td><td>L .</td></mdl<></td></mdl,h<></td></mdl,h<>	0.02	0.0396	ug/L		<mdl,h< td=""><td>0.02</td><td>0.0396</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0033</td><td>0.00667</td><td>7 ug/L</td><td>0.123</td><td></td><td>0.0039</td><td>0.00772 ug</td><td>/L 0.11</td><td>6</td><td>0.004</td><td>0.00803</td><td>ug/L</td><td>0.0308</td><td></td><td>0.0042</td><td>0.00833 ug/l</td><td>L .</td></mdl<></td></mdl,h<>	0.02	0.0396	ug/L		<mdl< td=""><td>0.0033</td><td>0.00667</td><td>7 ug/L</td><td>0.123</td><td></td><td>0.0039</td><td>0.00772 ug</td><td>/L 0.11</td><td>6</td><td>0.004</td><td>0.00803</td><td>ug/L</td><td>0.0308</td><td></td><td>0.0042</td><td>0.00833 ug/l</td><td>L .</td></mdl<>	0.0033	0.00667	7 ug/L	0.123		0.0039	0.00772 ug	/L 0.11	6	0.004	0.00803	ug/L	0.0308		0.0042	0.00833 ug/l	L .
Dibenzo(a,h)anthracene		<mdl,h< td=""><td>0.0099</td><td>0.0198</td><td>ug/L</td><td></td><td><mdl,h< td=""><td>0.0099</td><td>0.0198</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0033</td><td>0.00667</td><td>7 ug/L</td><td>0.0208</td><td></td><td>0.0039</td><td>0.00772 ug</td><td>/L 0.023</td><td>3</td><td>0.004</td><td>0.00803</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0042</td><td>0.00833 ug/</td><td>L</td></mdl<></td></mdl<></td></mdl,h<></td></mdl,h<>	0.0099	0.0198	ug/L		<mdl,h< td=""><td>0.0099</td><td>0.0198</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0033</td><td>0.00667</td><td>7 ug/L</td><td>0.0208</td><td></td><td>0.0039</td><td>0.00772 ug</td><td>/L 0.023</td><td>3</td><td>0.004</td><td>0.00803</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0042</td><td>0.00833 ug/</td><td>L</td></mdl<></td></mdl<></td></mdl,h<>	0.0099	0.0198	ug/L		<mdl< td=""><td>0.0033</td><td>0.00667</td><td>7 ug/L</td><td>0.0208</td><td></td><td>0.0039</td><td>0.00772 ug</td><td>/L 0.023</td><td>3</td><td>0.004</td><td>0.00803</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0042</td><td>0.00833 ug/</td><td>L</td></mdl<></td></mdl<>	0.0033	0.00667	7 ug/L	0.0208		0.0039	0.00772 ug	/L 0.023	3	0.004	0.00803	ug/L		<mdl< td=""><td>0.0042</td><td>0.00833 ug/</td><td>L</td></mdl<>	0.0042	0.00833 ug/	L
Diethyl Phthalate		<mdl,h< td=""><td>0.03</td><td>0.0594</td><td>ug/L</td><td></td><td><mdl,h< td=""><td>0.03</td><td>0.0594</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.017</td><td>0.0333</td><td>3 ug/L</td><td></td><td><mdl< td=""><td>0.019</td><td>0.0386 ug</td><td>/L 0.060</td><td>2</td><td>0.02</td><td>0.0402</td><td>ug/L</td><td>0.035</td><td><rdl< td=""><td>0.021</td><td>0.0417 ug/l</td><td>L .</td></rdl<></td></mdl<></td></mdl<></td></mdl,h<></td></mdl,h<>	0.03	0.0594	ug/L		<mdl,h< td=""><td>0.03</td><td>0.0594</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.017</td><td>0.0333</td><td>3 ug/L</td><td></td><td><mdl< td=""><td>0.019</td><td>0.0386 ug</td><td>/L 0.060</td><td>2</td><td>0.02</td><td>0.0402</td><td>ug/L</td><td>0.035</td><td><rdl< td=""><td>0.021</td><td>0.0417 ug/l</td><td>L .</td></rdl<></td></mdl<></td></mdl<></td></mdl,h<>	0.03	0.0594	ug/L		<mdl< td=""><td>0.017</td><td>0.0333</td><td>3 ug/L</td><td></td><td><mdl< td=""><td>0.019</td><td>0.0386 ug</td><td>/L 0.060</td><td>2</td><td>0.02</td><td>0.0402</td><td>ug/L</td><td>0.035</td><td><rdl< td=""><td>0.021</td><td>0.0417 ug/l</td><td>L .</td></rdl<></td></mdl<></td></mdl<>	0.017	0.0333	3 ug/L		<mdl< td=""><td>0.019</td><td>0.0386 ug</td><td>/L 0.060</td><td>2</td><td>0.02</td><td>0.0402</td><td>ug/L</td><td>0.035</td><td><rdl< td=""><td>0.021</td><td>0.0417 ug/l</td><td>L .</td></rdl<></td></mdl<>	0.019	0.0386 ug	/L 0.060	2	0.02	0.0402	ug/L	0.035	<rdl< td=""><td>0.021</td><td>0.0417 ug/l</td><td>L .</td></rdl<>	0.021	0.0417 ug/l	L .
Dimethyl Phthalate		<mdl,h< td=""><td>0.0099</td><td>0.0198</td><td>ug/L</td><td></td><td><mdl,h< td=""><td>0.0099</td><td>0.0198</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.017</td><td>0.0333</td><td>3 ug/L</td><td>0.021</td><td><rdl< td=""><td>0.019</td><td>0.0386 ug</td><td>/L 0.02</td><td>8 <rdl< td=""><td>0.02</td><td>0.0402</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.021</td><td>0.0417 ug/</td><td>Ĺ.</td></mdl<></td></rdl<></td></rdl<></td></mdl<></td></mdl,h<></td></mdl,h<>	0.0099	0.0198	ug/L		<mdl,h< td=""><td>0.0099</td><td>0.0198</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.017</td><td>0.0333</td><td>3 ug/L</td><td>0.021</td><td><rdl< td=""><td>0.019</td><td>0.0386 ug</td><td>/L 0.02</td><td>8 <rdl< td=""><td>0.02</td><td>0.0402</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.021</td><td>0.0417 ug/</td><td>Ĺ.</td></mdl<></td></rdl<></td></rdl<></td></mdl<></td></mdl,h<>	0.0099	0.0198	ug/L		<mdl< td=""><td>0.017</td><td>0.0333</td><td>3 ug/L</td><td>0.021</td><td><rdl< td=""><td>0.019</td><td>0.0386 ug</td><td>/L 0.02</td><td>8 <rdl< td=""><td>0.02</td><td>0.0402</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.021</td><td>0.0417 ug/</td><td>Ĺ.</td></mdl<></td></rdl<></td></rdl<></td></mdl<>	0.017	0.0333	3 ug/L	0.021	<rdl< td=""><td>0.019</td><td>0.0386 ug</td><td>/L 0.02</td><td>8 <rdl< td=""><td>0.02</td><td>0.0402</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.021</td><td>0.0417 ug/</td><td>Ĺ.</td></mdl<></td></rdl<></td></rdl<>	0.019	0.0386 ug	/L 0.02	8 <rdl< td=""><td>0.02</td><td>0.0402</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.021</td><td>0.0417 ug/</td><td>Ĺ.</td></mdl<></td></rdl<>	0.02	0.0402	ug/L		<mdl< td=""><td>0.021</td><td>0.0417 ug/</td><td>Ĺ.</td></mdl<>	0.021	0.0417 ug/	Ĺ.
Di-N-Butyl Phthalate	0.0782	2 B,H	0.0099	0.0198	ug/L	0.107	B,H	0.0099	0.0198	ug/L	0.029	9 <rdl,b< td=""><td>0.017</td><td>0.0333</td><td>3 ug/L</td><td>0.0707</td><td>В</td><td>0.019</td><td>0.0386 ug</td><td>/L 0.098</td><td>4 B</td><td>0.02</td><td>0.0402</td><td>ug/L</td><td>0.0617</td><td>В</td><td>0.021</td><td>0.0417 ug/</td><td>L</td></rdl,b<>	0.017	0.0333	3 ug/L	0.0707	В	0.019	0.0386 ug	/L 0.098	4 B	0.02	0.0402	ug/L	0.0617	В	0.021	0.0417 ug/	L
Di-N-Octyl Phthalate		<mdl,h< td=""><td>0.02</td><td>0.0396</td><td>ug/L</td><td></td><td><mdl,h< td=""><td>0.02</td><td>0.0396</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.017</td><td>0.0333</td><td>3 ug/L</td><td>0.326</td><td></td><td>0.019</td><td>0.0386 ug</td><td>/L</td><td><mdl< td=""><td>0.02</td><td>0.0402</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.021</td><td>0.0417 ug/l</td><td>É.</td></mdl<></td></mdl<></td></mdl<></td></mdl,h<></td></mdl,h<>	0.02	0.0396	ug/L		<mdl,h< td=""><td>0.02</td><td>0.0396</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.017</td><td>0.0333</td><td>3 ug/L</td><td>0.326</td><td></td><td>0.019</td><td>0.0386 ug</td><td>/L</td><td><mdl< td=""><td>0.02</td><td>0.0402</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.021</td><td>0.0417 ug/l</td><td>É.</td></mdl<></td></mdl<></td></mdl<></td></mdl,h<>	0.02	0.0396	ug/L		<mdl< td=""><td>0.017</td><td>0.0333</td><td>3 ug/L</td><td>0.326</td><td></td><td>0.019</td><td>0.0386 ug</td><td>/L</td><td><mdl< td=""><td>0.02</td><td>0.0402</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.021</td><td>0.0417 ug/l</td><td>É.</td></mdl<></td></mdl<></td></mdl<>	0.017	0.0333	3 ug/L	0.326		0.019	0.0386 ug	/L	<mdl< td=""><td>0.02</td><td>0.0402</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.021</td><td>0.0417 ug/l</td><td>É.</td></mdl<></td></mdl<>	0.02	0.0402	ug/L		<mdl< td=""><td>0.021</td><td>0.0417 ug/l</td><td>É.</td></mdl<>	0.021	0.0417 ug/l	É.
Fluoranthene		<mdl,h< td=""><td>0.02</td><td>0.0396</td><td>ug/L</td><td></td><td><mdl,h< td=""><td>0.02</td><td>0.0396</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0033</td><td>0.00667</td><td>7 ug/L</td><td>0.195</td><td></td><td>0.0039</td><td>0.00772 ug</td><td>/L 0.15</td><td>3</td><td>0.004</td><td>0.00803</td><td>ug/L</td><td>0.0392</td><td></td><td>0.0042</td><td>0.00833 ug/l</td><td>É.</td></mdl<></td></mdl,h<></td></mdl,h<>	0.02	0.0396	ug/L		<mdl,h< td=""><td>0.02</td><td>0.0396</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0033</td><td>0.00667</td><td>7 ug/L</td><td>0.195</td><td></td><td>0.0039</td><td>0.00772 ug</td><td>/L 0.15</td><td>3</td><td>0.004</td><td>0.00803</td><td>ug/L</td><td>0.0392</td><td></td><td>0.0042</td><td>0.00833 ug/l</td><td>É.</td></mdl<></td></mdl,h<>	0.02	0.0396	ug/L		<mdl< td=""><td>0.0033</td><td>0.00667</td><td>7 ug/L</td><td>0.195</td><td></td><td>0.0039</td><td>0.00772 ug</td><td>/L 0.15</td><td>3</td><td>0.004</td><td>0.00803</td><td>ug/L</td><td>0.0392</td><td></td><td>0.0042</td><td>0.00833 ug/l</td><td>É.</td></mdl<>	0.0033	0.00667	7 ug/L	0.195		0.0039	0.00772 ug	/L 0.15	3	0.004	0.00803	ug/L	0.0392		0.0042	0.00833 ug/l	É.
Fluorene		<mdl,h< td=""><td>0.0099</td><td>0.0198</td><td>ug/L</td><td></td><td><mdl,h< td=""><td>0.0099</td><td>0.0198</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0033</td><td>0.00667</td><td>7 ug/L</td><td></td><td><mdl< td=""><td>0.0039</td><td>0.00772 ug</td><td>/L</td><td><mdl< td=""><td>0.004</td><td>0.00803</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0042</td><td>0.00833 ug/</td><td>L I</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl,h<></td></mdl,h<>	0.0099	0.0198	ug/L		<mdl,h< td=""><td>0.0099</td><td>0.0198</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0033</td><td>0.00667</td><td>7 ug/L</td><td></td><td><mdl< td=""><td>0.0039</td><td>0.00772 ug</td><td>/L</td><td><mdl< td=""><td>0.004</td><td>0.00803</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0042</td><td>0.00833 ug/</td><td>L I</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl,h<>	0.0099	0.0198	ug/L		<mdl< td=""><td>0.0033</td><td>0.00667</td><td>7 ug/L</td><td></td><td><mdl< td=""><td>0.0039</td><td>0.00772 ug</td><td>/L</td><td><mdl< td=""><td>0.004</td><td>0.00803</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0042</td><td>0.00833 ug/</td><td>L I</td></mdl<></td></mdl<></td></mdl<></td></mdl<>	0.0033	0.00667	7 ug/L		<mdl< td=""><td>0.0039</td><td>0.00772 ug</td><td>/L</td><td><mdl< td=""><td>0.004</td><td>0.00803</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0042</td><td>0.00833 ug/</td><td>L I</td></mdl<></td></mdl<></td></mdl<>	0.0039	0.00772 ug	/L	<mdl< td=""><td>0.004</td><td>0.00803</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0042</td><td>0.00833 ug/</td><td>L I</td></mdl<></td></mdl<>	0.004	0.00803	ug/L		<mdl< td=""><td>0.0042</td><td>0.00833 ug/</td><td>L I</td></mdl<>	0.0042	0.00833 ug/	L I
Indeno(1,2,3-Cd)Pyrene		<mdl,h< td=""><td>0.02</td><td>0.0396</td><td>ug/L</td><td></td><td><mdl,h< td=""><td>0.02</td><td>0.0396</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0033</td><td>0.00667</td><td>7 ug/L</td><td>0.0548</td><td></td><td>0.0039</td><td>0.00772 ug</td><td>/L 0.04</td><td>9</td><td>0.004</td><td>0.00803</td><td>ug/L</td><td>0.0146</td><td></td><td>0.0042</td><td>0.00833 ug/</td><td>L </td></mdl<></td></mdl,h<></td></mdl,h<>	0.02	0.0396	ug/L		<mdl,h< td=""><td>0.02</td><td>0.0396</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0033</td><td>0.00667</td><td>7 ug/L</td><td>0.0548</td><td></td><td>0.0039</td><td>0.00772 ug</td><td>/L 0.04</td><td>9</td><td>0.004</td><td>0.00803</td><td>ug/L</td><td>0.0146</td><td></td><td>0.0042</td><td>0.00833 ug/</td><td>L </td></mdl<></td></mdl,h<>	0.02	0.0396	ug/L		<mdl< td=""><td>0.0033</td><td>0.00667</td><td>7 ug/L</td><td>0.0548</td><td></td><td>0.0039</td><td>0.00772 ug</td><td>/L 0.04</td><td>9</td><td>0.004</td><td>0.00803</td><td>ug/L</td><td>0.0146</td><td></td><td>0.0042</td><td>0.00833 ug/</td><td>L </td></mdl<>	0.0033	0.00667	7 ug/L	0.0548		0.0039	0.00772 ug	/L 0.04	9	0.004	0.00803	ug/L	0.0146		0.0042	0.00833 ug/	L
Naphthalene		<mdl,h< td=""><td>0.0099</td><td>0.0198</td><td>ug/L</td><td></td><td><mdl,h< td=""><td>0.0099</td><td>0.0198</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0033</td><td>0.00667</td><td>7 ug/L</td><td>0.0178</td><td></td><td>0.0039</td><td>0.00772 ug</td><td>/L 0.015</td><td>7</td><td>0.004</td><td>0.00803</td><td>ug/L</td><td>0.0117</td><td></td><td>0.0042</td><td>0.00833 ug/</td><td>L .</td></mdl<></td></mdl,h<></td></mdl,h<>	0.0099	0.0198	ug/L		<mdl,h< td=""><td>0.0099</td><td>0.0198</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0033</td><td>0.00667</td><td>7 ug/L</td><td>0.0178</td><td></td><td>0.0039</td><td>0.00772 ug</td><td>/L 0.015</td><td>7</td><td>0.004</td><td>0.00803</td><td>ug/L</td><td>0.0117</td><td></td><td>0.0042</td><td>0.00833 ug/</td><td>L .</td></mdl<></td></mdl,h<>	0.0099	0.0198	ug/L		<mdl< td=""><td>0.0033</td><td>0.00667</td><td>7 ug/L</td><td>0.0178</td><td></td><td>0.0039</td><td>0.00772 ug</td><td>/L 0.015</td><td>7</td><td>0.004</td><td>0.00803</td><td>ug/L</td><td>0.0117</td><td></td><td>0.0042</td><td>0.00833 ug/</td><td>L .</td></mdl<>	0.0033	0.00667	7 ug/L	0.0178		0.0039	0.00772 ug	/L 0.015	7	0.004	0.00803	ug/L	0.0117		0.0042	0.00833 ug/	L .
