FINAL

Prepared for: King County Department of Local Services Permitting Division 919 SW Grady Way, Suite 300 Renton, WA 98057

Prepared by: Ramboll US Consulting 50 West Broadway, Suite 300 Salt Lake City, UT 84101

March 2023 1690023122

## **AIR DISPERSION MODELING REPORT** SEGALE PROPERTIES LLC, CUMBERLAND MINE



## Contents

| 1.0 | Intr                                                        | oduction1                                                                                                                                                                                                                                                                                                                                                      | L                                 |
|-----|-------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| 2.0 | <b>Proj</b><br>2.1<br>2.2                                   | ect Overview                                                                                                                                                                                                                                                                                                                                                   | L                                 |
| 3.0 | <b>Reg</b><br>3.1<br>3.2                                    | ulatory Overview2Ambient Air Quality Standards and Attainment Status2Toxic Air Pollutant Acceptable Source Impact Levels3                                                                                                                                                                                                                                      | 23                                |
| 4.0 | <b>Emis</b><br>4.1<br>4.2<br>4.3<br>4.4<br>4.5<br>4.6       | ssions Inventory       3         Asphalt Plant, Silo, and Loadout Emissions       3         Crushing Plant and Recycled Asphalt Crusher Emissions       4         Stockpile and Storage Tank Emissions       4         Off-Road Equipment Emissions       4         On-Road Vehicle Emissions       4         Summary of Project Operational Emissions       5 | <b>i</b><br>3<br>1<br>1<br>1<br>5 |
| 5.0 | Mod<br>5.1<br>5.2<br>5.3<br>5.4<br>5.5<br>5.6<br>5.7<br>5.8 | el Overview5Model Selection and Settings5Source Parameters5Operational Limits and Schedules5Source Emission Rates6Receptor Grid6Terrain Data and Land Use7Meteorological Data7Background Concentrations7                                                                                                                                                       | 5555777                           |
| 6.0 | Mod                                                         | el Results8                                                                                                                                                                                                                                                                                                                                                    | 3                                 |

## **SUMMARY TABLES**

| Summary Table A. | Ambient Air Quality Standards for Criteria Pollutants | .2 |
|------------------|-------------------------------------------------------|----|
| Summary Table B. | Operational Schedules of Emissions Sources            | .6 |
| Summary Table C. | Receptor Grid Spacing                                 | .6 |
| Summary Table D. | NAAQS Compliance Demonstration                        | .8 |
| Summary Table E. | ASIL Compliance Demonstration                         | .8 |

## **TABLES**

- Table 1: Drum Mix Asphalt Plant Emissions
- Table 2: Hot Mix Asphalt Plant Silo Loading Emissions
- Table 3: Hot Mix Asphalt Plant Loadout Emissions
- Table 4: Rock Crushing Emissions
- Table 5: Recycled Asphalt Crusher
- Table 6: Stockpile Emissions
- Table 7: Storage Tank Emissions
- Table 8: Off-Road Equipment Emissions
- Table 9: On-Road Vehicle Emissions
- Table 10: Seasonal On-Road Vehicle Emissions
- Table 11: Paved Fugitive Dust Calculation Details
- Table 12: Fugitive Dust Emissions for Paved Roads Travel
- Table 13: Seasonal Fugitive Dust Emissions for Paved Roads Travel
- Table 14: Unpaved Fugitive Dust Calculation Details
- Table 15: Seasonal Fugitive Dust Emissions for Unpaved Roads Travel
- Table 16: CAP Emissions Inventory Summary with Blue Smoke Control
- Table 17: TAP Emissions Inventory Summary with Blue Smoke Control
- Table 18: CAP Emissions Inventory Summary without Blue Smoke Control
- Table 19: TAP Emissions Inventory Summary without Blue Smoke Control
- Table 20: GHG Emissions Inventory
- Table 21: Modeling Source Parameters
- Table 22: Modeling Variable Emissions Rate Factors
- Table 23: Modeling Variable Emissions Rate Factors for On-Road Sources
- Table 24: Modeling Emissions Rates
- Table 25: Background Ambient Air Quality
- Table 26: NAAQS/ASIL Modeling Results

## **FIGURES**

- Figure 1: Project Site Location
- Figure 2: Modeled Sources
- Figure 3: Receptor Grid
- Figure 4: 5-Year Windrose Mud Mountain Monitoring Station

## **1.0 INTRODUCTION**

Ramboll US Consulting Inc. (Ramboll) is submitting this air dispersion modeling report to King County on behalf of Segale Properties LLC (Segale). Segale (the applicant) proposes to commence development of an aggregate processing and mining operation on its 990-acre ownership located north of Cumberland in King County, Washington (the Site).

Before Puget Sound Clean Air Agency (PSCAA) can issue an Order of Approval, the project must obtain a State Environmental Protection Act (SEPA) determination from the appropriate lead agency. King County Department of Local Services (DLS) will serve as lead agency for the SEPA environmental review. Ramboll is supplementing the required SEPA documents. This dispersion modeling analysis is to aid in the Environmental Impact Statement (EIS) for the SEPA analysis and to show compliance with the National Ambient Air Quality Standards (NAAQS) for criteria pollutants and Acceptable Source Impact Levels (ASIL) for applicable Toxic Air Pollutants (TAPs)<sup>1</sup>.

## **2.0 PROJECT OVERVIEW**

## 2.1 Project Location

The Segale Cumberland property consists of 15 parcels making up 990 acres of land owned by Segale. As shown in **Figure 1**, the Segale property surrounds a 600-acre parcel controlled by the King County Department of Natural Resources (DNR) and a privately held 41-acre parcel. The proposed project is located along the Cumberland Kanasket Road SE. **Figure 1** presents the Segale Cumberland property boundary and general location of the proposed project.

## 2.2 Project Description

Segale proposes to develop a surface mining (aggregate) and asphalt plant in King County. The project would replace an existing operation in southeast Auburn (ICON Materials) that is ending its service life of aggregate production and would relocate both surface mining and the existing asphalt plant to this location. The project development will consist of a general office area, maintenance shop, aggregate processing and product stockpiles, process water treatment and recycling facility, and an asphalt plant and yard. The aggregate processing facility is proposed to have a maximum capacity of processing 1,500 tons per hour of aggregate and will consist of a one (1) jaw crusher, two (2) secondary cone crushers, and two (2) tertiary cone crushers. Stockpiles at the facility will total up to eight (8) acres. Front end loaders will be used to load finished material from the stockpiles near the crushing and wash plants into highway trucks.

Aggregate, recycled asphalt pavement (RAP), and asphalt cement will be combined in a counter-flow combination aggregate dryer and rotary drum mixer to produce hot mix asphalt (HMA). The combination dryer and drum mixer will include a 128 million British thermal units per hour (MMBtu/hr) burner, which will combust propane as a primary fuel. The HMA produced by the dryer will be sent to HMA storage silos. The three asphalt cement storage tanks (30,000-gallon capacity each) and the two HMA storage silos (200-ton capacity each) will be heated electrically to maintain reduced viscosity.

<sup>&</sup>lt;sup>1</sup> Department of Ecology. State of Washington. 2015. Guidance Document. First, Second and Third Tier Review of Toxic Air Pollution Sources. Available online: <u>Guidance Document: First, Second, and Third Tier Review of Toxic Air Pollution Sources (wa.gov)</u>

## **3.0 REGULATORY OVERVIEW**

## 3.1 Ambient Air Quality Standards and Attainment Status

Air quality is generally assessed in terms of whether ambient concentrations of emitted air pollutants are higher or lower than ambient air quality standards set to protect human health and welfare. The NAAQS are set by the U.S. Environmental Protection Agency (USEPA) for "criteria" pollutants (i.e., CO, PM<sub>2.5</sub>, PM<sub>10</sub>, NO<sub>2</sub>, and SO<sub>2</sub>). Three agencies have jurisdiction over the management of ambient air quality at the Site: the EPA, the Washington State Department of Ecology (Ecology), and PSCAA. The applicable federal ambient air quality standards are displayed in **Summary Table A**. These standards have been set at levels that EPA have determined will protect human health with a margin of safety, including the health of sensitive individuals such as the elderly, the chronically ill, and the very young. The modeling analysis discussed herein was used to demonstrate that the Project will be in compliance with the applicable NAAQS.

| Pollutant                                                            | Averaging<br>Period | NAAQS (μg/m³) | Form of the NAAQS                                                                      |
|----------------------------------------------------------------------|---------------------|---------------|----------------------------------------------------------------------------------------|
| Particulate<br>Matter less                                           | Annual              | 12            | Annual mean, averaged over<br>3 years                                                  |
| than 2.5<br>microns (PM <sub>2.5</sub> )                             | 24-Hour             | 35            | 98th percentile, averaged over 3 years                                                 |
| Particulate<br>Matter less<br>than 10<br>microns (PM <sub>10</sub> ) | 24-Hour             | 150           | Not to be exceeded more<br>than once per year on<br>average over 3 years               |
|                                                                      | Annual              | 100           | Annual mean                                                                            |
| Nitrogen<br>Dioxide (NO <sub>2</sub> )                               | 1-Hour              | 188           | 98th percentile of 1-hour<br>daily maximum<br>concentrations, averaged<br>over 3 years |
| Carbon                                                               | 8-Hour              | 10,000        | Not to be exceeded more than once per year                                             |
| Monoxide (CO)                                                        | 1-Hour              | 40,000        | Not to be exceeded more than once per year                                             |
| Sulfur Dioxide<br>(SO <sub>2</sub> )                                 | 1-Hour              | 196           | 99th percentile of 1-hour<br>daily maximum<br>concentrations, averaged<br>over 3 years |

## Summary Table A. Ambient Air Quality Standards for Criteria Pollutants

King County is currently classified as in attainment or unclassifiable for all NAAQS, except for CO, ozone, and  $PM_{10}$  in which it is classified as maintenance.<sup>2</sup>

<sup>&</sup>lt;sup>2</sup> <u>https://www3.epa.gov/airquality/greenbook/anayo\_wa.html</u>

Ramboll – Air Dispersion Modeling Report Final

## 3.2 Toxic Air Pollutant Acceptable Source Impact Levels

In addition to the criteria air pollutants for which health-protective air quality standards have been set, fuel combustion sources emit a number of known or suspected toxic air pollutants. Although there are not any specific health-related air quality standards for such pollutants, Ecology and PSCAA have established screening levels for a variety of TAPs that can be used to assess predicted concentrations.

The first screening level is the "De Minimis" threshold. Project's whose TAP emissions are below the *de minimis* threshold are found to have trivial levels of emissions that do not pose a threat to human health or the environment. If a TAP is found to be above the *de minimis* threshold for the project, it is then compared to the "Small Quantity Emissions Rate" (SQER) threshold. Project's whose TAP emissions are below the SQER are considered to have emissions below which dispersion modeling is not required to demonstrate compliance with ASILs.

A common method of assessing potential risk related to exposure to TAPs is to estimate the likelihood of increases in cancer due to a lifetime of exposure (usually assumed to be 70 years) to a given contaminant. Some screening levels for assessing such potential risk are based on an increased risk of one additional cancer among one million people. Ecology and PSCAA apply ASILs during air quality permitting of proposed new or modified stationary emission sources. ASILs are applied based on the incremental changes in pollutant concentrations expected to occur due to proposed projects. ASILs also screen for both chronic and acute impacts from TAPs by defining screening level thresholds for a variety of averaging periods, including 1-hour, 24-hour, and annual averaging periods.

Based on the calculated emissions, an air quality impacts assessment was performed for the following pollutants and averaging times:

- CO 1-hr and 8-hr
- PM<sub>2.5</sub> 24-hr and Annual
- PM<sub>10</sub> 24-hr
- NO<sub>2</sub> 1-hr and Annual
- SO<sub>2</sub> 1-hr
- Benzene Annual
- Naphthalene Annual
- Formaldehyde Annual

## 4.0 EMISSIONS INVENTORY

Ramboll estimated emissions from the operation of the Project, which includes asphalt plant, silo, and loadout operations, crushing plant and recycled asphalt crusher operations, storage tank and stockpile operations, and both on-road truck and off-road equipment operations. The pollutants considered are criteria air pollutants, toxic air pollutants, and greenhouse gases (GHGs): Volatile Organic Compounds (VOC), oxides of nitrogen (NO<sub>X</sub>), PM<sub>10</sub>, PM<sub>2.5</sub>, CO, SO<sub>2</sub>, carbon dioxide equivalents (CO<sub>2</sub>e), and TAPs as defined by Washington Administrative Code (WAC) 173-460-150<sup>3</sup>. The methodologies used by Ramboll are summarized below.

## 4.1 Asphalt Plant, Silo, and Loadout Emissions

Particulate matter emissions from the asphalt plant were calculated using emissions rates from the baghouse filter specification sheets, provided by ICON Materials.  $NO_X$ ,  $SO_2$ , CO, and VOC emissions from the asphalt plant were calculated using emissions rates from the propane burner manufacturer specification sheet, provided by Gencor. GHG emissions from the asphalt plant were calculated using

<sup>&</sup>lt;sup>3</sup> Table of ASIL, AQER and de minimis emission values, available at: <u>https://app.leg.wa.gov/WAC/default.aspx?cite=173-460-150</u>

the most conservative emission factors from the EPA Compilation of Air Pollutant Emissions Factors (AP-42), selected from either Section 1.5 Liquefied Petroleum Gas Combustion or Section 11.1 Hot Mix Asphalt Plants. TAP emissions for the asphalt plant were calculated using emission factors for organic pollutant emissions from drum mix hot mix asphalt plants controlled by fabric filters, as reported by AP-42. Drum mix asphalt plant emissions are summarized in **Table 1**.

Asphalt silo and loadout criteria air pollutants (CAP) and GHG emissions were calculated using emission factors from AP-42 Section 11.1 Hot Mix Asphalt Plants. TAP emissions for the asphalt silo and loadout were calculated using the Total Organic Compound (TOC) speciation reported in Tables 11.1-15 and 11.1-16 in AP-42. Where applicable, a 500,000 ton per year, 6,000 ton per day, or 500 ton per hour maximum throughput rate was used to calculate emissions for the asphalt plant, silo, and loadout. Asphalt silo and loadout emissions are summarized in **Table 2** and **Table 3**, respectively.

The asphalt plant, silo, and loadout will be abated by a Blue Smoke Control system which has an expected VOC control efficiency of 60% and a  $PM_{2.5}/PM_{10}$  control efficiency of 95%. Abated emissions are calculated assuming these control efficiencies.

## 4.2 Crushing Plant and Recycled Asphalt Crusher Emissions

PM<sub>10</sub> and PM<sub>2.5</sub> emissions from the crushing plant and recycled asphalt crusher (RAC) were calculated using emission factors from AP-42 Section 11.19.2 Crushed Stone Processing and Pulverized Mineral Processing. Crushing plant throughput is estimated at 1,500 tons per hour and is abated by watering. RAC throughput is estimated at 300 tons per hour and is abated by wet suppression on conveyors. Crushing Plant and RAC emissions are summarized in **Table 4** and **Table 5**, respectively.

## 4.3 Stockpile and Storage Tank Emissions

Stockpile emissions are calculated using emission factors from AP-42 Section 11.9 Western Surface Coal Mining. Stockpile emissions are summarized in **Table 6**.

Storage Tank VOC and CO emissions are calculated using methodology consistent with AP-42 Section 11.1 Hot Mix Asphalt Plants. TAP emissions from the storage tank were calculated using the TOC speciation reported in Tables 11.1-15 and 11.1-16 in AP-42. The storage tanks will be abated by a Blue Smoke Control system which has an expected VOC control efficiency of 60%. Abated emissions are calculated assuming these control efficiencies. Storage tank emissions are summarized in **Table 7**.

## 4.4 Off-Road Equipment Emissions

Diesel fueled off-road equipment is expected to operate at the active mine excavation locations, crushing plant, asphalt plant, recycle crushing area, and to support general operations of the mine. CAP and GHG emissions from off-road equipment were calculated using the US EPA's Motor Vehicle Emission Simulator (MOVES) version 3.0.0. No TAP emissions are expected from off-road equipment. Off-road equipment emissions are summarized in **Table 8**.

## 4.5 On-Road Vehicle Emissions

Exhaust emissions from on-road trucks are calculated using the USEPA MOVES tool and annual vehicle miles traveled (VMT) as provided by the Project Applicant. Sweeper trucks and service trucks are expected to operate consistently throughout the year. Emissions from these trucks are summarized in **Table 9**. Heavy-duty haul trucks and light/medium duty trucks are expected to have seasonal variation in their operation, with higher VMT expected in April through October and lower VMT expected in November through March. Emissions from these seasonal trucks are summarized in **Table 10**.

Fugitive dust from on-road truck operations vary based on whether the trucks are traveling over paved or unpaved roads. At the proposed project site, the sweeper and service trucks are expected to

travel only on paved roads while the heavy-duty haul trucks and light/medium duty trucks are expected to travel on both paved and unpaved roads. Paved road fugitive dust emission factors are calculated using parameters from AP-42 Section 13.2.1 Paved Roads, which are summarized in **Table 11**. Fugitive dust emissions from the sweeper trucks and service trucks traveling over paved roads are calculated in **Table 12**. Fugitive dust emissions from seasonal trucks traveling over paved roads are calculated in **Table 13**. Unpaved fugitive dust emission factors are calculated using parameters from AP-42 Section 13.2.2 Unpaved Roads, which are summarized in **Table 14**. Fugitive dust emissions from seasonal trucks traveling over unpaved roads are calculated in **Table 15**.

## 4.6 Summary of Project Operational Emissions

Controlled CAP and TAP emissions are summarized in **Table 16** and **Table 17**, respectively. Uncontrolled CAP and TAP emissions are summarized in **Table 18** and **Table 19**, respectively. GHG Emissions are summarized in **Table 20**.

## **5.0 MODEL OVERVIEW**

The following sections summarize the model settings and inputs that were used in the model setup for the proposed project air impact analysis.

## 5.1 Model Selection and Settings

Dispersion modeling was conducted using the latest version of the AERMOD modeling system (version 22112). Model settings and inputs were consistent with the Washington Department of Ecology's modeling guidance<sup>4</sup> (Ecology Guideline). The coordinate system used in the modeling analysis was North American Datum of 1983 (NAD83) of the Universal Transverse Mercator (UTM) Zone 10 North Coordinate System.

## 5.2 Source Parameters

Source parameters were determined for the modeled sources using equipment specifications, existing modeling guidance, and professional judgement. Details on the source parameter selection can be found in **Table 21**. **Figure 2** presents the site layout with the property boundary and modeled source locations.

## 5.3 Operational Limits and Schedules

The emissions sources at the proposed project have varied operational schedules. The asphalt plant, silo, and loadout sources will limit operation from 8am-4pm (8 hours per day, 6 days a week) from November to March (rainy season) and from 7am-4pm and 7pm-4am (18 hours per day, 6 days a week) from April through October (busy season), equal to 4,340 hours annual hours of operation. The on-road sources, including fugitive dust, are assumed to follow the same schedule as the asphalt plant. Crushing plant operations are expected to limit operations from 7am-6pm (11 hours a day, 6 days a week) year-round. Off-road equipment is expected to operate between 7am-4pm (9 hours a day, 6 days a week). Sources that emit regardless of operational schedules, such as stockpile areas and tanks, were modeled at 24-hours per day. Proposed operational schedules of emissions sources at the proposed project are summarized in **Summary Table B** below.

<sup>&</sup>lt;sup>4</sup> Guidance on First, Second, and Third Tier Review of Air Toxics, 2015, State of Washington Department of Ecology

| Source                                      | Daily Operation November<br>1 <sup>st</sup> to March 31 <sup>st</sup> | Daily Operation April 1 <sup>st</sup> to<br>October 31 <sup>st</sup> |  |  |  |
|---------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------|--|--|--|
| Crushing Plant                              | 7am-6pm, Weel                                                         | kdays, Saturdays                                                     |  |  |  |
| Recycled Asphalt Crushing                   | 7am-6pm, Weekdays, Saturdays                                          |                                                                      |  |  |  |
| Asphalt Plant Sources                       | 8am-4pm, Weekdays,<br>Saturdays                                       | 7am-4pm and 7pm-4am,<br>Weekdays, Saturdays                          |  |  |  |
| On-Road Sources, Fugitive<br>Road Dust      | 8am-4pm, Weekdays,<br>Saturdays                                       | 7am-4pm and 7pm-4am,<br>Weekdays, Saturdays                          |  |  |  |
| Off-road Sources, Off-road<br>Fugitive Dust | 7am-4pm, Weekdays, Saturdays                                          |                                                                      |  |  |  |
| Storage Tanks, Stockpile<br>Area            | 24 Hours per day                                                      |                                                                      |  |  |  |

## Summary Table B. Operational Schedules of Emissions Sources

The operating hours for each source were incorporated into the model using the variable emissions rate factor (EMISFACT) option in AERMOD. The EMISFACTs for each source category used in the model are summarized in **Table 22**. Due to the seasonal nature of the on-road (exhaust and fugitive emissions) sources, the EMISFACT for the 1-hr and 24-hr averaging periods vary based on the season and are adjusted to account for the selected emission rate. The EMISFACTs used for the 1-hr and 24-hr averaging period for the 1-hr and 24-hr averaging period for the on-road sources are summarized in **Table 23**.