Phenanthrene		<mdl,h< td=""><td>0.0099</td><td>0.0198</td><td>ug/L</td><td></td><td><mdl,h< td=""><td>0.0099</td><td>0.0198</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0033</td><td>0.00667</td><td>7 ug/L</td><td>0.1</td><td></td><td>0.0039</td><td>0.00772 ug</td><td>/L 0.088</td><td>8</td><td>0.004</td><td>0.00803</td><td>ug/L</td><td>0.0342</td><td></td><td>0.0042</td><td>0.00833 ug/</td><td>L </td></mdl<></td></mdl,h<></td></mdl,h<>	0.0099	0.0198	ug/L		<mdl,h< td=""><td>0.0099</td><td>0.0198</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0033</td><td>0.00667</td><td>7 ug/L</td><td>0.1</td><td></td><td>0.0039</td><td>0.00772 ug</td><td>/L 0.088</td><td>8</td><td>0.004</td><td>0.00803</td><td>ug/L</td><td>0.0342</td><td></td><td>0.0042</td><td>0.00833 ug/</td><td>L </td></mdl<></td></mdl,h<>	0.0099	0.0198	ug/L		<mdl< td=""><td>0.0033</td><td>0.00667</td><td>7 ug/L</td><td>0.1</td><td></td><td>0.0039</td><td>0.00772 ug</td><td>/L 0.088</td><td>8</td><td>0.004</td><td>0.00803</td><td>ug/L</td><td>0.0342</td><td></td><td>0.0042</td><td>0.00833 ug/</td><td>L </td></mdl<>	0.0033	0.00667	7 ug/L	0.1		0.0039	0.00772 ug	/L 0.088	8	0.004	0.00803	ug/L	0.0342		0.0042	0.00833 ug/	L
Pyrene		<mdl,h< td=""><td>0.0099</td><td>0.0198</td><td>ug/L</td><td></td><td><mdl,h< td=""><td>0.0099</td><td>0.0198</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0033</td><td>0.00667</td><td>7 ug/L</td><td>0.151</td><td></td><td>0.0039</td><td>0.00772 ug</td><td>/L 0.11</td><td>8</td><td>0.004</td><td>0.00803</td><td>ug/L</td><td>0.0325</td><td></td><td>0.0042</td><td>0.00833 ug/</td><td>L</td></mdl<></td></mdl,h<></td></mdl,h<>	0.0099	0.0198	ug/L		<mdl,h< td=""><td>0.0099</td><td>0.0198</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0033</td><td>0.00667</td><td>7 ug/L</td><td>0.151</td><td></td><td>0.0039</td><td>0.00772 ug</td><td>/L 0.11</td><td>8</td><td>0.004</td><td>0.00803</td><td>ug/L</td><td>0.0325</td><td></td><td>0.0042</td><td>0.00833 ug/</td><td>L</td></mdl<></td></mdl,h<>	0.0099	0.0198	ug/L		<mdl< td=""><td>0.0033</td><td>0.00667</td><td>7 ug/L</td><td>0.151</td><td></td><td>0.0039</td><td>0.00772 ug</td><td>/L 0.11</td><td>8</td><td>0.004</td><td>0.00803</td><td>ug/L</td><td>0.0325</td><td></td><td>0.0042</td><td>0.00833 ug/</td><td>L</td></mdl<>	0.0033	0.00667	7 ug/L	0.151		0.0039	0.00772 ug	/L 0.11	8	0.004	0.00803	ug/L	0.0325		0.0042	0.00833 ug/	L

PROJECT: 423589-090-1	Locator: Descrip: Client Loc: Sampled: Lab ID: Matrix: % Solids:	NONE UNKNOW CE-01-021 Mar 23, 20 L35006-4 OTHR WT	1505-03 005			Descrip: Client Loc: Sampled: Lab ID:	NONE UNKNOV CE-02-02 Mar 23, 2 L35006-5 OTHR W	1505-032 005			Locator: Descrip: Client Loc: Sampled: Lab ID: Matrix: % Solids:	MB Added by Jan 00, 1 WG7992 BLANK V	900 4-1	Dr	Locator: Descrip: Client Lo Sampled Lab ID: Matrix: % Solids	c: BW-E : Mar 2 L3500 BLAN	NOWN LO 3K-032205 22, 2005			Locator: Descrip: Client Loc: Sampled: Lab ID: Matrix: % Solids:		2			Locator: Descrip: Client Loc: Sampled: Lab ID: Matrix: % Solids:		1		
Parameters	Value		MDL Veight Bas		Units	Value		MDL Weight Basi		Units	Value	Qual -We	MDL t Weight B	RDL Uni	s Value	Qua	al MD		RDL Units	Value	Qual -w	MDL /et Weight Ba	RDL	Units	Value	Qual -W	MDL /et Weight Bas	RDL Uni	ts
ORGANICS																													
M=OR 8270B																													
2-Methylnaphthalene		<mdl 0<="" td=""><td>0.0043</td><td>0.0087</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0043</td><td>0.00862</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.01</td><td>0.02 uq/</td><td></td><td><me< td=""><td>DL 0.00</td><td>99 0.</td><td>.0198 ug/L</td><td></td><td><mdl< td=""><td>0.0097</td><td>0.0194</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0097</td><td>0.0194 ug/</td><td>/L</td></mdl<></td></mdl<></td></me<></td></mdl<></td></mdl<></td></mdl>	0.0043	0.0087	ug/L		<mdl< td=""><td>0.0043</td><td>0.00862</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.01</td><td>0.02 uq/</td><td></td><td><me< td=""><td>DL 0.00</td><td>99 0.</td><td>.0198 ug/L</td><td></td><td><mdl< td=""><td>0.0097</td><td>0.0194</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0097</td><td>0.0194 ug/</td><td>/L</td></mdl<></td></mdl<></td></me<></td></mdl<></td></mdl<>	0.0043	0.00862	ug/L		<mdl< td=""><td>0.01</td><td>0.02 uq/</td><td></td><td><me< td=""><td>DL 0.00</td><td>99 0.</td><td>.0198 ug/L</td><td></td><td><mdl< td=""><td>0.0097</td><td>0.0194</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0097</td><td>0.0194 ug/</td><td>/L</td></mdl<></td></mdl<></td></me<></td></mdl<>	0.01	0.02 uq/		<me< td=""><td>DL 0.00</td><td>99 0.</td><td>.0198 ug/L</td><td></td><td><mdl< td=""><td>0.0097</td><td>0.0194</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0097</td><td>0.0194 ug/</td><td>/L</td></mdl<></td></mdl<></td></me<>	DL 0.00	99 0.	.0198 ug/L		<mdl< td=""><td>0.0097</td><td>0.0194</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0097</td><td>0.0194 ug/</td><td>/L</td></mdl<></td></mdl<>	0.0097	0.0194	ug/L		<mdl< td=""><td>0.0097</td><td>0.0194 ug/</td><td>/L</td></mdl<>	0.0097	0.0194 ug/	/L
Acenaphthene		<mdl 0<="" td=""><td>0.0043</td><td>0.0087</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0043</td><td>0.00862</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.01</td><td>0.02 ug/</td><td>L</td><td><md< td=""><td>DL 0.00</td><td>99 0</td><td>.0198 ug/L</td><td></td><td><mdl< td=""><td>0.0097</td><td>0.0194</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0097</td><td>0.0194 ug/</td><td>/L</td></mdl<></td></mdl<></td></md<></td></mdl<></td></mdl<></td></mdl>	0.0043	0.0087	ug/L		<mdl< td=""><td>0.0043</td><td>0.00862</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.01</td><td>0.02 ug/</td><td>L</td><td><md< td=""><td>DL 0.00</td><td>99 0</td><td>.0198 ug/L</td><td></td><td><mdl< td=""><td>0.0097</td><td>0.0194</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0097</td><td>0.0194 ug/</td><td>/L</td></mdl<></td></mdl<></td></md<></td></mdl<></td></mdl<>	0.0043	0.00862	ug/L		<mdl< td=""><td>0.01</td><td>0.02 ug/</td><td>L</td><td><md< td=""><td>DL 0.00</td><td>99 0</td><td>.0198 ug/L</td><td></td><td><mdl< td=""><td>0.0097</td><td>0.0194</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0097</td><td>0.0194 ug/</td><td>/L</td></mdl<></td></mdl<></td></md<></td></mdl<>	0.01	0.02 ug/	L	<md< td=""><td>DL 0.00</td><td>99 0</td><td>.0198 ug/L</td><td></td><td><mdl< td=""><td>0.0097</td><td>0.0194</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0097</td><td>0.0194 ug/</td><td>/L</td></mdl<></td></mdl<></td></md<>	DL 0.00	99 0	.0198 ug/L		<mdl< td=""><td>0.0097</td><td>0.0194</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0097</td><td>0.0194 ug/</td><td>/L</td></mdl<></td></mdl<>	0.0097	0.0194	ug/L		<mdl< td=""><td>0.0097</td><td>0.0194 ug/</td><td>/L</td></mdl<>	0.0097	0.0194 ug/	/L
Acenaphthylene		<mdl 0<="" td=""><td>0.0043</td><td>0.0087</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0043</td><td>0.00862</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.01</td><td>0.02 ug/</td><td>L</td><td><md< td=""><td>DL 0.00</td><td>99 0</td><td>.0198 ug/L</td><td></td><td><mdl< td=""><td>0.0097</td><td>0.0194</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0097</td><td>0.0194 ug/</td><td>/L</td></mdl<></td></mdl<></td></md<></td></mdl<></td></mdl<></td></mdl>	0.0043	0.0087	ug/L		<mdl< td=""><td>0.0043</td><td>0.00862</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.01</td><td>0.02 ug/</td><td>L</td><td><md< td=""><td>DL 0.00</td><td>99 0</td><td>.0198 ug/L</td><td></td><td><mdl< td=""><td>0.0097</td><td>0.0194</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0097</td><td>0.0194 ug/</td><td>/L</td></mdl<></td></mdl<></td></md<></td></mdl<></td></mdl<>	0.0043	0.00862	ug/L		<mdl< td=""><td>0.01</td><td>0.02 ug/</td><td>L</td><td><md< td=""><td>DL 0.00</td><td>99 0</td><td>.0198 ug/L</td><td></td><td><mdl< td=""><td>0.0097</td><td>0.0194</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0097</td><td>0.0194 ug/</td><td>/L</td></mdl<></td></mdl<></td></md<></td></mdl<>	0.01	0.02 ug/	L	<md< td=""><td>DL 0.00</td><td>99 0</td><td>.0198 ug/L</td><td></td><td><mdl< td=""><td>0.0097</td><td>0.0194</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0097</td><td>0.0194 ug/</td><td>/L</td></mdl<></td></mdl<></td></md<>	DL 0.00	99 0	.0198 ug/L		<mdl< td=""><td>0.0097</td><td>0.0194</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0097</td><td>0.0194 ug/</td><td>/L</td></mdl<></td></mdl<>	0.0097	0.0194	ug/L		<mdl< td=""><td>0.0097</td><td>0.0194 ug/</td><td>/L</td></mdl<>	0.0097	0.0194 ug/	/L
Anthracene	0.011	7 C	0.0043	0.0087	ug/L	0.0103		0.0043	0.00862	ug/L		<mdl< td=""><td>0.01</td><td>0.02 ug/</td><td>L</td><td><me< td=""><td>DL 0.00</td><td>99 0.</td><td>.0198 ug/L</td><td></td><td><mdl< td=""><td>0.0097</td><td>0.0194</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0097</td><td>0.0194 ug/</td><td>/L</td></mdl<></td></mdl<></td></me<></td></mdl<>	0.01	0.02 ug/	L	<me< td=""><td>DL 0.00</td><td>99 0.</td><td>.0198 ug/L</td><td></td><td><mdl< td=""><td>0.0097</td><td>0.0194</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0097</td><td>0.0194 ug/</td><td>/L</td></mdl<></td></mdl<></td></me<>	DL 0.00	99 0.	.0198 ug/L		<mdl< td=""><td>0.0097</td><td>0.0194</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0097</td><td>0.0194 ug/</td><td>/L</td></mdl<></td></mdl<>	0.0097	0.0194	ug/L		<mdl< td=""><td>0.0097</td><td>0.0194 ug/</td><td>/L</td></mdl<>	0.0097	0.0194 ug/	/L
Benzo(a)anthracene	0.025	7 0	0.0043	0.0087	ug/L	0.0289		0.0043	0.00862	ug/L		<mdl< td=""><td>0.01</td><td>0.02 ug/</td><td>L</td><td><me< td=""><td>DL 0.00</td><td>99 0.</td><td>.0198 ug/L</td><td></td><td><mdl< td=""><td>0.0097</td><td>0.0194</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0097</td><td>0.0194 ug/</td><td>/L</td></mdl<></td></mdl<></td></me<></td></mdl<>	0.01	0.02 ug/	L	<me< td=""><td>DL 0.00</td><td>99 0.</td><td>.0198 ug/L</td><td></td><td><mdl< td=""><td>0.0097</td><td>0.0194</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0097</td><td>0.0194 ug/</td><td>/L</td></mdl<></td></mdl<></td></me<>	DL 0.00	99 0.	.0198 ug/L		<mdl< td=""><td>0.0097</td><td>0.0194</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0097</td><td>0.0194 ug/</td><td>/L</td></mdl<></td></mdl<>	0.0097	0.0194	ug/L		<mdl< td=""><td>0.0097</td><td>0.0194 ug/</td><td>/L</td></mdl<>	0.0097	0.0194 ug/	/L
Benzo(a)pyrene	0.039	1 C	0.0043	0.0087	ug/L	0.0397		0.0043	0.00862	ug/L		<mdl< td=""><td>0.01</td><td>0.02 ug/</td><td>L</td><td><me< td=""><td>DL 0.00</td><td>99 0.</td><td>.0198 ug/L</td><td></td><td><mdl< td=""><td>0.0097</td><td>0.0194</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0097</td><td>0.0194 ug/</td><td>/L</td></mdl<></td></mdl<></td></me<></td></mdl<>	0.01	0.02 ug/	L	<me< td=""><td>DL 0.00</td><td>99 0.</td><td>.0198 ug/L</td><td></td><td><mdl< td=""><td>0.0097</td><td>0.0194</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0097</td><td>0.0194 ug/</td><td>/L</td></mdl<></td></mdl<></td></me<>	DL 0.00	99 0.	.0198 ug/L		<mdl< td=""><td>0.0097</td><td>0.0194</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0097</td><td>0.0194 ug/</td><td>/L</td></mdl<></td></mdl<>	0.0097	0.0194	ug/L		<mdl< td=""><td>0.0097</td><td>0.0194 ug/</td><td>/L</td></mdl<>	0.0097	0.0194 ug/	/L
Benzo(b)fluoranthene	0.066	1 C	0.0043	0.0087	ug/L	0.0668		0.0043	0.00862	ug/L		<mdl< td=""><td>0.01</td><td>0.02 ug/</td><td>L</td><td><me< td=""><td>DL 0.00</td><td>99 0.</td><td>.0198 ug/L</td><td></td><td><mdl< td=""><td>0.0097</td><td>0.0194</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0097</td><td>0.0194 ug/</td><td>/L</td></mdl<></td></mdl<></td></me<></td></mdl<>	0.01	0.02 ug/	L	<me< td=""><td>DL 0.00</td><td>99 0.</td><td>.0198 ug/L</td><td></td><td><mdl< td=""><td>0.0097</td><td>0.0194</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0097</td><td>0.0194 ug/</td><td>/L</td></mdl<></td></mdl<></td></me<>	DL 0.00	99 0.	.0198 ug/L		<mdl< td=""><td>0.0097</td><td>0.0194</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0097</td><td>0.0194 ug/</td><td>/L</td></mdl<></td></mdl<>	0.0097	0.0194	ug/L		<mdl< td=""><td>0.0097</td><td>0.0194 ug/</td><td>/L</td></mdl<>	0.0097	0.0194 ug/	/L
Benzo(g,h,i)perylene	0.0687	7 C	0.0043	0.0087	ug/L	0.0772		0.0043	0.00862	ug/L		<mdl< td=""><td>0.01</td><td>0.02 ug/</td><td>L</td><td><me< td=""><td>DL 0.00</td><td>99 0</td><td>.0198 ug/L</td><td></td><td><mdl< td=""><td>0.0097</td><td>0.0194</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0097</td><td>0.0194 ug/</td><td>/L</td></mdl<></td></mdl<></td></me<></td></mdl<>	0.01	0.02 ug/	L	<me< td=""><td>DL 0.00</td><td>99 0</td><td>.0198 ug/L</td><td></td><td><mdl< td=""><td>0.0097</td><td>0.0194</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0097</td><td>0.0194 ug/</td><td>/L</td></mdl<></td></mdl<></td></me<>	DL 0.00	99 0	.0198 ug/L		<mdl< td=""><td>0.0097</td><td>0.0194</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0097</td><td>0.0194 ug/</td><td>/L</td></mdl<></td></mdl<>	0.0097	0.0194	ug/L		<mdl< td=""><td>0.0097</td><td>0.0194 ug/</td><td>/L</td></mdl<>	0.0097	0.0194 ug/	/L
Benzo(k)fluoranthene	0.0496	6 C	0.0043	0.0087	ug/L	0.0621		0.0043	0.00862	ug/L		<mdl< td=""><td>0.01</td><td>0.02 ug/</td><td>L</td><td><me< td=""><td>DL 0.00</td><td>99 0</td><td>.0198 ug/L</td><td></td><td><mdl< td=""><td>0.0097</td><td>0.0194</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0097</td><td>0.0194 ug/</td><td>/L</td></mdl<></td></mdl<></td></me<></td></mdl<>	0.01	0.02 ug/	L	<me< td=""><td>DL 0.00</td><td>99 0</td><td>.0198 ug/L</td><td></td><td><mdl< td=""><td>0.0097</td><td>0.0194</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0097</td><td>0.0194 ug/</td><td>/L</td></mdl<></td></mdl<></td></me<>	DL 0.00	99 0	.0198 ug/L		<mdl< td=""><td>0.0097</td><td>0.0194</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0097</td><td>0.0194 ug/</td><td>/L</td></mdl<></td></mdl<>	0.0097	0.0194	ug/L		<mdl< td=""><td>0.0097</td><td>0.0194 ug/</td><td>/L</td></mdl<>	0.0097	0.0194 ug/	/L
Benzyl Butyl Phthalate	0.397	7	0.022	0.0435	ug/L	0.334		0.022	0.0431	ug/L		<mdl< td=""><td>0.05</td><td>0.1 ug/</td><td>L</td><td><me< td=""><td>DL 0.</td><td>.05</td><td>0.099 ug/L</td><td></td><td><mdl< td=""><td>0.049</td><td>0.0971</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.049</td><td>0.0971 ug/</td><td>/L</td></mdl<></td></mdl<></td></me<></td></mdl<>	0.05	0.1 ug/	L	<me< td=""><td>DL 0.</td><td>.05</td><td>0.099 ug/L</td><td></td><td><mdl< td=""><td>0.049</td><td>0.0971</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.049</td><td>0.0971 ug/</td><td>/L</td></mdl<></td></mdl<></td></me<>	DL 0.	.05	0.099 ug/L		<mdl< td=""><td>0.049</td><td>0.0971</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.049</td><td>0.0971 ug/</td><td>/L</td></mdl<></td></mdl<>	0.049	0.0971	ug/L		<mdl< td=""><td>0.049</td><td>0.0971 ug/</td><td>/L</td></mdl<>	0.049	0.0971 ug/	/L