## 5.4 Source Emission Rates

Each source was modeled using the maximum allowable emission rate by pollutant and averaging period. The total emissions for each averaging period is based on the operating schedule discussed above and implemented using the EMISFACT temporal scalars. Modeling emissions rates are summarized in **Table 24**.

## 5.5 Receptor Grid

Receptors were placed along and beyond the boundary of the proposed project. Receptors were represented in the model using variable density, discrete Cartesian grid following the Ecology Guideline. **Summary Table C** outlines the receptor spacing requirements from the Ecology Guideline and was used in the air quality analysis - the nested receptor grids resulted in 32,621 receptors within the modeling domain. **Figure 3** shows the modeled receptor grid.

| Distance from Fence Line           | Receptor Spacing |
|------------------------------------|------------------|
| Along fence line out to 150 meters | 12.5 meters      |
| 150 – 400 meters                   | 25 meters        |
| 400 – 900 meters                   | 50 meters        |
| 900 – 2,000 meters                 | 100 meters       |
| 2,000 – 4,500 meters               | 300 meters       |
| 4,500 – 6,000 meters               | 600 meters       |

## Summary Table C. Receptor Grid Spacing

Ramboll – Air Dispersion Modeling Report Final

## 5.6 Terrain Data and Land Use

In accordance with USEPA guidance, terrain elevations will be incorporated into the model using the most recent version (18081) of AERMAP, AERMOD's terrain preprocessor. Terrain elevation data for the entire modeling domain was extracted from 1/3 arc second National Elevation Data (NED) files with a resolution of approximately 10 meters. The NED files will be obtained from the United States Geological Survey (USGS) Multi-Resolution Land Characteristics Consortium (MRLC)<sup>5</sup>. Based on review of the surrounding landuse, the urban modeling option will not be invoked.

## 5.7 Meteorological Data

A representative meteorological data set for the five-year period between January 2016 and December 2021 (year 2018 was excluded because of missing data) was developed for this analysis using a combination of meteorological data collected by the Washington State Department of Ecology's Mud Mountain air quality station (AQS Site ID 53-033-0023), National Weather Service (NWS) surface observations from the Tacoma-McChord Air Force Base (KTCM), and upper air observations from the NWS Quillayute, Washington (KUIL) station.

Ecology's Mud Mountain monitoring station is located approximately 17.2 kilometers south of the project site. The Mud Mountain station was used for wind speed, wind direction, and temperature. The Mud Mountain station is the closest meteorological station for which data are available. Available National Weather Service stations in King and Pierce Counties, including Puyallup, Tacoma, Renton, and SeaTac, are all further from the project site than the Mud Mountain station. Additionally, the land use surrounding the Mud Mountain station and the proposed project site are similar. Both Mud Mountain and the proposed project site are in rural, forested areas. The available NWS stations noted above are in areas of suburban or urban development. Thus land use parameters developed based off the Mud Mountain location will also be more representative of the proposed project site than parameters developed off of one of the NWS stations. The shorter distance from the proposed project site to the Mud Mountain station and similar land use surrounding the two sites make the Mud Mountain station the most representative meteorological data record available.

For surface meteorological parameters not recorded at the Mud Mountain station (notably cloud cover), KTCM data were used. KTCM is located approximately 44.6 km west-southwest of the Facility. Upper-air data were obtained from KUIL, which is located approximately 212 km west-northwest of the Facility.

The data was processed using the ADJ\_U\* option since measured turbulence data was unavailable.

AERSURFACE (version 20060) was run with USGS 2016 National Land Cover, Canopy, and Impervious data sets for the area around the Mud Mountain station. AERSURFACE was run for a monthly temporal resolution and 12, 30-degree sectors. The precipitation analysis to determine wet, dry, and average soil moisture was based on precipitation data from SeaTac airport.

Figure 4 presents the windrose for the processed Mud Mountain meteorological dataset.

## 5.8 Background Concentrations

Background concentration data for criteria pollutants were obtained from the NW-AIRQUEST background design value tool<sup>6</sup> for grid cells surrounding the proposed project site, from 2014 through 2017. The six surrounding modeled grid cells to the project site were considered and the highest background concentration for each pollutant and averaging period was selected. The background concentrations extracted from the NW-AIRQUEST tool are summarized in **Table 25**.

<sup>&</sup>lt;sup>5</sup> <u>http://www.mrlc.gov</u>

<sup>&</sup>lt;sup>6</sup> <u>http://lar.wsu.edu/nw-airquest/</u>

## 6.0 MODEL RESULTS

Modeling was conducted for comparison with the NAAQS for each criteria pollutant. The results of these analyses include the model-predicted concentrations and background concentrations to demonstrate that there are no predicted violations of the NAAQS as shown in **Table 26** and summarized below in **Summary Table D**. With AERMOD containing a degree of conservativeness (e.g., includes worst-case meteorological conditions) and NW-AIRQUEST background concentrations being interpolated, which tends to be conservative, there is a level of confidence that the total impact levels of pollutants are under the NAAQS threshold.

| Pollutant         | Averaging Period | Modeled<br>Impact<br>(µg/m³) | Background<br>(µg/m³) | Total<br>(µg/m³) | NAAQS Threshold<br>(µg/m³) | Above<br>NAAQS? |
|-------------------|------------------|------------------------------|-----------------------|------------------|----------------------------|-----------------|
| NO-               | 1-Hour           | 128.3                        | 58.4                  | 186.7            | 188                        | No              |
| NO <sub>2</sub>   | Annual           | 5.4                          | 11                    | 16               | 100                        | No              |
| SO <sub>2</sub>   | 1-Hour           | 13                           | 13                    | 26               | 196                        | No              |
| PM10              | 24-Hour          | 65                           | 41                    | 106              | 150                        | No              |
| PM <sub>2.5</sub> | 24-Hour          | 6.7                          | 14                    | 21               | 35                         | No              |
|                   | Annual           | 1.6                          | 5.0                   | 6.6              | 12                         | No              |
| со                | 1-Hour           | 1,018                        | 1,236                 | 2,254            | 40,000                     | No              |
|                   | 8-Hour           | 236                          | 813                   | 1,049            | 10,000                     | No              |

## Summary Table D. NAAQS Compliance Demonstration

Modeling was also conducted for comparison with the ASILs. Results of the TAPS analysis is presented in **Table 26** and summarized in **Summary Table E** below and demonstrate that impacts will not exceed the ASIL for any of the TAPs above the SQER threshold.

## Summary Table E. ASIL Compliance Demonstration

| Pollutant    | Averaging Period | Averaging Period Modeled Impact (µg/m <sup>3</sup> ) |       | Above ASIL? |
|--------------|------------------|------------------------------------------------------|-------|-------------|
| Benzene      | Annual           | 0.0034                                               | 0.13  | No          |
| Formaldehyde | Annual           | 0.026                                                | 0.17  | No          |
| Naphthalene  | Annual           | 0.017                                                | 0.029 | No          |

All the modeling files will be provided upon request by an FTP-like platform.

Ramboll – Air Dispersion Modeling Report Final

## **TABLES**

#### Table 1 Drum Mix Asphalt Plant Emissions Segale-Cumberland Mine King County, Washington

| Asphalt Plant Operational Parameters                                |         |            |  |  |  |
|---------------------------------------------------------------------|---------|------------|--|--|--|
| Daily Operation Hours April 1st-October 31st                        | 18      | hours/day  |  |  |  |
| Weekly Operation Days April 1st-October 31st                        | 6       | days/week  |  |  |  |
| Daily Operation Hours November 1st-March 31st                       | 8       | hours/day  |  |  |  |
| Weekly Operation Days November 1st-March 31st                       | 6       | days/week  |  |  |  |
| Annual Hours of Operation                                           | 4,340   | hours/year |  |  |  |
| Annual Production Rate                                              | 500,000 | ton/year   |  |  |  |
| Maximum Daily Production Rate                                       | 6,000   | ton/day    |  |  |  |
| Maximum Hourly Production Rate                                      | 500     | ton/hour   |  |  |  |
| Blue Smoke VOC Control <sup>3</sup>                                 | 60      | %          |  |  |  |
| Blue Smoke PM <sub>10</sub> /PM <sub>2.5</sub> Control <sup>3</sup> | 95      | %          |  |  |  |

#### **Emissions Calculations**

| Pollutant Category | Pollutant                          | Emission<br>Factor <sup>1</sup> | mission Emission<br>Factor <sup>1</sup> Factor Unit |          | Production Rate (PR) |          |          | Emission Rate (ER) - Baghouse Only <sup>2</sup> |          |          | ER - Abated with Blue Smoke Control <sup>3</sup> |          |  |
|--------------------|------------------------------------|---------------------------------|-----------------------------------------------------|----------|----------------------|----------|----------|-------------------------------------------------|----------|----------|--------------------------------------------------|----------|--|
|                    |                                    |                                 |                                                     | (ton/yr) | (ton/day)            | (ton/hr) | (ton/yr) | (ton/day)                                       | (lb/hr)  | (ton/yr) | (ton/day)                                        | (lb/hr)  |  |
|                    | PM <sub>10</sub>                   |                                 |                                                     | 500,000  | 6,000                | 500      | 11.26    | 0.05                                            | 5.19     | 0.56     | 2.34E-03                                         | 0.26     |  |
|                    | PM <sub>2.5</sub>                  |                                 |                                                     | 500,000  | 6,000                | 500      | 8.75     | 0.04                                            | 4.03     | 0.44     | 1.81E-03                                         | 0.20     |  |
| CADs <sup>4</sup>  | SO <sub>x</sub>                    |                                 |                                                     | 500,000  | 6,000                | 500      | 3.69     | 0.02                                            | 1.70     |          |                                                  |          |  |
| CAPS               | NO <sub>X</sub>                    |                                 |                                                     | 500,000  | 6,000                | 500      | 14.11    | 0.06                                            | 6.50     |          |                                                  |          |  |
|                    | CO                                 |                                 |                                                     | 500,000  | 6,000                | 500      | 83.55    | 0.35                                            | 38.50    |          |                                                  |          |  |
|                    | VOC                                |                                 |                                                     | 500,000  | 6,000                | 500      | 17.36    | 0.07                                            | 8.00     | 6.94     | 2.88E-02                                         | 3.20     |  |
|                    | CO <sub>2</sub>                    | 12500                           | lb/1000 gals                                        | 500,000  | 6,000                | 500      | 37877    | 157                                             | 17455    |          |                                                  |          |  |
| GHG                | N <sub>2</sub> O                   | 0.90                            | lb/1000 gals                                        | 500,000  | 6,000                | 500      | 2.73     | 0.01                                            | 1.26     |          |                                                  |          |  |
|                    | CH <sub>4</sub>                    | 0.016                           | lb/ton                                              | 500,000  | 6,000                | 500      | 4.00     | 0.05                                            | 8.00     |          |                                                  |          |  |
|                    | Benzene                            | 3.90E-04                        | lb/ton                                              | 500,000  | 6,000                | 500      | 9.75E-02 | 1.17E-03                                        | 0.20     | 3.90E-02 | 4.68E-04                                         | 0.078    |  |
|                    | Ethylbenzene                       | 2.40E-04                        | lb/ton                                              | 500,000  | 6,000                | 500      | 6.00E-02 | 7.20E-04                                        | 0.12     | 2.40E-02 | 2.88E-04                                         | 0.048    |  |
|                    | Formaldehyde                       | 3.10E-03                        | lb/ton                                              | 500,000  | 6,000                | 500      | 7.75E-01 | 9.30E-03                                        | 1.55     | 3.10E-01 | 3.72E-03                                         | 0.62     |  |
|                    | Hexane                             | 9.20E-04                        | lb/ton                                              | 500,000  | 6,000                | 500      | 2.30E-01 | 2.76E-03                                        | 0.46     | 9.20E-02 | 1.10E-03                                         | 0.18     |  |
| NOII-PAR RAP S     | Isooctane (2,2,4-trimethylpentane) | 4.00E-05                        | lb/ton                                              | 500,000  | 6,000                | 500      | 1.00E-02 | 1.20E-04                                        | 0.02     | 4.00E-03 | 4.80E-05                                         | 8.0E-03  |  |
|                    | Methyl chloroform                  | 4.80E-05                        | lb/ton                                              | 500,000  | 6,000                | 500      | 1.20E-02 | 1.44E-04                                        | 0.02     | 4.80E-03 | 5.76E-05                                         | 0.010    |  |
|                    | Toluene                            | 1.50E-04                        | lb/ton                                              | 500,000  | 6,000                | 500      | 3.75E-02 | 4.50E-04                                        | 0.08     | 1.50E-02 | 1.80E-04                                         | 0.030    |  |
|                    | Xylene                             | 2.00E-04                        | lb/ton                                              | 500,000  | 6,000                | 500      | 5.00E-02 | 6.00E-04                                        | 0.10     | 2.00E-02 | 2.40E-04                                         | 0.040    |  |
|                    | 2-Methylnaphthalene                | 7.40E-05                        | lb/ton                                              | 500,000  | 6,000                | 500      | 1.85E-02 | 2.22E-04                                        | 0.04     | 7.40E-03 | 8.88E-05                                         | 0.015    |  |
|                    | Acenaphthene                       | 1.40E-06                        | lb/ton                                              | 500,000  | 6,000                | 500      | 3.50E-04 | 4.20E-06                                        | 7.00E-04 | 1.40E-04 | 1.68E-06                                         | 2.80E-04 |  |
|                    | Acenaphthylene                     | 8.60E-06                        | lb/ton                                              | 500,000  | 6,000                | 500      | 2.15E-03 | 2.58E-05                                        | 4.30E-03 | 8.60E-04 | 1.03E-05                                         | 1.72E-03 |  |
|                    | Anthracene                         | 2.20E-07                        | lb/ton                                              | 500,000  | 6,000                | 500      | 5.50E-05 | 6.60E-07                                        | 1.10E-04 | 2.20E-05 | 2.64E-07                                         | 4.40E-05 |  |
|                    | Benzo(a)anthracene                 | 2.10E-07                        | lb/ton                                              | 500,000  | 6,000                | 500      | 5.25E-05 | 6.30E-07                                        | 1.05E-04 | 2.10E-05 | 2.52E-07                                         | 4.20E-05 |  |
|                    | Benzo(a)pyrene                     | 9.80E-09                        | lb/ton                                              | 500,000  | 6,000                | 500      | 2.45E-06 | 2.94E-08                                        | 4.90E-06 | 9.80E-07 | 1.18E-08                                         | 1.96E-06 |  |
|                    | Benzo(b)fluoranthene               | 1.00E-07                        | lb/ton                                              | 500,000  | 6,000                | 500      | 2.50E-05 | 3.00E-07                                        | 5.00E-05 | 1.00E-05 | 1.20E-07                                         | 2.00E-05 |  |
|                    | Benzo(e)pyrene                     | 1.10E-07                        | lb/ton                                              | 500,000  | 6,000                | 500      | 2.75E-05 | 3.30E-07                                        | 5.50E-05 | 1.10E-05 | 1.32E-07                                         | 2.20E-05 |  |
|                    | Benzo(g,h,i)perylene               | 4.00E-08                        | lb/ton                                              | 500,000  | 6,000                | 500      | 1.00E-05 | 1.20E-07                                        | 2.00E-05 | 4.00E-06 | 4.80E-08                                         | 8.00E-06 |  |
| PAR RAP S          | Benzo(k)fluoranthene               | 4.10E-08                        | lb/ton                                              | 500,000  | 6,000                | 500      | 1.03E-05 | 1.23E-07                                        | 2.05E-05 | 4.10E-06 | 4.92E-08                                         | 8.20E-06 |  |
|                    | Chrysene                           | 1.80E-07                        | lb/ton                                              | 500,000  | 6,000                | 500      | 4.50E-05 | 5.40E-07                                        | 9.00E-05 | 1.80E-05 | 2.16E-07                                         | 3.60E-05 |  |
|                    | Fluoranthene                       | 6.10E-07                        | lb/ton                                              | 500,000  | 6,000                | 500      | 1.53E-04 | 1.83E-06                                        | 3.05E-04 | 6.10E-05 | 7.32E-07                                         | 1.22E-04 |  |
|                    | Fluorene                           | 3.80E-06                        | lb/ton                                              | 500,000  | 6,000                | 500      | 9.50E-04 | 1.14E-05                                        | 1.90E-03 | 3.80E-04 | 4.56E-06                                         | 7.60E-04 |  |
|                    | Indeno(1,2,3-cd)pyrene             | 7.00E-09                        | lb/ton                                              | 500,000  | 6,000                | 500      | 1.75E-06 | 2.10E-08                                        | 3.50E-06 | 7.00E-07 | 8.40E-09                                         | 1.40E-06 |  |
|                    | Naphthalene                        | 9.00E-05                        | lb/ton                                              | 500,000  | 6,000                | 500      | 2.25E-02 | 2.70E-04                                        | 4.50E-02 | 9.00E-03 | 1.08E-04                                         | 1.80E-02 |  |
|                    | Perylene                           | 8.80E-09                        | lb/ton                                              | 500,000  | 6,000                | 500      | 2.20E-06 | 2.64E-08                                        | 4.40E-06 | 8.80E-07 | 1.06E-08                                         | 1.76E-06 |  |
|                    | Phenanthrene                       | 7.60E-06                        | lb/ton                                              | 500,000  | 6,000                | 500      | 1.90E-03 | 2.28E-05                                        | 3.80E-03 | 7.60E-04 | 9.12E-06                                         | 1.52E-03 |  |
|                    | Pyrene                             | 5.40E-07                        | lb/ton                                              | 500,000  | 6,000                | 500      | 1.35E-04 | 1.62E-06                                        | 2.70E-04 | 5.40E-05 | 6.48E-07                                         | 1.08E-04 |  |

#### Table 1 (cont.) Drum Mix Asphalt Plant Emissions Segale-Cumberland Mine King County, Washington

| 1               |                    | 1        | 1      | -       | 1     |     |          |          |      |          |          |      |
|-----------------|--------------------|----------|--------|---------|-------|-----|----------|----------|------|----------|----------|------|
|                 | Butane             | 6.70E-04 | lb/ton | 500,000 | 6,000 | 500 | 1.68E-01 | 2.01E-03 | 0.34 | 6.70E-02 | 8.04E-04 | 0.13 |
|                 | Ethylene           | 7.00E-03 | lb/ton | 500,000 | 6,000 | 500 | 1.75E+00 | 2.10E-02 | 3.50 | 7.00E-01 | 8.40E-03 | 1.40 |
|                 | Heptane            | 9.40E-03 | lb/ton | 500,000 | 6,000 | 500 | 2.35E+00 | 2.82E-02 | 4.70 | 9.40E-01 | 1.13E-02 | 1.88 |
| Non-HAP organic | 2-Methyl-1-pentene | 4.00E-03 | lb/ton | 500,000 | 6,000 | 500 | 1.00E+00 | 1.20E-02 | 2.00 | 4.00E-01 | 4.80E-03 | 0.80 |
| compounds       | 2-Methyl-2-butene  | 5.80E-04 | lb/ton | 500,000 | 6,000 | 500 | 1.45E-01 | 1.74E-03 | 0.29 | 5.80E-02 | 6.96E-04 | 0.12 |
|                 | 3-Methylpentane    | 1.90E-04 | lb/ton | 500,000 | 6,000 | 500 | 4.75E-02 | 5.70E-04 | 0.10 | 1.90E-02 | 2.28E-04 | 0.04 |
|                 | 1-Pentene          | 2.20E-03 | lb/ton | 500,000 | 6,000 | 500 | 5.50E-01 | 6.60E-03 | 1.10 | 2.20E-01 | 2.64E-03 | 0.44 |
|                 | n-Pentane          | 2.10E-04 | lb/ton | 500,000 | 6,000 | 500 | 5.25E-02 | 6.30E-04 | 0.11 | 2.10E-02 | 2.52E-04 | 0.04 |

#### Notes

<sup>1</sup>. AP-42, Fifth Edition, Section 11.1, 3/04. Hot Mix Asphalt Plants. Tables 11.1-3, 11.1-4, 11.1-7, 11.1-8, 11.1-10 and 11.1-12

<sup>2.</sup> For pollutants with emission factors from AP42, emission rates were calculated as follow:

$$\begin{pmatrix} \text{EF} \frac{\text{lb}}{\text{ton}} \end{pmatrix} \begin{pmatrix} \text{PR} \frac{\text{ton}}{\text{yr}} \end{pmatrix} \begin{pmatrix} \frac{1}{2,000 \text{ lb}} \end{pmatrix} = \text{ER} \begin{pmatrix} \frac{\text{ton}}{\text{yr}} \end{pmatrix} \\ \\ \begin{pmatrix} \text{EF} \frac{\text{lb}}{\text{ton}} \end{pmatrix} \begin{pmatrix} \text{PR} \frac{\text{ton}}{\text{yr}} \end{pmatrix} = \text{ER} \begin{pmatrix} \frac{\text{lb}}{\text{yr}} \end{pmatrix} \\ \\ \begin{pmatrix} \text{EF} \frac{\text{lb}}{\text{ton}} \end{pmatrix} \begin{pmatrix} \text{PR} \frac{\text{ton}}{\text{r}} \end{pmatrix} = \text{ER} \begin{pmatrix} \frac{1\text{b}}{\text{hr}} \end{pmatrix} \\ \\ \begin{pmatrix} \text{ER} \frac{\text{lb}}{\text{hr}} \end{pmatrix} \begin{pmatrix} 453.59 \frac{\text{g}}{\text{lb}} \end{pmatrix} \begin{pmatrix} \frac{1}{3,600 \text{ sec}} \end{pmatrix} = \text{ER} \begin{pmatrix} \frac{\text{g}}{\text{sec}} \end{pmatrix}$$

<sup>3.</sup> Assuming end of drum will be abated by Blue Smoke Control. Blue Smoke Control directly abates PM and indirectly abates VOC. We used reduction factors as specified by Blue Smoke Control's sales engineer. Since the drum outlet-to-conveyor transfer point and the conveyors themselves will be enclosed and vented to control, wind speed would not be a factor in emissions at those two locations. Thus, emissions from those two locations will be de minimis.