Bis(2-Ethylhexyl)Phthalate	2.0	1	0.022	0.0435	ug/L	1.96		0.022	0.0431	ug/L	0.06	3 <rdl,b< td=""><td>0.05</td><td>0.1 ug/</td><td>L 0.0</td><td>)84 <rdi< td=""><td>L,B 0.</td><td>.05</td><td>0.099 ug/L</td><td>0.08</td><td>2 <rdl,b< td=""><td>0.049</td><td>0.0971</td><td>ug/L</td><td>0.07</td><td>7 <rdl,b< td=""><td>0.049</td><td>0.0971 ug/</td><td>/L</td></rdl,b<></td></rdl,b<></td></rdi<></td></rdl,b<>	0.05	0.1 ug/	L 0.0)84 <rdi< td=""><td>L,B 0.</td><td>.05</td><td>0.099 ug/L</td><td>0.08</td><td>2 <rdl,b< td=""><td>0.049</td><td>0.0971</td><td>ug/L</td><td>0.07</td><td>7 <rdl,b< td=""><td>0.049</td><td>0.0971 ug/</td><td>/L</td></rdl,b<></td></rdl,b<></td></rdi<>	L,B 0.	.05	0.099 ug/L	0.08	2 <rdl,b< td=""><td>0.049</td><td>0.0971</td><td>ug/L</td><td>0.07</td><td>7 <rdl,b< td=""><td>0.049</td><td>0.0971 ug/</td><td>/L</td></rdl,b<></td></rdl,b<>	0.049	0.0971	ug/L	0.07	7 <rdl,b< td=""><td>0.049</td><td>0.0971 ug/</td><td>/L</td></rdl,b<>	0.049	0.0971 ug/	/L
Chrysene	0.0983	3 C	0.0043	0.0087	ug/L	0.101		0.0043	0.00862	ug/L		<mdl< td=""><td>0.01</td><td>0.02 ug/</td><td></td><td><me< td=""><td>DL 0.00</td><td>99 0</td><td>.0198 ug/L</td><td></td><td><mdl< td=""><td>0.0097</td><td>0.0194</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0097</td><td>0.0194 ug/</td><td>/L</td></mdl<></td></mdl<></td></me<></td></mdl<>	0.01	0.02 ug/		<me< td=""><td>DL 0.00</td><td>99 0</td><td>.0198 ug/L</td><td></td><td><mdl< td=""><td>0.0097</td><td>0.0194</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0097</td><td>0.0194 ug/</td><td>/L</td></mdl<></td></mdl<></td></me<>	DL 0.00	99 0	.0198 ug/L		<mdl< td=""><td>0.0097</td><td>0.0194</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0097</td><td>0.0194 ug/</td><td>/L</td></mdl<></td></mdl<>	0.0097	0.0194	ug/L		<mdl< td=""><td>0.0097</td><td>0.0194 ug/</td><td>/L</td></mdl<>	0.0097	0.0194 ug/	/L
Dibenzo(a,h)anthracene		<mdl 0<="" td=""><td>0.0043</td><td>0.0087</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0043</td><td>0.00862</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.01</td><td>0.02 ug/</td><td>L</td><td><me< td=""><td>DL 0.00</td><td>99 0</td><td>.0198 ug/L</td><td></td><td><mdl< td=""><td>0.0097</td><td>0.0194</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0097</td><td>0.0194 ug/</td><td>/L</td></mdl<></td></mdl<></td></me<></td></mdl<></td></mdl<></td></mdl>	0.0043	0.0087	ug/L		<mdl< td=""><td>0.0043</td><td>0.00862</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.01</td><td>0.02 ug/</td><td>L</td><td><me< td=""><td>DL 0.00</td><td>99 0</td><td>.0198 ug/L</td><td></td><td><mdl< td=""><td>0.0097</td><td>0.0194</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0097</td><td>0.0194 ug/</td><td>/L</td></mdl<></td></mdl<></td></me<></td></mdl<></td></mdl<>	0.0043	0.00862	ug/L		<mdl< td=""><td>0.01</td><td>0.02 ug/</td><td>L</td><td><me< td=""><td>DL 0.00</td><td>99 0</td><td>.0198 ug/L</td><td></td><td><mdl< td=""><td>0.0097</td><td>0.0194</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0097</td><td>0.0194 ug/</td><td>/L</td></mdl<></td></mdl<></td></me<></td></mdl<>	0.01	0.02 ug/	L	<me< td=""><td>DL 0.00</td><td>99 0</td><td>.0198 ug/L</td><td></td><td><mdl< td=""><td>0.0097</td><td>0.0194</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0097</td><td>0.0194 ug/</td><td>/L</td></mdl<></td></mdl<></td></me<>	DL 0.00	99 0	.0198 ug/L		<mdl< td=""><td>0.0097</td><td>0.0194</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0097</td><td>0.0194 ug/</td><td>/L</td></mdl<></td></mdl<>	0.0097	0.0194	ug/L		<mdl< td=""><td>0.0097</td><td>0.0194 ug/</td><td>/L</td></mdl<>	0.0097	0.0194 ug/	/L
Diethyl Phthalate	0.0783	3	0.022	0.0435	ug/L	0.0522		0.022	0.0431	ug/L		<mdl< td=""><td>0.05</td><td>0.1 ug/</td><td></td><td><me< td=""><td>DL 0</td><td>.05 (</td><td>0.099 ug/L</td><td></td><td><mdl< td=""><td>0.049</td><td>0.0971</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.049</td><td>0.0971 ug/</td><td>/L</td></mdl<></td></mdl<></td></me<></td></mdl<>	0.05	0.1 ug/		<me< td=""><td>DL 0</td><td>.05 (</td><td>0.099 ug/L</td><td></td><td><mdl< td=""><td>0.049</td><td>0.0971</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.049</td><td>0.0971 ug/</td><td>/L</td></mdl<></td></mdl<></td></me<>	DL 0	.05 (0.099 ug/L		<mdl< td=""><td>0.049</td><td>0.0971</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.049</td><td>0.0971 ug/</td><td>/L</td></mdl<></td></mdl<>	0.049	0.0971	ug/L		<mdl< td=""><td>0.049</td><td>0.0971 ug/</td><td>/L</td></mdl<>	0.049	0.0971 ug/	/L
Dimethyl Phthalate	0.028	8 <rdl< td=""><td>0.022</td><td>0.0435</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.022</td><td>0.0431</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.05</td><td>0.1 ug/</td><td>L</td><td><me< td=""><td>DL 0.</td><td>.05</td><td>0.099 ug/L</td><td></td><td><mdl< td=""><td>0.049</td><td>0.0971</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.049</td><td>0.0971 ug/</td><td>/L</td></mdl<></td></mdl<></td></me<></td></mdl<></td></mdl<></td></rdl<>	0.022	0.0435	ug/L		<mdl< td=""><td>0.022</td><td>0.0431</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.05</td><td>0.1 ug/</td><td>L</td><td><me< td=""><td>DL 0.</td><td>.05</td><td>0.099 ug/L</td><td></td><td><mdl< td=""><td>0.049</td><td>0.0971</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.049</td><td>0.0971 ug/</td><td>/L</td></mdl<></td></mdl<></td></me<></td></mdl<></td></mdl<>	0.022	0.0431	ug/L		<mdl< td=""><td>0.05</td><td>0.1 ug/</td><td>L</td><td><me< td=""><td>DL 0.</td><td>.05</td><td>0.099 ug/L</td><td></td><td><mdl< td=""><td>0.049</td><td>0.0971</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.049</td><td>0.0971 ug/</td><td>/L</td></mdl<></td></mdl<></td></me<></td></mdl<>	0.05	0.1 ug/	L	<me< td=""><td>DL 0.</td><td>.05</td><td>0.099 ug/L</td><td></td><td><mdl< td=""><td>0.049</td><td>0.0971</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.049</td><td>0.0971 ug/</td><td>/L</td></mdl<></td></mdl<></td></me<>	DL 0.	.05	0.099 ug/L		<mdl< td=""><td>0.049</td><td>0.0971</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.049</td><td>0.0971 ug/</td><td>/L</td></mdl<></td></mdl<>	0.049	0.0971	ug/L		<mdl< td=""><td>0.049</td><td>0.0971 ug/</td><td>/L</td></mdl<>	0.049	0.0971 ug/	/L
Di-N-Butyl Phthalate	0.199	9 B	0.022	0.0435	ug/L	0.103	В	0.022	0.0431	ug/L		<mdl< td=""><td>0.05</td><td>0.1 ug/</td><td>L 0</td><td>.06 <re< td=""><td>DL 0.</td><td>.05 (</td><td>0.099 ug/L</td><td>0.06</td><td>5 <rdl< td=""><td>0.049</td><td>0.0971</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.049</td><td>0.0971 ug/</td><td>/L</td></mdl<></td></rdl<></td></re<></td></mdl<>	0.05	0.1 ug/	L 0	.06 <re< td=""><td>DL 0.</td><td>.05 (</td><td>0.099 ug/L</td><td>0.06</td><td>5 <rdl< td=""><td>0.049</td><td>0.0971</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.049</td><td>0.0971 ug/</td><td>/L</td></mdl<></td></rdl<></td></re<>	DL 0.	.05 (0.099 ug/L	0.06	5 <rdl< td=""><td>0.049</td><td>0.0971</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.049</td><td>0.0971 ug/</td><td>/L</td></mdl<></td></rdl<>	0.049	0.0971	ug/L		<mdl< td=""><td>0.049</td><td>0.0971 ug/</td><td>/L</td></mdl<>	0.049	0.0971 ug/	/L
Di-N-Octyl Phthalate		<mdl< td=""><td>0.022</td><td>0.0435</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.022</td><td>0.0431</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.05</td><td>0.1 ug/</td><td>L</td><td><me< td=""><td>DL 0.</td><td>.05</td><td>0.099 ug/L</td><td></td><td><mdl< td=""><td>0.049</td><td>0.0971</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.049</td><td>0.0971 ug/</td><td>/L</td></mdl<></td></mdl<></td></me<></td></mdl<></td></mdl<></td></mdl<>	0.022	0.0435	ug/L		<mdl< td=""><td>0.022</td><td>0.0431</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.05</td><td>0.1 ug/</td><td>L</td><td><me< td=""><td>DL 0.</td><td>.05</td><td>0.099 ug/L</td><td></td><td><mdl< td=""><td>0.049</td><td>0.0971</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.049</td><td>0.0971 ug/</td><td>/L</td></mdl<></td></mdl<></td></me<></td></mdl<></td></mdl<>	0.022	0.0431	ug/L		<mdl< td=""><td>0.05</td><td>0.1 ug/</td><td>L</td><td><me< td=""><td>DL 0.</td><td>.05</td><td>0.099 ug/L</td><td></td><td><mdl< td=""><td>0.049</td><td>0.0971</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.049</td><td>0.0971 ug/</td><td>/L</td></mdl<></td></mdl<></td></me<></td></mdl<>	0.05	0.1 ug/	L	<me< td=""><td>DL 0.</td><td>.05</td><td>0.099 ug/L</td><td></td><td><mdl< td=""><td>0.049</td><td>0.0971</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.049</td><td>0.0971 ug/</td><td>/L</td></mdl<></td></mdl<></td></me<>	DL 0.	.05	0.099 ug/L		<mdl< td=""><td>0.049</td><td>0.0971</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.049</td><td>0.0971 ug/</td><td>/L</td></mdl<></td></mdl<>	0.049	0.0971	ug/L		<mdl< td=""><td>0.049</td><td>0.0971 ug/</td><td>/L</td></mdl<>	0.049	0.0971 ug/	/L
Fluoranthene	0.18	в С	0.0043	0.0087	ug/L	0.169		0.0043	0.00862	ug/L		<mdl< td=""><td>0.01</td><td>0.02 ug/</td><td></td><td><me< td=""><td>DL 0.00</td><td>99 0</td><td>.0198 ug/L</td><td></td><td><mdl< td=""><td>0.0097</td><td>0.0194</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0097</td><td>0.0194 ug/</td><td>/L</td></mdl<></td></mdl<></td></me<></td></mdl<>	0.01	0.02 ug/		<me< td=""><td>DL 0.00</td><td>99 0</td><td>.0198 ug/L</td><td></td><td><mdl< td=""><td>0.0097</td><td>0.0194</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0097</td><td>0.0194 ug/</td><td>/L</td></mdl<></td></mdl<></td></me<>	DL 0.00	99 0	.0198 ug/L		<mdl< td=""><td>0.0097</td><td>0.0194</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0097</td><td>0.0194 ug/</td><td>/L</td></mdl<></td></mdl<>	0.0097	0.0194	ug/L		<mdl< td=""><td>0.0097</td><td>0.0194 ug/</td><td>/L</td></mdl<>	0.0097	0.0194 ug/	/L
Fluorene	0.011	7 C	0.0043	0.0087	ug/L		<mdl< td=""><td>0.0043</td><td>0.00862</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.01</td><td>0.02 ug/</td><td>L</td><td><me< td=""><td>DL 0.00</td><td>99 0</td><td>.0198 ug/L</td><td></td><td><mdl< td=""><td>0.0097</td><td>0.0194</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0097</td><td>0.0194 ug/</td><td>/L</td></mdl<></td></mdl<></td></me<></td></mdl<></td></mdl<>	0.0043	0.00862	ug/L		<mdl< td=""><td>0.01</td><td>0.02 ug/</td><td>L</td><td><me< td=""><td>DL 0.00</td><td>99 0</td><td>.0198 ug/L</td><td></td><td><mdl< td=""><td>0.0097</td><td>0.0194</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0097</td><td>0.0194 ug/</td><td>/L</td></mdl<></td></mdl<></td></me<></td></mdl<>	0.01	0.02 ug/	L	<me< td=""><td>DL 0.00</td><td>99 0</td><td>.0198 ug/L</td><td></td><td><mdl< td=""><td>0.0097</td><td>0.0194</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0097</td><td>0.0194 ug/</td><td>/L</td></mdl<></td></mdl<></td></me<>	DL 0.00	99 0	.0198 ug/L		<mdl< td=""><td>0.0097</td><td>0.0194</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0097</td><td>0.0194 ug/</td><td>/L</td></mdl<></td></mdl<>	0.0097	0.0194	ug/L		<mdl< td=""><td>0.0097</td><td>0.0194 ug/</td><td>/L</td></mdl<>	0.0097	0.0194 ug/	/L
Indeno(1,2,3-Cd)Pyrene	0.0378	в С	0.0043	0.0087	ug/L	0.0384		0.0043	0.00862	ug/L		<mdl< td=""><td>0.01</td><td>0.02 ug/</td><td></td><td><me< td=""><td>DL 0.00</td><td>99 0</td><td>.0198 ug/L</td><td></td><td><mdl< td=""><td>0.0097</td><td>0.0194</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0097</td><td>0.0194 ug/</td><td>/L</td></mdl<></td></mdl<></td></me<></td></mdl<>	0.01	0.02 ug/		<me< td=""><td>DL 0.00</td><td>99 0</td><td>.0198 ug/L</td><td></td><td><mdl< td=""><td>0.0097</td><td>0.0194</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0097</td><td>0.0194 ug/</td><td>/L</td></mdl<></td></mdl<></td></me<>	DL 0.00	99 0	.0198 ug/L		<mdl< td=""><td>0.0097</td><td>0.0194</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0097</td><td>0.0194 ug/</td><td>/L</td></mdl<></td></mdl<>	0.0097	0.0194	ug/L		<mdl< td=""><td>0.0097</td><td>0.0194 ug/</td><td>/L</td></mdl<>	0.0097	0.0194 ug/	/L
Naphthalene	0.0226	6 C	0.0043	0.0087	ug/L	0.0207		0.0043	0.00862	ug/L		<mdl< td=""><td>0.01</td><td>0.02 ug/</td><td></td><td><me< td=""><td>DL 0.00</td><td>99 0</td><td>.0198 ug/L</td><td></td><td><mdl< td=""><td>0.0097</td><td>0.0194</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0097</td><td>0.0194 ug/</td><td>/L</td></mdl<></td></mdl<></td></me<></td></mdl<>	0.01	0.02 ug/		<me< td=""><td>DL 0.00</td><td>99 0</td><td>.0198 ug/L</td><td></td><td><mdl< td=""><td>0.0097</td><td>0.0194</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0097</td><td>0.0194 ug/</td><td>/L</td></mdl<></td></mdl<></td></me<>	DL 0.00	99 0	.0198 ug/L		<mdl< td=""><td>0.0097</td><td>0.0194</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0097</td><td>0.0194 ug/</td><td>/L</td></mdl<></td></mdl<>	0.0097	0.0194	ug/L		<mdl< td=""><td>0.0097</td><td>0.0194 ug/</td><td>/L</td></mdl<>	0.0097	0.0194 ug/	/L
Phenanthrene	0.0809	9 0	0.0043	0.0087	ug/L	0.0543		0.0043	0.00862	ug/L		<mdl< td=""><td>0.01</td><td>0.02 ug/</td><td></td><td><me< td=""><td>DL 0.00</td><td>099 0</td><td>.0198 ug/L</td><td></td><td><mdl< td=""><td>0.0097</td><td>0.0194</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0097</td><td>0.0194 ug/</td><td>/L</td></mdl<></td></mdl<></td></me<></td></mdl<>	0.01	0.02 ug/		<me< td=""><td>DL 0.00</td><td>099 0</td><td>.0198 ug/L</td><td></td><td><mdl< td=""><td>0.0097</td><td>0.0194</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0097</td><td>0.0194 ug/</td><td>/L</td></mdl<></td></mdl<></td></me<>	DL 0.00	099 0	.0198 ug/L		<mdl< td=""><td>0.0097</td><td>0.0194</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0097</td><td>0.0194 ug/</td><td>/L</td></mdl<></td></mdl<>	0.0097	0.0194	ug/L		<mdl< td=""><td>0.0097</td><td>0.0194 ug/</td><td>/L</td></mdl<>	0.0097	0.0194 ug/	/L
Pyrene	0.148	B C	0.0043	0.0087	ug/L	0.136		0.0043	0.00862	ug/L		<mdl< td=""><td>0.01</td><td>0.02 ug/</td><td></td><td><me< td=""><td>DL 0.00</td><td>99 0</td><td>.0198 ug/L</td><td></td><td><mdl< td=""><td>0.0097</td><td>0.0194</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0097</td><td>0.0194 ug/</td><td>/L</td></mdl<></td></mdl<></td></me<></td></mdl<>	0.01	0.02 ug/		<me< td=""><td>DL 0.00</td><td>99 0</td><td>.0198 ug/L</td><td></td><td><mdl< td=""><td>0.0097</td><td>0.0194</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0097</td><td>0.0194 ug/</td><td>/L</td></mdl<></td></mdl<></td></me<>	DL 0.00	99 0	.0198 ug/L		<mdl< td=""><td>0.0097</td><td>0.0194</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0097</td><td>0.0194 ug/</td><td>/L</td></mdl<></td></mdl<>	0.0097	0.0194	ug/L		<mdl< td=""><td>0.0097</td><td>0.0194 ug/</td><td>/L</td></mdl<>	0.0097	0.0194 ug/	/L
					-					Ť				0										-					

PROJECT: 423589-090-1	Locator: Descrip: Client Loc: Sampled: Lab ID: Matrix: % Solids:		2005 -5	CATOR 05-032205		Locator: Descrip: Client Loc: Sampled: Lab ID: Matrix: % Solids:	MB Added I Jan 00, WG799 BLANK	25-1	r	E C S L N	Locator: Descrip: Client Loc: Sampled: Lab ID: Matrix: % Solids:		-1			Descrip: Client Loc: Sampled: Lab ID:	MB Added by Jan 00, 1 WG7992 BLANK V	6-1		Locator: Descrip: Client Lo Sampled Lab ID: Matrix: % Solids:	: CE-01	IOWN LOC I-032305-03 0, 2005 26-2			Descrip: Client Loc: Sampled: Lab ID:		-3	-
Parameters	Value	Qual -We	MDL et Weight Ba		Units	Value	Qual -We	MDL et Weight Bas		Jnits	Value	Qual -We	MDL et Weight Ba	RDL	Units	Value	Qual -W	MDL et Weight Bas		nits Value	Qual	MDL Wet Weight Ba	RDL	Units	Value	Qual -We	MDL et Weight Basi	RDL Units
ORGANICS																												
M=OR 8270B																												
2-Methylnaphthalene		<mdl< td=""><td>0.0098</td><td>0.0196</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0017</td><td>0.00333 ι</td><td>lg/L</td><td></td><td><mdl< td=""><td>0.0017</td><td>0.00338</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0017</td><td>0.00333 u</td><td>g/L 0.008</td><td>29</td><td>0.0017</td><td>0.00345</td><td>ug/L</td><td>0.00992</td><td></td><td>0.0016</td><td>0.00325 ug/L</td></mdl<></td></mdl<></td></mdl<></td></mdl<>	0.0098	0.0196	ug/L		<mdl< td=""><td>0.0017</td><td>0.00333 ι</td><td>lg/L</td><td></td><td><mdl< td=""><td>0.0017</td><td>0.00338</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0017</td><td>0.00333 u</td><td>g/L 0.008</td><td>29</td><td>0.0017</td><td>0.00345</td><td>ug/L</td><td>0.00992</td><td></td><td>0.0016</td><td>0.00325 ug/L</td></mdl<></td></mdl<></td></mdl<>	0.0017	0.00333 ι	lg/L		<mdl< td=""><td>0.0017</td><td>0.00338</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0017</td><td>0.00333 u</td><td>g/L 0.008</td><td>29</td><td>0.0017</td><td>0.00345</td><td>ug/L</td><td>0.00992</td><td></td><td>0.0016</td><td>0.00325 ug/L</td></mdl<></td></mdl<>	0.0017	0.00338	ug/L		<mdl< td=""><td>0.0017</td><td>0.00333 u</td><td>g/L 0.008</td><td>29</td><td>0.0017</td><td>0.00345</td><td>ug/L</td><td>0.00992</td><td></td><td>0.0016</td><td>0.00325 ug/L</td></mdl<>	0.0017	0.00333 u	g/L 0.008	29	0.0017	0.00345	ug/L	0.00992		0.0016	0.00325 ug/L
Acenaphthene		<mdl< td=""><td>0.0098</td><td>0.0196</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0017</td><td>0.00333 L</td><td>Jg/L</td><td></td><td><mdl< td=""><td>0.0017</td><td>0.00338</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0017</td><td>0.00333 u</td><td>g/L</td><td><mdl< td=""><td>0.0017</td><td>0.00345</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0016</td><td>0.00325 ug/L</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	0.0098	0.0196	ug/L		<mdl< td=""><td>0.0017</td><td>0.00333 L</td><td>Jg/L</td><td></td><td><mdl< td=""><td>0.0017</td><td>0.00338</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0017</td><td>0.00333 u</td><td>g/L</td><td><mdl< td=""><td>0.0017</td><td>0.00345</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0016</td><td>0.00325 ug/L</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	0.0017	0.00333 L	Jg/L		<mdl< td=""><td>0.0017</td><td>0.00338</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0017</td><td>0.00333 u</td><td>g/L</td><td><mdl< td=""><td>0.0017</td><td>0.00345</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0016</td><td>0.00325 ug/L</td></mdl<></td></mdl<></td></mdl<></td></mdl<>	0.0017	0.00338	ug/L		<mdl< td=""><td>0.0017</td><td>0.00333 u</td><td>g/L</td><td><mdl< td=""><td>0.0017</td><td>0.00345</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0016</td><td>0.00325 ug/L</td></mdl<></td></mdl<></td></mdl<>	0.0017	0.00333 u	g/L	<mdl< td=""><td>0.0017</td><td>0.00345</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0016</td><td>0.00325 ug/L</td></mdl<></td></mdl<>	0.0017	0.00345	ug/L		<mdl< td=""><td>0.0016</td><td>0.00325 ug/L</td></mdl<>	0.0016	0.00325 ug/L
Acenaphthylene		<mdl< td=""><td>0.0098</td><td>0.0196</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0017</td><td>0.00333 L</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0017</td><td>0.00338</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0017</td><td>0.00333 u</td><td>g/L</td><td><mdl< td=""><td>0.0017</td><td>0.00345</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0016</td><td>0.00325 ug/L</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	0.0098	0.0196	ug/L		<mdl< td=""><td>0.0017</td><td>0.00333 L</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0017</td><td>0.00338</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0017</td><td>0.00333 u</td><td>g/L</td><td><mdl< td=""><td>0.0017</td><td>0.00345</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0016</td><td>0.00325 ug/L</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	0.0017	0.00333 L	ug/L		<mdl< td=""><td>0.0017</td><td>0.00338</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0017</td><td>0.00333 u</td><td>g/L</td><td><mdl< td=""><td>0.0017</td><td>0.00345</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0016</td><td>0.00325 ug/L</td></mdl<></td></mdl<></td></mdl<></td></mdl<>	0.0017	0.00338	ug/L		<mdl< td=""><td>0.0017</td><td>0.00333 u</td><td>g/L</td><td><mdl< td=""><td>0.0017</td><td>0.00345</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0016</td><td>0.00325 ug/L</td></mdl<></td></mdl<></td></mdl<>	0.0017	0.00333 u	g/L	<mdl< td=""><td>0.0017</td><td>0.00345</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0016</td><td>0.00325 ug/L</td></mdl<></td></mdl<>	0.0017	0.00345	ug/L		<mdl< td=""><td>0.0016</td><td>0.00325 ug/L</td></mdl<>	0.0016	0.00325 ug/L
Anthracene		<mdl< td=""><td>0.0098</td><td>0.0196</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0017</td><td>0.00333 L</td><td>Jg/L</td><td></td><td><mdl< td=""><td>0.0017</td><td>0.00338</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0017</td><td>0.00333 u</td><td>g/L</td><td><mdl< td=""><td>0.0017</td><td>0.00345</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0016</td><td>0.00325 ug/L</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	0.0098	0.0196	ug/L		<mdl< td=""><td>0.0017</td><td>0.00333 L</td><td>Jg/L</td><td></td><td><mdl< td=""><td>0.0017</td><td>0.00338</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0017</td><td>0.00333 u</td><td>g/L</td><td><mdl< td=""><td>0.0017</td><td>0.00345</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0016</td><td>0.00325 ug/L</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	0.0017	0.00333 L	Jg/L		<mdl< td=""><td>0.0017</td><td>0.00338</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0017</td><td>0.00333 u</td><td>g/L</td><td><mdl< td=""><td>0.0017</td><td>0.00345</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0016</td><td>0.00325 ug/L</td></mdl<></td></mdl<></td></mdl<></td></mdl<>	0.0017	0.00338	ug/L		<mdl< td=""><td>0.0017</td><td>0.00333 u</td><td>g/L</td><td><mdl< td=""><td>0.0017</td><td>0.00345</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0016</td><td>0.00325 ug/L</td></mdl<></td></mdl<></td></mdl<>	0.0017	0.00333 u	g/L	<mdl< td=""><td>0.0017</td><td>0.00345</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0016</td><td>0.00325 ug/L</td></mdl<></td></mdl<>	0.0017	0.00345	ug/L		<mdl< td=""><td>0.0016</td><td>0.00325 ug/L</td></mdl<>	0.0016	0.00325 ug/L
Benzo(a)anthracene		<mdl< td=""><td>0.0098</td><td>0.0196</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0017</td><td>0.00333 L</td><td>Jg/L</td><td></td><td><mdl< td=""><td>0.0017</td><td>0.00338</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0017</td><td>0.00333 u</td><td>g/L 0.004</td><td>49</td><td>0.0017</td><td>0.00345</td><td>ug/L</td><td>0.00732</td><td></td><td>0.0016</td><td>0.00325 ug/L</td></mdl<></td></mdl<></td></mdl<></td></mdl<>	0.0098	0.0196	ug/L		<mdl< td=""><td>0.0017</td><td>0.00333 L</td><td>Jg/L</td><td></td><td><mdl< td=""><td>0.0017</td><td>0.00338</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0017</td><td>0.00333 u</td><td>g/L 0.004</td><td>49</td><td>0.0017</td><td>0.00345</td><td>ug/L</td><td>0.00732</td><td></td><td>0.0016</td><td>0.00325 ug/L</td></mdl<></td></mdl<></td></mdl<>	0.0017	0.00333 L	Jg/L		<mdl< td=""><td>0.0017</td><td>0.00338</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0017</td><td>0.00333 u</td><td>g/L 0.004</td><td>49</td><td>0.0017</td><td>0.00345</td><td>ug/L</td><td>0.00732</td><td></td><td>0.0016</td><td>0.00325 ug/L</td></mdl<></td></mdl<>	0.0017	0.00338	ug/L		<mdl< td=""><td>0.0017</td><td>0.00333 u</td><td>g/L 0.004</td><td>49</td><td>0.0017</td><td>0.00345</td><td>ug/L</td><td>0.00732</td><td></td><td>0.0016</td><td>0.00325 ug/L</td></mdl<>	0.0017	0.00333 u	g/L 0.004	49	0.0017	0.00345	ug/L	0.00732		0.0016	0.00325 ug/L
Benzo(a)pyrene		<mdl< td=""><td>0.0098</td><td>0.0196</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0017</td><td>0.00333 L</td><td>ıg/L</td><td></td><td><mdl< td=""><td>0.0017</td><td>0.00338</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.005</td><td>0.01 u</td><td>g/L</td><td><mdl< td=""><td>0.0052</td><td>0.0104</td><td>ug/L</td><td>0.0062</td><td><rdl< td=""><td>0.0049</td><td>0.00976 ug/L</td></rdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	0.0098	0.0196	ug/L		<mdl< td=""><td>0.0017</td><td>0.00333 L</td><td>ıg/L</td><td></td><td><mdl< td=""><td>0.0017</td><td>0.00338</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.005</td><td>0.01 u</td><td>g/L</td><td><mdl< td=""><td>0.0052</td><td>0.0104</td><td>ug/L</td><td>0.0062</td><td><rdl< td=""><td>0.0049</td><td>0.00976 ug/L</td></rdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	0.0017	0.00333 L	ıg/L		<mdl< td=""><td>0.0017</td><td>0.00338</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.005</td><td>0.01 u</td><td>g/L</td><td><mdl< td=""><td>0.0052</td><td>0.0104</td><td>ug/L</td><td>0.0062</td><td><rdl< td=""><td>0.0049</td><td>0.00976 ug/L</td></rdl<></td></mdl<></td></mdl<></td></mdl<>	0.0017	0.00338	ug/L		<mdl< td=""><td>0.005</td><td>0.01 u</td><td>g/L</td><td><mdl< td=""><td>0.0052</td><td>0.0104</td><td>ug/L</td><td>0.0062</td><td><rdl< td=""><td>0.0049</td><td>0.00976 ug/L</td></rdl<></td></mdl<></td></mdl<>	0.005	0.01 u	g/L	<mdl< td=""><td>0.0052</td><td>0.0104</td><td>ug/L</td><td>0.0062</td><td><rdl< td=""><td>0.0049</td><td>0.00976 ug/L</td></rdl<></td></mdl<>	0.0052	0.0104	ug/L	0.0062	<rdl< td=""><td>0.0049</td><td>0.00976 ug/L</td></rdl<>	0.0049	0.00976 ug/L
Benzo(b)fluoranthene		<mdl< td=""><td>0.0098</td><td>0.0196</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0017</td><td>0.00333 L</td><td>ug/L</td><td>0.00557</td><td></td><td>0.0017</td><td>0.00338</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.005</td><td>0.01 u</td><td>g/L 0.00</td><td>67 <rdl< td=""><td>0.0052</td><td>0.0104</td><td>ug/L</td><td>0.0106</td><td></td><td>0.0049</td><td>0.00976 ug/L</td></rdl<></td></mdl<></td></mdl<></td></mdl<>	0.0098	0.0196	ug/L		<mdl< td=""><td>0.0017</td><td>0.00333 L</td><td>ug/L</td><td>0.00557</td><td></td><td>0.0017</td><td>0.00338</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.005</td><td>0.01 u</td><td>g/L 0.00</td><td>67 <rdl< td=""><td>0.0052</td><td>0.0104</td><td>ug/L</td><td>0.0106</td><td></td><td>0.0049</td><td>0.00976 ug/L</td></rdl<></td></mdl<></td></mdl<>	0.0017	0.00333 L	ug/L	0.00557		0.0017	0.00338	ug/L		<mdl< td=""><td>0.005</td><td>0.01 u</td><td>g/L 0.00</td><td>67 <rdl< td=""><td>0.0052</td><td>0.0104</td><td>ug/L</td><td>0.0106</td><td></td><td>0.0049</td><td>0.00976 ug/L</td></rdl<></td></mdl<>	0.005	0.01 u	g/L 0.00	67 <rdl< td=""><td>0.0052</td><td>0.0104</td><td>ug/L</td><td>0.0106</td><td></td><td>0.0049</td><td>0.00976 ug/L</td></rdl<>	0.0052	0.0104	ug/L	0.0106		0.0049	0.00976 ug/L
Benzo(g,h,i)perylene		<mdl< td=""><td>0.0098</td><td>0.0196</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0017</td><td>0.00333 ι</td><td>ug/L</td><td>0.00473</td><td></td><td>0.0017</td><td>0.00338</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.005</td><td>0.01 u</td><td>g/L 0.00</td><td>85 <rdl< td=""><td>0.0052</td><td>0.0104</td><td>ug/L</td><td>0.006</td><td><rdl< td=""><td>0.0049</td><td>0.00976 ug/L</td></rdl<></td></rdl<></td></mdl<></td></mdl<></td></mdl<>	0.0098	0.0196	ug/L		<mdl< td=""><td>0.0017</td><td>0.00333 ι</td><td>ug/L</td><td>0.00473</td><td></td><td>0.0017</td><td>0.00338</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.005</td><td>0.01 u</td><td>g/L 0.00</td><td>85 <rdl< td=""><td>0.0052</td><td>0.0104</td><td>ug/L</td><td>0.006</td><td><rdl< td=""><td>0.0049</td><td>0.00976 ug/L</td></rdl<></td></rdl<></td></mdl<></td></mdl<>	0.0017	0.00333 ι	ug/L	0.00473		0.0017	0.00338	ug/L		<mdl< td=""><td>0.005</td><td>0.01 u</td><td>g/L 0.00</td><td>85 <rdl< td=""><td>0.0052</td><td>0.0104</td><td>ug/L</td><td>0.006</td><td><rdl< td=""><td>0.0049</td><td>0.00976 ug/L</td></rdl<></td></rdl<></td></mdl<>	0.005	0.01 u	g/L 0.00	85 <rdl< td=""><td>0.0052</td><td>0.0104</td><td>ug/L</td><td>0.006</td><td><rdl< td=""><td>0.0049</td><td>0.00976 ug/L</td></rdl<></td></rdl<>	0.0052	0.0104	ug/L	0.006	<rdl< td=""><td>0.0049</td><td>0.00976 ug/L</td></rdl<>	0.0049	0.00976 ug/L
Benzo(k)fluoranthene		<mdl< td=""><td>0.0098</td><td>0.0196</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0017</td><td>0.00333 ι</td><td>ug/L</td><td>0.00541</td><td></td><td>0.0017</td><td>0.00338</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.005</td><td>0.01 u</td><td>g/L 0.00</td><td>62 <rdl< td=""><td>. 0.0052</td><td>0.0104</td><td>ug/L</td><td>0.0075</td><td><rdl< td=""><td>0.0049</td><td>0.00976 ug/L</td></rdl<></td></rdl<></td></mdl<></td></mdl<></td></mdl<>	0.0098	0.0196	ug/L		<mdl< td=""><td>0.0017</td><td>0.00333 ι</td><td>ug/L</td><td>0.00541</td><td></td><td>0.0017</td><td>0.00338</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.005</td><td>0.01 u</td><td>g/L 0.00</td><td>62 <rdl< td=""><td>. 0.0052</td><td>0.0104</td><td>ug/L</td><td>0.0075</td><td><rdl< td=""><td>0.0049</td><td>0.00976 ug/L</td></rdl<></td></rdl<></td></mdl<></td></mdl<>	0.0017	0.00333 ι	ug/L	0.00541		0.0017	0.00338	ug/L		<mdl< td=""><td>0.005</td><td>0.01 u</td><td>g/L 0.00</td><td>62 <rdl< td=""><td>. 0.0052</td><td>0.0104</td><td>ug/L</td><td>0.0075</td><td><rdl< td=""><td>0.0049</td><td>0.00976 ug/L</td></rdl<></td></rdl<></td></mdl<>	0.005	0.01 u	g/L 0.00	62 <rdl< td=""><td>. 0.0052</td><td>0.0104</td><td>ug/L</td><td>0.0075</td><td><rdl< td=""><td>0.0049</td><td>0.00976 ug/L</td></rdl<></td></rdl<>	. 0.0052	0.0104	ug/L	0.0075	<rdl< td=""><td>0.0049</td><td>0.00976 ug/L</td></rdl<>	0.0049	0.00976 ug/L
Benzyl Butyl Phthalate		<mdl< td=""><td>0.049</td><td>0.098</td><td>ug/L</td><td>0.0259</td><td>) B</td><td>0.0083</td><td>0.0167 i</td><td>Jg/L</td><td>0.0341</td><td>В</td><td>0.0084</td><td>0.0169</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0083</td><td>0.0167 u</td><td>g/L 0.04</td><td>77</td><td>0.0086</td><td>0.0173</td><td>ug/L</td><td>0.052</td><td></td><td>0.0081</td><td>0.0163 ug/L</td></mdl<></td></mdl<>	0.049	0.098	ug/L	0.0259) B	0.0083	0.0167 i	Jg/L	0.0341	В	0.0084	0.0169	ug/L		<mdl< td=""><td>0.0083</td><td>0.0167 u</td><td>g/L 0.04</td><td>77</td><td>0.0086</td><td>0.0173</td><td>ug/L</td><td>0.052</td><td></td><td>0.0081</td><td>0.0163 ug/L</td></mdl<>	0.0083	0.0167 u	g/L 0.04	77	0.0086	0.0173	ug/L	0.052		0.0081	0.0163 ug/L
Bis(2-Ethylhexyl)Phthalate	0.23	1	0.049	0.098	ug/L	0.0247	7 B	0.0083	0.0167 i	Jg/L	0.103		0.0084	0.0169	ug/L	0.04	В	0.0083	0.0167 u	g/L 0.4	47	0.0086	0.0173	ug/L	0.187		0.0081	0.0163 ug/L
Chrysene		<mdl< td=""><td>0.0098</td><td>0.0196</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0017</td><td>0.00333 ι</td><td>Jg/L</td><td></td><td><mdl< td=""><td>0.0017</td><td>0.00338</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0017</td><td>0.00333 u</td><td>g/L 0.01</td><td>52</td><td>0.0017</td><td>0.00345</td><td>ug/L</td><td>0.00943</td><td></td><td>0.0016</td><td>0.00325 ug/L</td></mdl<></td></mdl<></td></mdl<></td></mdl<>	0.0098	0.0196	ug/L		<mdl< td=""><td>0.0017</td><td>0.00333 ι</td><td>Jg/L</td><td></td><td><mdl< td=""><td>0.0017</td><td>0.00338</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0017</td><td>0.00333 u</td><td>g/L 0.01</td><td>52</td><td>0.0017</td><td>0.00345</td><td>ug/L</td><td>0.00943</td><td></td><td>0.0016</td><td>0.00325 ug/L</td></mdl<></td></mdl<></td></mdl<>	0.0017	0.00333 ι	Jg/L		<mdl< td=""><td>0.0017</td><td>0.00338</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0017</td><td>0.00333 u</td><td>g/L 0.01</td><td>52</td><td>0.0017</td><td>0.00345</td><td>ug/L</td><td>0.00943</td><td></td><td>0.0016</td><td>0.00325 ug/L</td></mdl<></td></mdl<>	0.0017	0.00338	ug/L		<mdl< td=""><td>0.0017</td><td>0.00333 u</td><td>g/L 0.01</td><td>52</td><td>0.0017</td><td>0.00345</td><td>ug/L</td><td>0.00943</td><td></td><td>0.0016</td><td>0.00325 ug/L</td></mdl<>	0.0017	0.00333 u	g/L 0.01	52	0.0017	0.00345	ug/L	0.00943		0.0016	0.00325 ug/L