4. Emissions rates for PM<sub>2.5</sub> and PM<sub>10</sub> are from baghouse filter specification sheets. Emissions rates for NO<sub>X</sub>, SO<sub>X</sub>, CO, and VOC are from Gencor specification sheets. Emissions rates for CO<sub>2</sub> and N<sub>2</sub>O are from AP-42 section 1.5.

<sup>5.</sup> Per AP-42 Section 11.1, organic HAP emission factors are based on asphalt plants controlled with fabric filters.

#### Abbreviations:

| CAP - criteria air pollutant                         | NOx - nitrogen oxides                           |
|------------------------------------------------------|-------------------------------------------------|
| CO - carbon monoxide                                 | PAH - polycylic aromatic hydrocarbons           |
| CO2 - carbon dioxide                                 | PM2.5 - PM of less than 2.5 microns in diameter |
| CH4 - methane                                        | PM10 - PM of less than 10 microns in diameter   |
| GHG - greenhouse gas                                 | SO2 - sulfur dioxide                            |
| HAP - hazardous air pollutant<br>N2O - nitrous oxide | VOC - volatile organic compounds                |

#### References:

USEPA. AP-42, Fifth Edition, Vol. 1: Section 11.1 Hot Mix Asphalt Plants. Available at: https://www.epa.gov/sites/default/files/2020-10/documents/c11s01.pdf USEPA. AP-42, Fifth Edition, Vol. 1: Section 1.5 Liquefied Petroleum Gas Combustion. Available at: https://www.epa.gov/sites/default/files/2020-09/documents/1.5\_liquefied\_petroleum\_gas\_combustion.pdf

#### Table 2 Hot Mix Asphalt Plant Silo Loading Emissions Segale-Cumberland Mine King County, Washington

#### Emission Factors<sup>1</sup>

| EF (Total PM)=                                                          | 0.000332 + 0.00105 (-v)E^(((0.0251)(T+460)-20.43) |
|-------------------------------------------------------------------------|---------------------------------------------------|
| EF (Organic PM)=                                                        | 0.00105 (-V)e^(((0.0251)(T+460)-20.43)            |
| EF (TOC) =                                                              | 0.0504 (-V)e^(((0.0251)(T+460)-20.43)             |
| EF (CO)=                                                                | 0.00488(-V)e^(((0.0251)(T+460)-20.43)             |
| Blue Smoke VOC Control <sup>2</sup>                                     | 60                                                |
| Blue Smoke PM <sub>10</sub> /PM <sub>2.5</sub> Control <sup>2</sup> (%) | 95                                                |

#### **Emissions Calculations**

| Pollutant Category    | Pollutant                     | Emission<br>Factor | Production Rate (PR) |           |          | Emission Rate (ER) - Unabated |           |         | ER - Abated with Blue Smoke Control <sup>2</sup> |           |         |
|-----------------------|-------------------------------|--------------------|----------------------|-----------|----------|-------------------------------|-----------|---------|--------------------------------------------------|-----------|---------|
|                       |                               | (lb/ton)           | (ton/yr)             | (ton/day) | (ton/hr) | (ton/yr)                      | (ton/day) | (lb/hr) | (ton/yr)                                         | (ton/day) | (lb/hr) |
|                       | PM <sub>10</sub>              | 0.00057            | 500,000              | 6,000     | 500      | 0.14                          | 0.0017    | 0.29    | 0.0072                                           | 8.61E-05  | 0.014   |
|                       | Total PM (PM <sub>2.5</sub> ) | 0.00057            | 500,000              | 6,000     | 500      | 0.14                          | 0.0017    | 0.29    | 0.0072                                           | 8.61E-05  | 0.014   |
| CAPs                  | TOC                           | 0.01219            | 500,000              | 6,000     | 500      | 3.05                          | 0.0366    | 6.09    | 1.22                                             | 1.46E-02  | 2.44    |
|                       | CO                            | 0.00118            | 500,000              | 6,000     | 500      | 0.29                          | 0.0035    | 0.59    | 0.29                                             | 3.54E-03  | 0.59    |
|                       | VOC                           | 0.01219            | 500,000              | 6,000     | 500      | 3.05                          | 0.0366    | 6.09    | 1.22                                             | 1.46E-02  | 2.44    |
| GHGs                  | CH <sub>4</sub>               | 3.2E-05            | 500,000              | 6,000     | 500      | 0.0079                        | 0.00010   | 0.016   | 0.0079                                           | 9.51E-05  | 0.016   |
|                       | Benzene                       | 3.9E-06            | 500,000              | 6,000     | 500      | 0.0010                        | 0.0000    | 0.0019  | 3.9E-04                                          | 4.68E-06  | 7.8E-04 |
|                       | Bromomethane                  | 6.0E-07            | 500,000              | 6,000     | 500      | 1.5E-04                       | 1.8E-06   | 3.0E-04 | 6.0E-05                                          | 7.17E-07  | 1.2E-04 |
|                       | 2-Butanone                    | 4.8E-06            | 500,000              | 6,000     | 500      | 0.0012                        | 1.4E-05   | 0.0024  | 4.8E-04                                          | 5.70E-06  | 9.5E-04 |
|                       | Carbon Disulfide              | 1.9E-06            | 500,000              | 6,000     | 500      | 4.9E-04                       | 5.8E-06   | 0.0010  | 1.9E-04                                          | 2.34E-06  | 3.9E-04 |
|                       | Chloroethane                  | 4.9E-07            | 500,000              | 6,000     | 500      | 1.2E-04                       | 1.5E-06   | 2.4E-04 | 4.9E-05                                          | 5.85E-07  | 9.7E-05 |
|                       | Chloromethane                 | 2.8E-06            | 500,000              | 6,000     | 500      | 7.0E-04                       | 8.4E-06   | 0.0014  | 2.8E-04                                          | 3.36E-06  | 5.6E-04 |
|                       | Ethylbenzene                  | 4.6E-06            | 500,000              | 6,000     | 500      | 1.2E-03                       | 1.4E-05   | 2.3E-03 | 4.6E-04                                          | 5.56E-06  | 9.3E-04 |
| Volatile Organic HAPS | Formaldehyde                  | 8.4E-05            | 500,000              | 6,000     | 500      | 2.1E-02                       | 2.5E-04   | 4.2E-02 | 8.4E-03                                          | 1.01E-04  | 1.7E-02 |
|                       | n-Hexane                      | 1.2E-05            | 500,000              | 6,000     | 500      | 3.0E-03                       | 3.7E-05   | 6.1E-03 | 1.2E-03                                          | 1.46E-05  | 2.4E-03 |
|                       | Isooctane                     | 3.8E-08            | 500,000              | 6,000     | 500      | 9.4E-06                       | 1.1E-07   | 1.9E-05 | 3.8E-06                                          | 4.53E-08  | 7.6E-06 |
|                       | Methylene Chloride            | 3.3E-08            | 500,000              | 6,000     | 500      | 8.2E-06                       | 9.9E-08   | 1.6E-05 | 3.3E-06                                          | 3.95E-08  | 6.6E-06 |
|                       | Styrene                       | 6.6E-07            | 500,000              | 6,000     | 500      | 1.6E-04                       | 2.0E-06   | 3.3E-04 | 6.6E-05                                          | 7.90E-07  | 1.3E-04 |
|                       | Toluene                       | 7.6E-06            | 500,000              | 6,000     | 500      | 1.9E-03                       | 2.3E-05   | 3.8E-03 | 7.6E-04                                          | 9.07E-06  | 1.5E-03 |
|                       | m-/p-Xylene                   | 2.4E-05            | 500,000              | 6,000     | 500      | 6.1E-03                       | 7.3E-05   | 1.2E-02 | 2.4E-03                                          | 2.92E-05  | 4.9E-03 |
|                       | o-Xylene                      | 6.9E-06            | 500,000              | 6,000     | 500      | 1.7E-03                       | 2.1E-05   | 3.5E-03 | 6.9E-04                                          | 8.34E-06  | 1.4E-03 |
|                       | Acenaphthene                  | 1.2E-06            | 500,000              | 6,000     | 500      | 3.0E-04                       | 3.6E-06   | 6.0E-04 | 1.2E-04                                          | 1.43E-06  | 2.4E-04 |
|                       | Acenaphthylene                | 3.6E-08            | 500,000              | 6,000     | 500      | 8.9E-06                       | 1.1E-07   | 1.8E-05 | 3.6E-06                                          | 4.27E-08  | 7.1E-06 |
|                       | Anthracene                    | 3.3E-07            | 500,000              | 6,000     | 500      | 8.3E-05                       | 9.9E-07   | 1.7E-04 | 3.3E-05                                          | 3.96E-07  | 6.6E-05 |
|                       | Benzo(a)anthracene            | 1.4E-07            | 500,000              | 6,000     | 500      | 3.6E-05                       | 4.3E-07   | 7.1E-05 | 1.4E-05                                          | 1.71E-07  | 2.8E-05 |
|                       | Benzo(e)pyrene                | 2.4E-08            | 500,000              | 6,000     | 500      | 6.0E-06                       | 7.2E-08   | 1.2E-05 | 2.4E-06                                          | 2.89E-08  | 4.8E-06 |
|                       | Chrysene                      | 5.3E-07            | 500,000              | 6,000     | 500      | 1.3E-04                       | 1.6E-06   | 2.7E-04 | 5.3E-05                                          | 6.40E-07  | 1.1E-04 |
| PAH HAPS <sup>3</sup> | Fluoranthene                  | 3.8E-07            | 500,000              | 6,000     | 500      | 9.5E-05                       | 1.1E-06   | 1.9E-04 | 3.8E-05                                          | 4.57E-07  | 7.6E-05 |
|                       | Fluorene                      | 2.6E-06            | 500,000              | 6,000     | 500      | 6.4E-04                       | 7.7E-06   | 1.3E-03 | 2.6E-04                                          | 3.08E-06  | 5.1E-04 |
|                       | 2-Methylnaphthalene           | 1.3E-05            | 500,000              | 6,000     | 500      | 3.3E-03                       | 4.0E-05   | 6.7E-03 | 1.3E-03                                          | 1.61E-05  | 2.7E-03 |
|                       | Naphthalene                   | 4.6E-06            | 500,000              | 6,000     | 500      | 1.2E-03                       | 1.4E-05   | 2.3E-03 | 4.6E-04                                          | 5.54E-06  | 9.2E-04 |
|                       | Perylene                      | 7.6E-08            | 500,000              | 6,000     | 500      | 1.9E-05                       | 2.3E-07   | 3.8E-05 | 7.6E-06                                          | 9.14E-08  | 1.5E-05 |
|                       | Phenanthrene                  | 4.6E-06            | 500,000              | 6,000     | 500      | 1.1E-03                       | 1.4E-05   | 2.3E-03 | 4.6E-04                                          | 5.48E-06  | 9.1E-04 |
|                       | Pyrene                        | 1.1E-06            | 500,000              | 6,000     | 500      | 2.8E-04                       | 3.4E-06   | 5.6E-04 | 1.1E-04                                          | 1.34E-06  | 2.2E-04 |

#### Table 2 (cont.) Hot Mix Asphalt Plant Silo Loading Emissions Segale-Cumberland Mine King County, Washington

#### Notes:

<sup>1.</sup> AP-42, Section 11.1 Hot Mix Asphalt Plants

- 2. Abated by Blue Smoke Control. Blue Smoke Control directly abates PM and indirectly abates VOC. We used reduction factors as specified by Blue Smoke Control's sales engineer. Assumed VOC control = HAP control.
- <sup>3.</sup> Per AP-42, these PAH HAPs are organic particulate-based compounds, and thus the organic PM EF was used.
- <sup>4.</sup> Asphalt silos have a rated capacity of 200 tons.
- <sup>5.</sup> Two 200-ton standard haven silos.

#### Abbreviations:

| CAP - criteria air pollutant  | NOx - nitrogen oxides                           |
|-------------------------------|-------------------------------------------------|
| CO - carbon monoxide          | PAH - polycylic aromatic hydrocarbons           |
| CO2 - carbon dioxide          | PM2.5 - PM of less than 2.5 microns in diameter |
| CH4 - methane                 | PM10 - PM of less than 10 microns in diameter   |
| GHG - greenhouse gas          | SO2 - sulfur dioxide                            |
| HAP - hazardous air pollutant | TOC - total organic compounds                   |
| N2O - nitrous oxide           | VOC - volatile organic compounds                |

#### **References:**

USEPA. AP-42, Fifth Edition, Vol. 1: Section 11.1 Hot Mix Asphalt Plants. Available at: https://www.epa.gov/sites/default/files/2020-10/documents/c11s01.pdf

#### Table 3 Hot Mix Asphalt Plant Loadout Emissions Segale-Cumberland Mine King County, Washington

#### Emission Factors<sup>1</sup>

| EF (Total PM)=                                                          | 0.000181 + 0.00141 (-v)E^(((0.0251)(T+460)-20.43) |
|-------------------------------------------------------------------------|---------------------------------------------------|
| EF (Organic PM)=                                                        | 0.00141 (-V)e^(((0.0251)(T+460)-20.43)            |
| EF (TOC) =                                                              | 0.0172 (-V)e^(((0.0251)(T+460)-20.43)             |
| EF (CO)=                                                                | 0.00558(-V)e^(((0.0251)(T+460)-20.43)             |
| Blue Smoke VOC Control <sup>3</sup> (%)                                 | 60                                                |
| Blue Smoke PM <sub>10</sub> /PM <sub>2.5</sub> Control <sup>3</sup> (%) | 95                                                |