Dibenzo(a,h)anthracene		<mdl< td=""><td>0.0098</td><td></td><td>U</td><td></td><td><mdl< td=""><td>0.0017</td><td>0.00333 L</td><td>Jg/L</td><td>0.0025</td><td><rdl< td=""><td>0.0017</td><td>0.00338</td><td><u> </u></td><td></td><td><mdl< td=""><td>0.005</td><td>0.01 u</td><td>/</td><td><mdl< td=""><td>0.0052</td><td>0.0104</td><td>ug/L</td><td>0.0055</td><td><rdl< td=""><td>0.0049</td><td>0.00976 ug/L</td></rdl<></td></mdl<></td></mdl<></td></rdl<></td></mdl<></td></mdl<>	0.0098		U		<mdl< td=""><td>0.0017</td><td>0.00333 L</td><td>Jg/L</td><td>0.0025</td><td><rdl< td=""><td>0.0017</td><td>0.00338</td><td><u> </u></td><td></td><td><mdl< td=""><td>0.005</td><td>0.01 u</td><td>/</td><td><mdl< td=""><td>0.0052</td><td>0.0104</td><td>ug/L</td><td>0.0055</td><td><rdl< td=""><td>0.0049</td><td>0.00976 ug/L</td></rdl<></td></mdl<></td></mdl<></td></rdl<></td></mdl<>	0.0017	0.00333 L	Jg/L	0.0025	<rdl< td=""><td>0.0017</td><td>0.00338</td><td><u> </u></td><td></td><td><mdl< td=""><td>0.005</td><td>0.01 u</td><td>/</td><td><mdl< td=""><td>0.0052</td><td>0.0104</td><td>ug/L</td><td>0.0055</td><td><rdl< td=""><td>0.0049</td><td>0.00976 ug/L</td></rdl<></td></mdl<></td></mdl<></td></rdl<>	0.0017	0.00338	<u> </u>		<mdl< td=""><td>0.005</td><td>0.01 u</td><td>/</td><td><mdl< td=""><td>0.0052</td><td>0.0104</td><td>ug/L</td><td>0.0055</td><td><rdl< td=""><td>0.0049</td><td>0.00976 ug/L</td></rdl<></td></mdl<></td></mdl<>	0.005	0.01 u	/	<mdl< td=""><td>0.0052</td><td>0.0104</td><td>ug/L</td><td>0.0055</td><td><rdl< td=""><td>0.0049</td><td>0.00976 ug/L</td></rdl<></td></mdl<>	0.0052	0.0104	ug/L	0.0055	<rdl< td=""><td>0.0049</td><td>0.00976 ug/L</td></rdl<>	0.0049	0.00976 ug/L
Diethyl Phthalate		<mdl< td=""><td>0.049</td><td>0.098</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0083</td><td>0.0167 i</td><td>Jg/L</td><td>0.0238</td><td></td><td>0.0084</td><td>0.0169</td><td>ug/L</td><td>0.013</td><td><rdl,b< td=""><td>0.0083</td><td>0.0167 u</td><td>g/L 0.02</td><td>33 B</td><td>0.0086</td><td>0.0173</td><td>ug/L</td><td>0.0403</td><td></td><td>0.0081</td><td>0.0163 ug/L</td></rdl,b<></td></mdl<></td></mdl<>	0.049	0.098	ug/L		<mdl< td=""><td>0.0083</td><td>0.0167 i</td><td>Jg/L</td><td>0.0238</td><td></td><td>0.0084</td><td>0.0169</td><td>ug/L</td><td>0.013</td><td><rdl,b< td=""><td>0.0083</td><td>0.0167 u</td><td>g/L 0.02</td><td>33 B</td><td>0.0086</td><td>0.0173</td><td>ug/L</td><td>0.0403</td><td></td><td>0.0081</td><td>0.0163 ug/L</td></rdl,b<></td></mdl<>	0.0083	0.0167 i	Jg/L	0.0238		0.0084	0.0169	ug/L	0.013	<rdl,b< td=""><td>0.0083</td><td>0.0167 u</td><td>g/L 0.02</td><td>33 B</td><td>0.0086</td><td>0.0173</td><td>ug/L</td><td>0.0403</td><td></td><td>0.0081</td><td>0.0163 ug/L</td></rdl,b<>	0.0083	0.0167 u	g/L 0.02	33 B	0.0086	0.0173	ug/L	0.0403		0.0081	0.0163 ug/L
Dimethyl Phthalate		<mdl< td=""><td>0.049</td><td></td><td>0</td><td></td><td><mdl< td=""><td>0.0083</td><td>0.0167 i</td><td>Jg/L</td><td></td><td><mdl< td=""><td>0.0084</td><td>0.0169</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0083</td><td>0.0167 u</td><td>g/L</td><td><mdl< td=""><td>0.0086</td><td>0.0173</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0081</td><td>0.0163 ug/L</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	0.049		0		<mdl< td=""><td>0.0083</td><td>0.0167 i</td><td>Jg/L</td><td></td><td><mdl< td=""><td>0.0084</td><td>0.0169</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0083</td><td>0.0167 u</td><td>g/L</td><td><mdl< td=""><td>0.0086</td><td>0.0173</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0081</td><td>0.0163 ug/L</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	0.0083	0.0167 i	Jg/L		<mdl< td=""><td>0.0084</td><td>0.0169</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0083</td><td>0.0167 u</td><td>g/L</td><td><mdl< td=""><td>0.0086</td><td>0.0173</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0081</td><td>0.0163 ug/L</td></mdl<></td></mdl<></td></mdl<></td></mdl<>	0.0084	0.0169	ug/L		<mdl< td=""><td>0.0083</td><td>0.0167 u</td><td>g/L</td><td><mdl< td=""><td>0.0086</td><td>0.0173</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0081</td><td>0.0163 ug/L</td></mdl<></td></mdl<></td></mdl<>	0.0083	0.0167 u	g/L	<mdl< td=""><td>0.0086</td><td>0.0173</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0081</td><td>0.0163 ug/L</td></mdl<></td></mdl<>	0.0086	0.0173	ug/L		<mdl< td=""><td>0.0081</td><td>0.0163 ug/L</td></mdl<>	0.0081	0.0163 ug/L
Di-N-Butyl Phthalate	0.054	4 <rdl< td=""><td>0.049</td><td>0.098</td><td>ug/L</td><td>0.0195</td><td>5 B</td><td>0.0083</td><td>0.0167 l</td><td>ıg/L</td><td>0.0488</td><td>В</td><td>0.0084</td><td>0.0169</td><td>ug/L</td><td>0.022</td><td>В</td><td>0.0083</td><td>0.0167 u</td><td>·</td><td>75</td><td>0.0086</td><td>0.0173</td><td>ug/L</td><td>0.0652</td><td>В</td><td>0.0081</td><td>0.0163 ug/L</td></rdl<>	0.049	0.098	ug/L	0.0195	5 B	0.0083	0.0167 l	ıg/L	0.0488	В	0.0084	0.0169	ug/L	0.022	В	0.0083	0.0167 u	·	75	0.0086	0.0173	ug/L	0.0652	В	0.0081	0.0163 ug/L
Di-N-Octyl Phthalate		<mdl< td=""><td>0.049</td><td></td><td>0</td><td></td><td><mdl< td=""><td>0.0083</td><td>0.0167 i</td><td>Jg/L</td><td></td><td><mdl< td=""><td>0.0084</td><td>0.0169</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0083</td><td>0.0167 u</td><td></td><td>79</td><td>0.0086</td><td>0.0173</td><td>0</td><td>0.102</td><td></td><td>0.0081</td><td>0.0163 ug/L</td></mdl<></td></mdl<></td></mdl<></td></mdl<>	0.049		0		<mdl< td=""><td>0.0083</td><td>0.0167 i</td><td>Jg/L</td><td></td><td><mdl< td=""><td>0.0084</td><td>0.0169</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0083</td><td>0.0167 u</td><td></td><td>79</td><td>0.0086</td><td>0.0173</td><td>0</td><td>0.102</td><td></td><td>0.0081</td><td>0.0163 ug/L</td></mdl<></td></mdl<></td></mdl<>	0.0083	0.0167 i	Jg/L		<mdl< td=""><td>0.0084</td><td>0.0169</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0083</td><td>0.0167 u</td><td></td><td>79</td><td>0.0086</td><td>0.0173</td><td>0</td><td>0.102</td><td></td><td>0.0081</td><td>0.0163 ug/L</td></mdl<></td></mdl<>	0.0084	0.0169	ug/L		<mdl< td=""><td>0.0083</td><td>0.0167 u</td><td></td><td>79</td><td>0.0086</td><td>0.0173</td><td>0</td><td>0.102</td><td></td><td>0.0081</td><td>0.0163 ug/L</td></mdl<>	0.0083	0.0167 u		79	0.0086	0.0173	0	0.102		0.0081	0.0163 ug/L
Fluoranthene		<mdl< td=""><td>0.0098</td><td>0.0196</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0017</td><td>0.00333 ι</td><td>ıg/L</td><td>0.0105</td><td></td><td>0.0017</td><td>0.00338</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0017</td><td>0.00333 u</td><td>g/L 0.03</td><td>37</td><td>0.0017</td><td></td><td>-</td><td>0.0203</td><td></td><td>0.0016</td><td>0.00325 ug/L</td></mdl<></td></mdl<></td></mdl<>	0.0098	0.0196	ug/L		<mdl< td=""><td>0.0017</td><td>0.00333 ι</td><td>ıg/L</td><td>0.0105</td><td></td><td>0.0017</td><td>0.00338</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0017</td><td>0.00333 u</td><td>g/L 0.03</td><td>37</td><td>0.0017</td><td></td><td>-</td><td>0.0203</td><td></td><td>0.0016</td><td>0.00325 ug/L</td></mdl<></td></mdl<>	0.0017	0.00333 ι	ıg/L	0.0105		0.0017	0.00338	ug/L		<mdl< td=""><td>0.0017</td><td>0.00333 u</td><td>g/L 0.03</td><td>37</td><td>0.0017</td><td></td><td>-</td><td>0.0203</td><td></td><td>0.0016</td><td>0.00325 ug/L</td></mdl<>	0.0017	0.00333 u	g/L 0.03	37	0.0017		-	0.0203		0.0016	0.00325 ug/L
Fluorene		<mdl< td=""><td>0.0098</td><td>0.0196</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0017</td><td>0.00333 ι</td><td>0</td><td>0.0029</td><td><rdl< td=""><td>0.0017</td><td>0.00338</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0017</td><td>0.00333 u</td><td>g/L 0.007</td><td>94</td><td>0.0017</td><td></td><td>ug/L</td><td>0.00748</td><td></td><td>0.0016</td><td>0.00325 ug/L</td></mdl<></td></rdl<></td></mdl<></td></mdl<>	0.0098	0.0196	ug/L		<mdl< td=""><td>0.0017</td><td>0.00333 ι</td><td>0</td><td>0.0029</td><td><rdl< td=""><td>0.0017</td><td>0.00338</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0017</td><td>0.00333 u</td><td>g/L 0.007</td><td>94</td><td>0.0017</td><td></td><td>ug/L</td><td>0.00748</td><td></td><td>0.0016</td><td>0.00325 ug/L</td></mdl<></td></rdl<></td></mdl<>	0.0017	0.00333 ι	0	0.0029	<rdl< td=""><td>0.0017</td><td>0.00338</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0017</td><td>0.00333 u</td><td>g/L 0.007</td><td>94</td><td>0.0017</td><td></td><td>ug/L</td><td>0.00748</td><td></td><td>0.0016</td><td>0.00325 ug/L</td></mdl<></td></rdl<>	0.0017	0.00338	ug/L		<mdl< td=""><td>0.0017</td><td>0.00333 u</td><td>g/L 0.007</td><td>94</td><td>0.0017</td><td></td><td>ug/L</td><td>0.00748</td><td></td><td>0.0016</td><td>0.00325 ug/L</td></mdl<>	0.0017	0.00333 u	g/L 0.007	94	0.0017		ug/L	0.00748		0.0016	0.00325 ug/L
Indeno(1,2,3-Cd)Pyrene		<mdl< td=""><td>0.0098</td><td></td><td>- 5</td><td></td><td><mdl< td=""><td>0.0017</td><td>0.00333 ι</td><td>0</td><td>0.00507</td><td></td><td>0.0017</td><td>0.00338</td><td>0</td><td></td><td><mdl< td=""><td>0.005</td><td>0.01 u</td><td>,</td><td><mdl< td=""><td></td><td></td><td>0</td><td>0.0075</td><td><rdl< td=""><td>0.0049</td><td>0.00976 ug/L</td></rdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	0.0098		- 5		<mdl< td=""><td>0.0017</td><td>0.00333 ι</td><td>0</td><td>0.00507</td><td></td><td>0.0017</td><td>0.00338</td><td>0</td><td></td><td><mdl< td=""><td>0.005</td><td>0.01 u</td><td>,</td><td><mdl< td=""><td></td><td></td><td>0</td><td>0.0075</td><td><rdl< td=""><td>0.0049</td><td>0.00976 ug/L</td></rdl<></td></mdl<></td></mdl<></td></mdl<>	0.0017	0.00333 ι	0	0.00507		0.0017	0.00338	0		<mdl< td=""><td>0.005</td><td>0.01 u</td><td>,</td><td><mdl< td=""><td></td><td></td><td>0</td><td>0.0075</td><td><rdl< td=""><td>0.0049</td><td>0.00976 ug/L</td></rdl<></td></mdl<></td></mdl<>	0.005	0.01 u	,	<mdl< td=""><td></td><td></td><td>0</td><td>0.0075</td><td><rdl< td=""><td>0.0049</td><td>0.00976 ug/L</td></rdl<></td></mdl<>			0	0.0075	<rdl< td=""><td>0.0049</td><td>0.00976 ug/L</td></rdl<>	0.0049	0.00976 ug/L
Naphthalene		<mdl< td=""><td>0.0098</td><td></td><td>0</td><td></td><td><mdl< td=""><td>0.0017</td><td>0.00333 ι</td><td>•</td><td>0.00642</td><td></td><td>0.0017</td><td>0.00338</td><td><u> </u></td><td></td><td><mdl< td=""><td>0.0033</td><td>0.00667 u</td><td>,</td><td></td><td>0.0035</td><td></td><td>Ų</td><td>0.0125</td><td></td><td>0.0033</td><td>0.0065 ug/L</td></mdl<></td></mdl<></td></mdl<>	0.0098		0		<mdl< td=""><td>0.0017</td><td>0.00333 ι</td><td>•</td><td>0.00642</td><td></td><td>0.0017</td><td>0.00338</td><td><u> </u></td><td></td><td><mdl< td=""><td>0.0033</td><td>0.00667 u</td><td>,</td><td></td><td>0.0035</td><td></td><td>Ų</td><td>0.0125</td><td></td><td>0.0033</td><td>0.0065 ug/L</td></mdl<></td></mdl<>	0.0017	0.00333 ι	•	0.00642		0.0017	0.00338	<u> </u>		<mdl< td=""><td>0.0033</td><td>0.00667 u</td><td>,</td><td></td><td>0.0035</td><td></td><td>Ų</td><td>0.0125</td><td></td><td>0.0033</td><td>0.0065 ug/L</td></mdl<>	0.0033	0.00667 u	,		0.0035		Ų	0.0125		0.0033	0.0065 ug/L
Phenanthrene		<mdl< td=""><td>0.0098</td><td>0.0196</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0017</td><td>0.00333 L</td><td>ıg/L</td><td>0.0172</td><td></td><td>0.0017</td><td>0.00338</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0017</td><td>0.00333 u</td><td>g/L 0.03</td><td>96</td><td>0.0017</td><td>0.00345</td><td>ug/L</td><td>0.0299</td><td></td><td>0.0016</td><td>0.00325 ug/L</td></mdl<></td></mdl<></td></mdl<>	0.0098	0.0196	ug/L		<mdl< td=""><td>0.0017</td><td>0.00333 L</td><td>ıg/L</td><td>0.0172</td><td></td><td>0.0017</td><td>0.00338</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0017</td><td>0.00333 u</td><td>g/L 0.03</td><td>96</td><td>0.0017</td><td>0.00345</td><td>ug/L</td><td>0.0299</td><td></td><td>0.0016</td><td>0.00325 ug/L</td></mdl<></td></mdl<>	0.0017	0.00333 L	ıg/L	0.0172		0.0017	0.00338	ug/L		<mdl< td=""><td>0.0017</td><td>0.00333 u</td><td>g/L 0.03</td><td>96</td><td>0.0017</td><td>0.00345</td><td>ug/L</td><td>0.0299</td><td></td><td>0.0016</td><td>0.00325 ug/L</td></mdl<>	0.0017	0.00333 u	g/L 0.03	96	0.0017	0.00345	ug/L	0.0299		0.0016	0.00325 ug/L
Pyrene		<mdl< td=""><td>0.0098</td><td>0.0196</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0017</td><td>0.00333 L</td><td>ıg/L</td><td>0.00743</td><td></td><td>0.0017</td><td>0.00338</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0017</td><td>0.00333 u</td><td>g/L 0.02</td><td>59</td><td>0.0017</td><td>0.00345</td><td>ug/L</td><td>0.0164</td><td></td><td>0.0016</td><td>0.00325 ug/L</td></mdl<></td></mdl<></td></mdl<>	0.0098	0.0196	ug/L		<mdl< td=""><td>0.0017</td><td>0.00333 L</td><td>ıg/L</td><td>0.00743</td><td></td><td>0.0017</td><td>0.00338</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0017</td><td>0.00333 u</td><td>g/L 0.02</td><td>59</td><td>0.0017</td><td>0.00345</td><td>ug/L</td><td>0.0164</td><td></td><td>0.0016</td><td>0.00325 ug/L</td></mdl<></td></mdl<>	0.0017	0.00333 L	ıg/L	0.00743		0.0017	0.00338	ug/L		<mdl< td=""><td>0.0017</td><td>0.00333 u</td><td>g/L 0.02</td><td>59</td><td>0.0017</td><td>0.00345</td><td>ug/L</td><td>0.0164</td><td></td><td>0.0016</td><td>0.00325 ug/L</td></mdl<>	0.0017	0.00333 u	g/L 0.02	59	0.0017	0.00345	ug/L	0.0164		0.0016	0.00325 ug/L

PROJECT: 423589-090-1	Locator: Descrip: Client Loc: Sampled: Lab ID: Matrix: % Solids:		-4		
Parameters	Value	Qual -We	MDL et Weight Bas	RDL	Units
ORGANICS					
M=OR 8270B					
2-Methylnaphthalene	0.0127		0.0017	0.00331	ug/L
Acenaphthene		<mdl< td=""><td>0.0017</td><td>0.00331</td><td>ug/L</td></mdl<>	0.0017	0.00331	ug/L
Acenaphthylene		<mdl< td=""><td>0.0017</td><td>0.00331</td><td>ug/L</td></mdl<>	0.0017	0.00331	ug/L
Anthracene		<mdl< td=""><td>0.0017</td><td>0.00331</td><td>ug/L</td></mdl<>	0.0017	0.00331	ug/L
Benzo(a)anthracene	0.00661		0.0017	0.00331	ug/L
Benzo(a)pyrene	0.0063	<rdl< td=""><td>0.005</td><td>0.00992</td><td>ug/L</td></rdl<>	0.005	0.00992	ug/L
Benzo(b)fluoranthene	0.0106		0.005	0.00992	ug/L
Benzo(g,h,i)perylene	0.0074	<rdl< td=""><td>0.005</td><td>0.00992</td><td>ug/L</td></rdl<>	0.005	0.00992	ug/L
Benzo(k)fluoranthene	0.0089	<rdl< td=""><td>0.005</td><td>0.00992</td><td>ug/L</td></rdl<>	0.005	0.00992	ug/L
Benzyl Butyl Phthalate	0.162		0.0083	0.0165	ug/L
Bis(2-Ethylhexyl)Phthalate	0.207		0.0083	0.0165	ug/L
Chrysene	0.0109		0.0017	0.00331	ug/L
Dibenzo(a,h)anthracene		<mdl< td=""><td>0.005</td><td>0.00992</td><td>ug/L</td></mdl<>	0.005	0.00992	ug/L
Diethyl Phthalate	0.0326	В	0.0083	0.0165	ug/L
Dimethyl Phthalate		<mdl< td=""><td>0.0083</td><td>0.0165</td><td>ug/L</td></mdl<>	0.0083	0.0165	ug/L
Di-N-Butyl Phthalate	0.0628	В	0.0083	0.0165	ug/L
Di-N-Octyl Phthalate		<mdl< td=""><td>0.0083</td><td>0.0165</td><td>ug/L</td></mdl<>	0.0083	0.0165	ug/L
Fluoranthene	0.0185		0.0017	0.00331	ug/L
Fluorene	0.00711		0.0017	0.00331	ug/L
Indeno(1,2,3-Cd)Pyrene	0.0078	<rdl< td=""><td>0.005</td><td>0.00992</td><td>ug/L</td></rdl<>	0.005	0.00992	ug/L
Naphthalene	0.0159		0.0033	0.00661	ug/L
Phenanthrene	0.0269		0.0017	0.00331	ug/L
Pyrene	0.0131		0.0017	0.00331	ug/L