#### Emissions Calculations

| Pollutant Category    | Pollutant                     | Emission<br>Factor <sup>1,2</sup> | Production Rate (PR) |           | Emissio | n Rate (ER) - U | nabated   | ER - Abated with Blue Smoke Control <sup>3</sup> |          |           |          |
|-----------------------|-------------------------------|-----------------------------------|----------------------|-----------|---------|-----------------|-----------|--------------------------------------------------|----------|-----------|----------|
|                       |                               | (lb/ton)                          | (ton/yr)             | (ton/day) | (lb/hr) | (ton/yr)        | (ton/day) | (lb/hr)                                          | (ton/yr) | (ton/day) | (lb/hr)  |
|                       | PM <sub>10</sub>              | 0.00052                           | 500,000              | 6,000     | 500     | 0.13            | 0.0016    | 0.26                                             | 0.0065   | 7.83E-05  | 0.013    |
|                       | Total PM (PM <sub>2.5</sub> ) | 0.00052                           | 500,000              | 6,000     | 500     | 0.13            | 0.0016    | 0.26                                             | 0.0065   | 7.83E-05  | 0.013    |
| CAPs                  | TOC                           | 0.00416                           | 500,000              | 6,000     | 500     | 1.04            | 0.0125    | 2.08                                             | 0.42     | 0.0050    | 0.83     |
|                       | CO                            | 0.00135                           | 500,000              | 6,000     | 500     | 0.34            | 0.0040    | 0.67                                             | 0.34     | 0.0040    | 0.67     |
|                       | VOC                           | 0.00391                           | 500,000              | 6,000     | 500     | 0.98            | 0.012     | 1.95                                             | 0.39     | 0.0047    | 0.78     |
| GHGs                  | CH <sub>4</sub>               | 2.70E-04                          | 500,000              | 6,000     | 500     | 6.76E-02        | 8.11E-04  | 1.35E-01                                         | 6.76E-02 | 8.11E-04  | 1.35E-01 |
|                       | Benzene                       | 2.16E-06                          | 500,000              | 6,000     | 500     | 5.41E-04        | 6.49E-06  | 1.08E-03                                         | 2.16E-04 | 2.60E-06  | 4.33E-04 |
|                       | Bromomethane                  | 3.99E-07                          | 500,000              | 6,000     | 500     | 1.0E-04         | 1.2E-06   | 2.00E-04                                         | 3.99E-05 | 4.79E-07  | 7.99E-05 |
|                       | 2-Butanone                    | 2.04E-06                          | 500,000              | 6,000     | 500     | 5.09E-04        | 6.11E-06  | 1.02E-03                                         | 2.04E-04 | 2.45E-06  | 4.08E-04 |
|                       | Carbon Disulfide              | 5.41E-07                          | 500,000              | 6,000     | 500     | 1.35E-04        | 1.62E-06  | 2.70E-04                                         | 5.41E-05 | 6.49E-07  | 1.08E-04 |
|                       | Chloroethane                  | 8.73E-09                          | 500,000              | 6,000     | 500     | 2.18E-06        | 2.62E-08  | 4.37E-06                                         | 8.73E-07 | 1.05E-08  | 1.75E-06 |
|                       | Chloromethane                 | 6.24E-07                          | 500,000              | 6,000     | 500     | 1.56E-04        | 1.87E-06  | 3.12E-04                                         | 6.24E-05 | 7.49E-07  | 1.25E-04 |
|                       | Cumene                        | 4.57E-06                          | 500,000              | 6,000     | 500     | 1.14E-03        | 1.37E-05  | 2.29E-03                                         | 4.57E-04 | 5.49E-06  | 9.15E-04 |
|                       | Ethylbenzene                  | 1.16E-05                          | 500,000              | 6,000     | 500     | 2.91E-03        | 3.49E-05  | 5.82E-03                                         | 1.16E-03 | 1.40E-05  | 2.33E-03 |
| Volatile Organic HAPS | Formaldehyde                  | 3.66E-06                          | 500,000              | 6,000     | 500     | 9.15E-04        | 1.10E-05  | 1.83E-03                                         | 3.66E-04 | 4.39E-06  | 7.32E-04 |
|                       | n-Hexane                      | 6.24E-06                          | 500,000              | 6,000     | 500     | 1.56E-03        | 1.87E-05  | 3.12E-03                                         | 6.24E-04 | 7.49E-06  | 1.25E-03 |
|                       | Isooctane                     | 7.49E-08                          | 500,000              | 6,000     | 500     | 1.87E-05        | 2.25E-07  | 3.74E-05                                         | 7.49E-06 | 8.98E-08  | 1.50E-05 |
|                       | Styrene                       | 3.04E-07                          | 500,000              | 6,000     | 500     | 7.59E-05        | 9.11E-07  | 1.52E-04                                         | 3.04E-05 | 3.64E-07  | 6.07E-05 |
|                       | Tetrachloroethene             | 3.20E-07                          | 500,000              | 6,000     | 500     | 8.01E-05        | 9.61E-07  | 1.60E-04                                         | 3.20E-05 | 3.84E-07  | 6.40E-05 |
|                       | Toluene                       | 8.73E-06                          | 500,000              | 6,000     | 500     | 2.18E-03        | 2.62E-05  | 4.37E-03                                         | 8.73E-04 | 1.05E-05  | 1.75E-03 |
|                       | Trichlorofluoromethane        | 5.41E-08                          | 500,000              | 6,000     | 500     | 1.35E-05        | 1.62E-07  | 2.70E-05                                         | 5.41E-06 | 6.49E-08  | 1.08E-05 |
|                       | m-/p-Xylene                   | 1.71E-05                          | 500,000              | 6,000     | 500     | 4.26E-03        | 5.12E-05  | 8.53E-03                                         | 1.71E-03 | 2.05E-05  | 3.41E-03 |
|                       | o-Xylene                      | 3.33E-06                          | 500,000              | 6,000     | 500     | 8.32E-04        | 9.98E-06  | 1.66E-03                                         | 3.33E-04 | 3.99E-06  | 6.65E-04 |
|                       | Acenaphthene                  | 8.86E-07                          | 500,000              | 6,000     | 500     | 2.22E-04        | 2.66E-06  | 4.43E-04                                         | 8.86E-05 | 1.06E-06  | 1.77E-04 |
|                       | Acenaphthylene                | 9.55E-08                          | 500,000              | 6,000     | 500     | 2.39E-05        | 2.86E-07  | 4.77E-05                                         | 9.55E-06 | 1.15E-07  | 1.91E-05 |
|                       | Anthracene                    | 2.39E-07                          | 500,000              | 6,000     | 500     | 5.97E-05        | 7.16E-07  | 1.19E-04                                         | 2.39E-05 | 2.86E-07  | 4.77E-05 |
|                       | Benzo(a)anthracene            | 6.48E-08                          | 500,000              | 6,000     | 500     | 1.62E-05        | 1.94E-07  | 3.24E-05                                         | 6.48E-06 | 7.77E-08  | 1.30E-05 |
|                       | Benzo(b)fluoranthene          | 2.59E-08                          | 500,000              | 6,000     | 500     | 6.48E-06        | 7.77E-08  | 1.30E-05                                         | 2.59E-06 | 3.11E-08  | 5.18E-06 |
|                       | Benzo(k)fluoranthene          | 7.50E-09                          | 500,000              | 6,000     | 500     | 1.88E-06        | 2.25E-08  | 3.75E-06                                         | 7.50E-07 | 9.00E-09  | 1.50E-06 |
|                       | Benzo(g,h,i)perylene          | 6.48E-09                          | 500,000              | 6,000     | 500     | 1.62E-06        | 1.94E-08  | 3.24E-06                                         | 6.48E-07 | 7.77E-09  | 1.30E-06 |
| PAH HAPS              | Benzo(a)pyrene                | 7.84E-09                          | 500,000              | 6,000     | 500     | 1.96E-06        | 2.35E-08  | 3.92E-06                                         | 7.84E-07 | 9.41E-09  | 1.57E-06 |
|                       | Benzo(e)pyrene                | 2.66E-08                          | 500,000              | 6,000     | 500     | 6.65E-06        | 7.98E-08  | 1.33E-05                                         | 2.66E-06 | 3.19E-08  | 5.32E-06 |
|                       | Chrysene                      | 3.51E-07                          | 500,000              | 6,000     | 500     | 8.78E-05        | 1.05E-06  | 1.76E-04                                         | 3.51E-05 | 4.21E-07  | 7.02E-05 |
|                       | Dibenz(a,h)anthracene         | 1.26E-09                          | 500,000              | 6,000     | 500     | 3.15E-07        | 3.78E-09  | 6.31E-07                                         | 1.26E-07 | 1.51E-09  | 2.52E-07 |
|                       | Fluoranthene                  | 1.70E-07                          | 500,000              | 6,000     | 500     | 4.26E-05        | 5.11E-07  | 8.52E-05                                         | 1.70E-05 | 2.05E-07  | 3.41E-05 |
|                       | Fluorene                      | 2.63E-06                          | 500,000              | 6,000     | 500     | 6.56E-04        | 7.88E-06  | 1.31E-03                                         | 2.63E-04 | 3.15E-06  | 5.25E-04 |
|                       | Indeno(1,2,3-cd)pyrene        | 1.60E-09                          | 500,000              | 6,000     | 500     | 4.01E-07        | 4.81E-09  | 8.01E-07                                         | 1.60E-07 | 1.92E-09  | 3.20E-07 |
|                       | 2-Methylnaphthalene           | 8.11E-06                          | 500,000              | 6,000     | 500     | 2.03E-03        | 2.43E-05  | 4.06E-03                                         | 8.11E-04 | 9.74E-06  | 1.62E-03 |

### Table 3 (cont.) Hot Mix Asphalt Plant Loadout Emissions Segale-Cumberland Mine

|                       |              |          | KI      | ng County, w | asnington |          |          |          |          |          |          |
|-----------------------|--------------|----------|---------|--------------|-----------|----------|----------|----------|----------|----------|----------|
|                       | Naphthalene  | 4.26E-06 | 500,000 | 6,000        | 500       | 1.07E-03 | 1.28E-05 | 2.13E-03 | 4.26E-04 | 5.11E-06 | 8.52E-04 |
| PAH HAPS <sup>4</sup> | Perylene     | 7.50E-08 | 500,000 | 6,000        | 500       | 1.88E-05 | 2.25E-07 | 3.75E-05 | 7.50E-06 | 9.00E-08 | 1.50E-05 |
|                       | Phenanthrene | 2.76E-06 | 500,000 | 6,000        | 500       | 6.90E-04 | 8.28E-06 | 1.38E-03 | 2.76E-04 | 3.31E-06 | 5.52E-04 |
|                       | Pyrene       | 5.11E-07 | 500,000 | 6,000        | 500       | 1.28E-04 | 1.53E-06 | 2.56E-04 | 5.11E-05 | 6.14E-07 | 1.02E-04 |
| Semi-Volatile HAPS    | Phenol       | 4.91E-05 | 500,000 | 6,000        | 500       | 1.23E-02 | 1.47E-04 | 2.45E-02 | 4.91E-03 | 5.89E-05 | 9.82E-03 |

#### Notes:

<sup>1.</sup> AP-42, Section 11.1 Hot Mix Asphalt Plants Table 11.1-15

 $^{\rm 2.}$  Speciation from AP-42, Hot Mix Asphalt Plants Tables 11.1-15 and 11.1-16

3. Abated by Blue Smoke Control. Blue Smoke Control directly abates PM and indirectly abates VOC. We used reduction factors as specified by Blue Smoke Control's sales engineer.

<sup>4.</sup> Per AP-42, these PAH HAPs are organic particulate-based compounds, and thus the organic PM EF was used.

#### Abbreviations:

CAP - criteria air pollutant CO - carbon monoxide CO2 - carbon dioxide CH4 - methane EF - emissions factor GHG - greenhouse gas HAP - hazardous air pollutant hr - hour N2O - nitrous oxide Ib - pound NOx - nitrogen oxides PAH - polycylic aromatic hydrocarbons PM - particulate matter PM2.5 - PM of less than 2.5 microns in diameter PM10 - PM of less than 10 microns in diameter SO2 - sulfur dioxide TOC - total organic compounds VOC - volatile organic compounds yr - year

#### References:

USEPA. AP-42, Fifth Edition, Vol. 1: Section 11.1 Hot Mix Asphalt Plants. Available at: https://www.epa.gov/sites/default/files/2020-10/documents/c11s01.pdf

# Table 4Rock Crushing EmissionsSegale-Cumberland MineKing County, Washington

## **Crushing Plant Operating Parameters**

| Throughput                    | 1500 | tons/hr  |
|-------------------------------|------|----------|
| Control Efficiency (Watering) | 75   | %        |
| Operating hours <sup>1</sup>  | 3432 | hours/yr |

## **Emission Factors**<sup>2,3</sup>

| Emission Source                             | PM <sub>2.5</sub> (lb/ton) <sup>4</sup> | PM <sub>10</sub> (lb/ton) | PM (lb/ton) |
|---------------------------------------------|-----------------------------------------|---------------------------|-------------|
| Tertiary Crushing                           | 0.00036                                 | 0.0024                    | 0.0054      |
| Tertiary Crushing - Controlled <sup>5</sup> | 0.0001                                  | 0.00054                   | 0.0012      |

## **Emission Calculations - Controlled**

| Equipment Type            | PM <sub>2.5</sub> (ton/yr) | PM <sub>10</sub> (ton/yr) | PM (ton/yr) |
|---------------------------|----------------------------|---------------------------|-------------|
| Jaw Crusher - Primary Dry | 0.26                       | 1.39                      | 3.09        |
| Cone Crusher - Secondary  | 0.26                       | 1.39                      | 3.09        |
| Cone Crusher - Secondary  | 0.26                       | 1.39                      | 3.09        |
| Cone Crusher - Tertiary   | 0.26                       | 1.39                      | 3.09        |
| Cone Crusher - Tertiary   | 0.26                       | 1.39                      | 3.09        |
| Total                     | 1.29                       | 6.95                      | 15.44       |

## Notes:

<sup>1.</sup> Operating hours based on Crushing operations from 07:00-16:00 year round.

<sup>2.</sup> AP-42, Section 11.19.2 Crushed Stone Processing and Pulverized Mineral Processing

<sup>5.</sup> Controlled emission factor from AP-42, represents control of 70-80% from watering.

## Abbreviations:

lb - pound

PM10 - PM of less than 10 microns in diameter

PM - particulate matter

yr - year

PM2.5 - PM of less than 2.5 microns in diameter

## **References:**

USEPA. AP-42, Fifth Edition, Vol. 1: Section 11.19 Construction Aggregate Processing. Available at: https://www.epa.gov/sites/default/files/2020-10/documents/c11s19.pdf

<sup>&</sup>lt;sup>3.</sup> Table 11.19.2-2

<sup>&</sup>lt;sup>4.</sup> PM2.5/PM10 ratio - 0.15, Background Document for Revisions to Fine Fraction Ratios Used for AP-42 Fugitive Dust Emission Factors, Midwest Research Institute (2006).

## Table 5 Recycled Asphalt Crushing Emissions Segale-Cumberland Mine King County, Washington

## **Recycled Asphalt Crusher Operating Parameters**

| Throughput                   | 300   | tons/hr  |
|------------------------------|-------|----------|
| Operating Hours <sup>1</sup> | 2,808 | hours/yr |

## **Emission Factors<sup>2</sup>**

| Emission Source | PM <sub>2.5</sub><br>(lb/ton) <sup>3</sup> | PM <sub>10</sub><br>(lb/ton) | PM<br>(lb/ton) |
|-----------------|--------------------------------------------|------------------------------|----------------|
| Crushers        | 0.00010                                    | 0.0005                       | 0.0012         |
| Screening       | 0.00005                                    | 0.00074                      | 0.0022         |
| Transfer points | 0.00001                                    | 0.00005                      | 0.00014        |

## Emission Calculations (ton/hr)

| Equipment Type  | Number of<br>Equipment | PM <sub>2.5</sub><br>(ton/yr) | PM <sub>10</sub> (ton/yr) | PM (ton/yr) |
|-----------------|------------------------|-------------------------------|---------------------------|-------------|
| Crushers        | 2                      | 0.08                          | 0.45                      | 1.0         |
| Screen          | 1                      | 0.021                         | 0.31                      | 0.9         |
| Transfer Points | 7                      | 0.038                         | 0.14                      | 0.41        |
|                 | Total:                 | 0.14                          | 0.90                      | 2.35        |

(ton/hr)

## <u>Notes</u>

 $^{\rm 1.}$  Operating hours based on crushing operations from 07:00-16:00 year round.

- <sup>2.</sup> AP-42, Section 11.19.2 Crushed Stone Processing and Pulverized Mineral Processing. Table 11.19.2-2
- <sup>3.</sup> PM2.5/PM10 ratio 0.15, MRI 2006
- <sup>4.</sup> Emissions assume wet suppression on conveyors.

## Abbreviations:

- lb pound PM10 PM of less than 10 microns in diameter
- PM particulate matter yr year

PM2.5 - PM of less than 2.5 microns in diameter

## **References:**

USEPA. AP-42, Fifth Edition, Vol. 1: Section 11.19 Construction Aggregate Processing. Available at: https://www.epa.gov/sites/default/files/2020-10/documents/c11s19.pdf

## Table 6 Stockpile Emissions Segale-Cumberland Mine King County, Washington

## **Stockpile Operational Parameters**

| Annual Operation                | 365 | days/yr   |
|---------------------------------|-----|-----------|
| Control Efficiency <sup>1</sup> | 75  | %         |
| Stockpile Area                  | 8   | acres     |
| Number of active days           | 365 | days/year |
| Number of inactive days         | 0   | days/year |

## **Emission Factors<sup>2</sup>**

| Source        | PM <sub>2.5</sub><br>(lb/acre-day) | PM <sub>10</sub><br>(lb/acre-day) |  |  |
|---------------|------------------------------------|-----------------------------------|--|--|
| Storage Piles | 0.473                              | 6.3                               |  |  |

## **Emission Calculations - Controlled**

| Stockpiles | Controlled Emission Rate<br>(ton/year) |                  |  |  |  |  |  |
|------------|----------------------------------------|------------------|--|--|--|--|--|
|            | PM <sub>2.5</sub>                      | PM <sub>10</sub> |  |  |  |  |  |
| Active     | 0.17                                   | 2.30             |  |  |  |  |  |

### <u>Notes</u>

- <sup>1.</sup> 75% Control Efficiency for Watering Stockpiles.
- <sup>2.</sup> AP-42, Fifth Edition, Section 11.9, 10/98, Western Surface Coal Mining. Table 11.9-4.

## **Abbreviations:**

lb - pound

PM - particulate matter

PM2.5 - PM of less than 2.5 microns in diameter

PM10 - PM of less than 10 microns in diameter

## **References:**

USEPA. AP-42, Fifth Edition, Vol. 1: Section 11.9 Western Surface Coal Mining. Available at: https://www.epa.gov/sites/default/files/2020-10/documents/c11s09.pdf

# Table 7Storage Tank EmissionsSegale-Cumberland MineKing County, Washington

General Operational Parameters<sup>1</sup>

| Capacity                               | 30,000    | gallons  |  |  |  |  |
|----------------------------------------|-----------|----------|--|--|--|--|
| Cement Throughput<br>(per tank)        | 10,000    | tons/yr  |  |  |  |  |
| Throughput                             | 2,323,722 | gallons  |  |  |  |  |
| Tank Length                            | 35        | feet     |  |  |  |  |
| Tank Diameter                          | 45        | feet     |  |  |  |  |
| Operating Hours <sup>2</sup>           | 8760      | hours/yr |  |  |  |  |
| Storage Tanks                          | 3         | #        |  |  |  |  |
| Blue Smoke VOC<br>Control <sup>3</sup> | 60        | %        |  |  |  |  |

## Emission Calculations

| Source                | Pollutant              | Emission Rate<br>(unabated) | Emission Rate (abated<br>with Blue Smoke<br>Control) |  |  |  |
|-----------------------|------------------------|-----------------------------|------------------------------------------------------|--|--|--|
|                       |                        | ton/yr                      | ton/yr                                               |  |  |  |
| CADS <sup>4</sup>     | VOC                    | 0.86                        | 0.34                                                 |  |  |  |
| CAF5                  | СО                     | 0.083                       |                                                      |  |  |  |
| GHGs                  | CH <sub>4</sub>        | 0.056                       |                                                      |  |  |  |
|                       | Benzene                | 4.4E-04                     | 1.8E-04                                              |  |  |  |
|                       | Bromomethane           | 8.2E-05                     | 3.3E-05                                              |  |  |  |
|                       | 2-Butanone             | 4.2E-04                     | 1.7E-04                                              |  |  |  |
|                       | Carbon Disulfide       | 1.1E-04                     | 4.4E-05                                              |  |  |  |
|                       | Chloroethane           | 1.8E-06                     | 7.2E-07                                              |  |  |  |
|                       | Chloromethane          | 1.3E-04                     | 5.1E-05                                              |  |  |  |
|                       | Cumene                 | 9.4E-04                     | 3.8E-04                                              |  |  |  |
|                       | Ethylbenzene           | 0.0024                      | 9.6E-04                                              |  |  |  |
| Volatile Organic HAPS | Formaldehyde           | 7.5E-04                     | 3.0E-04                                              |  |  |  |
|                       | n-Hexane               | 0.0013                      | 5.1E-04                                              |  |  |  |
|                       | Isooctane              | 1.5E-05                     | 6.2E-06                                              |  |  |  |
|                       | Styrene                | 6.2E-05                     | 2.5E-05                                              |  |  |  |
|                       | Tetrachloroethene      | 6.6E-05                     | 2.6E-05                                              |  |  |  |
|                       | Toluene                | 0.0018                      | 7.2E-04                                              |  |  |  |
|                       | Trichlorofluoromethane | 1.1E-05                     | 4.4E-06                                              |  |  |  |
|                       | m-/p-Xylene            | 0.0035                      | 1.4E-03                                              |  |  |  |
|                       | o-Xylene               | 6.8E-04                     | 2.7E-04                                              |  |  |  |

## Table 7 (cont.) Storage Tank Emissions Segale-Cumberland Mine King County, Washington

|                       | Acenaphthene           | 0.0022  | 8.9E-04 |
|-----------------------|------------------------|---------|---------|
|                       | Acenaphthylene         | 2.4E-04 | 9.6E-05 |
|                       | Anthracene             | 6.0E-04 | 2.4E-04 |
|                       | Benzo(a)anthracene     | 1.6E-04 | 6.5E-05 |
|                       | Benzo(b)fluoranthene   | 6.5E-05 | 2.6E-05 |
|                       | Benzo(k)fluoranthene   | 1.9E-05 | 7.5E-06 |
|                       | Benzo(g,h,i)perylene   | 1.6E-05 | 6.5E-06 |
|                       | Benzo(a)pyrene         | 2.0E-05 | 7.9E-06 |
|                       | Benzo(e)pyrene         | 6.7E-05 | 2.7E-05 |
| PAH HAPS <sup>5</sup> | Chrysene               | 8.8E-04 | 3.5E-04 |
|                       | Dibenz(a,h)anthracene  | 3.2E-06 | 1.3E-06 |
|                       | Fluoranthene           | 4.3E-04 | 1.7E-04 |
|                       | Fluorene               | 0.0066  | 0.0026  |
|                       | Indeno(1,2,3-cd)pyrene | 4.0E-06 | 1.6E-06 |
|                       | 2-Methylnaphthalene    | 0.020   | 0.008   |
|                       | Naphthalene            | 0.0107  | 0.0043  |
|                       | Perylene               | 1.9E-04 | 7.5E-05 |
|                       | Phenanthrene           | 0.0069  | 0.0028  |
|                       | Pyrene                 | 0.0013  | 0.0005  |
| Semi-Volatile HAPS    | Phenol                 | 0.0101  | 0.0040  |

### <u>Notes</u>

- <sup>1.</sup> Specific gravity of asphalt cement is assumed 8.61 pounds per gallon.
- <sup>2.</sup> Assumed continuous usage throughout the year.
- <sup>3.</sup> Abated by Blue Smoke Control. Blue Smoke Control directly abates PM and indirectly abates VOC. We used reduction factors as specified by Blue Smoke Control's sales engineer. Assumed VOC control = HAP control.
- <sup>4.</sup> For asphalt cement, CO Emissions are equal to 0.097 x VOC emissions based on AP-42, Section 11.1. Section 4.4.5.
- <sup>5.</sup> Conservatively multiplied the AP-42 Table 11.1-15 PAH HAPs speciation profile by the organic volatile emissions due to lack of organic PM data.