PROJECT: 423589-090-1 Parameters	Locator: Descrip: Client Loc: Sampled: Lab ID: Matrix: % Solids: Value	BLANK Blank1 BW-BK Apr 12, L35243 BLANK Qual	-041305 2005 -1 WTR	-041305 RDL Unit	Locator: Descrip: Client Loc: Sampled: Lab ID: Matrix: % Solids: Value	BLANK1 Blank1 CE-BK-0 Apr 12, 2 L35243-2 BLANK \ Qual	41305-0 2005 2		Units	Locator: Descrip: Client Loc: Sampled: Lab ID: Matrix: % Solids: Value	BLANK1 Blank1 DZ-BK-0 Apr 12, 2 L35243-3 BLANK M	2005 3 WTR	041305 RDL		Descrip: Client Loc: Sampled:	BLANK1 Blank1 SPCC-Bk Apr 12, 2t L35243-4 BLANK W	005		E C S L	Descrip: Client Loc: Sampled: Lab ID: Matrix:	NONE UNKNOV BW-01-C May 05, L35485- OTHR W 0.002 Qual)41305-0 2005 1		Units	Sampled: Lab ID: Matrix: % Solids:		-2	0505	Jnits
i alamotoro	Value		/et Weight I		Value		et Weight B		Onito	Value		t Weight I		Onico	value		et Weight Bas		meo	Value		t Weight Ba		Office	Value		et Weight Basi		into
COMBINED LABS																													
M=CV SM2540-B (03-01-007-002)																													
Total Solids																				20		5	10) mg/L	63		5	10 m	ng/L
M=OR 8270B																													
2-Methylnaphthalene		<mdl< td=""><td>0.01</td><td>0.02 ug/L</td><td>-</td><td><mdl< td=""><td>0.01</td><td>0.0202</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.01</td><td>0.02</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0098</td><td>0.0196 u</td><td>g/L</td><td>0.0053</td><td><rdl< td=""><td>0.0041</td><td>0.0081</td><td>1 ug/L</td><td></td><td><mdl< td=""><td>0.0049</td><td>0.00983 u</td><td>Jg/L</td></mdl<></td></rdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	0.01	0.02 ug/L	-	<mdl< td=""><td>0.01</td><td>0.0202</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.01</td><td>0.02</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0098</td><td>0.0196 u</td><td>g/L</td><td>0.0053</td><td><rdl< td=""><td>0.0041</td><td>0.0081</td><td>1 ug/L</td><td></td><td><mdl< td=""><td>0.0049</td><td>0.00983 u</td><td>Jg/L</td></mdl<></td></rdl<></td></mdl<></td></mdl<></td></mdl<>	0.01	0.0202	ug/L		<mdl< td=""><td>0.01</td><td>0.02</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0098</td><td>0.0196 u</td><td>g/L</td><td>0.0053</td><td><rdl< td=""><td>0.0041</td><td>0.0081</td><td>1 ug/L</td><td></td><td><mdl< td=""><td>0.0049</td><td>0.00983 u</td><td>Jg/L</td></mdl<></td></rdl<></td></mdl<></td></mdl<>	0.01	0.02	ug/L		<mdl< td=""><td>0.0098</td><td>0.0196 u</td><td>g/L</td><td>0.0053</td><td><rdl< td=""><td>0.0041</td><td>0.0081</td><td>1 ug/L</td><td></td><td><mdl< td=""><td>0.0049</td><td>0.00983 u</td><td>Jg/L</td></mdl<></td></rdl<></td></mdl<>	0.0098	0.0196 u	g/L	0.0053	<rdl< td=""><td>0.0041</td><td>0.0081</td><td>1 ug/L</td><td></td><td><mdl< td=""><td>0.0049</td><td>0.00983 u</td><td>Jg/L</td></mdl<></td></rdl<>	0.0041	0.0081	1 ug/L		<mdl< td=""><td>0.0049</td><td>0.00983 u</td><td>Jg/L</td></mdl<>	0.0049	0.00983 u	Jg/L
Acenaphthene		<mdl< td=""><td>0.01</td><td>0.02 ug/L</td><td>-</td><td><mdl< td=""><td>0.01</td><td>0.0202</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.01</td><td>0.02</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0098</td><td>0.0196 u</td><td>g/L</td><td></td><td><mdl< td=""><td>0.0041</td><td>0.0081</td><td>1 ug/L</td><td></td><td><mdl< td=""><td>0.0049</td><td>0.00983 u</td><td>Jg/L</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	0.01	0.02 ug/L	-	<mdl< td=""><td>0.01</td><td>0.0202</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.01</td><td>0.02</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0098</td><td>0.0196 u</td><td>g/L</td><td></td><td><mdl< td=""><td>0.0041</td><td>0.0081</td><td>1 ug/L</td><td></td><td><mdl< td=""><td>0.0049</td><td>0.00983 u</td><td>Jg/L</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	0.01	0.0202	ug/L		<mdl< td=""><td>0.01</td><td>0.02</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0098</td><td>0.0196 u</td><td>g/L</td><td></td><td><mdl< td=""><td>0.0041</td><td>0.0081</td><td>1 ug/L</td><td></td><td><mdl< td=""><td>0.0049</td><td>0.00983 u</td><td>Jg/L</td></mdl<></td></mdl<></td></mdl<></td></mdl<>	0.01	0.02	ug/L		<mdl< td=""><td>0.0098</td><td>0.0196 u</td><td>g/L</td><td></td><td><mdl< td=""><td>0.0041</td><td>0.0081</td><td>1 ug/L</td><td></td><td><mdl< td=""><td>0.0049</td><td>0.00983 u</td><td>Jg/L</td></mdl<></td></mdl<></td></mdl<>	0.0098	0.0196 u	g/L		<mdl< td=""><td>0.0041</td><td>0.0081</td><td>1 ug/L</td><td></td><td><mdl< td=""><td>0.0049</td><td>0.00983 u</td><td>Jg/L</td></mdl<></td></mdl<>	0.0041	0.0081	1 ug/L		<mdl< td=""><td>0.0049</td><td>0.00983 u</td><td>Jg/L</td></mdl<>	0.0049	0.00983 u	Jg/L
Acenaphthylene		<mdl< td=""><td>0.01</td><td>0.02 ug/L</td><td>-</td><td><mdl< td=""><td>0.01</td><td>0.0202</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.01</td><td>0.02</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0098</td><td>0.0196 u</td><td>g/L</td><td></td><td><mdl< td=""><td>0.0061</td><td>0.0122</td><td>2 ug/L</td><td></td><td><mdl< td=""><td>0.0074</td><td>0.0147 u</td><td>Jg/L</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	0.01	0.02 ug/L	-	<mdl< td=""><td>0.01</td><td>0.0202</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.01</td><td>0.02</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0098</td><td>0.0196 u</td><td>g/L</td><td></td><td><mdl< td=""><td>0.0061</td><td>0.0122</td><td>2 ug/L</td><td></td><td><mdl< td=""><td>0.0074</td><td>0.0147 u</td><td>Jg/L</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	0.01	0.0202	ug/L		<mdl< td=""><td>0.01</td><td>0.02</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0098</td><td>0.0196 u</td><td>g/L</td><td></td><td><mdl< td=""><td>0.0061</td><td>0.0122</td><td>2 ug/L</td><td></td><td><mdl< td=""><td>0.0074</td><td>0.0147 u</td><td>Jg/L</td></mdl<></td></mdl<></td></mdl<></td></mdl<>	0.01	0.02	ug/L		<mdl< td=""><td>0.0098</td><td>0.0196 u</td><td>g/L</td><td></td><td><mdl< td=""><td>0.0061</td><td>0.0122</td><td>2 ug/L</td><td></td><td><mdl< td=""><td>0.0074</td><td>0.0147 u</td><td>Jg/L</td></mdl<></td></mdl<></td></mdl<>	0.0098	0.0196 u	g/L		<mdl< td=""><td>0.0061</td><td>0.0122</td><td>2 ug/L</td><td></td><td><mdl< td=""><td>0.0074</td><td>0.0147 u</td><td>Jg/L</td></mdl<></td></mdl<>	0.0061	0.0122	2 ug/L		<mdl< td=""><td>0.0074</td><td>0.0147 u</td><td>Jg/L</td></mdl<>	0.0074	0.0147 u	Jg/L
Anthracene		<mdl< td=""><td>. 0.01</td><td>0.02 ug/L</td><td>-</td><td><mdl< td=""><td>0.01</td><td>0.0202</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.01</td><td>0.02</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0098</td><td>0.0196 u</td><td>g/L</td><td></td><td><mdl< td=""><td>0.0061</td><td>0.0122</td><td>2 ug/L</td><td></td><td><mdl< td=""><td>0.0074</td><td>0.0147 u</td><td>Jg/L</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	. 0.01	0.02 ug/L	-	<mdl< td=""><td>0.01</td><td>0.0202</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.01</td><td>0.02</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0098</td><td>0.0196 u</td><td>g/L</td><td></td><td><mdl< td=""><td>0.0061</td><td>0.0122</td><td>2 ug/L</td><td></td><td><mdl< td=""><td>0.0074</td><td>0.0147 u</td><td>Jg/L</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	0.01	0.0202	ug/L		<mdl< td=""><td>0.01</td><td>0.02</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0098</td><td>0.0196 u</td><td>g/L</td><td></td><td><mdl< td=""><td>0.0061</td><td>0.0122</td><td>2 ug/L</td><td></td><td><mdl< td=""><td>0.0074</td><td>0.0147 u</td><td>Jg/L</td></mdl<></td></mdl<></td></mdl<></td></mdl<>	0.01	0.02	ug/L		<mdl< td=""><td>0.0098</td><td>0.0196 u</td><td>g/L</td><td></td><td><mdl< td=""><td>0.0061</td><td>0.0122</td><td>2 ug/L</td><td></td><td><mdl< td=""><td>0.0074</td><td>0.0147 u</td><td>Jg/L</td></mdl<></td></mdl<></td></mdl<>	0.0098	0.0196 u	g/L		<mdl< td=""><td>0.0061</td><td>0.0122</td><td>2 ug/L</td><td></td><td><mdl< td=""><td>0.0074</td><td>0.0147 u</td><td>Jg/L</td></mdl<></td></mdl<>	0.0061	0.0122	2 ug/L		<mdl< td=""><td>0.0074</td><td>0.0147 u</td><td>Jg/L</td></mdl<>	0.0074	0.0147 u	Jg/L
Benzo(a)anthracene		<mdl< td=""><td>. 0.01</td><td>0.02 ug/L</td><td>-</td><td><mdl< td=""><td>0.01</td><td>0.0202</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.01</td><td>0.02</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0098</td><td>0.0196 u</td><td>g/L</td><td>0.0063</td><td><rdl< td=""><td>0.0041</td><td>0.0081</td><td>1 ug/L</td><td>0.018</td><td></td><td>0.0049</td><td>0.00983 u</td><td>Jg/L</td></rdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	. 0.01	0.02 ug/L	-	<mdl< td=""><td>0.01</td><td>0.0202</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.01</td><td>0.02</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0098</td><td>0.0196 u</td><td>g/L</td><td>0.0063</td><td><rdl< td=""><td>0.0041</td><td>0.0081</td><td>1 ug/L</td><td>0.018</td><td></td><td>0.0049</td><td>0.00983 u</td><td>Jg/L</td></rdl<></td></mdl<></td></mdl<></td></mdl<>	0.01	0.0202	ug/L		<mdl< td=""><td>0.01</td><td>0.02</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0098</td><td>0.0196 u</td><td>g/L</td><td>0.0063</td><td><rdl< td=""><td>0.0041</td><td>0.0081</td><td>1 ug/L</td><td>0.018</td><td></td><td>0.0049</td><td>0.00983 u</td><td>Jg/L</td></rdl<></td></mdl<></td></mdl<>	0.01	0.02	ug/L		<mdl< td=""><td>0.0098</td><td>0.0196 u</td><td>g/L</td><td>0.0063</td><td><rdl< td=""><td>0.0041</td><td>0.0081</td><td>1 ug/L</td><td>0.018</td><td></td><td>0.0049</td><td>0.00983 u</td><td>Jg/L</td></rdl<></td></mdl<>	0.0098	0.0196 u	g/L	0.0063	<rdl< td=""><td>0.0041</td><td>0.0081</td><td>1 ug/L</td><td>0.018</td><td></td><td>0.0049</td><td>0.00983 u</td><td>Jg/L</td></rdl<>	0.0041	0.0081	1 ug/L	0.018		0.0049	0.00983 u	Jg/L
Benzo(a)pyrene		<mdl< td=""><td>. 0.01</td><td>0.02 ug/L</td><td>-</td><td><mdl< td=""><td>0.01</td><td>0.0202</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.01</td><td>0.02</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0098</td><td>0.0196 u</td><td>g/L</td><td>0.0138</td><td></td><td>0.002</td><td>0.00406</td><td>3 ug/L</td><td>0.0309</td><td></td><td>0.0025</td><td>0.00491 u</td><td>Jg/L</td></mdl<></td></mdl<></td></mdl<></td></mdl<>	. 0.01	0.02 ug/L	-	<mdl< td=""><td>0.01</td><td>0.0202</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.01</td><td>0.02</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0098</td><td>0.0196 u</td><td>g/L</td><td>0.0138</td><td></td><td>0.002</td><td>0.00406</td><td>3 ug/L</td><td>0.0309</td><td></td><td>0.0025</td><td>0.00491 u</td><td>Jg/L</td></mdl<></td></mdl<></td></mdl<>	0.01	0.0202	ug/L		<mdl< td=""><td>0.01</td><td>0.02</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0098</td><td>0.0196 u</td><td>g/L</td><td>0.0138</td><td></td><td>0.002</td><td>0.00406</td><td>3 ug/L</td><td>0.0309</td><td></td><td>0.0025</td><td>0.00491 u</td><td>Jg/L</td></mdl<></td></mdl<>	0.01	0.02	ug/L		<mdl< td=""><td>0.0098</td><td>0.0196 u</td><td>g/L</td><td>0.0138</td><td></td><td>0.002</td><td>0.00406</td><td>3 ug/L</td><td>0.0309</td><td></td><td>0.0025</td><td>0.00491 u</td><td>Jg/L</td></mdl<>	0.0098	0.0196 u	g/L	0.0138		0.002	0.00406	3 ug/L	0.0309		0.0025	0.00491 u	Jg/L
Benzo(b)fluoranthene		<mdl< td=""><td>. 0.01</td><td>0.02 ug/L</td><td>-</td><td><mdl< td=""><td>0.01</td><td>0.0202</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.01</td><td>0.02</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0098</td><td>0.0196 u</td><td>g/L</td><td>0.0268</td><td></td><td>0.0041</td><td>0.0081</td><td>1 ug/L</td><td>0.0456</td><td></td><td>0.0049</td><td>0.00983 u</td><td>Jg/L</td></mdl<></td></mdl<></td></mdl<></td></mdl<>	. 0.01	0.02 ug/L	-	<mdl< td=""><td>0.01</td><td>0.0202</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.01</td><td>0.02</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0098</td><td>0.0196 u</td><td>g/L</td><td>0.0268</td><td></td><td>0.0041</td><td>0.0081</td><td>1 ug/L</td><td>0.0456</td><td></td><td>0.0049</td><td>0.00983 u</td><td>Jg/L</td></mdl<></td></mdl<></td></mdl<>	0.01	0.0202	ug/L		<mdl< td=""><td>0.01</td><td>0.02</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0098</td><td>0.0196 u</td><td>g/L</td><td>0.0268</td><td></td><td>0.0041</td><td>0.0081</td><td>1 ug/L</td><td>0.0456</td><td></td><td>0.0049</td><td>0.00983 u</td><td>Jg/L</td></mdl<></td></mdl<>	0.01	0.02	ug/L		<mdl< td=""><td>0.0098</td><td>0.0196 u</td><td>g/L</td><td>0.0268</td><td></td><td>0.0041</td><td>0.0081</td><td>1 ug/L</td><td>0.0456</td><td></td><td>0.0049</td><td>0.00983 u</td><td>Jg/L</td></mdl<>	0.0098	0.0196 u	g/L	0.0268		0.0041	0.0081	1 ug/L	0.0456		0.0049	0.00983 u	Jg/L
Benzo(g,h,i)perylene		<mdl< td=""><td>. 0.01</td><td>0.02 ug/L</td><td>-</td><td><mdl< td=""><td>0.01</td><td>0.0202</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.01</td><td>0.02</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0098</td><td>0.0196 u</td><td>g/L</td><td></td><td><mdl< td=""><td>0.026</td><td>0.052</td><td>7 ug/L</td><td></td><td><mdl< td=""><td>0.032</td><td>0.0639 u</td><td>Jg/L</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	. 0.01	0.02 ug/L	-	<mdl< td=""><td>0.01</td><td>0.0202</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.01</td><td>0.02</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0098</td><td>0.0196 u</td><td>g/L</td><td></td><td><mdl< td=""><td>0.026</td><td>0.052</td><td>7 ug/L</td><td></td><td><mdl< td=""><td>0.032</td><td>0.0639 u</td><td>Jg/L</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	0.01	0.0202	ug/L		<mdl< td=""><td>0.01</td><td>0.02</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0098</td><td>0.0196 u</td><td>g/L</td><td></td><td><mdl< td=""><td>0.026</td><td>0.052</td><td>7 ug/L</td><td></td><td><mdl< td=""><td>0.032</td><td>0.0639 u</td><td>Jg/L</td></mdl<></td></mdl<></td></mdl<></td></mdl<>	0.01	0.02	ug/L		<mdl< td=""><td>0.0098</td><td>0.0196 u</td><td>g/L</td><td></td><td><mdl< td=""><td>0.026</td><td>0.052</td><td>7 ug/L</td><td></td><td><mdl< td=""><td>0.032</td><td>0.0639 u</td><td>Jg/L</td></mdl<></td></mdl<></td></mdl<>	0.0098	0.0196 u	g/L		<mdl< td=""><td>0.026</td><td>0.052</td><td>7 ug/L</td><td></td><td><mdl< td=""><td>0.032</td><td>0.0639 u</td><td>Jg/L</td></mdl<></td></mdl<>	0.026	0.052	7 ug/L		<mdl< td=""><td>0.032</td><td>0.0639 u</td><td>Jg/L</td></mdl<>	0.032	0.0639 u	Jg/L
Benzo(k)fluoranthene		<mdl< td=""><td>. 0.01</td><td>0.02 ug/L</td><td>-</td><td><mdl< td=""><td>0.01</td><td>0.0202</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.01</td><td>0.02</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0098</td><td>0.0196 u</td><td>g/L</td><td>0.0158</td><td></td><td>0.0041</td><td>0.0081</td><td>1 ug/L</td><td>0.019</td><td></td><td>0.0049</td><td>0.00983 u</td><td>Jg/L</td></mdl<></td></mdl<></td></mdl<></td></mdl<>	. 0.01	0.02 ug/L	-	<mdl< td=""><td>0.01</td><td>0.0202</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.01</td><td>0.02</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0098</td><td>0.0196 u</td><td>g/L</td><td>0.0158</td><td></td><td>0.0041</td><td>0.0081</td><td>1 ug/L</td><td>0.019</td><td></td><td>0.0049</td><td>0.00983 u</td><td>Jg/L</td></mdl<></td></mdl<></td></mdl<>	0.01	0.0202	ug/L		<mdl< td=""><td>0.01</td><td>0.02</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0098</td><td>0.0196 u</td><td>g/L</td><td>0.0158</td><td></td><td>0.0041</td><td>0.0081</td><td>1 ug/L</td><td>0.019</td><td></td><td>0.0049</td><td>0.00983 u</td><td>Jg/L</td></mdl<></td></mdl<>	0.01	0.02	ug/L		<mdl< td=""><td>0.0098</td><td>0.0196 u</td><td>g/L</td><td>0.0158</td><td></td><td>0.0041</td><td>0.0081</td><td>1 ug/L</td><td>0.019</td><td></td><td>0.0049</td><td>0.00983 u</td><td>Jg/L</td></mdl<>	0.0098	0.0196 u	g/L	0.0158		0.0041	0.0081	1 ug/L	0.019		0.0049	0.00983 u	Jg/L