## Abbreviations:

| CAP - criteria air pollutant  | hr - hour                             |
|-------------------------------|---------------------------------------|
| CH4 - methane                 | PAH - polycylic aromatic hydrocarbons |
| EF - emissions factor         | VOC - volatile organic compounds      |
| GHG - greenhouse gas          | yr - year                             |
| HAP - hazardous air pollutant |                                       |

## **References:**

USEPA. AP-42, Fifth Edition, Vol. 1: Section 11.1 Hot Mix Asphalt Plants. Available at: https://www.epa.gov/sites/default/files/2020-10/documents/c11s01.pdf

## Table 8 Off-Road Equipment Emissions Segale-Cumberland Mine King County, Washington

#### Off-road Annual Emissions Calculations (Tons/year)

| Year | Plant <sup>1</sup> | Equipment Type                          | Rated | MOVES3 Equipment Category <sup>2</sup> | HP bin <sup>3</sup> | Quantity | Average daily<br>vehicle          | Operating<br>Days per | Annual<br>hours of | Loadfactor | Off-road Emission (Tons/Year) |       |      |       |                   |         |       |        |                  |                   |
|------|--------------------|-----------------------------------------|-------|----------------------------------------|---------------------|----------|-----------------------------------|-----------------------|--------------------|------------|-------------------------------|-------|------|-------|-------------------|---------|-------|--------|------------------|-------------------|
|      |                    | -4-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1- | (HP)  |                                        |                     |          | operation<br>(hours) <sup>4</sup> | Year                  | operation          |            | voc                           | со    | NOx  | PM10  | PM <sub>2.5</sub> | SO2     | CO2   | CH₄    | N <sub>2</sub> O | CO <sub>2</sub> e |
| 2021 | Crushing Plant     | Dozer                                   | 600   | Dsl - Crawler Tractor/Dozers           | 300 < hp <= 600     | 1        | 9                                 | 312                   | 2,808              | 0.59       | 0.068                         | 0.47  | 1.2  | 0.070 | 0.068             | 0.0017  | 588   | 0.0050 | 0.054            | 604               |
| 2021 | Crushing Plant     | Excavator/Loader                        | 600   | Dsl - Excavators                       | 300 < hp <= 600     | 1        | 9                                 | 312                   | 2,808              | 0.59       | 0.050                         | 0.33  | 0.84 | 0.050 | 0.049             | 0.0017  | 588   | 0.0038 | 0.054            | 604               |
| 2021 | Crushing Plant     | Off-highway haul trucks                 | 600   | Dsl - Off-highway Trucks               | 300 < hp <= 600     | 3        | 9                                 | 312                   | 8,424              | 0.59       | 0.081                         | 0.47  | 1.2  | 0.083 | 0.081             | 0.0048  | 1,764 | 0.0067 | 0.16             | 1,813             |
| 2021 | Crushing Plant     | Water truck                             | 600   | Dsl - Off-highway Trucks               | 300 < hp <= 600     | 0.5      | 9                                 | 312                   | 1,404              | 0.59       | 0.013                         | 0.078 | 0.20 | 0.014 | 0.013             | 8.0E-04 | 294   | 0.0011 | 0.027            | 302               |
| 2021 | Crushing Plant     | Road grader                             | 600   | Dsl - Graders                          | 300 < hp <= 600     | 0.5      | 9                                 | 312                   | 1,404              | 0.59       | 0.032                         | 0.22  | 0.56 | 0.032 | 0.031             | 8.5E-04 | 294   | 0.0023 | 0.027            | 302               |
| 2021 | Crushing Plant     | Off-highway haul truck                  | 600   | Dsl - Off-highway Trucks               | 300 < hp <= 600     | 3        | 9                                 | 312                   | 8,424              | 0.59       | 0.081                         | 0.47  | 1.2  | 0.083 | 0.081             | 0.0048  | 1,764 | 0.0067 | 0.16             | 1,813             |
| 2021 | Crushing Plant     | Loader                                  | 600   | Dsl - Rubber Tire Loaders              | 300 < hp <= 600     | 3        | 9                                 | 312                   | 8,424              | 0.59       | 0.44                          | 3.2   | 7.6  | 0.48  | 0.47              | 0.0057  | 1,763 | 0.030  | 0.16             | 1,813             |
| 2021 | Asphalt Plant      | Loader                                  | 600   | Dsl - Rubber Tire Loaders              | 300 < hp <= 600     | 1        | 9                                 | 312                   | 2,808              | 0.59       | 0.15                          | 1.1   | 2.5  | 0.16  | 0.16              | 0.0019  | 588   | 0.010  | 0.054            | 604               |
| 2021 | General Operations | 8000 lb forklift <sup>4</sup>           | 86    | Dsl - Rough Terrain Forklifts          | 75 < hp <= 100      | 1        | 3                                 | 312                   | 0,936              | 0.59       | 0.006                         | 0.05  | 0.09 | 0.006 | 0.006             | 8.9E-05 | 31    | 0.0004 | 0.003            | 32                |
| 2021 | General Operations | Rubber tired backhoe <sup>4</sup>       | 87    | Dsl - Tractors/Loaders/Backhoes        | 75 < hp <= 100      | 2        | 3                                 | 312                   | 1,872              | 0.21       | 0.05                          | 0.3   | 0.22 | 0.04  | 0.04              | 9.6E-05 | 26    | 0.0022 | 0.002            | 27                |
|      |                    |                                         |       |                                        |                     |          |                                   |                       |                    | Total:     | 1.0                           | 6.7   | 16   | 1.0   | 1.0               | 0.022   | 7,701 | 0.068  | 0.71             | 7,915             |

Notes: <sup>1</sup> Emissions were estimated using emission factors from the Motor Vehicle Emission Simulator, version 3.0.0 (MOVES3) from the US EPA.

<sup>2</sup> Crushing plant sources only operate 7am-5:30pm.

<sup>3.</sup> General Operations are daytime only, expected 25% time.

4. Rated HP not provided, Assumed MOVES3 average horsepower of horsepower bin with the highest population.

#### Abbreviations:

CH4 - methane

CO - carbon monoxide CO2 - carbon dioxide

CO2e - carbon dioxide equivalents

HP - horsepower

NOx - nitrogen oxides

N2O - nitrous oxide

PM - particulate matter

PM2.5 - PM of less than 2.5 microns in diameter PM10 - PM of less than 10 microns in diameter

SO2 - sulfur dioxide

VOC - volatile organic compound

#### References:

US Environmental Protection Agency, 2020. Motor Vehicle Emission Simulator, version 3.0.0 (MOVES3). Available at: https://www.epa.gov/moves/latest-version-motor-vehicle-emission-simulator-moves

#### Table 9 **On-Road Vehicle Emissions** Segale-Cumberland Mine King County, Washington

#### Summary of Vehicle Miles Travelled (VMT)

| Plant         | Year Vehicle Type |                               | Fuel Type   | MOVES3 Vehicle<br>Type <sup>1</sup> | Number of<br>Trucks per Day | Annual VMT<br>(miles) <sup>2</sup> |  |  |
|---------------|-------------------|-------------------------------|-------------|-------------------------------------|-----------------------------|------------------------------------|--|--|
| Asphalt Plant | 2021              | Sweeper truck                 | Diesel Fuel | Single Unit Short-<br>haul Truck    | 1                           | 13,152                             |  |  |
| Asphalt Plant | 2021              | Service truck <50,000<br>GVWR | Diesel Fuel | Single Unit Short-<br>haul Truck    | 4                           | 52,610                             |  |  |

#### On-road Annual Emissions Calculations (Tons/year)

| Diant         | Voar | Vehicle Type                  | Vehicle Type | Eucl Turne                       | Eugl Type      | MOVES3 Vehicle | Number of | Total Annual | Regulatory |       |        |                   | On-i            | road Emissic | on (Tons/Yea | ar)              |                   |  |  |
|---------------|------|-------------------------------|--------------|----------------------------------|----------------|----------------|-----------|--------------|------------|-------|--------|-------------------|-----------------|--------------|--------------|------------------|-------------------|--|--|
| Flaint        | real |                               |              | Туре                             | Trucks per Day | VMT (miles)    | Class ID  | voc          | со         | NOx   | PM10   | PM <sub>2.5</sub> | 50 <sub>2</sub> | CO2          | CH₄          | N <sub>2</sub> O | CO <sub>2</sub> e |  |  |
| Asphalt Plant | 2021 | Sweeper truck                 | Diesel Fuel  | Single Unit Short-<br>haul Truck | 1.0            | 13,152         | 47        | 0.0015       | 0.023      | 0.040 | 0.0029 | 0.0011            | 6.0E-05         | 18           | 2.1E-04      | 2.6E-05          | 18                |  |  |
| Asphalt Plant | 2021 | Service truck <50,000<br>GVWR | Diesel Fuel  | Single Unit Short-<br>haul Truck | 4.0            | 52,610         | 47        | 0.0062       | 0.093      | 0.16  | 0.011  | 0.0043            | 2.4E-04         | 72           | 8.6E-04      | 1.0E-04          | 72                |  |  |
|               | Т    |                               |              |                                  |                |                |           |              | 0.12       | 0.20  | 0.014  | 0.0053            | 3.0E-04         | 89           | 0.0011       | 1.3E-04          | 89                |  |  |

Notes: <sup>1.</sup> US Environmental Protection Agency, 2020. Motor Vehicle Emission Simulator, version 3.0.0 (MOVES3).

2. \* Assumed MOVES default daily VMT per vehicle. (Annual VMT/Vehicle population)

#### Abbreviations:

| bbieviations.                     |                                                 |
|-----------------------------------|-------------------------------------------------|
| CH4 - methane                     | PM - particulate matter                         |
| CO - carbon monoxide              | PM2.5 - PM of less than 2.5 microns in diameter |
| CO2 - carbon dioxide              | PM10 - PM of less than 10 microns in diameter   |
| CO2e - carbon dioxide equivalents | SO2 - sulfur dioxide                            |
| HP - horsepower                   | VOC - volatile organic compound                 |
| NOx - nitrogen oxides             | VMT - vehicle miles traveled                    |
| N2O - nitrous oxide               |                                                 |

#### References:

US Environmental Protection Agency, 2020. Motor Vehicle Emission Simulator, version 3.0.0 (MOVES3). Available at: https://www.epa.gov/moves/latest-version-motor-vehicle-emission-simulator-moves

#### Table 10 Seasonal On-road Vehicle Emissions Segale-Cumberland Mine King County, Washington

| Summary | of Vehicle Miles Travelled (VM | Т)                |                              |                             | -         |                                       |                              |
|---------|--------------------------------|-------------------|------------------------------|-----------------------------|-----------|---------------------------------------|------------------------------|
| Year    | Vehicle Type                   | Fuel Type         | MOVES3 Vehicle Type          | Number of<br>Trucks per Day | Season    | Average Trip<br>Length<br>(Mile/trip) | VMT per<br>season<br>(miles) |
| 2021    | Heavy Duty Haul Trucks         | Diesel Fuel       | Combination Short-haul Truck | 550                         | Apr-Sep   | 2.14                                  | 183,612                      |
| 2021    | Heavy Duty Haul Trucks         | Diesel Fuel       | Combination Short-haul Truck | 200                         | Oct-March | 2.14                                  | 66,768                       |
| 2021    | Light/Medium Duty Trucks       | MOVES Default mix | Light Commercial Truck       | 118                         | Apr-Sep   | 2.14                                  | 39,393                       |
| 2021    | Light/Medium Duty Trucks       | MOVES Default mix | Light Commercial Truck       | 98                          | Oct-May   | 2.14                                  | 32,716                       |

#### On-road Annual Emissions Calculations (Tons/year)

| Year | Vehicle Type             | Fuel Type         | MOVES3 Vehicle Type          | MOVES2 Vahiala Tura | MOVES2 Vahiala Tura | Average Trucks | Total Annual | Regulatory |       |        |                   | On-             | -road Emissi | on (Tons/Y | ear)             |                   |  |  |
|------|--------------------------|-------------------|------------------------------|---------------------|---------------------|----------------|--------------|------------|-------|--------|-------------------|-----------------|--------------|------------|------------------|-------------------|--|--|
|      |                          |                   |                              | per Day             | VMT (miles)         | Class ID       | voc          | со         | NOx   | PM10   | PM <sub>2.5</sub> | SO <sub>2</sub> | CO2          | CH₄        | N <sub>2</sub> O | CO <sub>2</sub> e |  |  |
| 2021 | Heavy Duty Haul Trucks   | Diesel Fuel       | Combination Short-haul Truck | 375                 | 250,380             | 47             | 0.018        | 0.28       | 0.54  | 0.023  | 0.0106            | 8.5E-04         | 252          | 0.0027     | 2.6E-04          | 253               |  |  |
| 2021 | Light/Medium Duty Trucks | MOVES Default mix | Light Commercial Truck       | 108                 | 72,109              | n/a            | 0.0036       | 0.14       | 0.014 | 0.0014 | 4.4E-04           | 1.1E-04         | 18           | 5.3E-04    | 1.1E-04          | 18                |  |  |
|      |                          |                   |                              |                     |                     | Total:         | 0.022        | 0.42       | 0.55  | 0.024  | 0.0110            | 9.6E-04         | 270          | 0.0033     | 3.7E-04          | 271               |  |  |

#### Notes:

<sup>1.</sup> US Environmental Protection Agency, 2020. Motor Vehicle Emission Simulator, version 3.0.0 (MOVES3).

#### Abbreviations:

| CH4 - methane                     | PM - particulate matter                         |
|-----------------------------------|-------------------------------------------------|
| CO - carbon monoxide              | PM2.5 - PM of less than 2.5 microns in diameter |
| CO2 - carbon dioxide              | PM10 - PM of less than 10 microns in diameter   |
| CO2e - carbon dioxide equivalents | SO2 - sulfur dioxide                            |
| HP - horsepower                   | VOC - volatile organic compound                 |
| NOx - nitrogen oxides             | VMT - vehicle miles traveled                    |
| N2O - nitrous oxide               |                                                 |

#### References:

US Environmental Protection Agency, 2020. Motor Vehicle Emission Simulator, version 3.0.0 (MOVES3). Available at: https://www.epa.gov/moves/latest-version-motor-vehicle-emission-simulator-moves

## Table 11Paved Fugitive Dust Calculation DetailsSegale-Cumberland MineKing County, Washington

**Emission Calculation Details** 

| Emissions Calc    | ulation Formula                      |
|-------------------|--------------------------------------|
| E (Ib/VMT) =      | k (sL) <sup>a</sup> (W) <sup>b</sup> |
| $E_{ext} = E (1)$ | - P/4*365)                           |

| Parameter | PM <sub>10</sub> | PM <sub>2.5</sub> |
|-----------|------------------|-------------------|
| k         | 0.0022           | 0.00054           |
| а         | 0.91             | 0.91              |
| b         | 1.02             | 1.02              |

| Function/Variable Description                              | Assumed<br>Value     | Reference                                                                                                                                                                                               |
|------------------------------------------------------------|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| sl = silt loading                                          | 0.2                  | Value based on assumed average daily traffic volume of 500-4999 (source:<br>https://gaftp.epa.gov/air/nei/2017/doc/supporting_data<br>/nonpoint/Road%20Dust%20NEMO%20FINAL%20revise<br>d_4_9_2020.docx) |
| W = mean vehicle weight (tons)                             | 10                   | Assumed 10 tons for averaged 20% heavy duty (40 tons) and 80% light duty vehicle (2.5 tons) mix.                                                                                                        |
| P = Number of days precip per year                         | 195                  | https://wrcc.dri.edu/cgi-bin/cliMAIN.pl?wa6295                                                                                                                                                          |
| E = size-specific emission factor (lb/VMT)                 |                      |                                                                                                                                                                                                         |
| $E_{ext}$ = size-specific emission factor extrapolated for | r natural mitigation | (Ib/VMT)                                                                                                                                                                                                |

#### **References:**

USEPA. AP-42, Fifth Edition, Vol. I, Section 13.2.1 Paved Roads, Table 13.2.1-1. Available at: https://www.epa.gov/sites/default/files/2020-10/documents/13.2\_fugitive\_dust\_sources.pdf

### Table 12 Fugitive Dust Emissions for Paved Roads Travel Segale-Cumberland Mine King County, Washington

| Fugitive Dust Em | ugitive Dust Emission Estimations for Vehicles on Paved Roads for 2021 |                               |                                                          |                   |           |               |            |              |               |          |                |         |          |           |      |      |
|------------------|------------------------------------------------------------------------|-------------------------------|----------------------------------------------------------|-------------------|-----------|---------------|------------|--------------|---------------|----------|----------------|---------|----------|-----------|------|------|
| Plant Year       | Voor                                                                   | Vehicle Type                  | e MOVES3 Vehicle Type Fuel Type Number of Trucks (miles) | Fuel True         | Number of | Annual VMT    | Regulatory | Mean Vehicle | Controlled EF |          | Emission Rates |         |          |           |      |      |
| Plant            | real                                                                   | venicie rype                  |                                                          | (miles)           | Class ID  | Weight (tons) | PM10       | PM2.5        | (lb/hr)       | (lb/dav) | (tons/vr)      | (lb/hr) | (lb/dav) | (tons/vr) |      |      |
| Asphalt Plant    | 2021                                                                   | Sweeper truck                 | Single Unit Short-haul<br>Truck                          | Diesel Fuel       | 1         | 13,152        | 47         | 10           | 0.005         | 0.0011   | 0.01           | 0.17    | 0.03     | 0.00      | 0.04 | 0.01 |
| Asphalt Plant    | 2021                                                                   | Service truck <50,000<br>GVWR | Single Unit Short-haul<br>Truck                          | MOVES default mix | 4         | 52,610        | 47         | 10           | 0.005         | 0.0011   | 0.06           | 0.67    | 0.12     | 0.01      | 0.16 | 0.03 |
|                  |                                                                        |                               |                                                          |                   |           |               |            |              |               | Total:   | 0.07           | 0.83    | 0.15     | 0.02      | 0.20 | 0.04 |

Notes: <sup>1.</sup> See Table 11 for more information on the parameters used in the calculation.

Abbreviations: EF - Emission factor hr - hour

lb - pound

PM - particulate matter

PM2.5 - PM of less than 2.5 microns in diameter

PM10 - PM of less than 10 microns in diameter VMT - vehicle miles traveled

yr - year

#### Table 13 Seasonal Fugitive Dust Emissions for Paved Roads Travel Segale-Cumberland Mine King County, Washington

| Seasonal Fugitiv  | onal Fugitive Dust Emission Estimations for Vehicles on Paved Roads for 2021 |                                 |                      |                |              |                      |              |                    |                   | Annual Avg Annual Avg |          |                   |          |          |           |
|-------------------|------------------------------------------------------------------------------|---------------------------------|----------------------|----------------|--------------|----------------------|--------------|--------------------|-------------------|-----------------------|----------|-------------------|----------|----------|-----------|
|                   |                                                                              |                                 |                      | A              | Average Trip | Desculater           | Mean Vehicle | icle Controlled EF |                   |                       |          | Emissio           | on Rates |          |           |
| Year Vehicle Type | MOVES3 Vehicle Type                                                          | Fuel Type                       | Annual Average       | Length         | Class ID     | Weight               | (Ib/VMT)     |                    | PM <sub>10</sub>  |                       |          | PM <sub>2.5</sub> |          |          |           |
|                   |                                                                              |                                 |                      | Indexs per Day | (miles/trip) | Cluss ID             | (tons)       | PM10               | PM <sub>2.5</sub> | (lb/hr)               | (lb/day) | (tons/yr)         | (lb/hr)  | (lb/day) | (tons/yr) |
| 2021              | Heavy Duty Haul Trucks                                                       | Combination Short-haul<br>Truck | Diesel Fuel          | 375            | 2.04         | 47                   | 10           | 0.005              | 0.0011            | 0.25                  | 3.53     | 0.55              | 0.06     | 0.87     | 0.14      |
| 2021              | Light/Medium Duty<br>Trucks                                                  | Light Commercial Truck          | MOVES default<br>mix | 108            | 2.04         | MOVES default<br>mix | 10           | 0.005              | 0.0011            | 0.0731                | 1.02     | 0.16              | 0.02     | 0.25     | 0.04      |
|                   | Total: 0.33 4.55 0.71 0.08 1.12 0.17                                         |                                 |                      |                |              |                      |              |                    |                   |                       | 0.17     |                   |          |          |           |

 $\underline{\mbox{Notes:}}^{1.}$  See Table 11 for more information on the parameters used in the calculation.

 $^{\mbox{\tiny 2.}}$  Seasonal vehicle operations are assumed to occur 312 days per year.

#### Abbreviations:

EF - Emission factor hr - hour lb - pound PM - particulate matter PM2.5 - PM of less than 2.5 microns in diameter PM10 - PM of less than 10 microns in diameter VMT - vehicle miles traveled yr - year

## Table 14Unpaved Fugitive Dust Calculation DetailsSegale-Cumberland MineKing County, Washington

| Emission Calculation Details |                                          |  |  |  |  |  |  |  |  |
|------------------------------|------------------------------------------|--|--|--|--|--|--|--|--|
| Emissions Calcu              | ulation Formula                          |  |  |  |  |  |  |  |  |
| E (Ib/VMT) =                 | k (s/12) <sup>a</sup> (W/3) <sup>b</sup> |  |  |  |  |  |  |  |  |
| $E_{ext} = E[(36)]$          | 65 - P)/365]                             |  |  |  |  |  |  |  |  |

| Parameter | PM <sub>10</sub> | PM <sub>2.5</sub> |  |  |  |  |
|-----------|------------------|-------------------|--|--|--|--|
| k         | 1.5              | 0.15              |  |  |  |  |
| а         | 0.9              | 0.9               |  |  |  |  |
| b         | 0.45             | 0.45              |  |  |  |  |

| Function/Variable Description                              | Assumed<br>Value   | Reference                                                                                                                                            |
|------------------------------------------------------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| s = surface material silt content (%)                      | 8.3                | EPA AP-42 Section 13.2.2, Table 13.2.2-1                                                                                                             |
| W = mean vehicle weight (tons)                             | 32                 | Weighted based on anticipated VMT of unpaved<br>road traffic assuming a weight of 4 tons for light<br>duty trucks and 40 tons for heavy duty trucks. |
| M = surface material moisture content (%)                  | 0.8                | https://gaftp.epa.gov/air/nei/2017/doc/supporti<br>ng_data/nonpoint/Road%20Dust%20NEMO%20<br>FINAL%20revised 4_9_2020.docx                           |
| P = Number of days precip per year                         | 195                | https://wrcc.dri.edu/cgi-bin/cliMAIN.pl?wa6295                                                                                                       |
| CE = emission control percent for unpaved roads            | 50%                | watering, MgCl                                                                                                                                       |
| E = size-specific emission factor (lb/VMT)                 |                    |                                                                                                                                                      |
| $E_{ext}$ = size-specific emission factor extrapolated for | r natural mitigati | ion (lb/VMT)                                                                                                                                         |

## **References:**

USEPA. AP-42, Fifth Edition, Vol. I, Section 13.2.2 Unpaved Roads, Table 13.2.2-2. Available at: https://www.epa.gov/sites/default/files/2020-10/documents/13.2\_fugitive\_dust\_sources.pdf

#### Table 15 Seasonal Fugitive Dust Emissions for Unpaved Roads Travel Segale-Cumberland Mine King County, Washington

| Seasonal Fugitiv               | anal Fugitive Dust Emission Estimations for Vehicles on Unpaved Roads for 2021 |                                 |                   |               |                        |          |          |                       |                   | Annual Avg Annual Avg |          |                   |         |          |           |
|--------------------------------|--------------------------------------------------------------------------------|---------------------------------|-------------------|---------------|------------------------|----------|----------|-----------------------|-------------------|-----------------------|----------|-------------------|---------|----------|-----------|
| Year Vehicle Type MOVES3<br>Ty |                                                                                |                                 |                   |               | Average Trip           |          | Mean     | Controlled Em. Factor |                   | r Emission Rates      |          |                   |         |          |           |
|                                | Type                                                                           | Fuel Type                       | Annual Average    | Length        | Regulatory<br>Class ID | Vehicle  | (lb/VMT) |                       | PM10              |                       |          | PM <sub>2.5</sub> |         |          |           |
|                                |                                                                                | .,,,,                           | Type              | mueno per suy | (miles/trip)           | 0.000 12 | (tons)   | PM10                  | PM <sub>2.5</sub> | (lb/hr)               | (lb/day) | (tons/yr)         | (lb/hr) | (lb/day) | (tons/yr) |
| 2021                           | Heavy Duty Haul<br>Trucks                                                      | Combination<br>Short-haul Truck | Diesel Fuel       | 375           | 0.10                   | 47       | 32       | 0.73                  | 0.073             | 1.96                  | 27.26    | 4.25              | 0.20    | 2.73     | 0.43      |
| 2021                           | Light/Medium Duty<br>Trucks                                                    | Light Commercial<br>Truck       | MOVES Default mix | 108           | 0.10                   | n/a      | 32       | 0.73                  | 0.073             | 0.56                  | 7.85     | 1.22              | 0.06    | 0.78     | 0.12      |
|                                | Total 2.52 35.11 5.48 0.25 3.51 0.55                                           |                                 |                   |               |                        |          |          |                       |                   |                       |          |                   |         |          |           |

Notes: <sup>1.</sup> See Table 14 for information on the parameters used in this calculation.

Acronyms: EF - Emission factor hr - hour hr - hour Ib - pound PM - particulate matter PM2.5 - PM of less than 2.5 microns in diameter PM10 - PM of less than 10 microns in diameter VMT - vehicle miles traveled yr - year

## Table 16 CAP Emissions Inventory Summary with Blue Smoke Control Segale-Cumberland Mine King County, Washington

| Sauraa                | Pollutant Emissions (tons per year) |                  |      |                 |       |       |  |  |  |
|-----------------------|-------------------------------------|------------------|------|-----------------|-------|-------|--|--|--|
| Source                | PM <sub>2.5</sub>                   | PM <sub>10</sub> | NOx  | SO <sub>2</sub> | СО    | VOC   |  |  |  |
| Crushing Plant        | 1.3                                 | 6.9              |      |                 |       |       |  |  |  |
| Off-road              | 0.99                                | 1.0              | 16   | 0.022           | 6.7   | 0.97  |  |  |  |
| On-road               | 0.016                               | 0.038            | 0.75 | 1.3E-03         | 0.53  | 0.030 |  |  |  |
| Paved-fugitive Dust   | 0.21                                | 0.86             |      |                 |       |       |  |  |  |
| Unpaved-fugitive Dust | 0.55                                | 5.5              |      |                 |       |       |  |  |  |
| Stockpiles            | 0.17                                | 2.3              |      |                 |       |       |  |  |  |
| Asphalt Plant         | 0.44                                | 0.56             | 14.1 | 3.7             | 84    | 6.9   |  |  |  |
| Asphalt Silo          | 7.2E-03                             | 7.2E-03          |      |                 | 0.29  | 1.2   |  |  |  |
| Asphalt Loadout       | 6.5E-03                             | 6.5E-03          |      |                 | 0.34  | 0.39  |  |  |  |
| Recycled Asphalt      | 0.14                                | 0.90             |      |                 |       |       |  |  |  |
| Storage Tanks         |                                     |                  |      |                 | 0.083 | 0.34  |  |  |  |
| Total (tons/yr)       | 3.8                                 | 18               | 31   | 3.7             | 91    | 9.9   |  |  |  |

#### Notes:

<sup>1.</sup> Emissions for the Asphalt Plant, Asphalt Silo, Asphalt Loadout, and Storage Tanks are abated by Blue Smoke Control. Blue Smoke Control directly abates PM and indirectly abates VOC. Control efficiencies provided by Blue Smoke Control's sales engineer. Assumed VOC control is equivalent to HAP control.

#### Abbreviations:

CAP - criteria air pollutant

CO - carbon monoxide

HAP - hazardous air pollutant

NOx - nitrous oxides

PM - particulate matter

PM2.5 - PM of less than 2.5 microns in diameter

PM10 - PM of less than 10 microns in diameter

SO2 - sulfur dioxide

VOC - volatile organic compounds

## Table 17 TAP Emissions Inventory Summary with Blue Smoke Control Segale-Cumberland Mine King County, Washington

| HAPS                   | CAS       | Asphalt Plant | Asphalt Silo | Asphalt Loadout | Storage Tanks | Total   |
|------------------------|-----------|---------------|--------------|-----------------|---------------|---------|
|                        | 640       |               | •            | (tons/yr)       |               |         |
| Acenaphthene           | 83-32-9   | 1.4E-04       | 1.2E-04      | 8.9E-05         | 8.9E-04       | 1.2E-03 |
| Acenaphthylene         | 208-96-8  | 8.6E-04       | 3.6E-06      | 9.5E-06         | 9.6E-05       | 9.7E-04 |
| Anthracene             | 120-12-7  | 2.2E-05       | 3.3E-05      | 2.4E-05         | 2.4E-04       | 3.2E-04 |
| Benzo(a)anthracene     | 56-55-3   | 2.1E-05       | 1.4E-05      | 6.5E-06         | 6.5E-05       | 1.1E-04 |
| Benzo(b)fluoranthene   | 205-99-2  | 1.0E-05       |              | 2.6E-06         | 2.6E-05       | 3.9E-05 |
| Benzo(k)fluoranthene   | 207-08-9  | 4.1E-06       |              | 7.5E-07         | 7.5E-06       | 1.2E-05 |
| Benzo(g,h,i)perylene   | 191-24-2  | 4.0E-06       |              | 6.5E-07         | 6.5E-06       | 1.1E-05 |
| Benzo(a)pyrene         | 50-32-8   | 9.8E-07       |              | 7.8E-07         | 7.9E-06       | 9.6E-06 |
| Benzo(e)pyrene         | 192-97-2  | 1.1E-05       | 2.4E-06      | 2.7E-06         | 2.7E-05       | 4.3E-05 |
| Chrysene               | 218-01-9  | 1.8E-05       | 5.3E-05      | 3.5E-05         | 3.5E-04       | 4.6E-04 |
| Dibenz(a,h)anthracene  | 53-70-3   |               |              | 1.3E-07         | 1.3E-06       | 1.4E-06 |
| Fluoranthene           | 206-44-0  | 6.1E-05       | 3.8E-05      | 1.7E-05         | 1.7E-04       | 2.9E-04 |
| Fluorene               | 86-73-7   | 3.8E-04       | 2.6E-04      | 2.6E-04         | 2.6E-03       | 3.5E-03 |
| Indeno(1,2,3-cd)pyrene | 193-39-5  | 7.0E-07       |              | 1.6E-07         | 1.6E-06       | 2.5E-06 |
| 2-Methylnaphthalene    | 91-57-6   | 7.4E-03       | 1.3E-03      | 8.1E-04         | 8.1E-03       | 1.8E-02 |
| Naphthalene            | 91-20-3   | 9.0E-03       | 4.6E-04      | 4.3E-04         | 4.3E-03       | 1.4E-02 |
| Perylene               | 198-55-0  | 8.8E-07       | 7.6E-06      | 7.5E-06         | 7.5E-05       | 9.1E-05 |
| Phenanthrene           | 85-01-8   | 7.6E-04       | 4.6E-04      | 2.8E-04         | 2.8E-03       | 4.3E-03 |
| Pyrene                 | 129-00-0  | 5.4E-05       | 1.1E-04      | 5.1E-05         | 5.1E-04       | 7.3E-04 |
| Phenol                 | 108-95-2  |               |              | 4.9E-03         | 4.0E-03       | 8.9E-03 |
| Benzene                | 71-43-2   | 3.9E-02       | 3.9E-04      | 2.2E-04         | 1.8E-04       | 4.0E-02 |
| Bromomethane           | 74-83-9   |               | 6.0E-05      | 4.0E-05         | 3.3E-05       | 1.3E-04 |
| 2-Butanone             | 78-93-3   |               | 4.8E-04      | 2.0E-04         | 1.7E-04       | 8.5E-04 |
| Carbon Disulfide       | 75-15-0   |               | 1.9E-04      | 5.4E-05         | 4.4E-05       | 2.9E-04 |
| Chloroethane           | 75-00-3   |               | 4.9E-05      | 8.7E-07         | 7.2E-07       | 5.0E-05 |
| Chloromethane          | 74-87-3   |               | 2.8E-04      | 6.2E-05         | 5.1E-05       | 3.9E-04 |
| Cumene                 | 92-82-8   |               |              | 4.6E-04         | 3.8E-04       | 8.3E-04 |
| Ethylbenzene           | 100-41-4  | 0.024         | 4.6E-04      | 1.2E-03         | 9.6E-04       | 2.7E-02 |
| Formaldehyde           | 50-00-0   | 0.31          | 8.4E-03      | 3.7E-04         | 3.0E-04       | 3.2E-01 |
| n-Hexane               | 100-54-3  |               | 1.2E-03      | 6.2E-04         | 5.1E-04       | 2.4E-03 |
| Isooctane              | 540-84-1  | 4.0E-03       | 3.8E-06      | 7.5E-06         | 6.2E-06       | 4.0E-03 |
| Methylene Chloride     | 75-09-2   |               | 3.3E-06      |                 |               | 3.3E-06 |
| MTBE                   | 596899    |               |              |                 |               | 0.0E+00 |
| Styrene                | 100-42-5  |               | 6.6E-05      | 3.0E-05         | 2.5E-05       | 1.2E-04 |
| Tetrachloroethene      | 127-18-4  |               |              | 3.2E-05         | 2.6E-05       | 5.8E-05 |
| Toluene                | 100-88-3  |               | 7.6E-04      | 8.7E-04         | 7.2E-04       | 2.3E-03 |
| 1,1,1-Trichloroethane  | 71-55-6   | 4.8E-03       |              |                 |               | 4.8E-03 |
| Trichloroethene        | 79-01-6   |               |              |                 |               | 0.0E+00 |
| Trichlorofluoromethane | 75-69-4   |               |              | 5.4E-06         | 4.4E-06       | 9.9E-06 |
| o-Xylene               | 95-47-6   |               | 6.9E-04      | 3.3E-04         | 2.7E-04       | 1.3E-03 |
| Hexane                 | 110-54-3  | 0.092         |              |                 |               | 9.2E-02 |
| Toluene                | 108-88-3  | 0.015         |              |                 |               | 1.5E-02 |
| Xylene                 | 1330-20-7 | 0.020         | 2.4E-03      | 1.7E-03         | 1.4E-03       | 2.6E-02 |

#### Notes:

<sup>1.</sup> Emissions for the Asphalt Plant, Asphalt Silo, Asphalt Loadout, and Storage Tanks are abated by Blue Smoke Control. Blue Smoke Control directly abates PM and indirectly abates VOC. Control efficiencies provided by Blue Smoke Control's sales engineer. Assumed VOC control is equivalent to HAP control.

#### Abbreviations:

CAS - Chemical Abstracts Services HAP - hazardous air pollutant PM - particulate matter TAP - toxic air pollutant VOC - volatile organic compound yr - year

## Table 18 CAP Emissions Inventory Summary without Blue Smoke Control Segale-Cumberland Mine King County, Washington

| Pollutant             |                   | Pollutant Emissions (tons per year) |      |                        |       |       |  |  |  |  |
|-----------------------|-------------------|-------------------------------------|------|------------------------|-------|-------|--|--|--|--|
|                       | PM <sub>2.5</sub> | PM <sub>10</sub>                    | NOx  | <b>SO</b> <sub>2</sub> | со    | VOC   |  |  |  |  |
| Crushing Plant        | 1.3               | 6.9                                 |      |                        |       |       |  |  |  |  |
| Off-road              | 0.99              | 1.0                                 | 16   | 0.022                  | 6.7   | 0.97  |  |  |  |  |
| On-road               | 0.016             | 0.038                               | 0.75 | 1.3E-03                | 0.53  | 0.030 |  |  |  |  |
| Paved-fugitive Dust   | 0.21              | 0.86                                |      |                        |       |       |  |  |  |  |
| Unpaved-fugitive Dust | 0.55              | 5.5                                 |      |                        |       |       |  |  |  |  |
| Stockpiles            | 0.17              | 2.3                                 |      |                        |       |       |  |  |  |  |
| Asphalt Plant         | 8.7               | 11                                  | 14   | 3.7                    | 84    | 17    |  |  |  |  |
| Asphalt Silo          | 0.14              | 0.14                                |      |                        | 0.29  | 3.0   |  |  |  |  |
| Asphalt Loadout       | 0.13              | 0.13                                |      |                        | 0.34  | 0.98  |  |  |  |  |
| Recycled Asphalt      | 0.14              | 0.90                                |      |                        |       |       |  |  |  |  |
| Storage Tanks         |                   |                                     |      |                        | 0.083 | 0.86  |  |  |  |  |
| Total (tons/yr)       | 12                | 29                                  | 31   | 3.7                    | 91    | 23    |  |  |  |  |

#### Notes:

 $^{\mbox{\scriptsize 1.}}$  Emissions shown in this table are not abated by Blue Smoke Control.

#### Abbreviations:

CAP - criteria air pollutant

CO - carbon monoxide

HAP - hazardous air pollutant

NOx - nitrous oxides

PM - particulate matter

PM2.5 - PM of less than 2.5 microns in diameter PM10 - PM of less than 10 microns in diameter SO2 - sulfur dioxide VOC - volatile organic compounds

## Table 19 TAP Emissions Inventory Summary without Blue Smoke Control Segale-Cumberland Mine King County, Washington

| HAPS                   | CAS       | Asphalt Plant | Asphalt Silo | Asphalt Loadout | Storage Tanks | Total<br>(tons/yr) |
|------------------------|-----------|---------------|--------------|-----------------|---------------|--------------------|
| Acenaphthene           | 83-32-9   | 3.5E-04       | 3.0E-04      | 2.2E-04         | 2.2E-03       | 3.1E-03            |
| Acenaphthylene         | 208-96-8  | 2.2E-03       | 8.9E-06      | 2.4E-05         | 2.4E-04       | 2.4E-03            |
| Anthracene             | 120-12-7  | 5.5E-05       | 8.3E-05      | 6.0E-05         | 6.0E-04       | 8.0E-04            |
| Benzo(a)anthracene     | 56-55-3   | 5.3E-05       | 3.6E-05      | 1.6E-05         | 1.6E-04       | 2.7E-04            |
| Benzo(b)fluoranthene   | 205-99-2  | 2.5E-05       |              | 6.5E-06         | 6.5E-05       | 9.6E-05            |
| Benzo(k)fluoranthene   | 207-08-9  | 1.0E-05       |              | 1.9E-06         | 1.9E-05       | 3.1E-05            |
| Benzo(g,h,i)perylene   | 191-24-2  | 1.0E-05       |              | 1.6E-06         | 1.6E-05       | 2.8E-05            |
| Benzo(a)pyrene         | 50-32-8   | 2.5E-06       |              | 2.0E-06         | 2.0E-05       | 2.4E-05            |
| Benzo(e)pyrene         | 192-97-2  | 2.8E-05       | 6.0E-06      | 6.6E-06         | 6.7E-05       | 1.1E-04            |
| Chrysene               | 218-01-9  | 4.5E-05       | 1.3E-04      | 8.8E-05         | 8.8E-04       | 1.1E-03            |
| Dibenz(a,h)anthracene  | 53-70-3   |               |              | 3.2E-07         | 3.2E-06       | 3.5E-06            |
| Fluoranthene           | 206-44-0  | 1.5E-04       | 9.5E-05      | 4.3E-05         | 4.3E-04       | 7.2E-04            |
| Fluorene               | 86-73-7   | 9.5E-04       | 0.001        | 6.6E-04         | 6.6E-03       | 8.8E-03            |
| Indeno(1,2,3-cd)pyrene | 193-39-5  | 1.8E-06       |              | 4.0E-07         | 4.0E-06       | 6.2E-06            |
| 2-Methylnaphthalene    | 91-57-6   | 1.9E-02       | 0.003        | 2.0E-03         | 2.0E-02       | 4.4E-02            |
| Naphthalene            | 91-20-3   | 2.3E-02       | 0.001        | 1.1E-03         | 1.1E-02       | 3.5E-02            |
| Perylene               | 198-55-0  | 2.2E-06       | 1.9E-05      | 1.9E-05         | 1.9E-04       | 2.3E-04            |
| Phenanthrene           | 85-01-8   | 1.9E-03       | 0.001        | 6.9E-04         | 6.9E-03       | 1.1E-02            |
| Pyrene                 | 129-00-0  | 1.4E-04       | 2.8E-04      | 1.3E-04         | 1.3E-03       | 1.8E-03            |
| Phenol                 | 108-95-2  |               |              | 1.2E-02         | 1.0E-02       | 2.2E-02            |
| Benzene                | 71-43-2   | 9.8E-02       | 9.7E-04      | 5.4E-04         | 4.4E-04       | 9.9E-02            |
| Bromomethane           | 74-83-9   |               | 1.5E-04      | 1.0E-04         | 8.2E-05       | 3.3E-04            |
| 2-Butanone             | 78-93-3   |               | 1.2E-03      | 5.1E-04         | 4.2E-04       | 2.1E-03            |
| Carbon Disulfide       | 75-15-0   |               | 4.9E-04      | 1.4E-04         | 1.1E-04       | 7.3E-04            |
| Chloroethane           | 75-00-3   |               | 1.2E-04      | 2.2E-06         | 1.8E-06       | 1.3E-04            |
| Chloromethane          | 74-87-3   |               | 7.0E-04      | 1.6E-04         | 1.3E-04       | 9.8E-04            |
| Cumene                 | 92-82-8   |               |              | 1.1E-03         | 9.4E-04       | 2.1E-03            |
| Ethylbenzene           | 100-41-4  | 0.06          | 1.2E-03      | 2.9E-03         | 2.4E-03       | 6.6E-02            |
| Formaldehyde           | 50-00-0   | 0.78          | 2.1E-02      | 9.1E-04         | 7.5E-04       | 8.0E-01            |
| n-Hexane               | 100-54-3  |               | 3.0E-03      | 1.6E-03         | 1.3E-03       | 5.9E-03            |
| Isooctane              | 540-84-1  | 1.0E-02       | 9.4E-06      | 1.9E-05         | 1.5E-05       | 1.0E-02            |
| Methylene Chloride     | 75-09-2   |               | 8.2E-06      |                 |               | 8.2E-06            |
| MTBE                   | 596899    |               |              |                 |               | 0.0E+00            |
| Styrene                | 100-42-5  |               | 1.6E-04      | 7.6E-05         | 6.2E-05       | 3.0E-04            |
| Tetrachloroethene      | 127-18-4  |               |              | 8.0E-05         | 6.6E-05       | 1.5E-04            |
| Toluene                | 100-88-3  |               | 1.9E-03      | 2.2E-03         | 1.8E-03       | 5.9E-03            |
| 1,1,1-Trichloroethane  | 71-55-6   | 1.2E-02       |              |                 |               | 1.2E-02            |
| Trichloroethene        | 79-01-6   |               |              |                 |               | 0.0E+00            |
| Trichlorofluoromethane | 75-69-4   |               |              | 1.4E-05         | 1.1E-05       | 2.5E-05            |
| o-Xylene               | 95-47-6   |               | 1.7E-03      | 8.3E-04         | 6.8E-04       | 3.3E-03            |
| Hexane                 | 110-54-3  | 0.230         |              |                 |               | 2.3E-01            |
| Toluene                | 108-88-3  | 0.038         |              |                 |               | 3.8E-02            |
| Xylene                 | 1330-20-7 | 0.050         | 6.1E-03      | 4.3E-03         | 3.5E-03       | 6.4E-02            |

#### Notes:

 $^{\rm 1.}$  Emissions shown in this table are not abated by Blue Smoke Control.