Benzyl Butyl Phthalate		<mdl< td=""><td>0.05</td><td>0.1 ug/L</td><td>-</td><td><mdl< td=""><td>0.051</td><td>0.101</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.05</td><td>0.1</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.049</td><td>0.098 u</td><td>g/L</td><td>0.0804</td><td></td><td>0.0081</td><td>0.0162</td><td>2 ug/L</td><td>0.196</td><td></td><td>0.0098</td><td>0.0197 u</td><td></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	0.05	0.1 ug/L	-	<mdl< td=""><td>0.051</td><td>0.101</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.05</td><td>0.1</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.049</td><td>0.098 u</td><td>g/L</td><td>0.0804</td><td></td><td>0.0081</td><td>0.0162</td><td>2 ug/L</td><td>0.196</td><td></td><td>0.0098</td><td>0.0197 u</td><td></td></mdl<></td></mdl<></td></mdl<>	0.051	0.101	ug/L		<mdl< td=""><td>0.05</td><td>0.1</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.049</td><td>0.098 u</td><td>g/L</td><td>0.0804</td><td></td><td>0.0081</td><td>0.0162</td><td>2 ug/L</td><td>0.196</td><td></td><td>0.0098</td><td>0.0197 u</td><td></td></mdl<></td></mdl<>	0.05	0.1	ug/L		<mdl< td=""><td>0.049</td><td>0.098 u</td><td>g/L</td><td>0.0804</td><td></td><td>0.0081</td><td>0.0162</td><td>2 ug/L</td><td>0.196</td><td></td><td>0.0098</td><td>0.0197 u</td><td></td></mdl<>	0.049	0.098 u	g/L	0.0804		0.0081	0.0162	2 ug/L	0.196		0.0098	0.0197 u	
Bis(2-Ethylhexyl)Phthalate	0.20	5 B	0.05	0.1 ug/L	. 0.20	9 B	0.051	0.101	ug/L	0.245	В	0.05	0.1	ug/L	0.187	В	0.049	0.098 u	g/L	0.29		0.002	0.00406	3 ug/L	1.07		0.0025	0.00491 u	Jg/L
Chrysene		<mdl< td=""><td>0.01</td><td>0.02 ug/L</td><td>-</td><td><mdl< td=""><td>0.01</td><td>0.0202</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.01</td><td>0.02</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0098</td><td>0.0196 u</td><td>g/L</td><td>0.0173</td><td></td><td>0.003</td><td>0.00609</td><td>Jug/L</td><td>0.0462</td><td></td><td>0.0037</td><td>0.00737 u</td><td>Jg/L</td></mdl<></td></mdl<></td></mdl<></td></mdl<>	0.01	0.02 ug/L	-	<mdl< td=""><td>0.01</td><td>0.0202</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.01</td><td>0.02</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0098</td><td>0.0196 u</td><td>g/L</td><td>0.0173</td><td></td><td>0.003</td><td>0.00609</td><td>Jug/L</td><td>0.0462</td><td></td><td>0.0037</td><td>0.00737 u</td><td>Jg/L</td></mdl<></td></mdl<></td></mdl<>	0.01	0.0202	ug/L		<mdl< td=""><td>0.01</td><td>0.02</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0098</td><td>0.0196 u</td><td>g/L</td><td>0.0173</td><td></td><td>0.003</td><td>0.00609</td><td>Jug/L</td><td>0.0462</td><td></td><td>0.0037</td><td>0.00737 u</td><td>Jg/L</td></mdl<></td></mdl<>	0.01	0.02	ug/L		<mdl< td=""><td>0.0098</td><td>0.0196 u</td><td>g/L</td><td>0.0173</td><td></td><td>0.003</td><td>0.00609</td><td>Jug/L</td><td>0.0462</td><td></td><td>0.0037</td><td>0.00737 u</td><td>Jg/L</td></mdl<>	0.0098	0.0196 u	g/L	0.0173		0.003	0.00609	Jug/L	0.0462		0.0037	0.00737 u	Jg/L
Dibenzo(a,h)anthracene		<mdl< td=""><td>0.01</td><td>0.02 ug/L</td><td>-</td><td><mdl< td=""><td>0.01</td><td>0.0202</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.01</td><td>0.02</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0098</td><td>0.0196 u</td><td>g/L</td><td></td><td><mdl< td=""><td>0.0061</td><td>0.0122</td><td>2 ug/L</td><td></td><td><mdl< td=""><td>0.0074</td><td>0.0147 u</td><td>Jg/L</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	0.01	0.02 ug/L	-	<mdl< td=""><td>0.01</td><td>0.0202</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.01</td><td>0.02</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0098</td><td>0.0196 u</td><td>g/L</td><td></td><td><mdl< td=""><td>0.0061</td><td>0.0122</td><td>2 ug/L</td><td></td><td><mdl< td=""><td>0.0074</td><td>0.0147 u</td><td>Jg/L</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	0.01	0.0202	ug/L		<mdl< td=""><td>0.01</td><td>0.02</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0098</td><td>0.0196 u</td><td>g/L</td><td></td><td><mdl< td=""><td>0.0061</td><td>0.0122</td><td>2 ug/L</td><td></td><td><mdl< td=""><td>0.0074</td><td>0.0147 u</td><td>Jg/L</td></mdl<></td></mdl<></td></mdl<></td></mdl<>	0.01	0.02	ug/L		<mdl< td=""><td>0.0098</td><td>0.0196 u</td><td>g/L</td><td></td><td><mdl< td=""><td>0.0061</td><td>0.0122</td><td>2 ug/L</td><td></td><td><mdl< td=""><td>0.0074</td><td>0.0147 u</td><td>Jg/L</td></mdl<></td></mdl<></td></mdl<>	0.0098	0.0196 u	g/L		<mdl< td=""><td>0.0061</td><td>0.0122</td><td>2 ug/L</td><td></td><td><mdl< td=""><td>0.0074</td><td>0.0147 u</td><td>Jg/L</td></mdl<></td></mdl<>	0.0061	0.0122	2 ug/L		<mdl< td=""><td>0.0074</td><td>0.0147 u</td><td>Jg/L</td></mdl<>	0.0074	0.0147 u	Jg/L
Diethyl Phthalate		<mdl< td=""><td>0.05</td><td>0.1 ug/L</td><td>-</td><td><mdl< td=""><td>0.051</td><td>0.101</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.05</td><td>0.1</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.049</td><td>0.098 u</td><td>g/L</td><td>0.0567</td><td></td><td>0.002</td><td>0.00406</td><td>3 ug/L</td><td>0.0657</td><td></td><td>0.0025</td><td>0.00491 u</td><td>Jg/L</td></mdl<></td></mdl<></td></mdl<></td></mdl<>	0.05	0.1 ug/L	-	<mdl< td=""><td>0.051</td><td>0.101</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.05</td><td>0.1</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.049</td><td>0.098 u</td><td>g/L</td><td>0.0567</td><td></td><td>0.002</td><td>0.00406</td><td>3 ug/L</td><td>0.0657</td><td></td><td>0.0025</td><td>0.00491 u</td><td>Jg/L</td></mdl<></td></mdl<></td></mdl<>	0.051	0.101	ug/L		<mdl< td=""><td>0.05</td><td>0.1</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.049</td><td>0.098 u</td><td>g/L</td><td>0.0567</td><td></td><td>0.002</td><td>0.00406</td><td>3 ug/L</td><td>0.0657</td><td></td><td>0.0025</td><td>0.00491 u</td><td>Jg/L</td></mdl<></td></mdl<>	0.05	0.1	ug/L		<mdl< td=""><td>0.049</td><td>0.098 u</td><td>g/L</td><td>0.0567</td><td></td><td>0.002</td><td>0.00406</td><td>3 ug/L</td><td>0.0657</td><td></td><td>0.0025</td><td>0.00491 u</td><td>Jg/L</td></mdl<>	0.049	0.098 u	g/L	0.0567		0.002	0.00406	3 ug/L	0.0657		0.0025	0.00491 u	Jg/L
Dimethyl Phthalate		<mdl< td=""><td>0.05</td><td>0.1 ug/L</td><td>-</td><td><mdl< td=""><td>0.051</td><td>0.101</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.05</td><td>0.1</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.049</td><td>0.098 u</td><td>g/L</td><td>0.0113</td><td></td><td>0.002</td><td>0.00406</td><td>3 ug/L</td><td>0.0186</td><td></td><td>0.0025</td><td>0.00491 u</td><td>Jg/L</td></mdl<></td></mdl<></td></mdl<></td></mdl<>	0.05	0.1 ug/L	-	<mdl< td=""><td>0.051</td><td>0.101</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.05</td><td>0.1</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.049</td><td>0.098 u</td><td>g/L</td><td>0.0113</td><td></td><td>0.002</td><td>0.00406</td><td>3 ug/L</td><td>0.0186</td><td></td><td>0.0025</td><td>0.00491 u</td><td>Jg/L</td></mdl<></td></mdl<></td></mdl<>	0.051	0.101	ug/L		<mdl< td=""><td>0.05</td><td>0.1</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.049</td><td>0.098 u</td><td>g/L</td><td>0.0113</td><td></td><td>0.002</td><td>0.00406</td><td>3 ug/L</td><td>0.0186</td><td></td><td>0.0025</td><td>0.00491 u</td><td>Jg/L</td></mdl<></td></mdl<>	0.05	0.1	ug/L		<mdl< td=""><td>0.049</td><td>0.098 u</td><td>g/L</td><td>0.0113</td><td></td><td>0.002</td><td>0.00406</td><td>3 ug/L</td><td>0.0186</td><td></td><td>0.0025</td><td>0.00491 u</td><td>Jg/L</td></mdl<>	0.049	0.098 u	g/L	0.0113		0.002	0.00406	3 ug/L	0.0186		0.0025	0.00491 u	Jg/L
Di-N-Butyl Phthalate	0.06	8 <rdl,e< td=""><td>B 0.05</td><td>0.1 ug/L</td><td>. 0.07</td><td>7 <rdl,b< td=""><td>0.051</td><td>0.101</td><td>ug/L</td><td>0.068</td><td><rdl,b< td=""><td>0.05</td><td>0.1</td><td>ug/L</td><td>0.067</td><td><rdl,b< td=""><td>0.049</td><td>0.098 u</td><td>g/L</td><td>0.0977</td><td></td><td>0.002</td><td>0.00406</td><td>3 ug/L</td><td>0.0454</td><td>В</td><td>0.0025</td><td>0.00491 u</td><td>Jg/L</td></rdl,b<></td></rdl,b<></td></rdl,b<></td></rdl,e<>	B 0.05	0.1 ug/L	. 0.07	7 <rdl,b< td=""><td>0.051</td><td>0.101</td><td>ug/L</td><td>0.068</td><td><rdl,b< td=""><td>0.05</td><td>0.1</td><td>ug/L</td><td>0.067</td><td><rdl,b< td=""><td>0.049</td><td>0.098 u</td><td>g/L</td><td>0.0977</td><td></td><td>0.002</td><td>0.00406</td><td>3 ug/L</td><td>0.0454</td><td>В</td><td>0.0025</td><td>0.00491 u</td><td>Jg/L</td></rdl,b<></td></rdl,b<></td></rdl,b<>	0.051	0.101	ug/L	0.068	<rdl,b< td=""><td>0.05</td><td>0.1</td><td>ug/L</td><td>0.067</td><td><rdl,b< td=""><td>0.049</td><td>0.098 u</td><td>g/L</td><td>0.0977</td><td></td><td>0.002</td><td>0.00406</td><td>3 ug/L</td><td>0.0454</td><td>В</td><td>0.0025</td><td>0.00491 u</td><td>Jg/L</td></rdl,b<></td></rdl,b<>	0.05	0.1	ug/L	0.067	<rdl,b< td=""><td>0.049</td><td>0.098 u</td><td>g/L</td><td>0.0977</td><td></td><td>0.002</td><td>0.00406</td><td>3 ug/L</td><td>0.0454</td><td>В</td><td>0.0025</td><td>0.00491 u</td><td>Jg/L</td></rdl,b<>	0.049	0.098 u	g/L	0.0977		0.002	0.00406	3 ug/L	0.0454	В	0.0025	0.00491 u	Jg/L
Di-N-Octyl Phthalate		<mdl< td=""><td>0.05</td><td>0.1 ug/L</td><td>-</td><td><mdl< td=""><td>0.051</td><td>0.101</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.05</td><td>0.1</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.049</td><td>0.098 u</td><td>g/L</td><td>0.0495</td><td></td><td>0.0061</td><td>0.0122</td><td>2 ug/L</td><td>0.0486</td><td></td><td>0.0074</td><td>0.0147 u</td><td>Jg/L</td></mdl<></td></mdl<></td></mdl<></td></mdl<>	0.05	0.1 ug/L	-	<mdl< td=""><td>0.051</td><td>0.101</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.05</td><td>0.1</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.049</td><td>0.098 u</td><td>g/L</td><td>0.0495</td><td></td><td>0.0061</td><td>0.0122</td><td>2 ug/L</td><td>0.0486</td><td></td><td>0.0074</td><td>0.0147 u</td><td>Jg/L</td></mdl<></td></mdl<></td></mdl<>	0.051	0.101	ug/L		<mdl< td=""><td>0.05</td><td>0.1</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.049</td><td>0.098 u</td><td>g/L</td><td>0.0495</td><td></td><td>0.0061</td><td>0.0122</td><td>2 ug/L</td><td>0.0486</td><td></td><td>0.0074</td><td>0.0147 u</td><td>Jg/L</td></mdl<></td></mdl<>	0.05	0.1	ug/L		<mdl< td=""><td>0.049</td><td>0.098 u</td><td>g/L</td><td>0.0495</td><td></td><td>0.0061</td><td>0.0122</td><td>2 ug/L</td><td>0.0486</td><td></td><td>0.0074</td><td>0.0147 u</td><td>Jg/L</td></mdl<>	0.049	0.098 u	g/L	0.0495		0.0061	0.0122	2 ug/L	0.0486		0.0074	0.0147 u	Jg/L
Fluoranthene		<mdl< td=""><td>. 0.01</td><td>0.02 ug/L</td><td>-</td><td><mdl< td=""><td>0.01</td><td>0.0202</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.01</td><td>0.02</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0098</td><td>0.0196 u</td><td>g/L</td><td>0.0255</td><td></td><td>0.002</td><td>0.00406</td><td>3 ug/L</td><td>0.0695</td><td></td><td>0.0025</td><td>0.00491 u</td><td>Jg/L</td></mdl<></td></mdl<></td></mdl<></td></mdl<>	. 0.01	0.02 ug/L	-	<mdl< td=""><td>0.01</td><td>0.0202</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.01</td><td>0.02</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0098</td><td>0.0196 u</td><td>g/L</td><td>0.0255</td><td></td><td>0.002</td><td>0.00406</td><td>3 ug/L</td><td>0.0695</td><td></td><td>0.0025</td><td>0.00491 u</td><td>Jg/L</td></mdl<></td></mdl<></td></mdl<>	0.01	0.0202	ug/L		<mdl< td=""><td>0.01</td><td>0.02</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0098</td><td>0.0196 u</td><td>g/L</td><td>0.0255</td><td></td><td>0.002</td><td>0.00406</td><td>3 ug/L</td><td>0.0695</td><td></td><td>0.0025</td><td>0.00491 u</td><td>Jg/L</td></mdl<></td></mdl<>	0.01	0.02	ug/L		<mdl< td=""><td>0.0098</td><td>0.0196 u</td><td>g/L</td><td>0.0255</td><td></td><td>0.002</td><td>0.00406</td><td>3 ug/L</td><td>0.0695</td><td></td><td>0.0025</td><td>0.00491 u</td><td>Jg/L</td></mdl<>	0.0098	0.0196 u	g/L	0.0255		0.002	0.00406	3 ug/L	0.0695		0.0025	0.00491 u	Jg/L
Fluorene		<mdl< td=""><td>. 0.01</td><td>0.02 ug/L</td><td>-</td><td><mdl< td=""><td>0.01</td><td>0.0202</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.01</td><td>0.02</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0098</td><td>0.0196 u</td><td>g/L</td><td>0.0039</td><td><rdl< td=""><td>0.002</td><td>0.00406</td><td>3 ug/L</td><td>0.00524</td><td></td><td>0.0025</td><td>0.00491 u</td><td>Jg/L</td></rdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	. 0.01	0.02 ug/L	-	<mdl< td=""><td>0.01</td><td>0.0202</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.01</td><td>0.02</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0098</td><td>0.0196 u</td><td>g/L</td><td>0.0039</td><td><rdl< td=""><td>0.002</td><td>0.00406</td><td>3 ug/L</td><td>0.00524</td><td></td><td>0.0025</td><td>0.00491 u</td><td>Jg/L</td></rdl<></td></mdl<></td></mdl<></td></mdl<>	0.01	0.0202	ug/L		<mdl< td=""><td>0.01</td><td>0.02</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0098</td><td>0.0196 u</td><td>g/L</td><td>0.0039</td><td><rdl< td=""><td>0.002</td><td>0.00406</td><td>3 ug/L</td><td>0.00524</td><td></td><td>0.0025</td><td>0.00491 u</td><td>Jg/L</td></rdl<></td></mdl<></td></mdl<>	0.01	0.02	ug/L		<mdl< td=""><td>0.0098</td><td>0.0196 u</td><td>g/L</td><td>0.0039</td><td><rdl< td=""><td>0.002</td><td>0.00406</td><td>3 ug/L</td><td>0.00524</td><td></td><td>0.0025</td><td>0.00491 u</td><td>Jg/L</td></rdl<></td></mdl<>	0.0098	0.0196 u	g/L	0.0039	<rdl< td=""><td>0.002</td><td>0.00406</td><td>3 ug/L</td><td>0.00524</td><td></td><td>0.0025</td><td>0.00491 u</td><td>Jg/L</td></rdl<>	0.002	0.00406	3 ug/L	0.00524		0.0025	0.00491 u	Jg/L
Indeno(1,2,3-Cd)Pyrene		<mdl< td=""><td>. 0.01</td><td>0.02 ug/L</td><td>-</td><td><mdl< td=""><td>0.01</td><td>0.0202</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.01</td><td>0.02</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0098</td><td>0.0196 u</td><td>g/L</td><td></td><td><mdl< td=""><td>0.014</td><td>0.0284</td><td>1 ug/L</td><td></td><td><mdl< td=""><td>0.017</td><td>0.0344 u</td><td>Jg/L</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	. 0.01	0.02 ug/L	-	<mdl< td=""><td>0.01</td><td>0.0202</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.01</td><td>0.02</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0098</td><td>0.0196 u</td><td>g/L</td><td></td><td><mdl< td=""><td>0.014</td><td>0.0284</td><td>1 ug/L</td><td></td><td><mdl< td=""><td>0.017</td><td>0.0344 u</td><td>Jg/L</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	0.01	0.0202	ug/L		<mdl< td=""><td>0.01</td><td>0.02</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0098</td><td>0.0196 u</td><td>g/L</td><td></td><td><mdl< td=""><td>0.014</td><td>0.0284</td><td>1 ug/L</td><td></td><td><mdl< td=""><td>0.017</td><td>0.0344 u</td><td>Jg/L</td></mdl<></td></mdl<></td></mdl<></td></mdl<>	0.01	0.02	ug/L		<mdl< td=""><td>0.0098</td><td>0.0196 u</td><td>g/L</td><td></td><td><mdl< td=""><td>0.014</td><td>0.0284</td><td>1 ug/L</td><td></td><td><mdl< td=""><td>0.017</td><td>0.0344 u</td><td>Jg/L</td></mdl<></td></mdl<></td></mdl<>	0.0098	0.0196 u	g/L		<mdl< td=""><td>0.014</td><td>0.0284</td><td>1 ug/L</td><td></td><td><mdl< td=""><td>0.017</td><td>0.0344 u</td><td>Jg/L</td></mdl<></td></mdl<>	0.014	0.0284	1 ug/L		<mdl< td=""><td>0.017</td><td>0.0344 u</td><td>Jg/L</td></mdl<>	0.017	0.0344 u	Jg/L