#### Abbreviations:

CAS - Chemical Abstracts Services

HAP - hazardous air pollutant

PM - particulate matter

TAP - toxic air pollutant VOC - volatile organic compound yr - year

# Table 20GHG Emissions InventorySegale-Cumberland MineKing County, Washington

|                       | Р      | ollutant Emis | sions (MT/yı     | -)                      |
|-----------------------|--------|---------------|------------------|-------------------------|
| Pollutant             | CO2    | CH₄           | N <sub>2</sub> O | GHG (CO <sub>2</sub> e) |
| Crushing Plant        |        |               |                  |                         |
| Off-road              | 6,987  | 0.062         | 0.65             | 7,181                   |
| On-road               | 326    | 3.9E-03       | 4.5E-04          | 327                     |
| Paved-fugitive Dust   |        |               |                  |                         |
| Unpaved-fugitive Dust |        |               |                  |                         |
| Stockpiles            |        |               |                  |                         |
| Asphalt Plant         | 34,362 | 3.6           | 2.5              | 35,190                  |
| Asphalt Silo          |        | 7.2E-03       |                  | 0.18                    |
| Asphalt Loadout       |        | 0.061         |                  | 1.5                     |
| Recycled Asphalt      |        |               |                  |                         |
| Storage Tanks         |        |               |                  |                         |
| Total (tons/yr)       | 41,675 | 3.8           | 3.1              | 42,699                  |

## Notes:

<sup>1.</sup> Emissions are converted to carbon dioxide equivalents using global warming potentials presented in the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report.

## **References:**

IPCC. 2007. Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Available at: https://www.ipcc.ch/report/ar4/syr/

### Table 21 Modeling Source Parameters Segale-Cumberland Mine King County, Washington

#### Modeled Areapoly Sources<sup>1</sup>

| Source Category | SRCGRP    | Source Type | Release Height | Number of<br>Vertices | IVD | Area    |
|-----------------|-----------|-------------|----------------|-----------------------|-----|---------|
|                 | · · · · / |             | m              | m                     | m   | m2      |
| Off-road        | M1S1      | Areapoly    | 5              | 19                    | 1.4 | 282,326 |
| Off-road        | M2S1      | Areapoly    | 5              | 28                    | 1.4 | 123,569 |
| Off-road        | M3S1      | Areapoly    | 5              | 28                    | 1.4 | 190,449 |

#### Modeled Area Sources<sup>2</sup>

| Source Category | SPCCPD | Source Type | <b>Release Height</b> | Length of X | Length of Y | Area   |
|-----------------|--------|-------------|-----------------------|-------------|-------------|--------|
| Source category | SKCGKP | Source Type | m                     | m           | m           | m2     |
| Stockpiles      | SA_M1  | Area        | 0                     | 244         | 133         | 32,405 |

#### Modeled Point Sources<sup>3,4</sup>

| Source Category | SPCCPP | Source Type | Release Height | Stack Temp | Stack Velocity | Stack Diameter |
|-----------------|--------|-------------|----------------|------------|----------------|----------------|
| Source category | SKCGKP | Source Type | m              | к          | m/s            | m              |
| Asphalt Plant   | APS    | Point       | 9.1            | 378        | 9.1            | 1.2            |
| Storage Tanks   | TANK1  | Point       | 4              | 0          | 0.0010         | 0.0010         |
| Storage Tanks   | TANK2  | Point       | 4              | 0          | 0.0010         | 0.0010         |
| Storage Tanks   | TANK3  | Point       | 4              | 0          | 0.0010         | 0.0010         |

## Modeled Volume Sources<sup>5,6,7</sup>

| Source Category                 | SPCCPP   | Source Tune | Release Height | ILD  | IVD  |
|---------------------------------|----------|-------------|----------------|------|------|
| Source Category                 | SKCGRP   | Source Type | m              | m    | m    |
| Crushing Plant                  | RCFP1    | Volume      | 3.3            | 0.25 | 0.77 |
| Crushing Plant                  | RCFP2    | Volume      | 3.3            | 0.25 | 0.77 |
| On-road Exhaust                 | M1RD     | Volume      | 2.7            | 4.4  | 2.5  |
| On-road Exhaust                 | M2N_S1   | Volume      | 2.7            | 4.4  | 2.5  |
| On-road Exhaust                 | M2S_RD   | Volume      | 2.7            | 4.4  | 2.5  |
| On-road Exhaust                 | M3N_S15  | Volume      | 2.7            | 4.4  | 2.5  |
| On-road Exhaust                 | MR_S1    | Volume      | 2.7            | 4.4  | 2.5  |
| On-road Fugitive Dust (Paved)   | FM1RD    | Volume      | 2.7            | 4.4  | 2.5  |
| On-road Fugitive Dust (Paved)   | FM2N_S1  | Volume      | 2.7            | 4.4  | 2.5  |
| On-road Fugitive Dust (Paved)   | FM2S_RD  | Volume      | 2.7            | 4.4  | 2.5  |
| On-road Fugitive Dust (Paved)   | FM3N_S15 | Volume      | 2.7            | 4.4  | 2.5  |
| On-road Fugitive Dust (Paved)   | FMR_S1   | Volume      | 2.7            | 4.4  | 2.5  |
| On-road Fugitive Dust (Unpaved) | FUPR_M1  | Volume      | 2.7            | 4.4  | 2.5  |
| Asphalt Silo                    | SILO     | Volume      | 22             | 0.29 | 1.7  |
| Asphalt Loadout                 | APLD     | Volume      | 2.8            | 0.29 | 2.3  |
| Recycled Asphalt Crusher        | RAC      | Volume      | 3.3            | 0.25 | 0.77 |

#### Notes:

<sup>1.</sup> Off-road equipment was modeled using Bay Area Air Quality Management District (BAAQMD) guidelines for modeling construction equipment.

 $^{\rm 2.}$  Stockpiles were conservatively assumed to have a release height of zero.

- <sup>3.</sup> Asphalt plant stack parameters were taken from the representative 2009 rules for Georgia Generic Air Quality permit for Asphalt Plants.
- <sup>4.</sup> Storage tank parameters were based on Santa Barbara County Air Pollution Control District modeling guidance for liquid storage tanks. When the stack temperature is set to zero, AERMOD will default to ambient temperature.
- <sup>5.</sup> Crusher dimensions were calculated using measurements from the Screen machine JHT Mobile Jaw Crusher and the Screen Machine CXT Mobile Cone Crusher specification sheets.
- <sup>6.</sup> Source parameters for paved and unpaved roads were calculated using the USEPA Haul Road guidance and dimensions from a Caterpillar 740 GC 50-ton articulated truck brochure.
- <sup>7.</sup> Asphalt loadout and silo parameters were calculated using measurements from project site plans.

### Abbreviations:

| IVD - initial vertical dimension | K - Kelvin | m <sup>2</sup> - meter squared |
|----------------------------------|------------|--------------------------------|
| ILD - initial lateral dimension  | m - meters | s - seconds                    |

### Table 21 (cont.) Modeling Source Parameters Segale-Cumberland Mine King County, Washington

#### **References:**

Georgia Department of Natural Resources - Environmental Protection Division - Air Protection branch. 2009. Generic Air Quality Permit for Asphalt Plants. Available at: https://epd.georgia.gov/generic-air-permits

BAAQMD, 2020. BAAQMD Health Risk Assessment Modeling Protocol. Available at: https://www.baaqmd.gov/~/media/files/ab617-community-health/facility-risk-reduction/documents/baaqmd\_hra\_modeling\_protocol-pdf.pdf?la=en

SBCAPCD. 2020. SBCAPCD Modeling Guidelines for Air Quality Assessments. Available at: https://www.ourair.org/wp-content/uploads/aqia.pdf

USEPA. 2022. EPA Haul Road Workgroup Final Report Submissions to EPA-OAQPS. Available at: https://www.epa.gov/sites/default/files/2020-10/documents/haul\_road\_workgroup-final\_report\_package-20120302.pdf

## Table 22 Modeling Variable Emissions Rate Factors (EMISFACT) Segale-Cumberland Mine Kings County, Washington

| Source Category                       | SRCGRP              | Day of Week | EMISFACT     |
|---------------------------------------|---------------------|-------------|--------------|
|                                       |                     | Weekday     | 7*0 11*1 6*0 |
| Crushing Plant <sup>1</sup>           | RCFP1, RCFP2        | Saturday    | 7*0 11*1 6*0 |
|                                       |                     | Sunday      | 24*0         |
|                                       |                     | Weekday     | 7*0 9*1 8*0  |
| Off-road <sup>2</sup>                 | M1S1, M2S1, M3S1    | Saturday    | 7*0 9*1 8*0  |
|                                       |                     | Sunday      | 24*0         |
|                                       |                     | Weekday     | 24*1         |
| Stockpiles <sup>3</sup>               | SA_M1               | Saturday    | 24*1         |
|                                       |                     | Sunday      | 24*1         |
|                                       |                     | Weekday     | 7*0 11*1 6*0 |
| Recycled Asphalt Crusher <sup>1</sup> | RAC                 | Saturday    | 7*0 11*1 6*0 |
|                                       |                     | Sunday      | 24*0         |
|                                       |                     | Weekday     | 24*1         |
| Storage Tanks <sup>3</sup>            | TANK1, TANK2, TANK3 | Saturday    | 24*1         |
| -                                     |                     | Sunday      | 24*1         |

| Source Category                            | SPCCPP             | Day of Week | Sea         | son                 |
|--------------------------------------------|--------------------|-------------|-------------|---------------------|
| Source Category                            | SKCGRP             | Day of week | Nov-Mar     | Apr-Oct             |
|                                            |                    | Weekday     | 8*0 8*1 8*0 | 4*1 3*0 9*1 3*0 5*1 |
| Asphalt Plant <sup>4</sup>                 | APS                | Saturday    | 8*0 8*1 8*0 | 4*1 3*0 9*1 3*0 5*1 |
|                                            |                    | Sunday      | 24*0        | 24*0                |
|                                            |                    | Weekday     | 8*0 8*1 8*0 | 4*1 3*0 9*1 3*0 5*1 |
| Asphalt Silo⁴                              | SILO               | Saturday    | 8*0 8*1 8*0 | 4*1 3*0 9*1 3*0 5*1 |
|                                            |                    | Sunday      | 24*0        | 24*0                |
|                                            |                    | Weekday     | 8*0 8*1 8*0 | 4*1 3*0 9*1 3*0 5*1 |
| Asphalt Loadout <sup>4</sup>               | APLD               | Saturday    | 8*0 8*1 8*0 | 4*1 3*0 9*1 3*0 5*1 |
|                                            |                    | Sunday      | 24*0        | 24*0                |
|                                            | M1RD, M2N_S1,      | Weekday     | 8*0 8*1 8*0 | 4*1 3*0 9*1 3*0 5*1 |
| On-road Exhaust <sup>5</sup>               | M2S_RD, M3N_S15,   | Saturday    | 8*0 8*1 8*0 | 4*1 3*0 9*1 3*0 5*1 |
|                                            | MR_S1              | Sunday      | 24*0        | 24*0                |
|                                            | FM1RD, FM2N_S1,    | Weekday     | 8*0 8*1 8*0 | 4*1 3*0 9*1 3*0 5*1 |
| On-road Fugitive Dust (Paved) <sup>5</sup> | FM2S_RD, FM3N_S15, | Saturday    | 8*0 8*1 8*0 | 4*1 3*0 9*1 3*0 5*1 |
|                                            | FMR_S1             | Sunday      | 24*0        | 24*0                |
|                                            |                    | Weekday     | 8*0 8*1 8*0 | 4*1 3*0 9*1 3*0 5*1 |
| On-road Fugitive Dust (Unpaved)⁵           | FUPR_M1            | Saturday    | 8*0 8*1 8*0 | 4*1 3*0 9*1 3*0 5*1 |
|                                            |                    | Sunday      | 24*0        | 24*0                |

#### Notes:

<sup>1.</sup> The crushing plant and recycled asphalt crusher are expected to limit operations from 7am-6pm, Monday through Saturday.

 $^{\rm 2.}$  Off-road equipment is expected to operate between 7am-4pm, Monday through Saturday.

<sup>3.</sup> The stockpiles an storage tanks are expected to emit continuously, regardless of operational schedule. As a result, they are modeled

<sup>4.</sup> The Asphalt Plant, Silo, and Loadout are expected to limit operation from 8am-4pm, Monday through Saturday, during the rainy

<sup>5.</sup> On-road sources, including both exhaust and fugitive dust emissions, are expected to follow the same schedule as the Asphalt Plant.

#### Table 23 Modeling Variable Emissions Rate Factors (EMISFACT) for On-Road Emissions (1-hr and 24-hr) Segale-Cumberland Mine Kings County, Washington

| Source Category <sup>1</sup>            | SRCGRP             | PM <sub>2.5</sub> Emissions<br>(lb/hr) |         | Ratio        | Day of Week | Season           |                     |  |
|-----------------------------------------|--------------------|----------------------------------------|---------|--------------|-------------|------------------|---------------------|--|
|                                         |                    | Nov-Mar                                | Apr-Oct |              |             | Nov-Mar          | Apr-Oct             |  |
|                                         | M1RD, M2N_S1,      |                                        |         |              | Weekday     | 8*0 8*0.8971 8*0 | 4*1 3*0 9*1 3*0 5*1 |  |
| On-road Exhaust                         | M2S_RD, M3N_S15,   | 0.0065                                 | 0.0072  | 0.8971       | Saturday    | 8*0 8*0.8971 8*0 | 4*1 3*0 9*1 3*0 5*1 |  |
| MR_S1                                   | MR_S1              |                                        |         |              | Sunday      | 24*0             | 24*0                |  |
|                                         | FM1RD, FM2N_S1,    |                                        | 0.1029  | 0.9969       | Weekday     | 8*0 8*1 8*0      | 4*1 3*0 9*1 3*0 5*1 |  |
| On-road Fugitive Dust (Paved)           | FM2S_RD, FM3N_S15, | 0.1032                                 |         |              | Saturday    | 8*0 8*1 8*0      | 4*1 3*0 9*1 3*0 5*1 |  |
|                                         | FMR_S1             |                                        |         |              | Sunday      | 24*0             | 24*0                |  |
| On-road Fugitive Dust (Unpaved) FUPR_M1 |                    |                                        | 0.270   | 0.270 0.9963 | Weekday     | 8*0 8*1 8*0      | 4*1 3*0 9*1 3*0 5*1 |  |
|                                         | FUPR_M1            | 0.271                                  |         |              | Saturday    | 8*0 8*1 8*0      | 4*1 3*0 9*1 3*0 5*1 |  |
|                                         |                    |                                        |         |              | Sunday      | 24*0             | 24*0                |  |

| Source Category <sup>1</sup>            | SRCGRP             | PM <sub>10</sub> En<br>(lb/ | nissions<br>'hr) | Ratio        | Day of Week |                  | Season              |
|-----------------------------------------|--------------------|-----------------------------|------------------|--------------|-------------|------------------|---------------------|
|                                         |                    | Nov-Mar                     | Apr-Oct          |              |             | Nov-Mar          | Apr-Oct             |
|                                         | M1RD, M2N_S1,      |                             |                  |              | Weekday     | 8*0 8*0.9316 8*0 | 4*1 3*0 9*1 3*0 5*1 |
| On-road Exhaust                         | M2S_RD, M3N_S15,   | 0.011                       | 0.012            | 0.9316       | Saturday    | 8*0 8*0.9316 8*0 | 4*1 3*0 9*1 3*0 5*1 |
|                                         | MR_S1              |                             |                  |              | Sunday      | 24*0             | 24*0                |
|                                         | FM1RD, FM2N_S1,    |                             |                  |              | Weekday     | 8*0 8*1 8*0      | 4*1 3*0 9*1 3*0 5*1 |
| On-road Fugitive Dust (Paved)           | FM2S_RD, FM3N_S15, | 0.421                       | 0.419            | 0.419 0.9969 | Saturday    | 8*0 8*1 8*0      | 4*1 3*0 9*1 3*0 5*1 |
|                                         | FMR_S1             |                             |                  |              | Sunday      | 24*0             | 24*0                |
| On-road Fugitive Dust (Unpaved) FUPR_M1 |                    |                             |                  |              | Weekday     | 8*0 8*1 8*0      | 4*1 3*0 9*1 3*0 5*1 |
|                                         | FUPR_M1            | 2.707                       | 2.697            | 0.9963       | Saturday    | 8*0 8*1 8*0      | 4*1 3*0 9*1 3*0 5*1 |
|                                         |                    |                             |                  |              | Sunday      | 24*0             | 24*0                |

| Source Category <sup>1</sup> | SRCGRP           | NO <sub>x</sub> Emissions (lb/hr) |         | Ratio  | Day of Week | Season           |                     |  |  |
|------------------------------|------------------|-----------------------------------|---------|--------|-------------|------------------|---------------------|--|--|
|                              |                  | Nov-Mar                           | Apr-Oct |        |             | Nov-Mar          | Apr-Oct             |  |  |
|                              | M1RD, M2N_S1,    |                                   |         |        | Weekday     | 8*0 8*0.8781 8*0 | 4*1 3*0 9*1 3*0 5*1 |  |  |
| On-road Exhaust              | M2S_RD, M3N_S15, | 0.332                             | 0.378   | 0.8781 | Saturday    | 8*0 8*0.8781 8*0 | 4*1 3*0 9*1 3*0 5*1 |  |  |
|                              | MR_S1            |                                   |         |        | Sunday      | 24*0             | 24*0                |  |  |

| Source Category <sup>1</sup> | SRCGRP           | SO <sub>2</sub> Emissions (lb/hr) |          | Ratio  | Day of Week | Season           |                     |  |
|------------------------------|------------------|-----------------------------------|----------|--------|-------------|------------------|---------------------|--|
|                              |                  | Nov-Mar                           | Apr-Oct  |        |             | Nov-Mar          | Apr-Oct             |  |
|                              | M1RD, M2N_S1,    |                                   |          |        | Weekday     | 8*0 8*0.9333 8*0 | 4*1 3*0 9*1 3*0 5*1 |  |
| On-road Exhaust              | M2S_RD, M3N_S15, | 5.84E-04                          | 6.25E-04 | 0.9333 | Saturday    | 8*0 8*0.9333 8*0 | 4*1 3*0 9*1 3*0 5*1 |  |
|                              | MR_S1            |                                   |          |        | Sunday      | 24*0             | 24*0                |  |

| Source Category <sup>1</sup> | SRCGRP           | CO Emissions (lb/hr) |         | Ratio  | Day of Week | Season      |                                    |  |  |
|------------------------------|------------------|----------------------|---------|--------|-------------|-------------|------------------------------------|--|--|
|                              |                  | Nov-Mar              | Apr-Oct |        |             | Nov-Mar     | Apr-Oct                            |  |  |
|                              | M1RD, M2N_S1,    |                      |         |        | Weekday     | 8*0 8*1 8*0 | 4*0.9294 3*0 9*0.9294 3*0 5*0.9294 |  |  |
| On-road Exhaust              | M2S_RD, M3N_S15, | 0.273                | 0.254   | 0.9294 | Saturday    | 8*0 8*1 8*0 | 4*0.9294 3*0 9*0.9294 3*0 5*0.9294 |  |  |
|                              | MR_S1            |                      | 1       |        | Sunday      | 24*0        | 24*0                               |  |  |

#### Notes:

Vortes:
1. On-road emissions (both exhaust and fugitive dust) have seasonal variation between the rainy season (November through March) and the busy season (April through October). For the 24-hr and 1-hr averaging periods, the maximum emissions rate between the two seasons was used as the modeled emissions rate. As a result, the variable modeled emissions rate factor was scaled to adjust for this difference in emissions rate. To do so, the ratio between the smaller emissions rate and the larger emissions rate was used as the EMISFACT for the season in which the smallest emissions rate occurs, an EMISFACT of 1 is used during the operating hours.