Naphthalene		<mdl< td=""><td>. 0.01</td><td>0.02 ug/L</td><td></td><td><mdl< td=""><td>0.01</td><td>0.0202</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.01</td><td>0.02</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0098</td><td>0.0196 u</td><td>g/L</td><td>0.008</td><td><rdl< td=""><td>0.0051</td><td>0.010</td><td>1 ug/L</td><td></td><td><mdl< td=""><td>0.0061</td><td>0.0123 u</td><td>Jg/L</td></mdl<></td></rdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	. 0.01	0.02 ug/L		<mdl< td=""><td>0.01</td><td>0.0202</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.01</td><td>0.02</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0098</td><td>0.0196 u</td><td>g/L</td><td>0.008</td><td><rdl< td=""><td>0.0051</td><td>0.010</td><td>1 ug/L</td><td></td><td><mdl< td=""><td>0.0061</td><td>0.0123 u</td><td>Jg/L</td></mdl<></td></rdl<></td></mdl<></td></mdl<></td></mdl<>	0.01	0.0202	ug/L		<mdl< td=""><td>0.01</td><td>0.02</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0098</td><td>0.0196 u</td><td>g/L</td><td>0.008</td><td><rdl< td=""><td>0.0051</td><td>0.010</td><td>1 ug/L</td><td></td><td><mdl< td=""><td>0.0061</td><td>0.0123 u</td><td>Jg/L</td></mdl<></td></rdl<></td></mdl<></td></mdl<>	0.01	0.02	ug/L		<mdl< td=""><td>0.0098</td><td>0.0196 u</td><td>g/L</td><td>0.008</td><td><rdl< td=""><td>0.0051</td><td>0.010</td><td>1 ug/L</td><td></td><td><mdl< td=""><td>0.0061</td><td>0.0123 u</td><td>Jg/L</td></mdl<></td></rdl<></td></mdl<>	0.0098	0.0196 u	g/L	0.008	<rdl< td=""><td>0.0051</td><td>0.010</td><td>1 ug/L</td><td></td><td><mdl< td=""><td>0.0061</td><td>0.0123 u</td><td>Jg/L</td></mdl<></td></rdl<>	0.0051	0.010	1 ug/L		<mdl< td=""><td>0.0061</td><td>0.0123 u</td><td>Jg/L</td></mdl<>	0.0061	0.0123 u	Jg/L
Phenanthrene		<mdl< td=""><td>. 0.01</td><td>0.02 ug/L</td><td></td><td><mdl< td=""><td>0.01</td><td>0.0202</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.01</td><td>0.02</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0098</td><td>0.0196 u</td><td>g/L</td><td>0.0295</td><td></td><td>0.002</td><td>0.00406</td><td>3 ug/L</td><td>0.0395</td><td></td><td>0.0025</td><td>0.00491 u</td><td>Jg/L</td></mdl<></td></mdl<></td></mdl<></td></mdl<>	. 0.01	0.02 ug/L		<mdl< td=""><td>0.01</td><td>0.0202</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.01</td><td>0.02</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0098</td><td>0.0196 u</td><td>g/L</td><td>0.0295</td><td></td><td>0.002</td><td>0.00406</td><td>3 ug/L</td><td>0.0395</td><td></td><td>0.0025</td><td>0.00491 u</td><td>Jg/L</td></mdl<></td></mdl<></td></mdl<>	0.01	0.0202	ug/L		<mdl< td=""><td>0.01</td><td>0.02</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0098</td><td>0.0196 u</td><td>g/L</td><td>0.0295</td><td></td><td>0.002</td><td>0.00406</td><td>3 ug/L</td><td>0.0395</td><td></td><td>0.0025</td><td>0.00491 u</td><td>Jg/L</td></mdl<></td></mdl<>	0.01	0.02	ug/L		<mdl< td=""><td>0.0098</td><td>0.0196 u</td><td>g/L</td><td>0.0295</td><td></td><td>0.002</td><td>0.00406</td><td>3 ug/L</td><td>0.0395</td><td></td><td>0.0025</td><td>0.00491 u</td><td>Jg/L</td></mdl<>	0.0098	0.0196 u	g/L	0.0295		0.002	0.00406	3 ug/L	0.0395		0.0025	0.00491 u	Jg/L
Pyrene		<mdl< td=""><td>0.01</td><td>0.02 ug/L</td><td></td><td><mdl< td=""><td>0.01</td><td>0.0202</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.01</td><td>0.02</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0098</td><td>0.0196 u</td><td>g/L</td><td>0.0229</td><td></td><td>0.002</td><td>0.00406</td><td>3 ug/L</td><td>0.0527</td><td></td><td>0.0025</td><td>0.00491 u</td><td>Jg/L</td></mdl<></td></mdl<></td></mdl<></td></mdl<>	0.01	0.02 ug/L		<mdl< td=""><td>0.01</td><td>0.0202</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.01</td><td>0.02</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0098</td><td>0.0196 u</td><td>g/L</td><td>0.0229</td><td></td><td>0.002</td><td>0.00406</td><td>3 ug/L</td><td>0.0527</td><td></td><td>0.0025</td><td>0.00491 u</td><td>Jg/L</td></mdl<></td></mdl<></td></mdl<>	0.01	0.0202	ug/L		<mdl< td=""><td>0.01</td><td>0.02</td><td>ug/L</td><td></td><td><mdl< td=""><td>0.0098</td><td>0.0196 u</td><td>g/L</td><td>0.0229</td><td></td><td>0.002</td><td>0.00406</td><td>3 ug/L</td><td>0.0527</td><td></td><td>0.0025</td><td>0.00491 u</td><td>Jg/L</td></mdl<></td></mdl<>	0.01	0.02	ug/L		<mdl< td=""><td>0.0098</td><td>0.0196 u</td><td>g/L</td><td>0.0229</td><td></td><td>0.002</td><td>0.00406</td><td>3 ug/L</td><td>0.0527</td><td></td><td>0.0025</td><td>0.00491 u</td><td>Jg/L</td></mdl<>	0.0098	0.0196 u	g/L	0.0229		0.002	0.00406	3 ug/L	0.0527		0.0025	0.00491 u	Jg/L

PROJECT: 423589-090-1	Locator:NONEDescrip:UNKNOWN LOCATORClient Loc:DZ-01-041305-050505Sampled:May 05, 2005Lab ID:L35485-3Matrix:OTHR WTR% Solids:0.001	Descrip: UNKNOWN LOCATOR Client Loc: SPCC-01-041305-050505 Sampled: May 05, 2005 Lab ID: L35485-4 Matrix: OTHR WTR	Sampled: May 05, 2005 Lab ID: L35485-5	Descrip: UNKNOWN LOCATOR Client Loc: CE-01-041305-050505 Sampled: May 05, 2005 Lab ID: L35485-6	Descrip: UNKNOWN LOCATOR Client Loc: DZ-01-041305-050505 Sampled: May 05, 2005 Lab ID: L35485-7 Matrix: OTHR SOLID	Locator: NONE Descrip: UNKNOWN LOCATOR Client Loc: SPCC-01-041305-050505 Sampled: May 05, 2005 Lab ID: L35485-8 Matrix: OTHR SOLID % Solids:
Parameters	Value Qual MDL RDL Unit: -Wet Weight Basis	Value Qual MDL RDL Units -Wet Weight Basis	Value Qual MDL RDL Units -Wet Weight Basis	Value Qual MDL RDL Units -Wet Weight Basis	Value Qual MDL RDL Units -Wet Weight Basis	Value Qual MDL RDL Units -Wet Weight Basis
COMBINED LABS						
M=CV SM2540-B (03-01-007-002)						
Total Solids	12 5 10 mg/l	23 5 10 mg/L				
M=OR 8270B	¥					
2-Methylnaphthalene	0.0061 <rdl 0.0039="" 0.00784="" l<="" td="" ug=""><td>0.0067 <rdl 0.0039="" 0.00781="" l<="" td="" ug=""><td><mdl 0.005="" 0.01="" td="" ug<=""><td><mdl 0.005="" 0.01="" td="" ug<=""><td><mdl 0.005="" 0.01="" td="" ug<=""><td>0.0445 0.005 0.01 ug</td></mdl></td></mdl></td></mdl></td></rdl></td></rdl>	0.0067 <rdl 0.0039="" 0.00781="" l<="" td="" ug=""><td><mdl 0.005="" 0.01="" td="" ug<=""><td><mdl 0.005="" 0.01="" td="" ug<=""><td><mdl 0.005="" 0.01="" td="" ug<=""><td>0.0445 0.005 0.01 ug</td></mdl></td></mdl></td></mdl></td></rdl>	<mdl 0.005="" 0.01="" td="" ug<=""><td><mdl 0.005="" 0.01="" td="" ug<=""><td><mdl 0.005="" 0.01="" td="" ug<=""><td>0.0445 0.005 0.01 ug</td></mdl></td></mdl></td></mdl>	<mdl 0.005="" 0.01="" td="" ug<=""><td><mdl 0.005="" 0.01="" td="" ug<=""><td>0.0445 0.005 0.01 ug</td></mdl></td></mdl>	<mdl 0.005="" 0.01="" td="" ug<=""><td>0.0445 0.005 0.01 ug</td></mdl>	0.0445 0.005 0.01 ug
Acenaphthene	<mdl 0.0039="" 0.00784="" l<="" td="" ug=""><td><mdl 0.0039="" 0.00781="" l<="" td="" ug=""><td><mdl 0.005="" 0.01="" td="" ug<=""><td><mdl 0.005="" 0.01="" td="" ug<=""><td><mdl 0.005="" 0.01="" td="" ug<=""><td><mdl 0.005="" 0.01="" td="" ug<=""></mdl></td></mdl></td></mdl></td></mdl></td></mdl></td></mdl>	<mdl 0.0039="" 0.00781="" l<="" td="" ug=""><td><mdl 0.005="" 0.01="" td="" ug<=""><td><mdl 0.005="" 0.01="" td="" ug<=""><td><mdl 0.005="" 0.01="" td="" ug<=""><td><mdl 0.005="" 0.01="" td="" ug<=""></mdl></td></mdl></td></mdl></td></mdl></td></mdl>	<mdl 0.005="" 0.01="" td="" ug<=""><td><mdl 0.005="" 0.01="" td="" ug<=""><td><mdl 0.005="" 0.01="" td="" ug<=""><td><mdl 0.005="" 0.01="" td="" ug<=""></mdl></td></mdl></td></mdl></td></mdl>	<mdl 0.005="" 0.01="" td="" ug<=""><td><mdl 0.005="" 0.01="" td="" ug<=""><td><mdl 0.005="" 0.01="" td="" ug<=""></mdl></td></mdl></td></mdl>	<mdl 0.005="" 0.01="" td="" ug<=""><td><mdl 0.005="" 0.01="" td="" ug<=""></mdl></td></mdl>	<mdl 0.005="" 0.01="" td="" ug<=""></mdl>
Acenaphthylene	<mdl 0.0059="" 0.0118="" l<="" td="" ug=""><td><mdl 0.0059="" 0.0117="" l<="" td="" ug=""><td><mdl 0.005="" 0.01="" td="" ug<=""><td><mdl 0.005="" 0.01="" td="" ug<=""><td><mdl 0.005="" 0.01="" td="" ug<=""><td><mdl 0.005="" 0.01="" td="" ug<=""></mdl></td></mdl></td></mdl></td></mdl></td></mdl></td></mdl>	<mdl 0.0059="" 0.0117="" l<="" td="" ug=""><td><mdl 0.005="" 0.01="" td="" ug<=""><td><mdl 0.005="" 0.01="" td="" ug<=""><td><mdl 0.005="" 0.01="" td="" ug<=""><td><mdl 0.005="" 0.01="" td="" ug<=""></mdl></td></mdl></td></mdl></td></mdl></td></mdl>	<mdl 0.005="" 0.01="" td="" ug<=""><td><mdl 0.005="" 0.01="" td="" ug<=""><td><mdl 0.005="" 0.01="" td="" ug<=""><td><mdl 0.005="" 0.01="" td="" ug<=""></mdl></td></mdl></td></mdl></td></mdl>	<mdl 0.005="" 0.01="" td="" ug<=""><td><mdl 0.005="" 0.01="" td="" ug<=""><td><mdl 0.005="" 0.01="" td="" ug<=""></mdl></td></mdl></td></mdl>	<mdl 0.005="" 0.01="" td="" ug<=""><td><mdl 0.005="" 0.01="" td="" ug<=""></mdl></td></mdl>	<mdl 0.005="" 0.01="" td="" ug<=""></mdl>
Anthracene	<mdl 0.0059="" 0.0118="" l<="" td="" ug=""><td><mdl 0.0059="" 0.0117="" l<="" td="" ug=""><td>0.067 0.005 0.01 ug</td><td><mdl 0.005="" 0.01="" td="" ug<=""><td>0.0565 0.005 0.01 ug</td><td><mdl 0.005="" 0.01="" td="" ug<=""></mdl></td></mdl></td></mdl></td></mdl>	<mdl 0.0059="" 0.0117="" l<="" td="" ug=""><td>0.067 0.005 0.01 ug</td><td><mdl 0.005="" 0.01="" td="" ug<=""><td>0.0565 0.005 0.01 ug</td><td><mdl 0.005="" 0.01="" td="" ug<=""></mdl></td></mdl></td></mdl>	0.067 0.005 0.01 ug	<mdl 0.005="" 0.01="" td="" ug<=""><td>0.0565 0.005 0.01 ug</td><td><mdl 0.005="" 0.01="" td="" ug<=""></mdl></td></mdl>	0.0565 0.005 0.01 ug	<mdl 0.005="" 0.01="" td="" ug<=""></mdl>
Benzo(a)anthracene	0.0138 0.0039 0.00784 ug/L	0.00836 0.0039 0.00781 ug/L	0.067 0.005 0.01 ug	0.0435 0.005 0.01 ug	0.072 0.005 0.01 ug	0.0325 0.005 0.01 ug
Benzo(a)pyrene	0.0175 0.002 0.00392 ug/L	0.00883 0.002 0.00391 ug/L	0.0765 0.01 0.02 ug	0.0485 0.01 0.02 ug	0.078 0.01 0.02 ug	0.0335 0.01 0.02 ug
Benzo(b)fluoranthene	0.0307 0.0039 0.00784 ug/L	0.0242 0.0039 0.00781 ug/L	0.07 0.01 0.02 ug	0.045 0.01 0.02 ug	0.0725 0.01 0.02 ug	0.055 0.01 0.02 ug
Benzo(g,h,i)perylene	<mdl 0.025="" 0.051="" l<="" td="" ug=""><td><mdl 0.025="" 0.0508="" l<="" td="" ug=""><td>0.059 0.01 0.02 ug</td><td>0.0615 0.01 0.02 ug</td><td>0.074 0.01 0.02 ug</td><td>0.0295 0.01 0.02 ug</td></mdl></td></mdl>	<mdl 0.025="" 0.0508="" l<="" td="" ug=""><td>0.059 0.01 0.02 ug</td><td>0.0615 0.01 0.02 ug</td><td>0.074 0.01 0.02 ug</td><td>0.0295 0.01 0.02 ug</td></mdl>	0.059 0.01 0.02 ug	0.0615 0.01 0.02 ug	0.074 0.01 0.02 ug	0.0295 0.01 0.02 ug
Benzo(k)fluoranthene	0.015 0.0039 0.00784 ug/L	0.00924 0.0039 0.00781 ug/L	0.0665 0.01 0.02 ug	0.0485 0.01 0.02 ug	0.0705 0.01 0.02 ug	0.061 0.01 0.02 ug
Benzyl Butyl Phthalate	0.0487 0.0078 0.0157 ug/L	0.174 0.0078 0.0156 ug/L	<mdl 0.025="" 0.05="" td="" ug<=""><td><mdl 0.025="" 0.05="" td="" ug<=""><td>0.244 0.025 0.05 ug</td><td>0.316 0.025 0.05 ug</td></mdl></td></mdl>	<mdl 0.025="" 0.05="" td="" ug<=""><td>0.244 0.025 0.05 ug</td><td>0.316 0.025 0.05 ug</td></mdl>	0.244 0.025 0.05 ug	0.316 0.025 0.05 ug
Bis(2-Ethylhexyl)Phthalate	0.208 0.002 0.00392 ug/L	0.285 0.002 0.00391 ug/L	0.8 B 0.025 0.05 ug	1.09 0.025 0.05 ug	0.724 B 0.025 0.05 ug	0.639 B 0.025 0.05 ug
Chrysene	0.0292 0.0029 0.00588 ug/L	0.0218 0.0029 0.00586 ug/L	0.0655 0.005 0.01 ug	0.069 0.005 0.01 ug	0.086 0.005 0.01 ug	0.0495 0.005 0.01 ug
Dibenzo(a,h)anthracene	<mdl 0.0059="" 0.0118="" l<="" td="" ug=""><td><mdl 0.0059="" 0.0117="" l<="" td="" ug=""><td>0.058 0.01 0.02 ug</td><td><mdl 0.01="" 0.02="" td="" ug<=""><td>0.053 0.01 0.02 ug</td><td>0.049 0.01 0.02 ug</td></mdl></td></mdl></td></mdl>	<mdl 0.0059="" 0.0117="" l<="" td="" ug=""><td>0.058 0.01 0.02 ug</td><td><mdl 0.01="" 0.02="" td="" ug<=""><td>0.053 0.01 0.02 ug</td><td>0.049 0.01 0.02 ug</td></mdl></td></mdl>	0.058 0.01 0.02 ug	<mdl 0.01="" 0.02="" td="" ug<=""><td>0.053 0.01 0.02 ug</td><td>0.049 0.01 0.02 ug</td></mdl>	0.053 0.01 0.02 ug	0.049 0.01 0.02 ug
Diethyl Phthalate	0.00493 B 0.002 0.00392 ug/L	0.0664 0.002 0.00391 ug/L	<mdl 0.025="" 0.05="" td="" ug<=""><td><mdl 0.025="" 0.05="" td="" ug<=""><td><mdl 0.025="" 0.05="" td="" ug<=""><td>0.127 0.025 0.05 ug</td></mdl></td></mdl></td></mdl>	<mdl 0.025="" 0.05="" td="" ug<=""><td><mdl 0.025="" 0.05="" td="" ug<=""><td>0.127 0.025 0.05 ug</td></mdl></td></mdl>	<mdl 0.025="" 0.05="" td="" ug<=""><td>0.127 0.025 0.05 ug</td></mdl>	0.127 0.025 0.05 ug
Dimethyl Phthalate	0.0102 0.002 0.00392 ug/L	0.0151 0.002 0.00391 ug/L	<mdl 0.025="" 0.05="" td="" ug<=""><td><mdl 0.025="" 0.05="" td="" ug<=""><td><mdl 0.025="" 0.05="" td="" ug<=""><td>0.028 <rdl 0.025="" 0.05="" td="" ug<=""></rdl></td></mdl></td></mdl></td></mdl>	<mdl 0.025="" 0.05="" td="" ug<=""><td><mdl 0.025="" 0.05="" td="" ug<=""><td>0.028 <rdl 0.025="" 0.05="" td="" ug<=""></rdl></td></mdl></td></mdl>	<mdl 0.025="" 0.05="" td="" ug<=""><td>0.028 <rdl 0.025="" 0.05="" td="" ug<=""></rdl></td></mdl>	0.028 <rdl 0.025="" 0.05="" td="" ug<=""></rdl>
Di-N-Butyl Phthalate	0.0166 B 0.002 0.00392 ug/L	0.0846 0.002 0.00391 ug/L	0.415 B 0.025 0.05 ug	0.279 B 0.025 0.05 ug	0.276 B 0.025 0.05 ug	0.271 B 0.025 0.05 ug
Di-N-Octyl Phthalate	0.0849 0.0059 0.0118 ug/L	0.0174 0.0059 0.0117 ug/L	<mdl 0.025="" 0.05="" td="" ug<=""><td><mdl 0.025="" 0.05="" td="" ug<=""><td>0.289 0.025 0.05 ug</td><td>0.115 0.025 0.05 ug</td></mdl></td></mdl>	<mdl 0.025="" 0.05="" td="" ug<=""><td>0.289 0.025 0.05 ug</td><td>0.115 0.025 0.05 ug</td></mdl>	0.289 0.025 0.05 ug	0.115 0.025 0.05 ug
Fluoranthene	0.0487 0.002 0.00392 ug/L	0.034 0.002 0.00391 ug/L	0.141 0.005 0.01 ug	0.141 0.005 0.01 ug	0.158 0.005 0.01 ug	0.104 0.005 0.01 ug
Fluorene	0.00666 0.002 0.00392 ug/L	0.00414 0.002 0.00391 ug/L	0.0495 0.005 0.01 ug	<mdl 0.005="" 0.01="" td="" ug<=""><td><mdl 0.005="" 0.01="" td="" ug<=""><td>0.0445 0.005 0.01 ug</td></mdl></td></mdl>	<mdl 0.005="" 0.01="" td="" ug<=""><td>0.0445 0.005 0.01 ug</td></mdl>	0.0445 0.005 0.01 ug
Indeno(1,2,3-Cd)Pyrene	<mdl 0.014="" 0.0275="" l<="" td="" ug=""><td><mdl 0.014="" 0.0273="" l<="" td="" ug=""><td>0.0865 0.01 0.02 ug</td><td>0.0705 0.01 0.02 ug</td><td>0.0865 0.01 0.02 ug</td><td>0.057 0.01 0.02 ug</td></mdl></td></mdl>	<mdl 0.014="" 0.0273="" l<="" td="" ug=""><td>0.0865 0.01 0.02 ug</td><td>0.0705 0.01 0.02 ug</td><td>0.0865 0.01 0.02 ug</td><td>0.057 0.01 0.02 ug</td></mdl>	0.0865 0.01 0.02 ug	0.0705 0.01 0.02 ug	0.0865 0.01 0.02 ug	0.057 0.01 0.02 ug
Naphthalene	0.0073 <rdl 0.0049="" 0.0098="" l<="" td="" ug=""><td>0.0116 0.0049 0.00977 ug/L</td><td><mdl 0.01="" 0.02="" td="" ug<=""><td><mdl 0.01="" 0.02="" td="" ug<=""><td><mdl 0.01="" 0.02="" td="" ug<=""><td><mdl 0.01="" 0.02="" td="" ug<=""></mdl></td></mdl></td></mdl></td></mdl></td></rdl>	0.0116 0.0049 0.00977 ug/L	<mdl 0.01="" 0.02="" td="" ug<=""><td><mdl 0.01="" 0.02="" td="" ug<=""><td><mdl 0.01="" 0.02="" td="" ug<=""><td><mdl 0.01="" 0.02="" td="" ug<=""></mdl></td></mdl></td></mdl></td></mdl>	<mdl 0.01="" 0.02="" td="" ug<=""><td><mdl 0.01="" 0.02="" td="" ug<=""><td><mdl 0.01="" 0.02="" td="" ug<=""></mdl></td></mdl></td></mdl>	<mdl 0.01="" 0.02="" td="" ug<=""><td><mdl 0.01="" 0.02="" td="" ug<=""></mdl></td></mdl>	<mdl 0.01="" 0.02="" td="" ug<=""></mdl>
Phenanthrene	0.0393 0.002 0.00392 ug/L	0.0293 0.002 0.00391 ug/L	0.102 0.005 0.01 ug	0.11 0.005 0.01 ug	0.113 0.005 0.01 ug	0.0795 0.005 0.01 ug
Pyrene	0.0337 0.002 0.00392 ug/L	0.0246 0.002 0.00391 ug/L	0.125 0.005 0.01 ug	0.122 0.005 0.01 ug	0.148 0.005 0.01 ug	0.09 0.005 0.01 ug