#### Abbreviations:

hr - hour

lb - pound

#### Table 24 Modeling Emissions Rates Segale-Cumberland Mine King County, Washington

|                          |          |          |            |         |        |          | PI      | 1 <sub>2.5</sub> | PM10      | N          | 0 <sub>x</sub> | SO <sub>2</sub> | со      | PN      | l <sub>2.5</sub> | PM <sub>10</sub> | N                   | 0 <sub>x</sub> | SO <sub>2</sub> | со      |
|--------------------------|----------|----------|------------|---------|--------|----------|---------|------------------|-----------|------------|----------------|-----------------|---------|---------|------------------|------------------|---------------------|----------------|-----------------|---------|
| Source Category          | SRCGRP   | Source   | Seasonal?1 | Area    | Length | # Volume |         | lb/hr by a       | vg-period | d [lb/hr/r | n² for area    | a sources       |         |         | g/sby a          | vg period        | [g/s/m <sup>2</sup> | for area s     | sources]        |         |
|                          |          | туре     |            | m²      |        |          | Annual  | 24-hr            | 24-hr     | 1-hr       | Annual         | 1-hr            | 1-hr    | Annual  | 24-hr            | 24-hr            | 1-hr                | Annual         | 1-hr            | 1-hr    |
| Currentin a Diamat?      | RCFP1    | Volume   | N          |         |        | 1        | 3.8E-01 | 3.8E-01          | 2.0E+00   | 0          | 0              | 0               | 0       | 4.7E-02 | 4.7E-02          | 2.6E-01          | 0                   | 0              | 0               | 0       |
| Crushing Plant           | RCFP2    | Volume   | N          |         |        | 1        | 3.8E-01 | 3.8E-01          | 2.0E+00   | 0          | 0              | 0               | 0       | 4.7E-02 | 4.7E-02          | 2.6E-01          | 0                   | 0              | 0               | 0       |
|                          | M1S1     | Areapoly | N          | 282,549 |        |          | 1.3E-06 | 1.3E-06          | 1.3E-06   | 1.9E-05    | 1.9E-05        | 2.7E-08         | 8.7E-06 | 1.6E-07 | 1.6E-07          | 1.7E-07          | 2.4E-06             | 2.4E-06        | 3.4E-09         | 1.1E-0  |
| Off-road <sup>3</sup>    | M2S1     | Areapoly | N          | 123,455 |        |          | 1.3E-06 | 1.3E-06          | 1.3E-06   | 1.9E-05    | 1.9E-05        | 2.7E-08         | 8.7E-06 | 1.6E-07 | 1.6E-07          | 1.7E-07          | 2.4E-06             | 2.4E-06        | 3.4E-09         | 1.1E-0  |
|                          | M3S1     | Areapoly | N          | 190,545 |        |          | 1.3E-06 | 1.3E-06          | 1.3E-06   | 1.9E-05    | 1.9E-05        | 2.7E-08         | 8.7E-06 | 1.6E-07 | 1.6E-07          | 1.7E-07          | 2.4E-06             | 2.4E-06        | 3.4E-09         | 1.1E-0  |
|                          | M1RD     | Volume   | Y          |         | 187    | 20       | 2.1E-05 | 2.0E-05          | 3.2E-05   | 1.0E-03    | 9.5E-04        | 1.7E-06         | 7.5E-04 | 2.6E-06 | 2.5E-06          | 4.0E-06          | 1.3E-04             | 1.2E-04        | 2.2E-07         | 9.4E-0  |
|                          | M2N_S1   | Volume   | Y          |         | 115    | 12       | 2.1E-05 | 2.0E-05          | 3.3E-05   | 1.1E-03    | 9.6E-04        | 1.7E-06         | 7.6E-04 | 2.6E-06 | 2.5E-06          | 4.1E-06          | 1.3E-04             | 1.2E-04        | 2.2E-07         | 9.6E-0  |
| On-road <sup>4</sup>     | M2S_RD   | Volume   | Y          |         | 170    | 18       | 2.1E-05 | 2.0E-05          | 3.2E-05   | 1.0E-03    | 9.5E-04        | 1.7E-06         | 7.5E-04 | 2.6E-06 | 2.5E-06          | 4.1E-06          | 1.3E-04             | 1.2E-04        | 2.2E-07         | 9.5E-0  |
|                          | M3N_S15  | Volume   | Y          |         | 105    | 11       | 2.1E-05 | 2.0E-05          | 3.3E-05   | 1.1E-03    | 9.6E-04        | 1.7E-06         | 7.6E-04 | 2.6E-06 | 2.5E-06          | 4.1E-06          | 1.3E-04             | 1.2E-04        | 2.2E-07         | 9.6E-0  |
|                          | MR_S1    | Volume   | Y          |         | 2,849  | 299      | 2.1E-05 | 2.0E-05          | 3.3E-05   | 1.1E-03    | 9.6E-04        | 1.7E-06         | 7.6E-04 | 2.6E-06 | 2.5E-06          | 4.1E-06          | 1.3E-04             | 1.2E-04        | 2.2E-07         | 9.6E-0  |
|                          | FM1RD    | Volume   | Y          |         | 187    | 20       | 2.7E-04 | 2.8E-04          | 1.1E-03   | 0          | 0              | 0               | 0       | 3.4E-05 | 3.6E-05          | 1.4E-04          | 0                   | 0              | 0               | 0       |
|                          | FM2N_S1  | Volume   | Y          |         | 115    | 12       | 2.7E-04 | 2.9E-04          | 1.2E-03   | 0          | 0              | 0               | 0       | 3.4E-05 | 3.6E-05          | 1.5E-04          | 0                   | 0              | 0               | 0       |
| Paved FD <sup>4</sup>    | FM2S_RD  | Volume   | Y          |         | 170    | 18       | 2.7E-04 | 2.8E-04          | 1.2E-03   | 0          | 0              | 0               | 0       | 3.4E-05 | 3.6E-05          | 1.5E-04          | 0                   | 0              | 0               | 0       |
|                          | FM3N_S15 | Volume   | Y          |         | 105    | 11       | 2.7E-04 | 2.9E-04          | 1.2E-03   | 0          | 0              | 0               | 0       | 3.4E-05 | 3.6E-05          | 1.5E-04          | 0                   | 0              | 0               | 0       |
|                          | FMR_S1   | Volume   | Y          |         | 2,849  | 299      | 2.7E-04 | 2.9E-04          | 1.2E-03   | 0          | 0              | 0               | 0       | 3.4E-05 | 3.6E-05          | 1.5E-04          | 0                   | 0              | 0               | 0       |
| Unpaved FD               | FUPR_M1  | Volume   | Y          |         | 262    | 35       | 7.2E-03 | 7.7E-03          | 7.7E-02   | 0          | 0              | 0               | 0       | 9.1E-04 | 9.7E-04          | 9.7E-03          | 0                   | 0              | 0               | 0       |
| Stockpiles               | SA_M1    | Area     | N          | 32,405  |        |          | 1.2E-06 | 1.2E-06          | 1.6E-05   | 0          | 0              | 0               | 0       | 1.5E-07 | 1.5E-07          | 2.0E-06          | 0                   | 0              | 0               | 0       |
| Asphalt Plant            | APS      | Point    | Y          |         |        |          | 2.0E-01 | 2.0E-01          | 2.6E-01   | 6.5E+00    | 6.5E+00        | 1.7E+00         | 3.9E+01 | 2.5E-02 | 2.5E-02          | 3.3E-02          | 8.2E-01             | 8.2E-01        | 2.1E-01         | 4.9E+0  |
| Asphalt Silo             | SILO     | Volume   | Y          |         |        | 1        | 3.3E-03 | 1.4E-02          | 1.4E-02   | 0          | 0              | 0               | 5.9E-01 | 4.2E-04 | 1.8E-03          | 1.8E-03          | 0                   | 0              | 0               | 7.4E-0  |
| Asphalt Loadout          | APLD     | Volume   | Y          |         |        | 1        | 3.0E-03 | 1.3E-02          | 1.3E-02   | 0          | 0              | 0               | 6.7E-01 | 3.8E-04 | 1.6E-03          | 1.6E-03          | 0                   | 0              | 0               | 8.5E-0  |
| Recycled Asphalt Crusher | RAC      | Volume   | N          |         |        | 1        | 1.0E-01 | 1.0E-01          | 6.4E-01   | 0          | 0              | 0               | 0       | 1.3E-02 | 1.3E-02          | 8.1E-02          | 0                   | 0              | 0               | 0       |
|                          | TANK1    | Point    | N          |         |        |          | 0       | 0                | 0         | 0          | 0              | 0               | 6.3E-03 | 0       | 0                | 0                | 0                   | 0              | 0               | 8.0E-04 |
| Storage Tanks⁵           | TANK2    | Point    | N          |         |        |          | 0       | 0                | 0         | 0          | 0              | 0               | 6.3E-03 | 0       | 0                | 0                | 0                   | 0              | 0               | 8.0E-04 |
|                          | TANK3    | Point    | N          |         |        |          | 0       | 0                | 0         | 0          | 0              | 0               | 6.3E-03 | 0       | 0                | 0                | 0                   | 0              | 0               | 8.0E-04 |

#### **TAP Modeling Emissions Rates**

|                            |        | 6      |                        | A              |        |          | Benzene | Formaldehyde | Naphthalene | Benzene | Formaldehyde | Naphthalene |
|----------------------------|--------|--------|------------------------|----------------|--------|----------|---------|--------------|-------------|---------|--------------|-------------|
| Source Category            | SRCGRP | Source | Seasonal? <sup>1</sup> | Area           | Length | # Volume |         | lb/hr        |             | g/s     |              |             |
|                            |        | Type   |                        | m <sup>2</sup> |        | [        | Annual  | Annual       | Annual      | Annual  | Annual       | Annual      |
| Asphalt Plant              | APS    | Point  | Y                      |                |        |          | 1.8E-02 | 1.4E-01      | 4.1E-03     | 2.3E-03 | 1.8E-02      | 5.2E-04     |
| Asphalt Silo               | SILO   | Volume | Y                      |                |        | 1        | 1.8E-04 | 3.9E-03      | 2.1E-04     | 2.3E-05 | 4.9E-04      | 2.7E-05     |
| Asphalt Loadout            | APLD   | Volume | Y                      |                |        | 1        | 1.0E-04 | 1.7E-04      | 2.0E-04     | 1.3E-05 | 2.1E-05      | 2.5E-05     |
|                            | TANK1  | Point  | N                      |                |        |          | 1.4E-05 | 2.3E-05      | 3.3E-04     | 1.7E-06 | 2.9E-06      | 4.1E-05     |
| Storage Tanks <sup>5</sup> | TANK2  | Point  | N                      |                |        |          | 1.4E-05 | 2.3E-05      | 3.3E-04     | 1.7E-06 | 2.9E-06      | 4.1E-05     |
|                            | TANK3  | Point  | N                      |                |        |          | 1.4E-05 | 2.3E-05      | 3.3E-04     | 1.7E-06 | 2.9E-06      | 4.1E-05     |

Notes 1. If the emissions rate of a given source varies by season, the maximum lb/hr emissions rate is used for the 24-hr and 1-hr averaging period.

2. Crushing plant emissions are divided evenly between the two modeled sources.

3. Off-road emissions are divided by the sum of the areas for the three modeled sources.

4. On-road emissions (for both exhaust and fugitive dust emissions) are split across the on-road source groups by the percent of volume length for each source group out of the total length across all on-road volume source groups. The g/s emissions rate is divided by the number of volumes in each source group.

5. Storage tank emissions are split evenly across the three modeled sources.

#### Abbreviations:

| CO - carbon monoxide           | NO <sub>2</sub> - nitrogen dioxide                                       |
|--------------------------------|--------------------------------------------------------------------------|
| g - gram                       | PM <sub>2.5</sub> - particulate matter less than 2.5 microns in diameter |
| hr - hour                      | PM <sub>10</sub> - particulate matter less than 10 microns in diameter   |
| lb - pound                     | SO <sub>2</sub> - sulfur dioxide                                         |
| m <sup>2</sup> - meter squared | s - second                                                               |

## Table 25 Background Concentrations Segale-Cumberland Mine King County, Washington

| Bollutant        | Averaging Beriod | Background Concentration |  |  |  |
|------------------|------------------|--------------------------|--|--|--|
| Fondtant         |                  | ug/m <sup>3</sup>        |  |  |  |
| DM               | Annual           | 5                        |  |  |  |
| F 112.5          | 24-hr            | 14.4                     |  |  |  |
| PM <sub>10</sub> | 24-hr            | 41                       |  |  |  |
| NO-              | Annual           | 10.5                     |  |  |  |
|                  | 1-hr             | 58.4                     |  |  |  |
| <u> </u>         | 8-hr             | 813                      |  |  |  |
|                  | 1-hr             | 1,236                    |  |  |  |
| SO <sub>2</sub>  | 1-hr             | 13.1                     |  |  |  |

## Notes:

- 1. Background concentration data for criteria pollutants were obtained from the NW-AIRQUEST background design value tool for grid cells surrounding the project site, from 2014-2017. The highest background concentration for each pollutant and averaging period was selected.
- CO, NO<sub>2</sub>, and SO<sub>2</sub> concentrations provided in ppm and ppb were converted to ug/m<sup>3</sup> assuming a temperature of 25°C and pressure of 1 atm.

### Abbreviations:

| atm - atmospheres                         | $PM_{10}$ - particulate matter less than 10 microns in diameter |
|-------------------------------------------|-----------------------------------------------------------------|
| °C - degrees Celsius                      | ppb - parts per billion                                         |
| CO - carbon monoxide                      | ppm - parts per million                                         |
| hr - hour                                 | SO <sub>2</sub> - sulfur dioxide                                |
| NO <sub>2</sub> - nitrogen dioxide        | ug/m <sup>3</sup> - micrograms per meter cubed                  |
| $PM_{2.5}$ - particulate matter less than | 2.5 microns in diameter                                         |

## **References:**

Washington State University. 2023. NW-AIRQUEST. Available at: https://lar.wsu.edu/nw-airquest/

#### Table 26 NAAQS/ASIL Modeling Results Segale-Cumberland Mine King County, Washington

| Pollutant        | Averaging | Background<br>Concentration | Project<br>Contribution | Rank of Reported     | Total<br>Concentration | NAAQS/ASIL<br>Threshold <sup>2</sup> | Pass? |
|------------------|-----------|-----------------------------|-------------------------|----------------------|------------------------|--------------------------------------|-------|
|                  | 1 criou   | (ug/m <sup>3</sup> )        | (ug/m <sup>3</sup> )    | rioject contribution | (ug/m <sup>3</sup> )   | (ug/m <sup>3</sup> )                 |       |
| PM               | Annual    | 5.0                         | 1.6                     | Maximum              | 6.6                    | 12                                   | YES   |
| 1112.5           | 24-hr     | 14                          | 6.7                     | 98th Percentile      | 21                     | 35                                   | YES   |
| PM <sub>10</sub> | 24-hr     | 41                          | 65                      | 2nd High             | 106                    | 150                                  | YES   |
| NO               | Annual    | 11                          | 5.4                     | Maximum              | 16                     | 100                                  | YES   |
| 1102             | 1-hr      | 58.4                        | 128.3                   | 98th Percentile      | 186.7                  | 188                                  | YES   |
| <u> </u>         | 8-hr      | 813                         | 236                     | 2nd High             | 1,049                  | 10,000                               | YES   |
| 0                | 1-hr      | 1,236                       | 1,018                   | 2nd High             | 2,254                  | 40,000                               | YES   |
| SO <sub>2</sub>  | 1-hr      | 13.1                        | 12.9                    | 99th Percentile      | 26                     | 196                                  | YES   |
| Benzene          | Annual    | 0                           | 0.0034                  | Maximum              | 0.003                  | 0.13                                 | YES   |
| Formaldehyde     | Annual    | 0                           | 0.026                   | Maximum              | 0.026                  | 0.17                                 | YES   |
| Naphthalene      | Annual    | 0                           | 0.017                   | Maximum              | 0.017                  | 0.029                                | YES   |

#### Notes:

<sup>1.</sup> The reported Project impacts are based on the form of NAAQS defined by EPA. The reported Project impacts for Project impacts is the maximum annual impact.

<sup>2.</sup> NAAQS thresholds are reported by the US EPA for PM<sub>2.5</sub>, PM<sub>10</sub>, NO<sub>2</sub>, CO, and SO<sub>2</sub>. ASIL thresholds are reported in WAC 173-460-150 for all TAPs (Benzene, Formaldehyde, and Naphthalene).

#### Abbreviations:

ASIL - acceptable source impact level CO - carbon monoxide hr - hour NAAQS - National Ambient Air Quality Standards NO<sub>2</sub> - nitrogen dioxide  $PM_{2.5}$  - particulate matter less than 2.5 microns in diameter  $PM_{10}$  - particulate matter less than 10 microns in diameter  $SO_2$  - sulfur dioxide TAP - toxic air pollutant  $ug/m^3$  - microgram per meter cubed

#### References:

USEPA. NAAQS Table. Available at: https://www.epa.gov/criteria-air-pollutants/naaqs-table WAC Title 173 Chapter 460 Section 150. Table of ASIL, SQER and de minimis emissions values. Available at: https://apps.leg.wa.gov/wac/default.aspx?cite=173-460-150 Ramboll – Air Dispersion Modeling Report Final

## **FIGURES**

PROJECT: 169000XXXX | DATED: 2/6/2023 | DESIGNER: SBISOGNO



## **PROJECT SITE LOCATION**

## **FIGURE 01**

RAMBOLL US CONSULTING, INC. A RAMBOLL COMPANY





Roadways

Asphalt Loadout (APLD)

Asphalt Plant (APS)

Asphalt Silo (SILO)



Crushing Plant (RCFP2)



Off-Road Areas

Stockpile (SA\_M1)

Tanks

## **MODELED SOURCES**

**Segale-Cumberland Mine** 

King County, Washington

## **FIGURE 02**

RAMBOLL US CONSULTING, INC. A RAMBOLL COMPANY

RAMBOLL

PROJECT: 169000XXXX | DATED: 2/6/2023 | DESIGNER: SBISOGNO



## **RECEPTOR GRID**

## **FIGURE 03**

RAMBOLL US CONSULTING, INC. A RAMBOLL COMPANY





## **5-YEAR WINDROSE - MUD MOUNTAIN MONITORING STATION**

**FIGURE 04** 

RAMBOLL

RAMBOLL US CONSULTING, INC. A RAMBOLL COMPANY

Segale-Cumberland Mine King County, Washington